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We designed a dendritic folate–drug conjugate allowing
the b-galactosidase-catalysed release of two MMAE
molecules inside folate receptor-positive cancer cells.
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A Q1 Q2dendritic b-galactosidase-responsive folate–
monomethylauristatin E conjugate†

Jérôme Alsarraf,a Elodie Péraudeau,bc Pauline Poinot,d Isabelle Tranoy-Opalinski,a

Jonathan Clarhaut,ac Brigitte Renoux*a and Sébastien Papot*a

We report the study of a new drug delivery system programmed for

the selective internalisation and the subsequent enzyme-catalysed

release of two monomethylauristatin E molecules inside FR-positive

cancer cells. This targeting device is the most potent b-galactosidase-

responsive folate–drug conjugate developed so far, killing cancer cells

expressing a medium level of FR at low nanomolar concentrations.

The development of ‘smart’ drug carriers designed to deliver potent
anticancer agents within malignant cells has recently emerged as a
valuable alternative to enhance the selectivity of cancer chemo-
therapy. In this context, two antibody–drug conjugates targeting
tumour-associated membrane antigens are already on the market
(brentuximab vedotin1 since 2011 and trastuzumab emtansine2

since 2013) and more than forty are currently under evaluation in
the clinic.3 Another promising strategy relies on the use of folate–
drug conjugates that recognize cancer cells overexpressing the folate
receptor (FR).4 To date, the best illustration of this approach is the
vintafolide, a folate–desacetylvinblastine monohydrazine conjugate
which is progressing through clinical trials.5,6 Recently, we studied
enzyme-responsive folate–drug conjugates programmed for the
selective internalisation and subsequent b-galactosidase-catalysed
release of potent cytotoxic agents inside FR-positive cancer cells.7–9

Amongst such targeting systems, a drug carrier designed for the
delivery of the potent anti-neoplastic agent monomethylauristatin
E (MMAE) induced a remarkable anticancer activity in mice.8 In
the course of these studies, we demonstrated that the efficiency of

this strategy strongly depended on the FR expression level at the
surface of cancer cells. A lower FR abundance indeed limits
the amount of folate conjugate internalised through receptor-
mediated endocytosis and therefore the concentration of active
drug released enzymatically within the cells. Thus, with the aim to
increase the potential of this targeting strategy, we now report on
the study of the dendritic b-galactosidase-responsive folate–MMAE
conjugate 1 (Fig. 1). By enabling the double release of MMAE
through a single internalisation/enzymatic activation sequence,
this novel drug delivery system is more efficient than its mono-
meric counterpart for the killing of cancer cells that express a
medium level of FR.

Our functional molecular assembly 1 includes a galactoside
trigger, a self-immolative linker,10 a targeting ligand and two MMAE
molecules articulated around a chemical amplifier (Fig. 1).11–13

Once internalised inside FR-positive cancer cells, hydrolysis of the
glycosidic bond by lysosomal b-galactosidase will generate the
phenol 2 that will undergo a 1,6-elimination followed by a sponta-
neous decarboxylation to produce the quinone 3 concomitantly with
the aniline intermediate 4. This latter will then lead to the
release of two MMAE units through successive 1,6- and 1,4-
elimination processes as depicted in Fig. 1.

The synthesis of 1 was carried out starting from the biscarbonate
8 we described recently (Scheme 1).13 Thus, MMAE was condensed
on the two activated positions of 8 in the presence of HOBt to afford
the expected dimer 9 in 64% yield. The galactoside moiety was then
fully deprotected with LiOH in MeOH at 0 1C. After 20 minutes
under these conditions, the pH was adjusted to 7 and the resulting
clickable derivative 10 was used in the next step without any
purification. Finally, reaction between the terminal alkyne 10 and
the azides 11 catalysed by copper(I) led to the amplified drug delivery
system 1 (62% over two steps) that was further purified by pre-
parative chromatography for biological evaluations (purity 495%,
as a mixture of 4 isomers, see the ESI†).

We next investigated the release mechanism of MMAE from the
targeting assembly 1 in the presence of b-galactosidase. For this
purpose, galactoside 1 was incubated with the enzyme in phosphate
buffer (pH 7.2, 0.02 M) at 37 1C and the evolution of the mixture
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over time was followed by HPLC/HRMS (Fig. 2). The chromatograms
showed the rapid disappearance (t = 35 min) of compound 1 and
the emergence of four new peaks with M = 717.5040, 830.3096 and
896.5623 g mol�1, which correspond respectively to the free MMAE,
the a- and g-regioisomer of 3 and the aniline intermediate 6. Thirty
five minutes after the addition of b-galactosidase, traces of phenol 2
(M = 2514.3450 g mol�1) and dimer 4 (M = 1640.0456 g mol�1) were
also detected in the mixture (see the ESI†). Taken together, these
results confirm that the b-galactosidase-catalysed disassembly of 1
proceeds via the self-immolative mechanism depicted in Fig. 1.
Since the release of MMAE was completed within two hours, it
appeared that the whole process occurred relatively rapidly despite
the complexity of the double drug release mechanism.

The antiproliferative activity of the dimeric b-galactosidase-
responsive folate–MMAE conjugate 1 was then evaluated on
HeLa, SKOV-3 and A2780 cancer cell lines and compared to that
of the monomeric analogue 128 (Fig. 3). These cancer cell lines
were chosen in this study since they express far lower levels of FR
than KB cells, usually used as a reference (see the ESI†).

