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In the article we propose a new compression method (to 2 log 2 (q) + 3 bits) for the F q 2 -points of an elliptic curve E b :

It is based on F q -rationality of some generalized Kummer surface GK b . This is the geometric quotient of the Weil restriction R b := R F q 2 /Fq (E b ) under the order 3 automorphism restricted from E b . More precisely, we apply the theory of conic bundles i.e., conics over the function field F q (t) to obtain explicit and quite simple formulas of a birational F q -isomorphism between GK b and A 2 . Our point compression method consists in computation of these formulas. To recover (in the decompression stage) the original point from E b (F q 2 ) = R b (F q ) we find an inverse image of the natural map R b → GK b of degree 3, i.e., we extract a cubic root in F q . For q ≡ 1 (mod 27) this is just a single exponentiation in F q , hence the new method seems to be much faster than the classical one with x-coordinate, which requires two exponentiations in F q .

Introduction

Nowadays, no doubt, elliptic cryptography is widely used in practice [START_REF] Bos | Elliptic curve cryptography in practice[END_REF]. In many of its protocols one needs a compression method for points of an elliptic curve E over a finite field F q of characteristic p. This is done for quick transmission of the information over a communication channel or for its compact storage in a memory. There exists a classical method, which considers an F q -point on E ⊂ A 2 (x,y) as the x (or y [START_REF] Dudeanu | An x-coordinate point compression method for elliptic curves over F p[END_REF]) coordinate with 1 (resp. 2) bits to uniquely recover the another coordinate by solving the quadratic (resp. cubic) equation over F q . See variations of this method for p = 2 in [START_REF] Eagle | Point compression for Koblitz elliptic curves[END_REF], [START_REF] Seroussi | Compact representation of elliptic curve points over F 2 n[END_REF].

Consider an elliptic curve of the form E b : y 2 = x 3 + b for b ∈ F * q (of j-invariant 0). As is known, it is ordinary if and only if p ≡ 1 (mod 3). Despite the insignificant acceleration [START_REF] Duursma | Speeding up the discrete log computation on curves with automorphisms[END_REF] of Pollard rho method, these curves have become very popular in elliptic cryptography. This is confirmed by the standards WAP WTLS [START_REF]Open Mobile Alliance, Wireless Application Protocol Wireless Transport Layer Security (WAP WTLS) Specification[END_REF]Table 8], SEC 2 [7, §2] and different technologies such as cryptocurrencies (e.g., the curve Secp256k1 [8] is used in Bitcoin).

The main reason for this is the existence on E b of the order 3 automorphism [ω] : (x, y) → (ωx, y), where ω := 3 √ 1 ∈ F p , ω = 1, that is ω 2 + ω + 1 = 0. Therefore for the faster scalar multiplication on the curve E b we can apply the so-called GLV decomposition [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF]. At the same time, in [START_REF] Hu | Implementing 4-dimensional GLV method on GLS elliptic curves with jinvariant 0. // Designs[END_REF] it is suggested to also consider curves E b over F p 2 , because for such fields we can apply the GLS decomposition [START_REF] Galbraith | Endomorphisms for faster elliptic curve cryptography on a large class of curves[END_REF] (an improvement of GLV one). It is worth noting, however, that the GLS decomposition is also applied to elliptic curves with j = 0. The most famous example is the curve FourQ [START_REF] Costello | Four Q: Four-dimensional decompositions on a Q-curve over the Mersenne prime[END_REF] proposed by Microsoft. See [13, §8] for a comparison of the efficiency of the GLV-GLS approaches implemented for several curves, including some with j = 0. Because of many interesting applications such as identity-based cryptography [START_REF] Shamir | Identity-based cryptosystems and signature schemes[END_REF] or short signature schemes and breakthroughs in pairing computation [START_REF] Costello | Fast formulas for computing cryptographic pairings[END_REF] pairing-based cryptography [START_REF] Mrabet | Guide to pairing-based cryptography[END_REF] is becoming a more and more popular alternative to classical elliptic cryptography. Indeed, see documents of the organizations IEEE [17], ISO/IEC [START_REF]Cryptographic techniques based on elliptic curves[END_REF], [START_REF]ISO/IEC, Key management -Part 3: Mechanisms using asymmetric techniques (ISO/ IEC 11770-3)[END_REF], FIDO [START_REF] Lindemann | FIDO ECDAA algorithm[END_REF], W3C [START_REF] W3c | Web Authentication: An API for accessing public key credentials[END_REF] and products of famous companies such as ZECC [START_REF] Bowe | New zk-SNARK elliptic curve construction[END_REF], Intel [START_REF] Brickell | Enhanced privacy ID from bilinear pairing for hardware authentication and attestation[END_REF], Ethereum Foundation [START_REF]Program code[END_REF] (more information is represented in [START_REF] Sakemi | Pairing-friendly curves[END_REF]).

As usual in cryptography, an elliptic curve E/F q (in practice always q = p) is assumed to have a subgroup G ⊂ E(F q ) of large prime order = p. The embedding degree of E (with respect to ) is, by definition, the extension degree k := [F q (µ ) : F q ]. Further, let E be a twist for E of degree d | k (see, e.g., [16, §2.3.6]) and G ⊂ E (F q k/d) be the subgroup of order

. By virtue of [START_REF] Hess | The eta pairing revisited[END_REF]Theorem 9] the latter exists at least if 2, 3 |E b (F q )|. In practice, pairings (of type 2 [15, §2.3.2]) are mainly taken in the form

G×G → µ ⊂ F * q k [26, §7.3],
where k is the minimally possible number such that the discrete logarithm problem in F * q k is hard, but d is, conversely, the maximally possible one. It is a classical fact that d 6 and this bound is only attained by the elliptic curves E b .

