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HARDY’S INEQUALITY FOR FUNCTIONS VANISHING ON A PART OF

THE BOUNDARY

MORITZ EGERT, ROBERT HALLER-DINTELMANN, AND JOACHIM REHBERG

Abstract. We develop a geometric framework for Hardy’s inequality on a bounded domain

when the functions do vanish only on a closed portion of the boundary.

1. Introduction

Hardy’s inequality is one of the classical items in analysis [27, 42]. Two milestones among many
others in the development of the theory seem to be the result of Necas [41] that Hardy’s in-
equality holds on strongly Lipschitz domains and the insight of Maz’ya [38], [39, Ch. 2.3] that its
validity depends on measure theoretic conditions on the domain. Rather recently, the geometric
framework in which Hardy’s inequality remains valid was enlarged up to the frontiers of what
is possible – as long as the boundary condition is purely Dirichlet, see [25, 28], compare also
[3, 31, 48]. Moreover, over the last years it became manifest that Hardy’s inequality plays an
eminent role in modern PDE theory, see e.g. [7, 46, 43, 2, 13, 9, 16, 23, 32, 34].

What has not been treated systematically is the case where only a part D of the boundary of
the underlying domain Ω is involved, reflecting the Dirichlet condition of the equation on this part
– while on ∂Ω\D other boundary conditions may be imposed, compare [11, 26, 2, 24, 8] including
references therein. The aim of this paper is to set up a geometric framework for the domain Ω
and the Dirichlet boundary part D that allow to deduce the corresponding Hardy inequality∫

Ω

∣∣∣∣ u

distD

∣∣∣∣p dx ≤ c
∫

Ω

|∇u|p dx.

As in the well established case D = ∂Ω we in essence only require that D is l-thick in the sense
of [28]. In our context this condition can be understood as an extremely weak compatibility
condition between D and ∂Ω \D.

Our strategy of proof is first to reduce to the case D = ∂Ω by purely topological means,
provided two major tools are applicable: An extension operator E : W 1,p

D (Ω) → W 1,p
D (Rd),

the subscript D indicating the subspace of those Sobolev functions which vanish on D in an
appropriate sense, and a Poincaré inequality on W 1,p

D (Ω). This abstract result is established in
Section 5. In a second step in Sections 6 and 7 these partly implicit conditions are substantiated by
more geometric assumptions that can be checked – more or less – by appearance. In particular,
we prove that under the mere assumption that D is closed, every linear continuous extension
operator W 1,p

D (Ω) → W 1,p(Rd) that is constructed by the usual procedure of gluing together
local extension operators preserves the Dirichlet condition on D. This result even carries over to
higher-order Sobolev spaces and sheds new light on some of the deep results on Sobolev extension
operators obtained in [4].
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It is of course natural to ask, whether Hardy’s inequality also characterizes the space W 1,p
D (Ω),

i.e. whether the latter is precisely the space of those functions u ∈W 1,p(Ω) for which u/distD be-
longs to Lp(Ω). Under very mild geometric assumptions we answer this question to the affirmative
in Section 8.

Finally, in Section 9 we attend to the naive intuition that the part of ∂Ω that is far away from
D should only be circumstantial for the validity of Hardy’s inequality and in fact we succeed to
weaken the previously discussed geometric assumptions considerably.

2. Notation

Throughout we work in Euclidean space Rd, d ≥ 1. We use x, y, etc. for vectors in Rd and
denote the open ball in Rd around x with radius r by B(x, r). The letter c is reserved for generic
constants that may change their value from occurrence to occurrence. Given F ⊂ Rd we write
distF for the function that measures the distance to F and diam(F ) for the diameter of F .

In our main results on Hardy’s inequality we denote the underlying domain and its Dirichlet
part by Ω and D. The various side results that are interesting in themselves and drop off on the
way are identified by the use of Λ and E instead.

Next, let us introduce the common first-order Sobolev spaces of functions ‘vanishing’ on a part
of the closure of the underlying domain that are most essential for the formulation of Hardy’s
inequality.

Definition 2.1. If Λ is an open subset of Rd and E is a closed subset of Λ, then for p ∈ [1,∞[

the space W 1,p
E (Λ) is defined as the completion of

C∞E (Λ) := {v|Λ : v ∈ C∞0 (Rd), supp(v) ∩ E = ∅}

with respect to the norm v 7→
(∫

Λ
|∇v|p + |v|p dx

)1/p
. More generally, for k ∈ N we define

W k,p
E (Λ) as the closure of C∞E (Λ) with respect to the norm v 7→

(∫
Λ

∑k
j=0 |Djv|p dx

)1/p
.

