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Introduction: Concept normalization is the task of linking terms from textual medical documents to 

their concept in terminologies such as the UMLS®. Traditional approaches to this problem depend 

heavily on the coverage of available resources, which poses a problem for languages other than 

English. 

Objective: We present a system for concept normalization in French. We consider textual mentions 

already extracted and labeled by a named entity recognition system, and we classify these mentions 

with a UMLS concept unique identifier. We take advantage of the multilingual nature of available 

terminologies and embedding models to improve concept normalization in French without 

translation nor direct supervision.  

Materials and Methods: We consider the task as a highly-multiclass classification problem. The 

terms are encoded with contextualized embeddings and classified via cosine similarity and softmax. 

A first step uses a subset of the terminology to finetune the embeddings and train the model. A 

second step adds the entire target terminology, and the model is trained further with hard negative 

selection and softmax sampling.  

Results: On two corpora from the Quaero FrenchMed benchmark, we show that our approach can 

lead to good results even with no labeled data at all; and that it outperforms existing supervised 

methods with labeled data. 

Discussion: Training the system with both French and English terms improves by a large margin the 

performance of the system on a French benchmark, regardless of the way the embeddings were 

pretrained (French, English, multilingual). Our distantly supervised method can be applied to any 

kind of documents or medical domain, as it does not require any concept-labeled documents.  

Conclusion: These experiments pave the way for simpler and more effective multilingual 

approaches to processing medical texts in languages other than English. 

 



 

1. INTRODUCTION  

Medical concept recognition and normalization is a classical and essential task of natural language 

processing (NLP) for biomedical applications [1]. The normalization of terms or phrases present in 

unstructured texts consists of linking these phrases to the concepts of a knowledge base or a 

biomedical terminology. This task, also called “entity linking,” can be seen as a massively 

multiclass classification task, since reference terminologies can contain several million concepts. 

This number of possible classes makes the problem difficult from many points of view. In 

particular, it makes a fully-supervised learning approach using labeled textual documents 

impossible since it is impossible to annotate a corpus containing all of the concepts. 

For this reason, it is necessary to use the terminology itself, and the lists of terms associated with 

the concepts, to guide the system [2, 3, 4]. This then raises the problem of the availability of this 

terminological resource in the target language. In the UMLS metathesaurus [5], often used as the 

reference terminology, less than 4% of the concepts are associated with at least one term in French, 

yet one of the most represented languages after English. In the corpus Quaero FrenchMed [6], 

containing French biomedical texts with mentions labeled with UMLS-2014AB concepts, 27% of 

the concepts have no synonym in French in this version of the UMLS. Efforts have been made to 

improve this coverage by manual or automatic translation, or by mapping local terminologies, 

leading to more complete resources out of the official UMLS [7, 8, 9, 10, 11]. However, the gap is 

still significant, and this represents a real pitfall for the NLP systems in French, and more generally, 

in all languages other than English [12]. 

Recent years have seen the advent in NLP of the use of models pretrained on large amounts of data, 

on tasks such as language modeling, for an application by transfer learning on different tasks with 

fewer data. In particular, these models make it possible to represent words or phrases in the vector 



space (embeddings) by preserving the similarities and the semantic relationships between these 

words. They have improved state of the art in many tasks, including in the biomedical domain [13, 

14]. Some of these models have been pretrained on multilingual data [15, 16, 17], without any 

alignment or translation mechanism, and showed performance gains for a wide range of cross-

lingual transfer tasks.  

In this work, we present a contribution to the task of concept normalization in French. We focus on 

normalizing mentions that are already extracted and labeled (gold standard spans of text). We 

classify these mentions with a UMLS concept unique identifier. In the end-to-end task of extracting 

concepts from free, unlabeled text, obtaining these labeled mentions automatically could be 

achieved with a named entity recognition system trained on French medical data [54,55,56]. 