Among those, the Barreto-Naehrig (BN) curves [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF], [28, §2] and Barreto-Lynn-Scott (BLS12) curves [START_REF] Barreto | Constructing elliptic curves with prescribed embedding degrees[END_REF] of embedding degree k = 12 (and only they as far as the author knows) are used in practice at the moment. BN curves also have k = 12, that is k/d = 2. Last time, the most popular choice for the 128-bit security level is the F p -curve BLS12-381 [START_REF] Bowe | New zk-SNARK elliptic curve construction[END_REF], where p ≡ 3 (mod 4), p ≡ 10 (mod 27), and log 2 (p) = 381.

Thus it will be useful to find a compression method for F q 2 -points of the curves E b /F q 2 , whose decompression stage is much faster than extracting a square root in F q 2 . It is easily seen that the latter can be accomplished by extracting 2 square roots in F q (for details see [START_REF] Adj | Square root computation over even extension fields[END_REF]). Despite the known fact that for q ≡ 1 (mod 8) a square root in F q is computed by a single exponentiation in F q , it is still a quite laborious operation.

This article proposes a novel point compression method (to 2 log 2 (q) + 3 bits) requiring (in the decompression stage) to extract only a single cubic root in F q . For q ≡ 1 (mod 27) this can also be done by one exponentiation in F q (see [31, Proposition 1]), hence our method seems to be about twice as quick as the classical one with the x (a fortiori, y) coordinate.

Our approach is based on the F q -rationality [32, §6.6] of the generalized Kummer surface

GK b := R b /[ω] 2 of the Weil restriction (descent) R b := R F q 2 /Fq (E b ) [33, §3.2]
with respect to the order 3 automorphism [ω] 2 := R F q 2 /Fq ([ω]). More precisely, we apply the theory of conic bundles [START_REF] Iskovskih | Rational surfaces with a pencil of rational curves[END_REF], [START_REF] Iskovskih | Rational surfaces with a pencil of rational curves and with positive square of the canonical class[END_REF] i.e., conics over the function field F q (t) to obtain explicit as well as quite simple formulas of a birational F q -isomorphism between GK b and A 2 . The new compression method consists in computation of these formulas. By the way, another constructive proof of the F q -rationality of GK b could consist in applying the theory of adjoints [36, §5]. However, in our opinion, the approach using conic bundles is more simple and elegant.

To recover the original point from E b (F q 2 ) = R b (F q by the corresponding decompression method we need, given a point of GK b (F q ), to find its inverse image with respect to the natural map : R b → GK b of degree 3, i.e., to solve a cubic equation over F q . Since ω ∈ F q , an advantage of the curves E b is that the pull-back map * is actually a Kummer extension, i.e., the field F q (R b ) is generated by a cubic root of some rational function from F q (GK b ) (see Lemma 2).

A similar result has been obtained in the author's master's thesis [START_REF] Koshelev | On rationality of Kummer surfaces over the field of two elements in the context of the discrete logarithm problem[END_REF] for point compression of some two Jacobians J b [START_REF] Aranha | Optimal Eta pairing on supersingular genus-2 binary hyperelliptic curves[END_REF] over the fields F 2 e , where b ∈ F 2 and 2, 3 e. These are the unique (up to an F 2 e -isogeny) supersingular simple abelian surfaces that have the maximally possible embedding degree k = 12. We proved the F 2 -rationality of the (usual) Kummer surface K := J b /[-1] and even obtained explicit formulas of a birational F 2 -isomorphism between K and A 2 , also using the theory of conic bundles, but in a different way.

Building on the established results, we dare to formulate Conjecture 1 about F q -rationality of geometrically rational generalized Kummer surfaces defined over a finite field F q .

This article is organized as follows. In §1 we recall some mathematical facts, which are necessary for our results. More precisely, §1.1 is dedicated to the theory of cubic polynomials. In §1.2 we review some facts about curves E b and their Weil restriction R b ( §1.2.1). In §1. [START_REF] Eagle | Point compression for Koblitz elliptic curves[END_REF] we consider generalized Kummer surfaces, in particular GK b ( §1.3.1). Besides, §1.4 discusses the theory of conic bundles. In turn, §2 is dedicated to our auxiliary results. In §2.1 we study some cubic F p -surfaces S h with two F p -nodes. Further, it is given an example of a conic bundle on S h ( §2.2) and some propositions about blowing down components of degenerate fibers ( §2.3). Next, in §3 we prove F p -rationality of the surfaces GK b (for q = p), which leads to the new point compression method. We instantiate this method in §3.1 for a special case (including commercially used curve BLS12-381 [START_REF] Bowe | New zk-SNARK elliptic curve construction[END_REF]) and calculate its algebraic complexity. Finally, §4 briefly discusses further questions regarding possible generalizations of this work.

1 Background

Cubic polynomials

In this paragraph we recall some known facts about cubic polynomials. Consider a polynomial x 3 + αx 2 + βx + γ over a field k of characteristic p = 2, 3. After the variable change x := y -α/3, we obtain the polynomial

f (y) := y 3 + cy + d, where c := β -α 2 3 , d := γ - αβ 3 + 2α 3 27 .
Let G → S 3 be the Galois group of the splitting field of f over k. Further, for a ∈ k we denote by a k the Legendre symbol, however in the case of a finite field k = F q we also use the notation a q .

Lemma 1 ([39, §2]). The discriminant of f is equal to ∆ = -4c 3 -27d 2 and

∆ k =          0 if f has a multiple root, 1 if G = 1 or G Z/3, -1 if G Z/2 or G S 3 .
Theorem 1 (Cardano's formula [START_REF] Janson | Roots of polynomials of degrees 3 and 4[END_REF]Theorem 2.5]). The roots of f are equal to R + + R -, where

R ± := 3 -d 2 ± √ D, D := -∆ 108 = c 3 27 + d 2 4 , R + R -= -c 3 .
One can see that for general c, d finding roots of f (by this formula) consists in extracting 1 square root and 2 cubic ones.

Throughout the article we denote by ω a fixed primitive 3-th root of unity, which is obviously equal to (-1 + √ -3)/2. From Cardano's formula we immediately obtain Lemma 2. Assume that ω ∈ k * , i.e., -3 k = 1. Then a cubic extension of k is Galois (and hence cyclic) iff it is Kummer, i.e., it has the form k( 3 √ a) for some a ∈ k * such that a / ∈ (k * ) 3 .