The situation we have in mind is of course when Λ = Ω and E = D is the Dirichlet part D of
the boundary ∂Ω.

As usual, the Sobolev spaces W k,p(Λ) are defined as the space of those Lp(Λ) functions whose
distributional derivatives up to order k are in Lp(Λ), equipped with the natural norm. Note that

by definition W k,p
0 (Λ) = W k,p

∂Λ (Λ) but in general W k,p
∅ (Λ) (W k,p(Λ), cf. [39, Sec. 1.1.6]

3. Main results

The following version of Hardy’s inequality for functions vanishing on a part of the boundary is
our main result. Readers not familiar with the measure theoretic concepts used to describe the
regularity of the Dirichlet part D may refer to Section 4.1 beforehand.

Theorem 3.1. Let Ω ⊂ Rd be a bounded domain, D ⊂ ∂Ω be a closed part of the boundary and
p ∈ ]1,∞[. Suppose that the following three conditions are satisfied.

(i) The set D is l-thick for some l ∈ ]d− p, d].

(ii) The space W 1,p
D (Ω) can be equivalently normed by ‖∇ · ‖Lp(Ω).

(iii) There is a linear continuous extension operator E : W 1,p
D (Ω)→W 1,p

D (Rd).

Then there is a constant c > 0 such that Hardy’s inequality∫
Ω

∣∣∣∣ u

distD

∣∣∣∣p dx ≤ c
∫

Ω

|∇u|p dx(3.1)

holds for all u ∈W 1,p
D (Ω).
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Of course the conditions (ii) and (iii) in Theorem 3.1 are rather abstract and should be sup-
ported by more geometrical ones. This will be the content of Sections 6 and 7 where we shall give
an extensive kit of such conditions. In particular, we will obtain the following version of Hardy’s
inequality.

Theorem 3.2 (A special Hardy inequality). Let Ω ⊂ Rd be a bounded domain and p ∈ ]1,∞[.

Let D ⊂ ∂Ω be l-thick for some l ∈ ]d− p, d] and assume that for every x ∈ ∂Ω \D there is an
open neighborhood Ux of x such that Ω∩Ux is a W 1,p-extension domain. Then there is a constant
c > 0 such that ∫

Ω

∣∣∣∣ u

distD

∣∣∣∣p dx ≤ c
∫

Ω

|∇u|p dx, u ∈W 1,p
D (Ω).

Remark 3.3. The assumptions in the above theorem are met for all p ∈ ]1,∞[ if D is a (d−1)-set

and for every x ∈ ∂Ω \D there is an open neighborhood Ux of x such that Ω ∩Ux is a Lipschitz-
or more generally an (ε, δ)-domain, see Subsections 4.1 and 6.4 for definitions.

Still, as we believe, the abstract framework traced out by the second and the third condition of
Theorem 3.1 has the advantage that other sufficient geometric conditions for Hardy’s inequality –
tailor-suited for future applications – can be found much more easily. In fact the second condition
is equivalent to the validity of Poincaré’s inequality

‖u‖Lp ≤ c‖∇u‖Lp(Ω), u ∈W 1,p
D (Ω),

that is clearly necessary for Hardy’s inequality (3.1). We give a detailed discussion of Poincaré’s
inequality within the present context in Section 7. For further reference the reader may consult
[50, Ch. 4]. Concerning the third condition note carefully that we require the extension operator
to preserve the Dirichlet boundary condition on D. Whereas extension of Sobolev functions
is a well-established business, the preservation of traces is much more delicate and we devote
Subsection 6.3 to this problem.

It is interesting to remark that under geometric assumptions very similar to those in Theo-
rem 3.2 the space W 1,p

D (Ω) is the largest subspace of W 1,p(Ω) in which Hardy’s inequality can
hold. This is made precise by our third main result.

Theorem 3.4. Let Ω ⊂ Rd be a bounded domain and p ∈ ]1,∞[. Let D ⊂ ∂Ω be porous

and l-thick for some l ∈ ]d− p, d]. Finally assume that for every x ∈ ∂Ω \D there is an open
neighborhood Ux of x such that Ω ∩ Ux is a W 1,p-extension domain. If u ∈ W 1,p(Ω) is such that

u/distD ∈ Lp(Ω), then already u ∈W 1,p
D (Ω).