We improve medical concept normalization from gold-standard named entities in French; we 

overcome the difficulty of the limited terminological resources in this language by taking advantage 

of English terminologies and the latest multilingual embedding models. We propose a hybrid 

approach using the multilingual nature of both external knowledge from the UMLS and data-driven, 

pretrained embedding models. We do not use any manually-enhanced and automatically-translated 

terminology and do not rely on any task-specific rule. We take advantage of the latest progress in 

neural network optimization, which allows us to cast the normalization task as a standard, highly-

multiclass, classification problem. In contrast, other recent deep learning-based approaches work 

around the problem by converting the task into a nearest neighbor problem and must insert all the 

available synonyms in the search space. On two corpora from the Quaero FrenchMed benchmark, 

we show that our approach can lead to good results even with no labeled data at all (distant learning 

from the terminology only). It outperforms existing methods, including those using machine 

translation, with labeled data (distant + supervised learning). We also designed a set of experiments 



showing the contribution of multilingual models and resources compared to monolingual.1 

 

 

2. BACKGROUND 

 

The clinical normalization problem has been extensively studied in clinical informatics literature. 

Methods have shifted from rule-based and term indexer systems [18, 19, 20, 4] to machine learning 

systems [21, 22, 23, 24, 25, 26].  

The normalization problem is also known in the general domain as entity linking [27, 28], but 

differs by the fact that the general domain annotated corpora can leverage larger annotated corpora 

such as Wikipedia. These make it possible to perform a single supervised training and rely on entity 

frequencies. However, medical lexicons do not provide context nor accurate medical concept 

frequencies. 

Deep synonym similarity approaches [21, 22, 24, 26, 25, 51] reformulate the normalization task as a 

nearest neighbor or ranking problem. However, all synonym representations must be stored or 

recomputed at inference time to perform lookup. Another approach is to subset the list of concepts 

using an efficient search engine and apply a neural similarity model to achieve a more refined 

classification amongst the candidates [53]. However, the search engine in such methods can fail for 

entities that share no lexical pattern with their concept synonyms, especially when normalizing in a 

language other than English.  

We chose to consider the task as a standard classification task amongst concepts, meaning that we 

only encode concepts of the target terminology, rather than their synonyms, into fixed-length 
                                                 
1 The code for all experiments described in this paper is available at the following URL: 

https://github.com/percevalw/deep_multilingual_normalization/tree/master  



representations that can be stored and even indexed to accelerate lookup at inference time. This way 

of framing the problem as a standard classification is similar to [52]. However, in our case,  we deal 

with a considerable number of classes (nearly a million in our experiments). We tackle this 

difficulty by making use of developments in neural network optimization over the last years, such 

as Adam [29], BatchNorm [30], or the recent advances on the face identification problem [31, 32, 

33]. Indeed, face identification is similar to medical normalization in terms of the number of target 

classes and the low number of examples per class.   

Medical named entity representation learning has closely followed the general domain NLP 

research by using pretrained models such as Word2Vec [34], Elmo [35], BERT, and its multilingual 

variant [17]. The latter processes the input text, regardless of its language, to compute 

contextualized token representations. 

The normalization of medical entities in languages other than English has so far relied mainly on 

the translation of English synonyms into the target language [18, 4], or conversely, the translation of 

entities into English [36, 23]. These systems use processing pipelines that mix term search with 

software like MetaMap [50] or Apache Solr, and web-service or local translation [37]. We chose to 

design and evaluate an auto-sufficient deep neural network classifier with few to no preprocessing 

of the input named entities. 

3. MATERIAL 

3.1 UMLS 

The Unified Medical Language System® (UMLS®) is a metathesaurus that unifies concepts from 

several dozen terminologies in the biomedical domain [5]. Each concept in the UMLS is assigned a 

Concept Unique Identifier (CUI), a set of terms (or synonyms), possibly in multiple languages, and 

a semantic type. UMLS semantic types are grouped in 15 semantic groups and each concept is 

associated with one semantic group, with very few exceptions [40]. For example, “Eicosapentanoic 



acid” (concept C0000545) is in the chemical (CHEM) group, while “Accountant” (concept 

C0000937) is in the living beings (LIVB) group. Table 1 shows statistics on the number of concepts 

and synonyms in English and French, for the versions 2014AB and 2019AB, both used in this work. 

French is the 2nd (resp. 5th) most represented language in the 2014 (resp. 2019) version in the 

metathesaurus, but only 3.5% (resp. 3.6%) of the concepts have terms in French. In this article, we 

will call “English mirror” the synonyms in English for the concepts that also have synonyms in 

French. We call “English 5 sources” (EN5) the UMLS concepts that have an English synonym and 

are either in the five CHV, SNOMEDCT_US, MTH, NCI, or MSH terminologies. We chose these 

terminologies because they cover 96% of the labels in the Quaero training corpus, without 

exceeding a million labels. 