Note that for k = F q the condition ω ∈ F * q is also equivalent to q ≡ 1 (mod 3). To formulate the next theorem we need to recall a definition of the Lucas sequence v n = v n (a, b) for a, b ∈ k and n ∈ N:

v 0 := 2, v 1 := b, v n := bv n-1 -av n-2 .
Theorem 2 ([2, Theorem 2]).

Assume that k = F p , c, d = 0, and ∆ p = -1. Then the unique F p -root of f equals

- (3c) -(p/3) v n (C, D) 3 , where C := -27c 3 , D := -27d, n := p + 2( p 3 ) 3 . Lemma 3 ([2, Remark 2]
). For a ∈ F * q we obtain:

a / ∈ (F * q ) 3
if and only if q ≡ 1 (mod 3) and a (q-1)/3 = 1.

Moreover, if a ∈ (F * q ) 3 , then 3 √ a =          a (2q-1)/3 if q ≡ 2 (mod 3),
a -(q-4)/9 if q ≡ 4 (mod 9), a (q+2)/9 if q ≡ 7 (mod 9).

Remark 1 ([31, Proposition 1]

). If q ≡ 1 (mod 9) and q ≡ 1 (mod 27), then given a ∈ (F * q ) 3 its cubic root 3 √ a can be computed with the cost of one exponentiation in the field F q .

Algorithms of exponentiation in F q and extracting cubic roots in F q for q ≡ 1 (mod 27) can be found, for example, in [40, §3.4] and [START_REF] Cho | New cube root algorithm based on the third order linear recurrence relations in finite fields. // Designs[END_REF] respectively. At the same time, for extracting square roots in

F p see [40, §12.5.1]. 1.2 Elliptic curves E b (of j-invariant 0)
Consider a finite field F q , where q = p e , e ∈ N, and p (>3) is a prime. In this paragraph we review elliptic curves E b ⊂ P 2 (of j = 0) given by the affine model

E b : y 2 = x 3 + b ⊂ A 2 (x,y) for b ∈ F * q . In other words, E b = E b ∪ {O},
where O := (0 : 1 : 0). Unless otherwise specified we will identify E b and E b for the sake of simplicity. Curves E b are discussed, for example, in [START_REF] Hu | Implementing 4-dimensional GLV method on GLS elliptic curves with jinvariant 0. // Designs[END_REF]. They have the order 3 automorphism

[ω] : E b ∼ - → E b , (x, y) → (ωx, y) with fixed point set Fix([ω]) = O, (0, ± √ b) .
Let us recall some well known results.

Theorem 3 ([41, Example V.4.4]).
A curve E b is ordinary if and only if p ≡ 1 (mod 3).

Hereafter we will assume this condition, because results of the article have immediate applications only for discrete logarithm cryptography, where supersingular elliptic curves are weak.

Theorem 4 ([28, Proposition 1.50], [START_REF] Naehrig | Constructive and computational aspects of cryptographic pairings[END_REF]Example 1.112]).

1. Curves E b are isomorphic to each other at most over F q 6 by the map

ϕ b,b : E b ∼ - → E b , (x, y) → ( 3 βx, βy),
where β := b /b. Besides, for α ∈ F q such that α / ∈ (F * q ) 2 , α / ∈ (F * q ) 3 the curves E α i (0 i < 6) are unique ones of j = 0 (up to an F q -isomorphism).

2. The endomorphism ring of curves E b (and only of them) is that of Eisenstein integers:

End(E b ) Z[ω] ⊂ Q √ - 3 
,

where ω = 3 √ 1 ∈ C * (such that ω = 1) corresponds to the automorphism [ω]. In partic- ular, Aut(E b ) -ω Z/6. Theorem 5 ([42, Theorem 9]). Let n b := |E b (F q )| and α be as in Theorem 4. If 2, 3 n b , then E b (F q 6 ) 0 i < 6 E α i (F q ). Moreover, if F q (E b [ ]) = F q 6 for some prime | n b , then E b has the unique sextic twist E b /F q such that | n b . In other words, E b [ ] = E b (F q )[ ]×ϕ -1 b,b (G ), where G := E b (F q )[ ]. 1.2.1 The Weil restriction of E b /F p 2
For simplicity suppose p ≡ 3 (mod 4), i.e., i

:= √ -1 / ∈ F p . Also, let b := b 0 + b 1 i and N b := b 2 0 + b 2 1 for some b 0 , b 1 ∈ F p . Then the Weil restriction [33, §3.2] of E b ⊂ A 2 (x,y) (with respect to the extension F p 2 /F p ) is equal to R b := y 2 0 -y 2 1 = x 3 0 -3x 0 x 2 1 + b 0 , 2y 0 y 1 = -x 3 1 + 3x 2 0 x 1 + b 1 ⊂ A 4 (x 0 ,x 1 ,y 0 ,y 1 )
.

Besides, we denote by R b → P 8 the Weil restriction of

E b ⊂ P 2 , recalling that R b E b × E b p over F p 2 .
Further, consider the restriction of [ω], i.e., the order 3 automorphism

[ω] 2 : R b ∼ - → R b , (x 0 , x 1 , y 0 , y 1 ) → (ωx 0 , ωx 1 , y 0 , y 1 ). Its fixed point set Fix([ω] 2 ) = (0, 0, y 0 , y 1 ) | y 2 0 -y 2 1 = b 0 , 2y 0 y 1 = b 1 .
Over F p it obviously consists of exactly 4 points, and besides, Fix

([ω] 2 )(F p ) = ∅ if and only if b p 2 = -1. At the same time, the continuation [ω] 2 : R b ∼ - → R b has exactly 9 fixed F p -points.
The similar analysis can be also carried out for the involution

[-1] : R b ∼ - → R b , (x 0 , x 1 , y 0 , y 1 ) → (x 0 , x 1 , -y 0 , -y 1 ).