Remark 3.5. (i) The assumption on D are met if D is an l-set for some l ∈ ]d− p, d[, see
Remark 4.4 below.

(ii) In the case D = ∂Ω the conclusion of Theorem 3.4 is classical [10, Thm. V.3.4] and
remains true without any assumptions on ∂Ω.

In Section 5 we give the proof of the general Hardy inequality from Theorem 3.1. The proofs
of Theorem 3.2 and 3.4 are postponed to the end of Sections 6 and 8, respectively.

4. Preliminaries

4.1. Regularity concepts for the Dirichlet part. For convenience we recall the notions from
geometric measure theory that are used to describe the regularity of the Dirichlet part D in
Hardy’s inequality. For l ∈ ]0,∞[ the l-dimensional Hausdorff measure of F ⊂ Rd is

Hl(F ) := lim inf
δ→0

{ ∞∑
j=1

diam(Fj)
l : Fj ⊂ Rd, diam(Fj) ≤ δ, F ⊂

∞⋃
j=1

Fj

}
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and its centered Hausdorff content is defined by

H∞l (F ) := inf
{ ∞∑
j=1

rlj : xj ∈ F, rj > 0, F ⊂
∞⋃
j=1

B(xj , rj)
}
.

Definition 4.1. Let l ∈ ]0,∞[. A non-empty compact set F ⊂ Rd is called l-thick if there exist
R > 0 and γ > 0 such that

(4.1) H∞l (F ∩B(x, r)) ≥ γ rl

holds for all x ∈ F and all r ∈ ]0, R]. It is called l-set if there are two constants c0, c1 > 0 such
that

c0r
l ≤ Hl(F ∩B(x, r)) ≤ c1rl

holds for all x ∈ F and all r ∈ ]0, 1].

Remark 4.2. (i) If (4.1) holds for constants R, γ, then for all S ≥ R it also holds with R
and γ replaced by S and γRlS−l, respectively. For more information on this notion of
l-thick sets the reader can refer to [28].

(ii) The notion of l-sets is due to [22, Sec. II.1]. It can be extended literally to arbitrary
Borel sets F , see [22, Sec. VII.1.1].

Definition 4.3. A set F ⊂ Rd is porous if for some κ ≤ 1 the following statement is true: For
every ball B(x, r) with x ∈ Rd and 0 < r ≤ 1 there is y ∈ B(x, r) such that B(y, κr) ∩ F = ∅.

Remark 4.4. It is known that a set F ⊂ Rd is porous if and only if its so-called Assouad
dimension is strictly less than the space dimension d, see [33, Thm. 5.2]. Recently it was shown
in [30] that this notion of dimension coincides with the one introduced by Aikawa, that is the
infimum of all t > 0 for which there exists ct > 0 such that∫

B(x,r)

dist(x, F )t−d dx ≤ ctrt, x ∈ F, r > 0.

In particular, each l-set, l ∈ ]0, d[, has Aikawa dimension equal to l and thus is porous [29,
Lem. 2.1].

For a later use we include a proof of the following two elementary facts. We remark that the
first lemma is also implicit in [6, Lem. 2].

Lemma 4.5. Let l ∈ ]0,∞[. If F ⊂ Rd is a compact l-set, then there are constants c0, c1 > 0
such that

c0r
l ≤ H∞l (F ∩B(x, r)) ≤ c1rl

holds for all r ∈ ]0, 1[ and all x ∈ F . In particular, F is l-thick.

Proof. We prove H∞l (A) ≤ Hl(A) ≤ cH∞l (A) for all non-empty Borel subsets A ⊂ F .
First, fix ε > 0 and let {Aj}j∈N be a covering of A by sets with diameter at most ε. If Aj∩A 6= ∅,

then Aj is contained in an open ball Bj centered in A and radius such that rlj = diam(Aj)
l+ε2−j .

The so-obtained countable covering {Bj} of A satisfies∑
j∈N

Aj∩A6=∅

diam(Aj)
l ≥

∑
j∈N

Aj∩A6=∅

(rlj − ε2−j) ≥ H∞l (A)− ε.

