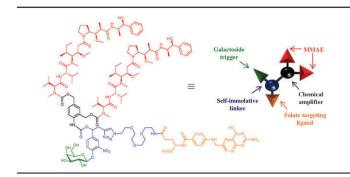


A dendritic β -galactosidase-responsive folate-monomethylauristatin E conjugate

Jérôme Alsarraf, Elodie Peraudeau, Pauline Poinot, I. Tranoy-Opalinski,

Jonathan Clarhaut, Brigitte Renoux, Sébastien Papot

▶ To cite this version:


Jérôme Alsarraf, Elodie Peraudeau, Pauline Poinot, I. Tranoy-Opalinski, Jonathan Clarhaut, et al.. A dendritic β -galactosidase-responsive folate-monomethylauristatin E conjugate. Chemical Communications, 2015, 51 (87), pp.15792-15795. 10.1039/C5CC05294G . hal-03127679

HAL Id: hal-03127679 https://hal.science/hal-03127679

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chemical Communications

A dendritic β -galactosidase-responsive folatemonomethylauristatin E conjugate

Jérôme Alsarraf, Elodie Péraudeau, Pauline Poinot, Isabelle Tranoy-Opalinski, Jonathan Clarhaut, Brigitte Renoux* and Sébastien Papot*

We designed a dendritic folate-drug conjugate allowing the β -galactosidase-catalysed release of two MMAE molecules inside folate receptor-positive cancer cells.

Please check this proof carefully. Our staff will not read it in detail after you have returned it.

Translation errors between word-processor files and typesetting systems can occur so the whole proof needs to be read. Please pay particular attention to: tabulated material; equations; numerical data; figures and graphics; and references. If you have not already indicated the corresponding author(s) please mark their name(s) with an asterisk. Please e-mail a list of corrections or the PDF with electronic notes attached – do not change the text within the PDF file or send a revised manuscript. Corrections at this stage should be minor and not involve extensive changes. All corrections must be sent at the same time.

Please bear in mind that minor layout improvements, e.g. in line breaking, table widths and graphic placement, are routinely applied to the final version.

Please note that, in the typefaces we use, an italic vee looks like this: v, and a Greek nu looks like this: v.

We will publish articles on the web as soon as possible after receiving your corrections; no late corrections will be made.

Please return your final corrections, where possible within 48 hours of receipt, by e-mail to: chemcomm@rsc.org

Queries for the attention of the authors

Journal: ChemComm

Paper: c5cc05294g

Title: A dendritic β-galactosidase-responsive folate-monomethylauristatin E conjugate

Editor's queries are marked on your proof like this **Q1**, **Q2**, etc. and for your convenience line numbers are indicated like this 5, 10, 15, ...

Please ensure that all queries are answered when returning your proof corrections so that publication of your article is not delayed.

Query reference	Query	Remarks
Q1	For your information: You can cite this article before you receive notification of the page numbers by using the following format: (authors), Chem. Commun., (year), DOI: 10.1039/c5cc05294g.	
Q2	Please carefully check the spelling of all author names. This is important for the correct indexing and future citation of your article. No late corrections can be made.	
Q3	Do you wish to add an e-mail address for the corresponding author? If so, please supply the e-mail address.	
Q4	Ref. 3b: Can this reference be updated?	

ChemComm

COMMUNICATION

5

Q1 Q2

10

15

20

25

1

10

Cite this: DOI: 10.1039/c5cc05294g

Received 27th June 2015, Accepted 8th September 2015

A dendritic β-galactosidase-responsive folatemonomethylauristatin E conjugate[†]

Jérôme Alsarraf,^a Elodie Péraudeau,^{bc} Pauline Poinot,^d Isabelle Tranoy-Opalinski,^a Jonathan Clarhaut,^{ac} Brigitte Renoux^{*a} and Sébastien Papot^{*a}

¹⁵ DOI: 10.1039/c5cc05294g

www.rsc.org/chemcomm

We report the study of a new drug delivery system programmed for 20 the selective internalisation and the subsequent enzyme-catalysed release of two monomethylauristatin E molecules inside FR-positive cancer cells. This targeting device is the most potent β -galactosidaseresponsive folate-drug conjugate developed so far, killing cancer cells expressing a medium level of FR at low nanomolar concentrations.