Generalized Kummer surfaces

Let A be an abelian surface over a perfect field k of characteristic p and σ be its automorphism as a group variety. The quotient A/σ (or its minimal resolution of singularities) is called generalized Kummer surface. The theory of geometric quotients is well represented in [START_REF] Popov | Invariant theory. // Algebraic Geometry IV[END_REF]. For σ = [-1] this is just Kummer surface K A . Besides, we will denote by : A → A/σ the quotient morphism, which is of degree ord(σ).

Let us recall some rationality properties of generalized Kummer surfaces.

Theorem 6 ([44, Theorem A], [45, Theorem 1.3]). For k = k we obtain:

1. If p > 2, p ≡ 1 (mod 12), then A is supersingular ⇔ K A is a Zariski surface [46]; 2. If p = 2, then A is supersingular ⇔ K A is a rational surface.
Theorem 7 ([47, Table 6], [48, §2]). For k = C there are only two abelian surfaces having σ of a prime order such that the generalized Kummer surface is rational. These are:

1. The direct square E 2 1 with σ = [ω] ×2 of order 3;

2. The Jacobian J 1 of the genus 2 curve given by the affine model y 2 = x 5 + 1 with σ (of order 5) induced from the curve automorphism (x, y) → (x 5 √ 1, y).

In fact, J 1 is the unique simple abelian surface A having σ with the rational quotient A/σ even if we omit the prime condition on ord(σ).

Theorem 8 ([49, Theorem 2.11]). Assume that k = k, dim Fix(σ) = 0, and at least one of singularities on A/σ is not a node. Then A/σ is a rational surface.

Recently, a sort of classification for automorphism groups of abelian surfaces over a finite field F q appeared in [START_REF] Hwang | On a classification of the automorphism groups of polarized abelian surfaces over finite fields[END_REF]. Nevertheless, almost nothing is known about F q -rationality of generalized Kummer surfaces unlike their F q -unirationality in some cases (see [START_REF] Katsura | Generalized Kummer surfaces and their unirationality in characteristic p[END_REF]).

The surface GK b

We keep the notation of §1.2.1. Consider the generalized Kummer surface

GK b := R b /[ω] 2 and its open subset GK b := R b /[ω] 2 .
Besides, we will need the polynomials

α(t) := 3t 2 -1, β(t) := t(t 2 -3), f (t) := -b 0 α(t) + b 1 β(t) = b 1 t 3 -3b 0 t 2 -3b 1 t + b 0 . Note that the discriminant of f /b 1 is equal to ∆ = 2 2 3 3 N 2 b /b 4 1 and hence ∆ p = -1.
By Lemma 1 there is the decomposition f = λγ into linear λ and F p -irreducible quadratic γ polynomials over F p . For uniqueness we suppose γ to be reduced. This decomposition (or, equivalently, the unique F p -root of f ) can be found, for example, by means of Theorem 2.

Theorem 9. There is the affine model

GK b = α(t)(y 2 0 -y 2 1 ) -2β(t)y 0 y 1 + f (t) ⊂ A 3 (t,y 0 ,y 1 )
for which the corresponding quotient map has the form

: R b GK b , (x 0 , x 1 , y 0 , y 1 ) → x 0 x 1 , y 0 , y 1 . Proof. It is well known that F p (GK b ) = F p (R b ) [ω] 2
, that is rational functions on GK b are [ω] 2 -invariant ones on R b . Also, consider the field 

F := F p (t, y 0 , y 1 ) ⊂ F p (GK b ), where t := x 0 x 1 . Note that F (x 1 ) = F p (R b ), because x 0 = tx 1 . Since x 3 1 = (2y 0 y 1 -b 1 )/α(t),
y 2 0 -y 2 1 -b 0 2y 0 y 1 -b 1 = x 3 0 -3x 0 x 2 1 -x 3 1 + 3x 2 0 x 1 = (x 3 0 -3x 0 x 2 1 )/x 3 1 (-x 3 1 + 3x 2 0 x 1 )/x 3 1 = β(t) α(t) ,
we obtain the aforementioned equation for GK b . There are no another dependencies between the coordinates t, y 0 , y 1 , because GK b is a surface.

It is known [START_REF] Ueno | Classification of algebraic varieties, I. // Compositio Mathematica[END_REF]Example 8.10] that the image of Fix([ω] 2 ) ⊂ R b under is the singular locus of GK b and all its 9 singularities are cyclic quotient ones of type 1 3 (1, 1) (see, e.g., [START_REF] Ueno | Classification of algebraic varieties, I. // Compositio Mathematica[END_REF]Appendix]).

Later it will be more practical to consider the closure GK b in A 1 t ×P 2 (y 0 :y 1 :y 2 ) , keeping the same notation. In this case the quotient map takes the form : R b GK b , (x 0 , x 1 , y 0 , y 1 ) → x 0 x 1 , (y 0 : y 1 : 1) .

An inverse image of is represented, for example, as t, (y 0 :

y 1 : y 2 ) → tX 1 , X 1 , Y 0 , Y 1 ,
where

X 1 := 3 2Y 0 Y 1 -b 1 α(t) , Y 0 := y 0 y 2 , Y 1 := y 1 y 2 .
In other words, these formulas give the map -1 from GK b to the set-theoretic quotient of R b by [ω] 2 .

Conic bundles (conics over the rational function field)

In this paragraph we will recall some facts about conic bundles. For a deeper look, see [START_REF] Iskovskih | Rational surfaces with a pencil of rational curves[END_REF], [START_REF] Iskovskih | Rational surfaces with a pencil of rational curves and with positive square of the canonical class[END_REF]. Let (x 0 : x 1 ) be homogenous coordinates of P 1 and t := x 0 /x 1 . As usual, we denote a point (t 0 : 1) just by t 0 and the point (1 : 0) by ∞.