Taking the infimum over all such coverings {Aj}j∈N and passing to the limit ε → 0 afterwards,
H∞l (A) ≤ Hl(A) follows. Conversely, let {Bj}j∈N be a covering of A by open balls with radii rj
centered in A. If rj ≤ 1, then Hl(F ∩Bj) ≤ crlj since by assumption F is an l-set, and if rj > 1,
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then certainly Hl(F ∩ Bj) ≤ Hl(F )rlj . Note carefully that 0 < Hl(F ) < ∞ holds for F can be
covered by finitely many balls with radius 1 centered in F . Altogether,

∞∑
j=1

rlj ≥ c
∞∑
j=1

Hl(F ∩Bj) ≥ cHl
(
F ∩

∞⋃
j=1

Bj

)
≥ cHl(A).

Passing to the infimum, H∞l (A) ≥ cHl(A) follows. �

Lemma 4.6. If F ⊂ Rd is l-thick, then it is m-thick for every m ∈ ]0, l[.

Proof. Inspecting the definition of thick sets, the claim turns out to be a direct consequence of
the inequality

N∑
j=1

rmj ≥
( N∑
j=1

rlj

)m/l
for positive real numbers r1, . . . rN . �

4.2. Quasieverywhere defined functions. The results of Sections 6-8 rely on deep insights
from potential theory and we shall recall the necessary notions beforehand. For further back-
ground we refer e.g. to [1].

Definition 4.7. Let α > 0, p ∈ ]1,∞[ and let F ⊂ Rd. Denote by Gα := F−1((1 + |ξ|2)−α/2)
the Bessel kernel of order α. Then

Cα,p(F ) := inf
{∫

Rd
|f |p : f ≥ 0 on Rd and Gα ∗ f ≥ 1 on F

}
is called (α, p)-capacity of F . The corresponding Bessel potential space is

Hα,p(Rd) := {Gα ∗ f : f ∈ Lp(Rd)} with norm ‖Gα ∗ f‖Hα,p(Rd) = ‖f‖p.

It is well-known that for k ∈ N the spaces Hk,p(Rd) and W k,p(Rd) coincide up to equivalent
norms [45, Sec. 2.3.3]. The capacities Cα,p are outer measures on Rd [1, Sec. 2.3]. A property
that holds true for all x in some set E ⊂ Rd but those belonging to an exceptional set F ⊂ E with
Cα,p(F ) = 0 is said to be true (α, p)-quasieverywhere on E, abbreviated (α, p)-q.e. A property
that holds true (α, p)-q.e. also holds true (β, p)-q.e. if β < α. This is an easy consequence of [1,
Prop. 2.3.13]. A more involved result in this direction is the following [1, Thm. 5.5.1]

Lemma 4.8. Let α, β > 0 and 1 < p, q < ∞ be such that βq < αp < d. Then each Cα,p-nullset
also is a Cβ,q-nullset

There is also a close connection between capacities and Hausdorff measures, cf. [1, Ch. 5.] for
an exhaustive discussion. Most important for us is the following comparison theorem. In the case
p ∈ ]1, d] this is proved in [1, Sec. 5] and if p ∈ ]d,∞[, then the result follows directly from [1,
Prop. 2.6.1].

Theorem 4.9 (Comparison Theorem). Let 1 < p < ∞ and suppose α, l > 0 are such that
d− l < αp <∞. Then every Cα,p-nullset is also a Hl- and thus a H∞l -nullset.

Bessel capacities naturally occur when studying convergence of average integrals for Sobolev
functions. In fact, if α > 0, p ∈ ]1, dα ] and u ∈ Hα,p(Rd), then (α, p)-quasievery y ∈ Rd is a
Lebesgue point for u in the Lp-sense, that is

lim
r→0

1

|B(y, r)|

∫
B(y,r)

u(x) dx =: u(y)(4.2)

and

lim
r→0

1

|B(y, r)|

∫
B(y,r)

|u(x)− u(y)|p dx = 0(4.3)
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hold [1, Thm. 6.2.1]. The (α, p)-quasieverywhere defined function u reproduces u within its Hα,p-
class. It gives rise to a meaningful (α, p)-quasieverywhere defined restriction u|E := u|E of u to
E whenever E has non-vanishing (α, p)-capacity. For convenience we agree upon that u|E = 0 is
true for all u ∈ Hα,p(Rd) if E has zero (α, p)-capacity. Note also that these results remain true
if p ∈ ] dα ,∞[, since in this case u has a Hölder continuous representative u which then satisfies

(4.2) and (4.3) for every y ∈ Rd.
We obtain an alternate definition for Sobolev spaces with partially vanishing traces.

