

afrialliance

<u>Ranya AMER</u>, Tarek HOSNY, Eslam SALAMA, Dina IHAB, Sherif ABU EL-MAGD, <u>Harrison</u> <u>PIENAAR</u>, Fhumulani RAMUKHWATHO, <u>Pascal BREIL</u>, <u>Philippe NAMOUR</u>

> Water Resources Dialogue: China-Africa Water Forum Series No. 7, Windhoek, Namibia 22-27July 2019

Outlines

- AfriAlliance call
- SoWat AfriAlliance Action group
 - French case
 - Egyptian case
 - South Africa case
- Concluding remarks (web site, first advancements

AfriAlliance Projects

- AfriAllinace is funded by the European Commissions Horizon 2020 programme. ٠
- The main objective, is African and European stakeholders to work together in • the areas of water innovation, research, policy, and capacity development to prepare Africa for future Climate Change challenges.
- This will drive Africa-EU cooperation in this field to a practical level by sharing ٠ (non) technological innovation for local challenges and boosting sustainable market and investment opportunities.
- The AfriAlliance project will re-enforce Water and Climate Change research and ٠ (social) innovation (R&I) cooperation between Africa and Europe through a mix of forward-looking and bottom-up innovation.
- SoWat Action Group has been chosen from more than 80 applications. frialliance © AfriAlliance Consortium

SoWat AfriAlliance Action group

Organisation and synergies

- The SoWat action group is composed of 6 partners from 3 countries: Egypt (EG), South Africa (SA) and France (FR).
- Multidisciplinary is the main strength of SoWat action group to meet climate change challenges and adaptation to increase hydrological variability.
- Indeed, SoWat partners brings complementary skills, in wastewater treatment, water use efficiency, decontamination, water conservation, nature based solutions (NBS), water management techniques, socioeconomic studies
- SoWat's partners develop operational demonstration sites (demo-sites) in a gradient of rural to urban contexts, assess solutions dealing with water stresses related to land use change.

SoWat AfriAlliance Action group

Theme # 1: Human development and capacity development needs in water and climate actions:

- Proposes to assess various NBSs on demo-sites, by means of case studies. In order to NBSs are easily managed by local users (most affected communities) a participatory management approach is required.
- Focusses on the capacity building and public awareness for wastewater recycling.

SoWat aims and objectives

1:Propose new NBSs in solutions to water scarcity due to climate change, in EG, SA and FR;

Show low-cost NBSs for water decontamination and purification.

2:Build capacity and empower local communities with knowhow on sustainable water management practices to promote SMEs;

Promote water management best practices (domestic water reuse, irrigation and feed stock production).

SoWat AfriAlliance Action group

3:Close the gap between science, technology and policy focusing on community needs and demands;

4:Support the economies of EG and SA by protecting human health and creating more sustainable job opportunities

Communication Strategy

- Improve societal awareness by interaction with the local community on NBS implementation.
- Assist capacity development by interaction, training and communication of project outputs.
- Address policy and decision-makers to adopt projects outputs.

French case

5 slides for each case

- 1. Project context (policy , social, low cost, suitability
- 2. Site selection/description
- 3. Technical aspects
- 4. Some results ??
- 5. Conclusion ?? Public participation

in inception report

Egyptian case

5 slides for each case (5 slides for each case)

- 1. Project context (policy , social, low cost, suitability
- 2. Site selection/description
- 3. Technical aspects
- 4. Some results ??
- 5. Conclusion ?? Public participation

in inception report

Soil Wash

The flow rate is 15 cm water in 24 hours The volume of soil in the cylinder is 352 cm3