Consider a projective irreducible (possibly singular) surface S over a finite field F q of characteristic p > 2. We call a non-constant F q -morphism π : S → P 1 conic bundle if for general t 0 ∈ P 1 the fibre π -1 (t 0 ) is a non-degenerate conic. The latter means an irreducible (or, equivalently, non-singular) algebraic F q (t 0 )-curve of degree 2. As usually, a F q -section of π is a F q -morphism σ :

P 1 → S such that π • σ = id.
It is clear that π corresponds to its general fibre F π , which is a non-degenerate conic over the univariate function field F q (t). And besides, F q -sections of π correspond to F q (t)-points on F π . For one another conic bundle π : S → P 1 any birational F q -isomorphism ϕ : S ∼ S (such that π = π • ϕ) corresponds to an F q (t)-isomorphism (i.e., a transformation in P 2 ) of their general fibers ϕ π,π : F π ∼ -→ F π , and vice versa. If the general fibre F π is isotropic, i.e., it has F q (t)-point, then S is obviously an F q -rational surface. Inverse is not true (see, for example, Theorem 12).

Suppose S to be a non-singular surface. A conic bundle π is called relatively F q -minimal if S has no F q -orbits of pairwise disjoint exceptional (-1)-curves in fibers of π. In other words, the surface S can not be contracted over F q with respect to π. A conic bundle may have several relatively F q -minimal models, however the Frobenius action on each of them is the same.

Theorem 10 (Iskovskih [35, §0.7, Theorem 4.1]). Suppose π : S → P 1 to be a relatively F qminimal conic bundle. Then we obtain:

1. The number of degenerate fibres of π (over F q ) is equal to 8 -K 2 , where K is a canonical divisor of S;

2. The surface S is F q -rational if K 2 5, i.e., there is no more than 3 degenerate fibers.

It is well known that every surface having conic bundle can be reduced by means of some birational F q -isomorphism to the form S = F (x 0 , x 1 )y 2 0 + G(x 0 , x 1 )y 2 1 + H(x 0 , x 1 )y 2 2 ⊂ P 1 (x 0 :x 1 ) ×P 2 (y 0 :y 1 :y 2 ) , where F, G, H are non-zero homogenous F q -polynomials of the same degree. The conic bundle itself is transformed into the projection π : S → P 1 (x 0 :x 1 ) . The product ∆ := F GH is called discriminant of π. After a simple check we obtain Lemma 4. For t 0 ∈ P 1 the following is true:

1. The fibre of π over t 0 is degenerate ⇔ ∆(t 0 ) = 0;

2. The fibre of π over t 0 contains a singular point on S ⇔ t 0 is a multiple root of ∆;

Singular curves on S may only be double fibers of π.

Further, it is clear that the surface S has the non-singular

F q -model S f,g,h := f (t)y 2 0 + g(t)y 2 1 + h(t)y 2 2 ⊂ A 1 t ×P 2 (y 0 :y 1 :y 2 ) ,
where f, g, h are non-zero (possibly F q -reducible) square-free polynomials having no common roots in pairs. We will also call the projection S f,g,h → A 1 t (induced from π) a conic bundle despite the fact that S f,g,h is not a projective surface. Thus its general fibre can be written as

Q α,β := y 2 0 + α(t)y 2 1 + β(t)y 2 2 , where α(t) := g(t) f (t) , β(t) := h(t) f (t) .
Lemma 5 ([36, Theorem 3.7]). The conic bundle S f,g,h → A 1 t has an F q -section if and only if the following identities on the Legendre symbols are satisfied:

-f g h = -f h g = -gh f = 1.
A quite efficient algorithm for finding an F q -section of a conic bundle can be found, for example, in [START_REF] Van Hoeij | Solving conics over function fields[END_REF]. We recall that for functions α, β ∈ F q (t) * their (quadratic) Hilbert symbol at t 0 ∈ P 1 is the Legendre one (α, β) t 0 := e(α, β)

F q (t 0 )
, where e(α, β) := (-1) ab α b β a (t 0 ) ∈ F q (t 0 ) * and a, b are orders at t 0 of α, β respectively. The following theorem is very useful despite the fact that it is not constructive.

Theorem 11 ([34, Example 3.7]). Fix two more functions α , β ∈ F q (t) * . Then the conics Q α,β , Q α ,β are F q (t)-isomorphic if and only if for all t 0 ∈ P 1 we have that (α, β) t 0 = (α , β ) t 0 .

2 Auxiliary results

Cubic F p -surfaces S h with two F p -nodes

In this paragraph we study some singular cubic surfaces with 16 lines, which occur in §2.2, §3. The general theory of singular cubic ones (over a non-closed field) can be found, for example, in [START_REF] Coray | Arithmetic on singular del Pezzo surfaces[END_REF]Part I].

Lemma 6. Let p (>3) be a prime. For h = h 1 t + h 0 ∈ F p [t] (h 1 = 0) consider a cubic surface S h := x 2 y -(t 2 + y 2 )y -(h 1 t + h 0 y)z 2 ⊂ P 3 (x:y:z:t) .
It has only two singular points P ± := (±1 : 0 : 0 : 1) and they are nodes. In particular, the surface S h is F p -rational.

Proof. The partial derivatives of S h are equal to

∂S h ∂x = 2xy, ∂S h ∂y = x 2 -(t 2 + 3y 2 ) -h 0 z 2 , ∂S h ∂z = -2(h 1 t + h 0 y)z, ∂S h ∂t = -2ty -h 1 z 2 .
Besides, after the translation τ P ± : (x : y : z : t) → (±x -t : y : z : t), τ -1 P ± : (x : y : z : t) → ±(x + t) : y : z : t the tangent cone of

S h,O := τ P ± (S h ) = x 2 y + 2xty -y 3 -(h 1 t + h 0 y)z 2
at the origin O = τ P ± (P ± ) of A 3 (x,y,z) has the form

T O (S h,O ) = 2xy -h 1 z 2 .
Therefore the points P ± are nodes and the projection from one of them is the birational

F p -isomorphism pr : S h ∼ A 2 .
Let N h := h 2 0 + h 2 1 and note that

S h,O ∩ T O (S h,O ) = L P + ,P -∪ M O ,
where

L P + ,P -:= V(y, z), M O := h 1 x = h 0 ± √ N h y, h 1 z = ± √ 2h 1 xy.
Here M O is the union of 4 lines, i.e., the signs ± are taken independently. Consider the projection from O and its inverse map: Besides, (pr )

pr O : S h,O ∼ A 2 (u,v) , ( 
-1 : A 2 (u,v) ∼ S h , (u, v) → T Y , ±(uY + T ) : Y : vY ,
where

Y := h 1 v 2 -2u, T := u 2 -h 0 v 2 -1.
For compactness we will sometimes use the notation g(t) := t 2 + 1.