Table 1. UMLS statistics. The English mirror is the set of concepts having synonyms in both English and French. 

Version Language #synonyms #concepts #synonyms / #concepts 

2014AB English 5,772,518 2,528,878 2.28 

 English 5 
sources 

2,298 600 766,548 3.00 

 French 179,992 88,985 2.02 

 English mirror 544,383 88,911 6,12 

2019AB English 9,187,793 4,258,236 2.16 

 English 5 
sources 

3,055,453 968,467 3.15 

 French 374,144 154,362 2.42 

 English mirror 903,098 154,307 5,85 

 

3.2 Quaero FrenchMed corpora 

The Quaero FrenchMed corpus [11] consists of two sets of textual documents in French, annotated 



with concept CUIs from the 2014AB version of the UMLS: 

● Titles of research articles indexed in the MEDLINE database 

● Information on marketed drugs from the European Medicines Agency (EMEA) 

Unlike other normalization corpora such as NCBI [38] or BC5CDR [39], the annotated concepts 

were not limited to vocabularies such as SNOMED, MeSH, or OMIM. However, they were limited 

to 10 of the 15 UMLS semantic groups. 

We used two different versions of these corpora in our experiments. The first version, that we call 

EMEA 2015 and Medline 2015, was used for the CLEF eHealth evaluation lab in 2015, a challenge 

for named entity recognition and concept normalization. The organizers proposed a training set and 

a test set for this task. In 2016, a new challenge was organized; the 2015 test set was released as a 

development set, and a new test set was annotated, leading to a larger corpus containing the 

previous one. 

Table 2 presents general corpus statistics including the number of annotated mentions (i.e., text 

spans linked to UMLS concepts within the documents), the number of unique mentions, the number 

of unique concept CUIs, as well as the rate of mentions in each corpus that are linked to a concept 

with at least one synonym in French in the terminology. Note that very few mentions are annotated 

with more than one CUI in the corpora. 

To ensure a fair comparison with other systems published on this benchmark, we use the 2014AB 

version of the UMLS, unless specified otherwise. 

 

 

 

 



Table 2. Overview of the Quaero French Medical corpus. Note that 2015 and 2016 training sets are the same (*) and that the 2016 

development set is the 2015 test set (**). 

Corpus  Mentions Unique 
mentions 

Unique concepts French coverage 

EMEA 
2015 

train* 2695 923 650 0.67 

test** 2260 756 525 0.70 

Medline 
2015 

train* 2994 2296 1860 0.77 

test** 2977 2288 1847 0.76 

EMEA 
2016 

train* 2695 923 650 0.67 

dev** 2260 756 525 0.70 

test 2204 658 474 0.62 

Medline 
2016 

train* 2994 2296 1860 0.77 

dev** 2977 2288 1847 0.76 

test 3103 2390 1909 0.79 

 

4. METHODS 

4.1 Problem definition 

We cast the normalization problem as a classification task. C = {c} is the set of all concepts c (i.e., 

classes to predict) identified by their CUI. Each concept is associated with one semantic group 

��[40]. We denote the set of all concepts in a semantic group � as ��. A mention m is a phrase in a 

textual document referring to a concept. In this work, we consider these mentions to be already 

available and labeled with a semantic group ��. The set of synonyms that share a same concept � is 

called a synset. 

For example, the concept C0678222 contains the synonyms “breast cancer”, “breast carcinoma”, 

“carcinoma of the breast”, is associated with the semantic type “Neoplastic Process” and is 

therefore in the semantic group “DISO” (Disorders). Given a french term “cancer du sein” extracted 



from a document and pre-labelled with the “DISO” semantic group, our goal will be to correctly 

map it to the C0678222 concept. 

Given a dataset, � � 	
�, 
, . . . , 
�� our goal is to build a CUI classifier, i.e to learn a probability 

distribution �to predict the concept of each mention 
 ∈ �: 

�∗ � ���
���	���	|	
; �; ���			 
 

where � represents the parameters of the encoder (detailed below), which goal is to map a 

mention to a dense vector space, and ��  represents the embeddings of the concepts in this space, 

that have the same semantic group ��as the mention. 

 

4.2 Model 

Figure 1. Model overview. This same model is used in both steps 1 and 2 of Figure 2. During step 1, candidate concepts (bottom 

right of the figure) are UMLS FR + EN mirror; during step 2, candidate concepts are gold + top candidates as described in section 

4.3.2. 