Definition 4.10. Let k ∈ N, p ∈ ]1,∞[ and E ⊆ Rd be closed. Define

Wk,p
E (Rd) :=

{
u ∈W k,p(Rd) : Dβu|E = 0 holds (k − |β|, p)-q.e. on E

for all multiindices β, 0 ≤ |β| ≤ k − 1
}

and equip it with the W k,p(Rd)-norm.

The following theorem of Hedberg and Wolff is also known as the (k, p)-synthesis.

Theorem 4.11 ([1, Thm. 9.1.3]). The spaces W k,p
E (Rd) and Wk,p

E (Rd) coincide whenever k ∈ N,
p ∈ ]1,∞[ and E ⊂ Rd is closed.

Hedberg and Wolff’s theorem manifests the use of capacities in the study of traces of Sobolev
functions. However, if one invests more on the geometry of E, e.g. if one assumes that it is an
l-set, then by the subsequent recent result of Brewster, Mitrea, Mitrea and Mitrea capacities can
be replaced by the l-dimensional Hausdorff measure at each occurrence.

Theorem 4.12 ([4, Thm. 4.4, Cor. 4.5]). Let k ∈ N, p ∈ ]1,∞[ and let E ⊂ Rd be closed and
additionally an l-set for some l ∈ ]d− p, d]. Then

W k,p
E (Rd) =Wk,p

E (Rd) =
{
u ∈W k,p(Rd) : Dβu|E = 0 holds Hd−1-a.e. on E

for all multiindices β, 0 ≤ |β| ≤ k − 1
}
,

where on the right-hand side Dβu|E = 0 means, as before, that for Hd−1-almost every y ∈ E the
average integrals 1

|B(y,r)|
∫
B(y,r)

Dβu(x) dx vanish in the limit r → 0.

5. Proof of Theorem 3.1

We will deduce Theorem 3.1 from the following proposition that states the assertion in the
case D = ∂Ω.

Proposition 5.1 ([28], see also [25]). Let Ω• ⊆ Rd be a bounded domain and let p ∈ ]1,∞[. If

∂Ω• is l-thick for some l ∈ ]d− p, d], then Hardy’s inequality is satisfied for all u ∈ W 1,p
0 (Ω•),

i.e. (3.1) holds with Ω replaced by Ω• and D by ∂Ω•.

Below we will reduce to the case D = ∂Ω by purely topological means, so that we can apply
Proposition 5.1 afterwards. We will repeatedly use the following topological fact.

Let {Mλ}λ be a family of connected subsets of a topological space. If
⋂
λMλ 6= ∅, then⋃

λMλ is again connected.
(�)

As required in Theorem 3.1 let now Ω ⊆ Rd be a bounded domain and let D be a closed part of
∂Ω. Then choose an open ball B ⊇ Ω that, in what follows, will be considered as the relevant
topological space. Consider

C := {M ⊂ B \D : M open, connected and Ω ⊂M}
and for the rest of the proof put

Ω• :=
⋃
M∈C

M.
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In the subsequent lemma we collect some properties of Ω•. Our proof here is not the shortest
possible, cf. [5, Lem. 6.4] but it has, however, the advantage to give a description of Ω• as the
union of Ω, the boundary part ∂Ω \D and those connected components of B \Ω whose boundary
does not consist only of points from D. This completely reflects the naive geometric intuition.

Lemma 5.2. It holds Ω ⊆ Ω• ⊆ B. Moreover, Ω• is open and connected and ∂Ω• = D in B.

Proof. The first assertion is obvious. By construction Ω• is open. Since all elements from C
contain Ω the connectedness of Ω• follows by (�). It remains to show ∂Ω• = D.

Let x ∈ D. Then x is an accumulation point of Ω and, since Ω ⊆ Ω•, also of Ω•. On the other
hand, x 6∈ Ω• by construction. This implies x ∈ ∂Ω• and so D ⊆ ∂Ω•.

In order to show the inverse inclusion, we first show that points from ∂Ω \ D cannot belong
to ∂Ω•. Indeed, since D is closed, for x ∈ ∂Ω \D there is a ball Bx ⊆ B around x that does not
intersect D. Since x is a boundary point of Ω, we have Bx∩Ω 6= ∅. Both Ω and Bx are connected,
so (�) yields that Ω ∪ Bx is connected. Moreover, this set is open, contains Ω and avoids D, so
it belongs to C and we obtain Ω ∪ Bx ⊆ Ω•. This in particular yields x ∈ Ω•, so x /∈ ∂Ω• since
Ω• is open.