Lemma 8. Suppose p ≡ 3 (mod 4). Then the conic bundle π has an F p -section

⇔ N h p = 1.
Proof. According to Lemma 5 there is an F p -section for π if and only if

g h = h g = -gh 1 = 1.
The last equality is obviously true. Also, note that

g h = g(h 0 /h 1 ) p = N h p .
Finally, the second equality is, by definition, the existence of an

F p -polynomial r(t) = r 1 t + r 0 such that g | h -r 2 . The remainder of dividing h -r 2 by g equals (h 1 -2r 0 r 1 )t + (h 0 -r 2 0 + r 2 1
), hence we obtain the equation system

     r 0 = h 1 2r 1 , 4r 4 1 + 4h 0 r 2 1 -h 2 1 = 0.
Therefore r 2 1 = R ± , where

R ± := -h 0 ± √ N h 2 , R + R -= - h 2 1 4 .
If N h p = 1, then the above system is solvable. Indeed, R ± ∈ F p and exactly one of these elements is a quadratic residue in F p .

Provided N h p = -1 we see that pr : U (F p ) ∼ - → V (F p
) by analogy with Lemma 7. For the next simple lemma consider the lines

L ± := h 1 x ± y N h , M ± := x -z h(±i), M (1) 
± = x + z h(±i). Lemma 9. If N h p = -1, then:
1. The degenerate fibers of π over t = ∞ are represented in Figure 1; 2. The fibre of π over ∞ is the double one with the unique surface singular point (1 : 0 : 0). Hereafter we will identify (S h , π, pr) and (S h , π , pr ), saving for simplicity only the first notation.

L + L - M + M (1) + M - M (1) - -h 0 /h 1 i -i
Figure 1: The Frobenius action on degenerate fibers of the conic bundle π : 

S h → A 1 t M + L + M - L - r + r -

Blowing down components of degenerate fibres for π

According to [34, §3] we have explicit formulas for contracting one of F p -lines of a degenerate F p -fibre. We will also need to explicitly contract one of the pairs of F p -conjugate lines L ± (or M ± ) lying in two F p -conjugate degenerate fibers over roots r ± of some F p -irreducible quadratic polynomial. This is done in Lemma 10 in a particular case, which is sufficient for our purposes. For better comprehension of the described situation see Figure 2.

For any polynomial h ∈ F p [t] consider the surface

S h := x 2 -(t 2 + 1)y 2 -h(t)z 2 ⊂ A 1 t ×P 2 (x:y:z) .
As usual, the projection π : S h → A 1 t is a conic bundle.

Lemma 10. Let q(t) := t 2 + ct + d ∈ F p [t] with roots r ± and discriminant D = c 2 -4d such that D p = -1. Also, let h ∈ F p [t] and s ± := r 2 ± + 1 provided that q | h and s ± p 2 = 1. Then for some u ∈ F * p there is a birational F p -isomorphism (respecting the conic bundles)

ϕ q : S h ∼ S u h q such that ϕ q : S h (F p ) ∼ - → S u h q (F p ).
Proof. We propose to start the searching a desired transformation in the form

ψ q :=      x 2 := (b 0 + b 1 t)x -y, y 2 := -x + (a 0 + a 1 t)y, z 2 := a 1 b 1 q(t)z, ψ -1 q =      x := (a 0 + a 1 t)x 2 + y 2 , y := x 2 + (b 0 + b 1 t)y 2 , z := z 2 ,
where det(ψ -1 q ) = a 1 b 1 q(t) and a 0 , b 0 ∈ F p , a 1 , b 1 ∈ F * p . After substitution ψ -1 q into S h and division by q(t) the coefficients of the monomials x 2 2 , x 2 y 2 , y 2 2 we obtain (up to a non-zero constant) the remainders 

(a 2 0 -a 2 1 d + d -1)x 2 2 , (2a 0 a 1 -a 2 1 c + c)x 2 2 t, (a 0 + b 0 d -b 0 -b 1 cd)x 2 y 2 , a 1 + b 0 c -b 1 (c 2 -d + 1) x 2 y 2 t, db 2 0 -b 2 0 -2cdb 0 b 1 + d(c 2 -d + 1)b 2 1 + 1 y 2 2 , cb 2 0 -2(c 2 -d + 1)b 0 b 1 + c(c 2 -2d + 1)b
u := a 2 1 -1, v(t) := 2(-b 1 t + b 1 c -b 0 ), w(t) := -b 2 1 t 2 + b 1 (-2b 0 + b 1 c)t -b 2 0 + 2b 0 b 1 c -b 2 1 (c 2 -d + 1).
Consider the trace and norm:

T := Tr F p 2 /Fp (s ± ) = c 2 -2d + 2, N := N F p 2 /Fp (s ± ) = c 2 + d 2 -2d + 1.
Because of s ± p 2 = 1 we get N p = 1. Also, it is easily checked that T 2 -c 2 D = 4N . The system of reminders has two F p -solutions:

a 0 := c (d + 1)N b 2 1 + 1 -d 2N b 1 , a 1 := T N b 2 1 -c 2 2N b 1 , b 0 := c N b 2 1 + 1 2N b 1 , b 1 := ± √ β,
where β is exactly one (due to D p = -1) of the roots

T ± 2 √ N N D ∈ F p * of DN 2 X 2 -2T N X + c 2 ∈ F p [X]
such that β p = 1. Therefore

ψ q : S h ∼ S , where S := ux 2 2 + v(t)x 2 y 2 + w(t)y 2 2 - h(t) q(t) z 2 2 .
Note that u, a 1 = 0. Thus after the F p -transformation χ q : S ∼ -→ S u h q given by

χ q :=        x 3 := ux 2 + v(t) 2 y 2 , y 3 := a 1 b 1 y 2 , z 3 := z 2 , χ -1 q =        x 2 := a 1 b 1 u x 3 - v(t) 2u y 3 , y 2 := y 3 , z 2 := a 1 b 1 z 3 ,
(where det(χ q ) = ua 1 b 1 ) we obtain the desired surface S u h q , i.e., ϕ q := χ q • ψ q satisfies the theorem conditions.