 

Our model is a classification model built on top of a sequence to sequence encoder, and we chose 

(1) 



pretrained Transformer [41] models in our experiments. We call this model MLNorm (for 

multilingual normalization). The model is described in this section and illustrated in Figure 1.  

The mentions are first tokenized into wordpieces [42] and fed into a pretrained BERT encoder in 

order to build contextualized representations �� for each token. 

�� � BERT(m)	 
These contextualized token representations are then averaged across each mention as ��, without 

the first [CLS] and last [SEP] special tokens2 

�� �	 1
! − 2 $

�	∈		�,%&��
��	

We then perform a projection into a lower dimension embedding to reduce the model size, apply the 

rectified linear activation function and normalize the result with batch normalization. This leads to a 

mention embedding ℎ�.  

ℎ� � ()*,+	�,-./�	0 ⋅ �� + 3��	

where ()*,+is the batch normalization layer with mean 4 and variance 5, and  W and b are the 

projection weights and bias respectively. 

Finally, we classify each mention by computing the cosine similarity between its representation and 

the embedding of the concepts in the semantic group of the mention. Following [33] we multiply 

the similarity by a hyperparameter 6. We obtain concept probabilities by applying the softmax 

function on these scores.  

	���	|	
; �; 	�� 	� 	 	-7	⋅	�87��9	�:;,<=�	
∑?∈@A -7	⋅	�87��9	�:;,	<B� 

where �C6DE-	�ℎ�, ��� 	� 	 :;
||:;|| ⋅

<=
||<=||	

��	is	the	embedding	of	the	gold	concept	

                                                 
2 These special tokens are mandatory in a BERT model but do not carry information about the mention. 

(2) 

(3) 

(4) 

(5) 



�?	is	the	embedding	of	the	a	concept	in	the	semantic	group	of	��of	c	

and � � {4, 5,0, 3, �YZ[\}	 

Figure 2. Overview of our different experiments with MLNorm. 

 

 

 

 

4.3 Training 

 



4.3.1 Step 1: Initial full model training. 
 

The training occurs in two steps, illustrated in Figure 2. During step 1, we learn to represent medical 

entities by finetuning the pretrained transformer model and train a subset of the concepts 

embeddings to classify synonyms from a UMLS subset.	
Since this part is time-consuming and computationally expensive, we subset the UMLS and only 

keep the concepts with at least one French synonym (UMLS FR + EN mirror) to focus our training 

on the multilingual capacity of the model. This leads to a system called S1, limited to predicting 

only concepts having French synonyms. 

 

4.3.2 Step 2: Large-scale local concept embedding learning. 
 

In the second phase (step 2), we freeze the transformer and projection parameters and train the 

representation of all the concepts (not only those having French synonyms) with a local-only 

learning approach. The intuition behind this is that enough synonyms were seen during step 1 so 

that the Transformer has an adequate representation capacity for medical mentions in general: we 

now just need to add the missing concepts to the model. Moreover, for each mention, most of the 

concepts have a near-zero probability and are not updated during the optimization (Figure 3).  

For each newly-added concept, we initialize its embedding as the normalized sum of its synset's 

representations:  

���9^� � $
�∈7_�79`���

ℎ�	

and lookup for each synonym its a highest scoring concepts as predicted by S1, that we call top 

candidates.  

�Cb_��EdDd��-6�
� � �Cb�? 	���|
, ��, ���	
We train the concept embeddings as in step 1, but we consider only the batch true concepts and top 

candidates to compute the loss. This relates to softmax sampling methods [43] with synonym 

(6) 

(7) 



dependent hard negatives [44]. The encoder being frozen, the synonyms' embeddings stay the same 

during S2, and we can efficiently compute the indices of these top candidates before starting the 

gradient descent of step 2. Using this method, we only have to compute gradients for a relevant 

subset of the concept embeddings, thus enabling a faster and more memory-efficient training. 

Figure 3. Overview of the local concept embedding learning. For each synonym 

(green dot), we precompute its k closest concepts neighbors (squares in the blue 

disk). Only these concept neighbors will be updated (arrows) each time the synonym 

appears in a batch. 