25

30

The development of 'smart' drug carriers designed to deliver potent anticancer agents within malignant cells has recently emerged as a valuable alternative to enhance the selectivity of cancer chemotherapy. In this context, two antibody-drug conjugates targeting tumour-associated membrane antigens are already on the market

(brentuximab vedotin¹ since 2011 and trastuzumab emtansine² since 2013) and more than forty are currently under evaluation in the clinic.³ Another promising strategy relies on the use of folatedrug conjugates that recognize cancer cells overexpressing the folate

35 receptor (FR).⁴ To date, the best illustration of this approach is the vintafolide, a folate-desacetylvinblastine monohydrazine conjugate which is progressing through clinical trials.^{5,6} Recently, we studied enzyme-responsive folate-drug conjugates programmed for the selective internalisation and subsequent β-galactosidase-catalysed release of potent cytotoxic agents inside FR-positive cancer cells.^{7–9}

40 release of potent cytotoxic agents inside FR-positive cancer cells.^{7–9} Amongst such targeting systems, a drug carrier designed for the delivery of the potent anti-neoplastic agent monomethylauristatin E (MMAE) induced a remarkable anticancer activity in mice.⁸ In the course of these studies, we demonstrated that the efficiency of this strategy strongly depended on the FR expression level at the surface of cancer cells. A lower FR abundance indeed limits the amount of folate conjugate internalised through receptormediated endocytosis and therefore the concentration of active drug released enzymatically within the cells. Thus, with the aim to increase the potential of this targeting strategy, we now report on the study of the dendritic β -galactosidase-responsive folate–MMAE conjugate 1 (Fig. 1). By enabling the double release of MMAE through a single internalisation/enzymatic activation sequence, this novel drug delivery system is more efficient than its monomeric counterpart for the killing of cancer cells that express a medium level of FR.

Our functional molecular assembly **1** includes a galactoside trigger, a self-immolative linker,¹⁰ a targeting ligand and two MMAE molecules articulated around a chemical amplifier (Fig. 1).^{11–13} Once internalised inside FR-positive cancer cells, hydrolysis of the glycosidic bond by lysosomal β -galactosidase will generate the phenol **2** that will undergo a 1,6-elimination followed by a spontaneous decarboxylation to produce the quinone **3** concomitantly with the aniline intermediate **4**. This latter will then lead to the release of two MMAE units through successive 1,6- and 1,4-elimination processes as depicted in Fig. 1.

The synthesis of **1** was carried out starting from the biscarbonate **8** we described recently (Scheme 1).¹³ Thus, MMAE was condensed on the two activated positions of **8** in the presence of HOBt to afford the expected dimer **9** in 64% yield. The galactoside moiety was then fully deprotected with LiOH in MeOH at 0 °C. After 20 minutes under these conditions, the pH was adjusted to 7 and the resulting clickable derivative **10** was used in the next step without any purification. Finally, reaction between the terminal alkyne **10** and the azides **11** catalysed by copper(1) led to the amplified drug delivery system **1** (62% over two steps) that was further purified by preparative chromatography for biological evaluations (purity >95%, as a mixture of **4** isomers, see the ESI†).

We next investigated the release mechanism of MMAE from the targeting assembly 1 in the presence of β -galactosidase. For this purpose, galactoside 1 was incubated with the enzyme in phosphate buffer (pH 7.2, 0.02 M) at 37 °C and the evolution of the mixture

30

35

50

55

40

⁴⁵

^a Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe "Systèmes Moléculaires Programmés",

Q3 4 rue Michel Brunet, TSA 51106, 86073 Poitiers, France

 ^b Université de Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers, France
⁵ CHU de Deitiers, 2 rue de la Milátria, CS 00577, 86021 Deitiers, France

^c CHU de Poitiers, 2 rue de la Milétrie, CS 90577, 86021 Poitiers, France ^d Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, Equipe Eau, Géochimie Organique, Santé (EGS), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers, France

[†] Electronic supplementary information (ESI): For experimental conditions and procedures, syntheses and compounds characterizations (¹H and ¹³C NMR spectroscopic analyses and mass spectrometry data) as well as biological experi-

spectroscopic analyses and mass spectrometry data) as well as biological e ments. See DOI: 10.1039/c5cc05294g