Under the conditions of this lemma as the lines of Figure 2 we can take

L ± = x - √ s ± y, M ± = x + √ s ± y.
In the following corollary L + = L -(resp. M + = M -).

Corollary 1. If c = 0 and d = 1 in the previous lemma, then the condition s ± p 2 = 1 is fulfilled. Thus, letting δ := d(d -1), we obtain:

u = -1 d , v(t) = ∓ 2t δ , w(t) = -t 2 -d + 1 δ 2
(in particular, u p = -1) and (up to multiplication by elements of F * p )

ψ q =            x 2 := ± t δ x -y, y 2 := -x ∓ (d -1)t δ y, z 2 := - q(t) d z, ψ -1 q =          x := ∓ (d -1)t δ x 2 + y 2 , y := x 2 ± t δ y 2 , z := z 2 , χ q =        x 3 := x 2 ± dt δ y 2 , y 3 := y 2 , z 3 := -dz 2 , χ -1 q =        x 2 := x 3 ∓ dt δ y 3 , y 2 := y 3 , z 2 := -1 d z 3 .
Proof. It is immediately checked that

s + = s -= 1 -d, D = -4d, T = -2(d -1), N = (d -1) 2 , β = 1
δ 2 and all other values are as stated.

New point compression method

We will freely use notation of previous paragraphs. As earlier, p be a prime such that p ≡ 1 (mod 3), p ≡ 3 (mod 4). Consider the following ordinary elliptic F p 2 -curve, its Weil restriction (with respect to F p 2 /F p ), and the generalized Kummer F p -surface respectively:

E b ⊂ A 2 (x:y) , R b ⊂ A 4 (x 0 ,x 1 ,y 0 ,y 1 ) , GK b ⊂ A 1 t ×P 2
(y 0 :y 1 :y 2 ) . Note that the projection π : GK b → A 1 t is a conic bundle. In this paragraph we prove F prationality of GK b , which leads to the creation of our compression method for F p 2 -points of E b . We also discuss some technical details of its implementation.

Remark 2. If

√ b = a 0 + a 1 i for some a 0 , a 1 ∈ F p , then the general fibre of π contains the point (a 0 : a 1 : 1) and the projection from it obviously gives a birational F p -isomorphism between GK b and A 2 . In fact, this case does not happen in pairing-based cryptography, otherwise by Theorem 4 the curve E b would not be a sextic F p 2 -twist for any initial F p -curve E b . Thus we can always assume that b p 2 = -1, in particular b 0 , b 1 = 0. First, we reduce GK b to a diagonal form by the map σ : GK b ∼ S αf given by

σ :=      x := β(t)y 0 + α(t)y 1 , y := g(t)y 0 , z := y 2 , σ -1 =      y 0 := α(t)y, y 1 := g(t)x -β(t)y, y 2 := α(t)g(t)z,
where det(σ) = α(t)g(t). In particular, σ respects the conic bundle π and σ : GK b (F p ) ∼ -→ S αf (F p ). Next we successively apply Corollary 1 and Lemma 10 to contract pairs of F pconjugate lines lying in the fibres of π over roots of the F p -irreducible polynomials α, γ respectively. More precisely, this is done by means of the maps

ϕ α/3 : S αf ∼ S 9f , ϕ γ : S 9f ∼ S h ,
where h(t) = 9uλ(t) for some u ∈ F * p . The cubic surface S h is F p -rational by the projection pr from any of its two nodes (see Lemma 6). Thus we obtain the maps

θ := ϕ γ • ϕ α/3 • σ : GK b ∼ S h , τ := pr • θ : GK b ∼ A 2 , θ := θ • : R b S h , τ := τ • : R b A 2 .
By analogy with -1 we also have the map θ -1 (resp. τ -1 ) from S h (resp. A 2 ) to the settheoretic quotient of R b by [ω] 2 .

Remark 3. It is immediately checked that by θ the involution [-1] : R b ∼ -→ R b is induced to the cubic surface S h as the involution [-1] from §2.1, §2.2. Similarly, on S h there is the double map [START_REF] Dudeanu | An x-coordinate point compression method for elliptic curves over F p[END_REF]. It would be very interesting to also understand its geometric picture.

According to Lemma 8 we can assume that N h p = -1, otherwise the conic bundle π on S h (or, equivalently, on GK b ) has an F p -section. However, we do not claim that only this case occurs in practice, although it seems more likely. Taking into account Lemma 7 we sum up the main result of this article in Theorem 12. For a prime p such that p ≡ 1 (mod 3), p ≡ 3 (mod 4) the generalized Kummer surface GK b is F p -rational. More precisely, assume that the conic bundle π on GK b has no an F p -section, in particular b p 2 = -1. Then we have the birational F p -isomorphism

τ : GK b ∼ A 2 such that τ : GK b (F p ) → A 2 (F p ).
The map is not defined for x 1 = 0. We extend it to this case as follows. Let

R b,∞ := R b ∩ V(x 1 ) = 2y 0 y 1 = b 1 , y 2 0 -y 2 1 = x 3 0 + b 0 . ⊂ A 3 (x 0 ,y 0 ,y 1 ) , Q b := 4y 2 0 (y 2 0 -x 3 0 -b 0 ) -b 2 1 ⊂ A 2 (x 0 ,y 0 ) . Then the projection ∞ : R b,∞ ∼ Q b to (x 0 , y 0 ) is a birational F p -isomorphism with the inverse one -1 ∞ : Q b ∼ R b,∞ , -1 ∞ : (x 0 , y 0 ) → x 0 , y 0 , b 1 2y 0 .
It is obvious that ∞ is an isomorphism if y 0 = 0 both on R b,∞ and Q b . In particular, this is fulfilled for b 1 = 0. Similarly, the map pr is not defined for y = 0. Let for multiplications by a constant c ∈ F p such that c (mod p) 6, because they are not more difficult than few additions. Implementation details of the most operations mentioned see, for example, in [START_REF] Shoup | A computational introduction to number theory and algebra[END_REF].