Summing up, we already know that x ∈ Ω belongs to ∂Ω• if and only if x ∈ D. So, it remains
to make sure that no point from B \ Ω belongs to ∂Ω•.

As B \ Ω is open, it splits up into its open connected components Z0, Z1, Z2, . . .. There are
possibly only finitely many such components but at least one. We will show in a first step that
for all these components it holds ∂Zj ⊆ ∂Ω. This allows to distinguish the two cases ∂Zj ⊆ D
and ∂Zj ∩ (∂Ω \ D) 6= ∅. In Steps 2 and 3 we will then complete the proof by showing that in
both cases Zj does not intersect ∂Ω•.

Step 1: ∂Zj ⊆ ∂Ω for all j. First note that ∂Zj ∩Ω = ∅ for all j. Indeed, assuming this set to
be non-empty and investing that Ω is open, we find that the set Zj ∩ Ω cannot be empty either
and this contradicts the definition of Zj .

Now, to prove the claim of Step 1, assume by contradiction that, for some j, there is a
point x ∈ ∂Zj that does not belong to ∂Ω. By the observation above we then have x /∈ Ω

and consequently there is a ball Bx around x that does not intersect Ω. Now, the set Bx ∪ Zj
is connected thanks to (�), avoids Ω and includes Zj properly. However, this contradicts the

property of Zj to be a connected component of B \ Ω.

Step 2: If ∂Zj ⊆ D, then Ω• ∩ Zj = ∅. We first note that it suffices to show Ω• ∩ Zj = ∅. In

fact, due to Ω• = ∂Ω• ∪ Ω• we then get Ω• ∩ Zj = ∅ since Zj is open.
So, let us assume there is some x ∈ Ω• ∩ Zj . Then Ω• ∪ Zj is connected due to (�). By

assumption we have ∂Zj ⊆ D and by construction the sets Zj and Ω• are both disjoint to D. So
we can infer that ∂Zj ∩ (Ω• ∪ Zj) = ∅ and this allows us to write

Ω• ∪ Zj =
(
Ω• ∪ Zj

)
∩
(
Zj ∪ (B \ Zj)

)
= Zj ∪

(
Ω• ∩ (B \ Zj)

)
.

This is a decomposition of Ω• ∪ Zj into two open and mutually disjoint sets, so if we can show
that both are nonempty then this yields a contradiction to the connectedness of Ω• ∪Zj and the
claim of Step 2 follows. Indeed, we even find

Ω• ∩ (B \ Zj) = Ω• \ Zj = Ω• \ (∂Zj ∪ Zj) ⊃ Ω \ (D ∪ Zj) = Ω 6= ∅,

since both D and Zj do not intersect Ω.

Step 3: If ∂Zj ∩ (∂Ω \D) 6= ∅, then Zj ⊆ Ω•. Let x ∈ ∂Zj ∩ (∂Ω \D), and let Bx be a ball
around x that does not intersect D. The point x is a boundary point of Zj , so Bx ∩ Zj 6= ∅
and we obtain that Bx ∪ Zj is connected by (�). By the same argument, also the set Bx ∪ Ω
is connected and putting these two together a third reiteration of the argument yields that
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(Bx∪Ω)∪ (Bx∪Zj) = Ω∪Bx∪Zj is again connected. This last set is open and does not intersect
D, so it belongs to C and we end up with Ω ∪Bx ∪ Zj ⊆ Ω•. In particular we have Zj ⊆ Ω•. �

Remark 5.3. Conversely, it can be shown that the asserted properties characterize Ω• uniquely
in the sense that if an open, connected subset Ξ ⊃ Ω of B additionally satisfies ∂Ξ = D, then
necessarily Ξ = Ω•. In fact, since Ξ ∩ D = ∅ one has Ξ ⊂ Ω•, due to the definition of Ω•. In
order to obtain the inverse inclusion we write

(5.1) Ω• =
(
Ω• ∩ Ξ

)
∪
(
Ω• ∩ ∂Ξ

)
∪
(
Ω• ∩ (B \ Ξ)

)
= Ξ ∪

(
Ω• ∩ (B \ Ξ)

)
,

since Ω• ∩ ∂Ξ = Ω• ∩D = ∅. Both Ξ = Ξ ∩ Ω• and Ω• ∩ (B \ Ξ) are open in Ω•, and Ξ ⊃ Ω is
non-empty. Since Ω• is connected and Ξ = Ξ ∩ Ω• is clearly disjoint to Ω• ∩ (B \ Ξ), this latter
set must be empty. Thus, (5.1) gives Ξ = Ω•.