ChemComm

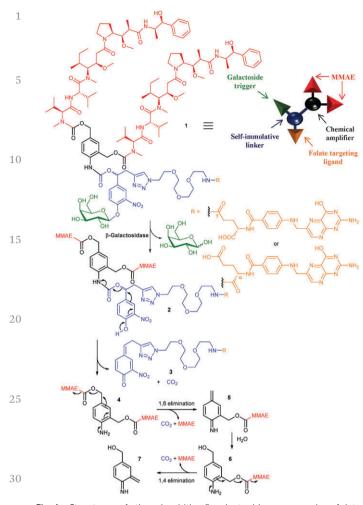
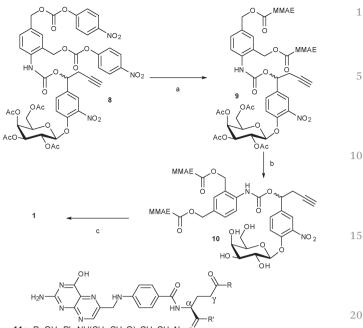
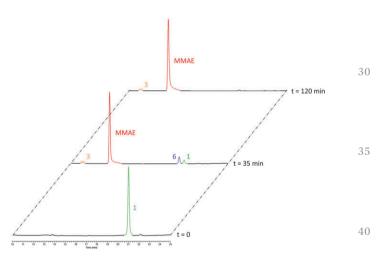


Fig. 1 Structure of the dendritic β -galactosidase-responsive folate-MMAE conjugate 1 and enzyme catalysed release mechanism of the two MMAE molecules.


35

over time was followed by HPLC/HRMS (Fig. 2). The chromatograms showed the rapid disappearance (t = 35 min) of compound **1** and the emergence of four new peaks with M = 717.5040, 830.3096 and 896.5623 g mol⁻¹, which correspond respectively to the free MMAE, the α - and γ -regioisomer of **3** and the aniline intermediate **6**. Thirty five minutes after the addition of β -galactosidase, traces of phenol **2** (M = 2514.3450 g mol⁻¹) and dimer 4 (M = 1640.0456 g mol⁻¹) were also detected in the mixture (see the ESI†). Taken together, these results confirm that the β -galactosidase-catalysed disassembly of **1** proceeds *via* the self-immolative mechanism depicted in Fig. 1.


⁴⁵ proceeds *via* the self-immolative mechanism depicted in Fig. 1. Since the release of MMAE was completed within two hours, it appeared that the whole process occurred relatively rapidly despite the complexity of the double drug release mechanism.

The antiproliferative activity of the dimeric β -galactosidase-50 responsive folate–MMAE conjugate **1** was then evaluated on HeLa, SKOV-3 and A2780 cancer cell lines and compared to that of the monomeric analogue **12**⁸ (Fig. 3). These cancer cell lines were chosen in this study since they express far lower levels of FR than KB cells, usually used as a reference (see the ESI[†]).

55 As shown in Table 1, the dimer 1 dramatically affected the viability of cells, with IC_{50} values ranging from 9.62 to 64.51 nM.

11a: R=OH, R'=NH(CH $_2$ CH $_2$ O) $_3$ CH $_2$ CH $_2$ N $_3$ **11b**: R=NH(CH $_2$ CH $_2$ O) $_3$ CH $_2$ CH $_2$ N $_3$, R'=OH

Fig. 2 Enzymatic hydrolysis of **1** with *E. coli* β -galactosidase in phosphate buffer (0.02 M, pH 7.2, 37 °C) monitored by HPLC-HRMS at t = 0, t = 35 min and t = 120 min. Retention times: **1** (20.83 min), **3** (11.01 and 11.21 min), **6** (20.37 min), **MMAE** (13.76 min).

In comparison, the monomer **12** exhibited a **1**.80 to **3**.85-fold lower toxicity when incubated with the same cell lines. The superior cytotoxicity recorded with the targeting system **1** demonstrates the increased release of MMAE within tumour cells. The role of lysosomal β -galactosidase in the activation process of **1** was confirmed with a control experiment using a non-cleavable trigger (see the ESI†). However, these results also show that the [IC₅₀ **12**]/ [IC₅₀ **1**] ratio depends on the tested cell line. Surprisingly this ratio is approximately 2-fold higher for A2780 cells than for the other cancer cell types suggesting an enhanced amplification process.

50

55

45

25

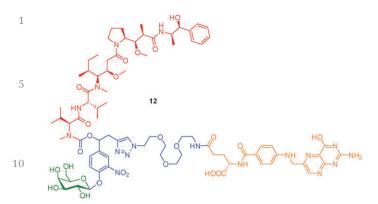


Fig. 3 Structure of the β -galactosidase-responsive folate-MMAE conjugate 12.