We used two different learning rates, !YZ[\ for the pretrained transformer, !`^7? for the concept 

embeddings and projection layer. During the training, we vary the learning rates using two 

schedules. Following [45], we used a slanted triangular learning rate !YZ[\ for BERT with a warm-

up phase of 10% of the total number of training steps. We keep the learning rate !`^7? constant 

during the warm-up phase and linearly decay it for the rest of the training.  

 

4.4 Prediction 

At inference time, a mention is tokenized and passed into the encoder and the classifier. We apply a 



threshold to remove all the predictions that have a low probability. 

 

4.5 Experimental setups 

We performed two main sets of experiments with our model MLNorm, that we call “distantly 

supervised” and “fully-supervised.”  

In the first setup (systems S1 and S2 in Figure 2), we used only distant supervision from the UMLS, 

and no direct concept supervision from the available, labeled datasets from Medline and EMEA. 

These systems then do not suffer any potential bias from the corpus specificities and do not benefit 

from the redundancy of mentions within the labeled datasets. In the second setup (S1sup and S2sup), 

we add mentions and labels from the Medline and EMEA training sets, thus enabling comparison 

with state-of-the-art fully-supervised approaches using these data. 

Step 2 experiments use the English concepts from the five sources (“EN5”) described in Section 

3.1. 

 

 

4.5.1 Comparisons and ablation studies 
  
 

Baselines 

We compare MLNorm to the following baselines: 

- the top ranked systems of respectively CLEF 2015 [18] and CLEF 2016 [4], on the same 

exact task of normalization from gold-standard mentions. The CLEF 2015 winning team 

[18] first augments the French UMLS by translating a subset of the English UMLS concepts 

encountered in Medline abstracts, using Google Translate. This terminology is then queried 

by a rule-based text indexer. The CLEF 2016 winning team [4] relies on their ECMT 

indexer which performs bag of words concept matching at the sentence level and integrates 



up to 13 terminologies partially or totally translated into French. 

- the best-performing system, to the best of our knowledge (Roller et al. [23]). They first train 

a local LSTM-based French to English translator on synonym pairs from the UMLS and 

other general domain sources. The French and English terminologies are then indexed and 

searched using Apache Solr through exact and fuzzy matching rules. 

- as the system from Roller et al. [23], based on machine translation + English-only 

normalization, is quite different from our own system, we also experimented with a machine 

translation approach relying on our own model. This allows a fair comparison between our 

multilingual space learning approach and a translation-based approach. For this purpose, we 

translated all UMLS French terms with a state-of-the-art pretrained (opus-mt-fr-en) 

translation system [57] built with MarianMT [58] and trained on the OPUS bitext repository 

corpus [59]. We then trained our model with all original-English and translated-English 

terms. We called this strong baseline BERT-MT (using the English BERT) and mBERT-MT 

(using the multilingual BERT). 

 

We also performed a range of ablation studies and additional experiments on the distantly 

supervised setup, in order to estimate the impact of our different choices. 

 

Impact of the data language 

- FR/EN: the same system without step 2 (i.e. S1 only), with the French synonyms and their 

English mirror 

- FR-only: S1 with only the French terms 

- EN-only: S1 with only the English mirror terms 

Impact of the pretrained embeddings (our system vs. camemBERT and BERT): we compare our 

system with the same system using BERT embeddings trained on French data only (CamemBERT 



[46], model camembert-base-uncased) or using the English-only BERT (model bert-base-uncased), 

instead of the multilingual BERT, in order to evaluate the contribution of the multilingual 

embeddings.  

Impact of more French terms (our system vs. UMLS2019): we present an experiment using the 

2019AB version of the UMLS, containing 154k concepts with French synonyms instead of 89k in 

the 2014AB version. With this system (UMLS2019), we aim at showing the impact of adding new 

concepts to the terminology used for distant supervision. 

Impact of the two-step architecture (our system vs. 1-step): finally, we trained S1 with all the 

synonyms (French and English from EN5), and did not perform any step 2 with frozen embeddings. 

This is a much more time- and memory-consuming experiment that will allow us to estimate the 

quality of the model pretraining and the possible trade-off between cost and quality. 

 

 

4.5.2 Hyperparameter selection 
 

For all these experiments, we trained on the training sets and evaluated on the test sets from Quaero 

FrenchMed datasets (Medline 2015 and 2016, EMEA 2015 and 2016). We chose the 

hyperparameters by selecting the best-performing values on the training set of Quaero in the distant 

supervision setting. We run our models on a 20 Go Tesla P40 GPU, except the 1-step experiment 

which required a 30Go Tesla V100 GPU. 