Corollary 5.4. Consider Ω• as a subset of Rd. Then Ω• is open and connected. Moreover,
either ∂Ω• = D or ∂Ω• = D ∪ ∂B.

Proof. It is clear that Ω• remains open. Assume that Ω• is not connected. Then there are
disjoint open sets U, V ⊆ Rd such that Ω• = U ∪ V . However, the property Ω• ⊆ B then gives
Ω• = Ω• ∩ B = (U ∩ B) ∪ (V ∩ B), where U ∩ B and V ∩ B are open in B and disjoint to each
other. This contradicts Lemma 5.2.

For the last assertion consider an annulus A ⊆ B that is adjacent to ∂B and does not intersect
Ω. Let Zj be the connected component of B \ Ω that contains A. We distinguish again the two
cases of Step 2 and Step 3 in the proof of Lemma 5.2: If ∂Zj ⊆ D, we have shown in Step 2 that
Zj is disjoint to Ω• and this implies ∂Ω• = ∂Ω• ∩B = D. In the second case, we infer from Step
3 in the above proof that A ⊆ Zj ⊆ Ω• and this implies ∂Ω• = D ∪ ∂B. �

Let us now conclude the proof of Theorem 3.1. We first observe that in both cases appearing
in Corollary 5.4 the set ∂Ω• is m-thick for some m ∈ ]d− p, d− 1]. In fact, D is l-thick for some
l ∈ ]d− p, d] by assumption and using its local representation as the graph of a Lipschitz function,
it can easily be checked that ∂B is a (d − 1)-set, hence (d − 1)-thick owing to Lemma 4.5. The
claim follows from Lemma 4.6. Altogether, Proposition 5.1 applies to our special choice of Ω•.

Now, let E be the extension operator provided by Assumption (iii) of Theorem 3.1. In view

of Corollary 5.4 we can define an extension operator E• : W 1,p
D (Ω) → W 1,p

0 (Ω•) as follows: If
∂Ω• = D, then we put E•v := Ev|Ω• and if ∂Ω• = D ∪ ∂B, then we choose η ∈ C∞0 (B) with the
property η ≡ 1 on Ω and put E•v := (ηEv)|Ω• . This allows us to apply Proposition 5.1 to the

functions E•u ∈W 1,p
0 (Ω•), where u is taken from W 1,p

D (Ω). With a final help of Assumption (ii)
in Theorem 3.1 this gives∫

Ω

∣∣∣∣ udD
∣∣∣∣p dx ≤

∫
Ω

∣∣∣∣ u

d∂Ω•

∣∣∣∣p dx ≤
∫

Ω•

∣∣∣∣ E•ud∂Ω•

∣∣∣∣p dx ≤ c
∫

Ω•

|∇(E•u)|p dx

≤ c‖E•u‖pW 1,p
0 (Ω•)

≤ c‖u‖p
W 1,p
D (Ω)

≤ c
∫

Ω

|∇u|p dx

for all u ∈W 1,p
D (Ω) and the proof is complete.

Remark 5.5. (i) At the first glance one might think that Ω• could always be taken as
B \D. The point is that this set need not be connected, as the following example shows.
Take Ω = {x : 1 < |x| < 2} and D = {x : |x| = 1} ∪ {x : |x| = 2, x1 ≥ 0}. Obviously,
if a ball B contains Ω, then B \ D cannot be connected. In the spirit of Lemma 5.2,
the set Ω• has here to be taken as B \ (D ∪ {x : |x| < 1}). Thus, the somewhat subtle,
topological considerations above cannot be avoided in general.

(ii) One might suggest that the procedure of this work is not limited to the proof of Hardy’s
inequality in the non-Dirichlet case. Possibly the combination of an application of the
extension operator E/E• and the construction of Ω• may serve for the reduction of other
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problems on function spaces related to mixed boundary conditions to the pure Dirichlet
case.

Finally, instead of its l-thickness we can also require that D is an l-set – a condition that
promises to be more common to applications. One access to such a result is to prove that the
l-property of ∂Ω implies the p-fatness of Rd \ Ω – a result which was first obtained by Maz’ya
[40]. Knowing this, Hardy’s inequality may then be deduced from the results in [31] or [48]. Our
approach is quite different and simply rests on Proposition 5.1 and Lemma 4.5. So we can record
the following.