15

30

35

Table 1 IC_{50} values (nM)^a of MMAE, **1** and **12** on HeLa, SKOV-3 and A2780 cell lines^b

		IC ₅₀ (nM)			
20	Cell line	MMAE	1	12	12/1
	HeLa SKOV-3 A2780	$\begin{array}{c} 1.12 \pm 0.41 \\ 0.64 \pm 0.08 \\ 6.67 \pm 3.54 \end{array}$	$\begin{array}{c} 16.30 \pm 3.76 \\ 9.62 \pm 1.12 \\ 64.51 \pm 14.13 \end{array}$	$\begin{array}{c} 29.36 \pm 5.77 \\ 20.16 \pm 1.45 \\ 248.23 \pm 87.09 \end{array}$	1.80 2.10 3.85

^a Values represent the mean ± SEM of five to six experiments per formed in triplicate. ^b HeLa cells: human cervix adenocarcinoma,
SKOV-3 and A2780 cells: human ovarian carcinoma.

Thus, we decided to pursue our investigations by comparing the concentration of MMAE released from either dimer **1** or monomer **12** inside A2780 cells.

For this purpose, cells were treated with 100 nM of targeting system 1 or 12 for 24 hours. Cells were then lysed and the free drug was dosed by HPLC/HRMS (Table 2). In these experiments, the galactoside dimer 1 led to the release of approximately four times more MMAE than its monomeric counterpart 12, consistently with the observed amplification of cytotoxicity.

This result indicated that a higher quantity of **1** was activated enzymatically in the culture medium. Indeed, if the same

- 40 amount of drug delivery systems **1** and **12** had been hydrolysed by β -galactosidase, the quantity of MMAE released from the dimer should have been only doubled compared to the monomer. This effect could be due to extracellular activation of noninternalised folate–MMAE conjugates **1** by β -galactosidase liberated
- 45 from dead cells. Since monomer **12** is less toxic for A2780 cells, the release of the activating enzyme should be less important upon treatment with this compound. This hypothesis is supported

50 **Table 2** Quantity of MMAE released from either **1** or **12** during treatment of A2780 tumour cells at 100 nM – relative areas determined by HPLC/ HRMS (AU)

		Relative area		
		1	12	1/12
55	Assay 1	56 813 491	13 353 647	4.25
	Assay 2	58 596 545	14515391	4.04

1

5

10

15

20

30

35

40

45

50

55

by the recent study of Antunes *et al.* who demonstrated that β -glucuronidase released from dead cancer cells can activate glucuronide prodrugs in the tumour microenvironment.¹⁴

In summary, we designed a new dendritic folate–drug conjugate including a chemical amplifier that enables the receptor-mediated endocytosis and the subsequent enzyme-catalysed release of two MMAE molecules inside cancer cells expressing the FR. This targeting system is the most potent β -galactosidase-responsive folate–drug conjugate reported so far, killing tumour cells with a medium level of FR at low nanomolar concentrations. As the FR is a target of clinical relevance, our study could be of great interest for the development of a new generation of enzyme-sensitive folate–drug conjugates that could widen the scope of FR-expressing tumours which could be treated by this therapeutic strategy.

The authors thank CNRS, the Région Poitou-Charentes, La Ligue Nationale contre le Cancer (Comités Vienne and Deux-Sèvres), Sport et Collection and Agence Nationale de la Recherche (ARN, Programme Blanc-SIMI 7, ProTarget) for financial support of this study.