S h,∞ := x 2 -(h 1 t + h 0 )z 2 ⊂ A 3 (t,
Next we specify the maps ϕ α/3 and ϕ γ , multiplying them by some elements of F * p to reduce their algebraic complexity.

Corollary 2. For q = α/3 the value δ = 2/3 and hence Corollary 1 takes the form:

u = 3, v(t) = ∓3t, w(t) = -3 3 4 t 2 + 1
and It is easily seen that after applying ϕ γ we obtain the surface S h with h(t) = -3b 1 (t + 1). In particular, N h p = -1. To make sure in correctness of the above formulas see our code [START_REF] Koshelev | Magma code[END_REF] in the language of the computer algebra system Magma. Proof. It is easily checked that the basic maps forming com b , com -1 b have an algebraic complexity as in Table 1. Therefore we know that of the maps τ , τ -1 . Exactly these functions are computed for most arguments. It remains to note that for finding v ∈ F 2 2 (during computation of com b ) it is necessary to accomplish two multiplications by the constants ω, ω 2 . And vice versa, this is also done to recover the initial value of 

ψ q =      x 2 := ±3tx -2y, y 2 := -2x ± 4ty, z 2 := 2α(t)z, ψ -1 q =      x := ±4tx 2 +

Further questions

We end the article by some comments about possible generalizations of our point compression method. First of all, in addition to Theorem 12 the author has already proved in [START_REF] Koshelev | On rationality of Kummer surfaces over the field of two elements in the context of the discrete logarithm problem[END_REF] a similar one about F 2 -rationality of the (usual) Kummer surface of some two supersingular Jacobians [START_REF] Aranha | Optimal Eta pairing on supersingular genus-2 binary hyperelliptic curves[END_REF] of dimension 2. Thus we are feel free to formulate Conjecture 1. Let A be an abelian surface over a finite field F q and σ be its F q -automorphism. If the generalized Kummer surface A/σ is geometrically rational, then it is also F q -rational.

We do not see any problems to extend the new point compression method to the Weil restriction R F q 2 /Fq (E b ) for any finite field F q such that q ≡ 1 (mod 3) and p > 3. Besides, our approach could be immediately applied to the direct product E b ×E b for any b, b ∈ F * q . Nevertheless, in this article we focused on the surface R b , because compression of its points seemed to us more difficult and important for practice. Finally, according to Theorem 7 the Jacobian of a hyperelliptic curve y 2 = x 5 + b (for b ∈ F * q , q ≡ 1 (mod 5), and p > 5) seems to also have the F q -rational generalized Kummer surface.

  the extension degree [F p (R b ) : F ] 3. At the same time, [F p (R b ) : F p (GK b )] = 3 according to the Artin theorem from the Galois theory. Thus F = F p (GK b ). Finally, looking at the equations of R b and the equalities
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pr -1

O : A 2 (u,v) ∼ S h,O , (u, v) → (uY : Y : vY : T ),

where

Note that pr O , pr -1 O are isomorphisms on the open subsets

where L ∞ := V(y, t). Thus the maps

are those on the open subsets V and

where

We are also interested in the involution [-1] : S h ∼ -→ S h , (x : y : z : t) → (x : y : -z : t), the meaning of which is explained in Remark 3. Let P ∈ S h \ T ∞ (S h ) be a point outside the tangent plane T ∞ (S h ) = h 1 t + h 0 y at ∞ := (0 : 0 : 1 : 0) ∈ S h .

In geometric terms the point [-1](P ) is the third intersection one of the surface S h and the line L ∞,P passing through ∞ and P (see also [START_REF] Yu | Cubic forms: algebra, geometry, arithmetic[END_REF]Proposition II.12.13]). In other words,

A conic bundle π on S h

We save the notation of §2.1. In §3 we will encounter the projection π : S h → P 1 (y:t) from the line L ∞ , which is a conic bundle. The surfaces S h and

are obviously equal for y = 0 on both ones. Moreover, after inducing the maps π, pr, [-1] on S h they respectively become the projection π :

Then the projection pr ∞ : S h,∞ ∼ A 2 (x,z) is a birational F p -isomorphism with the inverse one

As a result, in the case N h p = -1 we obtain the compression map

∞ (P ), (0, 0, 0) if x 1 (P ) = 0, (0, 0), (0, 0, 1)

where v ∈ {(0, 1), (1, 0), (1, 1)} is the position number of x 1 (P ) ∈ F * p in the representative set {ω i x 1 (P ) (mod p)} 2 i=0 ordered with respect to the usual numerical order. Therefore the corresponding decompression map has the form

where in the two last cases the image of com -1 b is uniquely defined by the value v.

3.1 Usage of the method for some curves (including BLS12-381)

In this paragraph we instantiate the new point compression method in the case b 0 = b 1 . In particular, this condition is fulfilled for the curve BLS12-381 [START_REF] Bowe | New zk-SNARK elliptic curve construction[END_REF], which is one the most popular pairing-friendly curves today according to [25, 

The former allows to extract a cubic root in F p with the cost of one exponentiation in F p (see Remark 1). More generally, for b 0 = b 1 we obtain:

In particular, s ± p 2 = 1, because the norm N(r ± ) = 1. As usually, we will suppose that b p 2 = -1 (i.e., 2 p = -1), hence according to the known formula 2 p = (-1)

[40, Theorem 12.1.iv] we have p ≡ 3 (mod 8).

We say that an arbitrary map has (on the average) an algebraic complexity