 

5. RESULTS  

As a result from the hyperparameter search described above, the token embeddings space of size 

768 is projected into a space of size 350, the cosine similarity scaling parameter s is 20, both 

dropout rates for the transformer and the projection layer are set to 0.2. We set the batch size to 128, 



the maximum synonym wordpiece count to 100, and the maximum learning rates to !YZ[\ �
2-&eand !�8��9f` � !fg8h � 8-&j. We used Adam with parameters k� � 0.9 and k � 0.999. 

During step 2, we preselect the a � 100 highest scoring concepts for each synonym. We perform 

the step 1 training for 15 epochs and the step 2 for 5 epochs for all models except S1FR and S1EN 

since they contain fewer synonyms for the same number of concepts and had to be trained longer 

for 30 and 20 epochs respectively. All S1 system predictions were filtered with a same threshold of 

0.5 and S2 with a threshold of 0.1. 

We finetuned the multilingual pretrained BERT model (bert-base-multilingual-uncased) in all our 

experiments, unless specified otherwise. 

We report our main results on the test datasets from the challenges Quaero FrenchMed 2015 and 

2016 (Table 3), as well as the results of our additional experiments described in previous Section 

(Table 4), using the traditional metrics precision, recall and F1-measure (harmonic mean of 

precision and recall). We also give some examples of the distantly supervised system’s output 

(MLNorm S2), that highlight its multilingual capacities (Table 6). 

  



Table 3. Main results for our system on 2015 and 2016 corpora, and comparison with existing systems. 

  MEDLINE 2015 EMEA 2015 

 Prec. Rec. F1 Prec. Rec. F1 

MLNorm 
(our system) 

distantly supervised (S2) 0.756 0.719 0.737 0.797 0.736 0.765 

 supervised (S2sup) 0.806 0.775 0.790 0.875 0.827 0.851 

Other 
supervised 
systems 2015 

Best system CLEF 2015 [18] 0.805 0.575 0.671 1.000 0.774 0.872 

Machine translation + English normalization  
[23] 

0.831 0.661 0.736 0.909 0.772 0.835 

  MEDLINE 2016 EMEA 2016 

  Prec. Rec. F1 Prec. Rec. F1 

MLNorm 
(our system) 

distantly supervised (S2) 0.775 0.734 0.754 0.746 0.709 0.727 

supervised (S2sup) 0.860 0.740 0.795 0.832 0.670 0.743 

Other 
supervised 
systems 2016 

Best system CLEF 2016 [4] 0.594 0.515 0.552 0.604 0.463 0.524 

Machine translation + English normalization 
[23] 

0.771 0.663 0.713 0.781 0.692 0.734 

 

 

 

 

 

 

 

Table 4. Comparison of our system with a comparable machine translation approach, using our classifier.  

Model MEDLINE 2015 EMEA 2015 

Prec. Rec. F1 Prec. Rec. F1 

MLNorm 0.756 0.719 0.737 0.797 0.736 0.765 

mBERT-MT (MLNorm with MT) 0.735 0.702 0.718 0.784 0.746 0.765 

BERT-MT (MLNorm with MT) 0.751 0.698 0.724 0.774 0.737 0.755 

 

 

  



 

Table 5. Additional results on the 2015 corpora, about the impact of the data language, of the pretrained embeddings, the size of the 

French terminology and the 2-step approach. 

Experiment Model MEDLINE 2015 EMEA 2015 

Prec. Rec. F1 Prec. Rec. F1 

Impact of the 
data language 
(step S1 only, 
UMLS 2014) 

FR-only  0.738 0.528 0.615 0.824 0.528 0.644 

EN-only (EN mirror only, no FR syn) 0.797 0.451 0.575 0.843 0.410 0.551 

FR/EN (FR + EN mirror) 0.783 0.621 0.693 0.827 0.574 0.678 

Impact of the 
pretrained 
embeddings 
(steps S1+ S2) 

MLNorm 0.756 0.719 0.737 0.797 0.736 0.765 

camemBERT  0.769 0.704 0.735 0.821 0.699 0.755 

BERT (English base BERT) 
       …instead of multilingual BERT  

0.759 0.716 0.737 0.805 0.734 0.768 

Impact of more 
FR terms 
(steps S1+S2) 