Notes and references

- S. O. Doronina, B. E. Toki, M. Y. Torgov, B. A. Mendelsohn, C. G. Cerveny, D. F. Chace, R. L. DeBlanc, R. P. Gearing, T. D. Bovee, C. B. Siegall, J. A. Francisco, A. F. Wahl, D. L. Meyer and P. D. Senter, *Nat. Biotechnol.*, 2003, 21, 778–784.
- 2 J. M. Lambert and R. V. J. Chari, J. Med. Chem., 2014, 57, 6949–6964.
- 3 (a) R. V. J. Chari, M. L. Miller and W. C. Widdison, *Angew. Chem., Int. Ed.*, 2014, 53, 3796–3827; (b) N. Jain, S. W. Smith, S. Ghone and B. Tomczuk, *Pharm. Res.*, 2015, DOI: 10.1007/s11095-015-1657-7.
- 4 I. R. Vlahov and C. P. Leamon, *Bioconjugate Chem.*, 2012, 23, 1357–1369.
- 5 J. A. Reddy, R. Dorton, E. Westrick, A. Dawson, T. Smith, L. C. Xu, M. Vetzel, P. Kleindl, I. R. Vlahov and C. P. Leamon, *Cancer Res.*, 2007, 67, 4434–4442.
- 6 R. W. Naumann, R. L. Coleman, R. A. Burger, E. A. Sausville, E. Kutarska, S. A. Ghamande, N. Y. Gabrail, S. E. DePasquale, E. Nowara, L. Gilbert, R. H. Gersh, M. G. Teneriello, W. A. Harb, P. A. Konstantinopoulos, R. T. Penson, J. T. Symanowski, C. D. Lovejoy, C. P. Leamon, D. E. Morgenstern and R. A. Messmann, *J. Clin. Oncol.*, 2013, **31**, 4400–4406.
- 7 M. Thomas, J. Clarhaut, P.-O. Strale, I. Tranoy-Opalinski, J. Roche and S. Papot, *ChemMedChem*, 2011, 6, 1006–1010.
- 8 T. Legigan, J. Clarhaut, I. Tranoy-Opalinski, A. Monvoisin, B. Renoux, M. Thomas, A. Le Pape, S. Lerondel and S. Papot, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 11606–11610.
- 9 J. Clarhaut, S. Fraineau, J. Guilhot, E. Peraudeau, I. Tranoy-Opalinski, M. Thomas, B. Renoux, E. Randriamalala, P. Bois, A. Chatelier, A. Monvoisin, L. Cronier, S. Papot and F. Guilhot, *Leuk. Res.*, 2013, 37, 948–955.
- 10 (a) S. Papot, I. Tranoy, F. Tillequin, J.-C. Florent and J.-P. Gesson, *Curr. Med. Chem.: Anti-Cancer Agents*, 2002, 2, 155–185; (b) I. Tranoy-Opalinski, A. Fernandes, M. Thomas, J.-P. Gesson and S. Papot, *Anti-Cancer Agents Med. Chem.*, 2008, 8, 618–637.
- 11 The concept of self-immolative dendrimers was proposed simultaneously by Shabat, de Groot and McGrath: (a) R. J. Amir, N. Pessah, M. Shamis and D. Shabat, Angew. Chem., Int. Ed., 2003, 42, 4494-4499; (b) F. M. H. De Groot, C. Albrecht, R. Koekkoek, P. H. Beusker and H. W. Scheeren, Angew. Chem., Int. Ed., 2003, 42, 4490-4494; (c) S. Li, M. L. Szalai, R. M. Kevwitch and D. V. McGrath, J. Am. Chem. Soc., 2003, 125, 10516-10517; (d) M. Shamis, H. N. Lode and D. Shabat, J. Am. Chem. Soc., 2004, 126, 1726-1731; (e) K. Haba, M. Popkov, M. Shamis, R. A. Lerner, C. F. Barbas III and D. Shabat, Angew. Chem., Int. Ed. Engl., 2005, 44, 716-720.
- 12 For recent examples of glycosidase-catalysed chemical amplification processes see: (a) M. Grinda, J. Clarhaut, B. Renoux, I. Tranoy-Opalinski and S. Papot, *Med. Chem. Commun.*, 2012, 3, 68–70; (b) M. Grinda, J. Clarhaut, I. Tranoy-Opalinski, B. Renoux,

Communication

- A. Monvoisin, L. Cronier and S. Papot, *ChemMedChem*, 2011, 6, 2137–2141.
- 13 For the first demonstration that a chemical amplification process can occur under the conditions prevailing within the cells see: M. Grinda, T. Legigan, J. Clarhaut, E. Péraudeau, I. Tranoy-

Opalinski, B. Renoux, M. Thomas, F. Guilhot and S. Papot, Org. Biomol. Chem., 2013, 11, 7129-7133.

14 I. F. Antunes, H. J. Haisma, P. H. Elsinga, V. Di Gialleonardo, A. Van Waard, A. T. M. Willemsen, R. A. Dierckx and E. F. J. de Vries, *Mol. Pharmaceutics*, 2012, 9, 3277–3285.

E
Э

-1	-
1	
_	