As shown in Table 1, the dimer 1 dramatically affected the
viability of cells, with IC50 values ranging from 9.62 to 64.51 nM.

In comparison, the monomer 12 exhibited a 1.80 to 3.85-fold lower
toxicity when incubated with the same cell lines. The superior
cytotoxicity recorded with the targeting system 1 demonstrates the
increased release of MMAE within tumour cells. The role of
lysosomal b-galactosidase in the activation process of 1 was con-
firmed with a control experiment using a non-cleavable trigger (see
the ESI†). However, these results also show that the [IC50 12]/
[IC50 1] ratio depends on the tested cell line. Surprisingly this ratio
is approximately 2-fold higher for A2780 cells than for the other
cancer cell types suggesting an enhanced amplification process.
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Fig. 1 Structure of the dendritic b-galactosidase-responsive folate–
MMAE conjugate 1 and enzyme catalysed release mechanism of the two
MMAE molecules.

Scheme 1 Synthesis of 1. Reagents and conditions: (a) MMAE, HOBt,
DMF/Pyr (4/1), RT, 24 h, 64%; (b) LiOH, MeOH, 0 1C, 20 min; (c) 11, CuSO4,
sodium ascorbate, DMSO/H2O (9/1), RT, 20 h, 62% (2 steps).

Fig. 2 Enzymatic hydrolysis of 1 with E. coli b-galactosidase in phosphate
buffer (0.02 M, pH 7.2, 37 1C) monitored by HPLC–HRMS at t = 0, t =
35 min and t = 120 min. Retention times: 1 (20.83 min), 3 (11.01 and 11.21 min),
6 (20.37 min), MMAE (13.76 min).
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Thus, we decided to pursue our investigations by comparing the
concentration of MMAE released from either dimer 1 or monomer
12 inside A2780 cells.

For this purpose, cells were treated with 100 nM of target-
ing system 1 or 12 for 24 hours. Cells were then lysed and the
free drug was dosed by HPLC/HRMS (Table 2). In these
experiments, the galactoside dimer 1 led to the release of
approximately four times more MMAE than its monomeric
counterpart 12, consistently with the observed amplification
of cytotoxicity.

This result indicated that a higher quantity of 1 was acti-
vated enzymatically in the culture medium. Indeed, if the same
amount of drug delivery systems 1 and 12 had been hydrolysed
by b-galactosidase, the quantity of MMAE released from the
dimer should have been only doubled compared to the monomer.
This effect could be due to extracellular activation of non-
internalised folate–MMAE conjugates 1 by b-galactosidase liberated
from dead cells. Since monomer 12 is less toxic for A2780 cells, the
release of the activating enzyme should be less important upon
treatment with this compound. This hypothesis is supported

by the recent study of Antunes et al. who demonstrated that
b-glucuronidase released from dead cancer cells can activate
glucuronide prodrugs in the tumour microenvironment.14

In summary, we designed a new dendritic folate–drug conjugate
including a chemical amplifier that enables the receptor-mediated
endocytosis and the subsequent enzyme-catalysed release of two
MMAE molecules inside cancer cells expressing the FR. This
targeting system is the most potent b-galactosidase-responsive
folate–drug conjugate reported so far, killing tumour cells with a
medium level of FR at low nanomolar concentrations. As the FR is a
target of clinical relevance, our study could be of great interest for
the development of a new generation of enzyme-sensitive folate–
drug conjugates that could widen the scope of FR-expressing
tumours which could be treated by this therapeutic strategy.

The authors thank CNRS, the Région Poitou-Charentes, La Ligue
Nationale contre le Cancer (Comités Vienne and Deux-Sèvres), Sport
et Collection and Agence Nationale de la Recherche (ARN, Pro-
gramme Blanc-SIMI 7, ProTarget) for financial support of this study.
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Fig. 3 Structure of the b-galactosidase-responsive folate–MMAE conju-
gate 12.

Table 1 IC50 values (nM)a of MMAE, 1 and 12 on HeLa, SKOV-3 and A2780
cell linesb

Cell line

IC50 (nM)

MMAE 1 12 12/1

HeLa 1.12 � 0.41 16.30 � 3.76 29.36 � 5.77 1.80
SKOV-3 0.64 � 0.08 9.62 � 1.12 20.16 � 1.45 2.10
A2780 6.67 � 3.54 64.51 � 14.13 248.23 � 87.09 3.85

a Values represent the mean � SEM of five to six experiments per-
formed in triplicate. b HeLa cells: human cervix adenocarcinoma,
SKOV-3 and A2780 cells: human ovarian carcinoma.

Table 2 Quantity of MMAE released from either 1 or 12 during treatment
of A2780 tumour cells at 100 nM – relative areas determined by HPLC/
HRMS (AU)

Relative area

1 12 1/12

Assay 1 56 813 491 13 353 647 4.25
Assay 2 58 596 545 14 515 391 4.04

This journal is �c The Royal Society of Chemistry 2015 Chem. Commun., 2015, 00, 1�4 | 3

ChemComm Communication

itranoy
Texte surligné 



A. Monvoisin, L. Cronier and S. Papot, ChemMedChem, 2011, 6,
2137–2141.

13 For the first demonstration that a chemical amplification process
can occur under the conditions prevailing within the cells see:
M. Grinda, T. Legigan, J. Clarhaut, E. Péraudeau, I. Tranoy-
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