MLNorm 0.756 0.719 0.737 0.797 0.736 0.765 

UMLS 2019 (instead of UMLS 2014) 0.753 0.710 0.731 0.795 0.728 0.760 

Impact of two 
step training 

MLNorm 0.756 0.719 0.737 0.797 0.736 0.765 

1-step (S1 and S2 merged in 1 step, with S2 
training data) 

0.785 0.692 0.736 0.816 0.714 0.762 

 

 

 

 

 

 

 

  



 
 Table 6. Some predictions from our system. The last two columns contain the synonyms seen during training for the target concept 

and the predicted one, if different. Some long or similar synonyms have been removed to improve readability. 

System Example mention Expected concept and its synonyms from 
the train set 

Predicted concept if 
wrong, and its synonyms 
for the train set 

MLNorm 
(S2) 

greffon renal C1261317 

[EN] transplanted kidney 
[EN] kidney transplant 
[EN] structure of transplanted kidney 

✓  

cinquième métacarpien C0730166 

[EN] bone structure of fifth metacarpal 
[EN] fifth metacarpal bone 
[EN] fifth metacarpal 

✓  

vaccination par le b.c.g C0199804 

[FR] immunisation contre la tuberculose 
[EN] vaccination against tuberculosis 
[EN] bcg vaccination 
[EN] tuberculosis vaccination 
[EN] tuberculosis immunization 
[EN] administration of bcg vaccine 
… (other similar English synonyms) 

✓  

in vitro C0681828 

[EN] in vitro study 
[EN] studies vitro 
[EN] study vitro 

C3850137 

[EN] in vitro techniques 
[EN] technique in vitro 
[EN] in vitro as topic 

coffea robusta C0678439 
[EN] coffea rubusta (food) 

C1138610 

[EN] coffea arabica, 
unspecified 

mBERT-MT cellar  
(translated from the French 
term “cave”) 

C0042460 

[EN] vena cava structure 
[EN] venae cavae 
[EN] vena cava 
[EN] cavae 
[EN] venae 
[EN] vena caval structure 
[EN] vena caval 
[EN] vein 
[MT] veins cellars (from “veines caves”) 
[MT] vein cellar (from “veine cave”) 

C0007634 

[EN] cell 
[EN] cell structure 
[EN] cell type 
[EN] cells set 
[EN] cellula 
[EN] cellular 
[EN] normal cell 
[EN] set of cells 
[MT] cells (from 
“cellules”) 

be careful  
(translated from the French 
term “attention”) 

C0004268 

[EN] attention 
[EN] attentions 
 

C3257858 

[EN] my thinking is 
usually careful and 
purposeful 

 



 

6. DISCUSSION 

Our distantly supervised system MLNorm S2 obtains very good results without concept-labeled 

training data (Table 3). It even reaches the same results as the best fully-supervised system 

published so far [23] on the corpus MEDLINE 2015 (F1=0.737 vs. 0.736) and outperforms all 

participants of the 2016 edition. Note that CLEF campaigns provide scores on both end-to-end task 

(named entity + normalization) and normalization-only task; similarly to Roller et al. [23], we 

compare to the latter. The much higher term redundancy can explain the better score of supervised 

systems on EMEA corpus (e.g., F1=0.835 and 0.734 on 2015 and 2016 for [23] vs. resp. 0.765 and 

0.727 for our system S2) between training and test set (see Table 2), which gives a free boost to 

supervised systems but is probably not very representative of reality.  

 

We can also see that the system using only French synonyms (FR-only) performs much poorlier, 

with almost 20 points less in recall than S2, which we can attribute to the missing concepts in the 

French UMLS. 

 

Our experiments with translated French terms (Table 4) show that even a good machine translation 

model can lower the accuracy of the final model. We experimented with both English BERT and 

multilingual BERT to account for the impact of the transformer pre-training language. We could 

argue that the off-the-shelf translation model could be improved by fine-tuning on UMLS 

synonyms like [23]. However, we think that those results hint at the fact that translation and indexer 

pipeline may suffer from error cascade: being trained in an end-to-end fashion, our system does not 

suffer from this behavior. Table 6 shows that the ambiguity of some terms (“cave” can mean both 

“cellar” and “cava” in English) is lost during translation. 

 



6.1 Impact of the supervision 

Table 3 shows that our supervised system S2sup obtains a F1 gain of 5 and 9 points on resp. 