Soil Wash Data after 100 days

Date	Sample	Time	рН	Temp.	TDS	EC	ORP	Salts	Water Volume	Notes
	·		-	°C	mg/L	ms	mv	%	ml	
19-Feb-19	Tap Water	13:30	7.60	19.3	434	0.641	-35	0.03		Tap Water (Blank)
3-Mar-19	S ₁	15:15	6.83	18.1	1056	1.333	3	0.09		After 3Days
5-Mar-19	\$ ₂	11:30	7.15	18.9	3040	4.300	-10	0.25	35	After 2Days from S ₁
7-Mar-19	S ₃	12:45	7.4	19.5	3280	4.92	-25	0.26	35	
11-Mar-19	S ₄	14:10	7.64	19.7	2560	3.82	-39	0.20	38	
12-Mar-19	S5	14:10	6.99	21.1	2600	3.92	0	0.21	16	
14-Mar-19	S ₆	14:30	7.73	20.3	2600	3.92	-43	0.21	25	
17-Mar-19	S ₇	13:30	7.68	19.3	2040	3.08	-42	0.16	45	
19-Mar-19	S ₈	10:40	7.52	19.1	1490	2.23	-35	0.12	22	
20-Mar-19	S9	14:40	7.64	19.7	1263	1.901	-39	0.1	22	
24-Mar-19	S ₁₀	14:20	7.26	18.9	1980	2.99	0	0.16	52	
26-Mar-19	S ₁₁	15:00	7.35	19.7	1730	2.6	-25	0.14	32	
28-Mar-19	S ₁₂	13:00	7.48	21.6	1670	2.5	-32	0.13	32	
31-Mar-19	S ₁₃	11:40	6.99	18.3	1900	2.88	0	0.15	38	
2-Apr-19	S ₁₄	11:00	7.33	18.9	1860	2.79	-21	0.15	23	
4-Apr-19	S ₁₅	14:30	7.3	19.4	1430	2.14	-26	0.11	22	
8-Apr-19	S ₁₆	12:50	7.3	21.9	1840	2.8	-19	0.15	26	36 th Day
11-Apr-19	S ₁₇	11:30	7.27	21.5	1720	2.62	-18	0.14	37	39 th Day
14-Apr-19	S ₁₈	11:10	7.17	21.9	1320	2.06	-14	0.12	52	42 th Day
18-Apr-19	S ₁₉	14:05	7.26	21.5	1860	2.81	-17	0.15	28	46 th Day
28-Apr-19	S ₂₀	12:00	7.29	22.9	1890	2.85	-21	0.15	55	56 th Day
5-May-19	S ₂₁	15:00	7.66	23.2	1870	2.82	-36	0.15	45	63 rd Day
8-May-19	S ₂₂	12:00	7.68	23.5	1450	2.19	-40	0.12	25	66 th Day
13-May-19	S ₂₃	11:30	7.51	23.5	1780	2.71	-31	0.14	37.5	71 st Day
19-May-19	S ₂₄	11:00	7.62	23.8	1720	2.56	-36	0.14	35	77 th Day
22-May-19	S ₂₅	14:40	7.7	26.8	1710	2.57	-44	0.14	27	80 th Day
26-May-19	S ₂₆	11:30	7.67	24.3	1790	2.7	-38	0.14	25	84 th Day
30-May-19	S ₂₇	11:30	7.44	24.1	1990	3.03	-25	0.16	17	88 th Day

Vafrialliance

Soil Analysis

Before

Electrical conductivity (mS/cm)	рН	TDS (ppm)
5.82	7.3	4200

After

Electrical conductivity (mS/cm)	рН	TDS (ppm)
2.22	7.5	1500

Schematic diagram for the water treatment unit

Must be cleaned every 3 years afrialliance

Which gives: A flux of 0.36 m3/day Residence time of 11 days Storage@abacity ofe4Cm3ortium the field.

How to irrigate during night only? 1 puget of 0.16 m3?

Schematic diagram for the treatment unit

Septic Tanks made of fiber glass

5 m3 1.20 m x 4.5 m

Sand treatment tank

South Africa case

5 slides for each case (5 slides for each case)

- 1. Project context (policy , social, low cost, suitability
- 2. Site selection/description
- 3. Technical aspects
- 4. Some results ??
- 5. Conclusion ?? Public participation

in inception report

Genarl conclusion

© AfriAlliance Consortium

more information

www.afrialliance.org

afrialliance@un-ihe.org

© AfriAlliance Consortium

Thank you

* * * * * * * * * * This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689162.

O AfriAlliance consortium