MEDLINE and EMEA corpora, with an improvement of both precision and recall. It outperforms 

other systems by a large margin on MEDLINE. It also outperforms [23] on EMEA 2015 and 2016, 

but not [18] that obtained a perfect precision on EMEA 2015, at the cost of many handcrafted rules 

and extra labeled data. 

6.2 Impact of the data language 

In Table 5, we compare the same model trained with either only the French synonyms of the UMLS 

2014AB (FR-only), only the English mirror (synonyms of the same concepts, EN-only), or with 

both of these two sets of synonyms (FR/EN). FR/EN achieves a 8 points improvement over FR-

only, despite having the same concepts coverage and the same pretrained embeddings. This 

indicates that a larger training set, even in a different language can help improve the system's 

performance by a significant margin. This improvement could be attributed to the lexical 

similarities between French and English languages. For example in Table 6, the only training 

French synonym of “vaccination par le b.c.g” is “immunisation contre la tuberculose” and shares 

no common word. The system can therefore benefit from the addition of similar terms, such as “bcg 

vaccination” even though they are in English. 

6.3 Impact of the pretrained embeddings 

Our experiments with French-only embeddings CamemBERT and English-only embeddings BERT, 

reported in Table 5, show that our hypothesis that multilingual embeddings improve the system's 

performance is not verified, with almost no difference between these three embeddings. French 

wordpieces and embeddings can handle medical terms in English, and vice versa. Even if this can 

be again explained in part by the proximity of the two languages concerned, the low results of EN-

only, yet benefiting of much larger training data, suggest that it is not that obvious; besides, other 



papers in the literature suggest that multilingual embeddings are helpful even for such pairs of 

languages [47, 48]. This observation may also be due to the fact that medical synonym 

normalization data (short word sequences) is quite different from BERT pretraining data (full 

sentences), so it is harder for the model to re-use its multilingual knowledge. This aspect deserves 

more experiments, notably on other, non-European languages. Note that biomedical-specific 

embeddings such as Clinical BERT [49] are not yet available in French, which is why we did not 

consider them. Moreover, as illustrated in Table 6, we can see that the model correctly predicts 

concepts, even when no common wordpieces exist between the test term and the training synonyms 

of the target concept. Therefore, the proximity between French and English cannot be the only 

explanation to the model performance. To correctly classify the mention "cinquième métacarpien" 

(fifth metacarpal bone) to its concept, without having the numeral “cinquième” in any of the 

training synonyms, the model must have learned to generalize from other concepts that contained 

both French “cinquième” and English “fifth” in their training synonyms. 

We can also note that despite addressing out-of-vocabulary errors with wordpiece vocabularies, 

such errors still exist. For example in Table 6, “robusta” (single wordpiece “##robusta”) and 

"rubusta" (two wordpieces, “##rubus” and “ta”) are tokenized differently despite having almost 

identical characters. 

 

6.4 Impact of the two-step training 

Our experiment with one-step training procedure showed no improvement over the two-step 

training (Table 5, “1-step”), and took approximately 15 hours instead of 7 hours (5 hours for S1 and 

2 hours for S2 with one million synonyms). Our two-step method can therefore effectively reduce 

training time without reducing accuracy by choosing an appropriate partition of the training data. 

Our results even show a slight loss in performance for the one-step model. This could be explained 



by the regularization that occurs in the two-step training when we freeze the encoder during S2. 

Indeed, since most of the data seen during S2 is English, unfreezing the encoder may encourage the 

model to forget its inner translation capabilities. 

6.5 UMLS 2019  

Finally, our experiment with UMLS 2019AB (UMLS2019, Table 5) leads to results a little below 

our system, despite the much higher number of concepts having French synonyms.  The system has 

more French terms to train on, but the coverage in Quaero corpora is not far better.  

7. CONCLUSION AND PERSPECTIVES 

We built a model using multilingual terminologies and embeddings to normalize medical concepts 

for a language having much lower resources than English. We obtained very good results, even in a 

non-fully-supervised setting, which guarantees robustness. Another attractive property of this 

approach is that there is no need to retrain the model from scratch when new classes (concepts) are 

created, which is a common problem of traditional classification methods for dynamic sets of 

classes. 

Future work will extend these experiments to other languages and other tasks such as named entity 

recognition. 
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