Corollary 5.6. The assertion of Theorem 3.1 remains valid if instead of its l-thickness we require
that D is an l-set.

6. The extension operator

In this section we discuss the second condition in our main result Theorem 3.1, that is the
extendability for W 1,p

D (Ω) within the same class of Sobolev functions. We develop three abstract
principles concerning Sobolev extension.

• Dirichlet cracks can be removed: We open the possibility of passing from Ω to another
domain Ω? with a reduced Dirichlet boundary part, while Γ = ∂Ω \ D remains part
of ∂Ω?. In most cases this improves the boundary geometry in the sense of Sobolev
extendability, see the example in the following Figure.

Σ

Figure 1. The set Σ does not belong to Ω, and carries – together with the
striped parts – the Dirichlet condition.

• Sobolev extendability is a local property: We show that only the local geometry of
the domain around the boundary part Γ plays a role for the existence of an extension
operator.

• Preservation of traces: We prove under very general geometric assumptions that the ex-
tended functions do have the adequate trace behavior on D for every extension operator.

We believe that these results are of independent interest and therefore decided to directly present

them for higher-order Sobolev spaces W k,p
E . In the end we review some feasible commonly used

geometric conditions which together with our abstract principles really imply the corresponding
extendability.

6.1. Dirichlet cracks can be removed. As in Figure 1 there may be boundary parts which
carry a Dirichlet condition and belong to the inner of the closure of the domain under consider-
ation. Then one can extend the functions on Λ by 0 to such a boundary part, thereby enlarging
the domain and simplifying the boundary geometry. In the following we make this precise.

Lemma 6.1. Let Λ ⊂ Rd be a bounded domain and let E ⊂ ∂Λ be closed. Define ΛF as the
interior of the set Λ ∪ E. Then the following hold true.
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(i) The set ΛF is again a domain, Ξ := ∂Λ \ E is a (relatively) open subset of ∂ΛF and
∂ΛF = Ξ ∪ (E ∩ ∂ΛF).

(ii) Let k ∈ N and p ∈ [1,∞[. Extending functions from W k,p
E (Λ) by 0 to ΛF, one obtains

an isometric extension operator Ext(Λ,ΛF) from W k,p
E (Λ) onto W k,p

E (ΛF).

Proof. (i) Due to the connectedness of Λ and the set inclusion Λ ⊂ ΛF ⊂ Λ, the set ΛF

is also connected, and, hence a domain. Obviously, one has ΛF = Λ. This, together
with the inclusion Λ ⊂ ΛF leads to ∂ΛF ⊂ ∂Λ. Since Ξ ∩ ΛF = ∅, one gets Ξ ⊂ ∂ΛF.
Furthermore, Ξ was relatively open in ∂Λ, so it is relatively open also in ∂ΛF.

The last asserted equality follows from ∂ΛF = (Ξ∩ ∂ΛF)∪ (E ∩ ∂ΛF) and Ξ ⊂ ∂ΛF.
(ii) Consider any ψ ∈ C∞E (Rd) and its restriction ψ|Λ to Λ. Since the support of ψ has a pos-

itive distance to E, one may extend ψ|Λ by 0 to the whole of ΛF without destroying the
C∞-property. Thus, this extension operator provides a linear isometry from C∞E (Λ) onto
C∞E (ΛF) (if both are equipped with the W k,p-norm). This extends to a linear extension

operator Ext(Λ,ΛF) from W k,p
E (Λ) onto W k,p

E (ΛF), see the two following commutative
diagrams:

C∞E (Rd) C∞E (Λ)

C∞E (ΛF)

restrictRd→ΛF

restrictRd→Λ

extendΛ→ΛF

W k,p
E (Rd) W k,p

E (Λ)

W k,p
E (ΛF)

restrictRd→Λ

restrictRd→ΛF extendΛ→ΛF

�

Remark 6.2. (i) Note that no assumptions on E beside closedness are necessary.
(ii) Having extended the functions from Λ to ΛF, the ’Dirichlet crack’ Σ in Figure 1 has

vanished, and one ends up with the whole cube. Here the problem of extending Sobolev
functions is almost trivial. We suppose that this is the generic case – at least for problems
arising in applications.

The above considerations suggest the following procedure: extend the functions from W k,p
E (Λ)

first to ΛF, and afterwards to the whole of Rd. The next lemma shows that this approach is
universal.

Lemma 6.3. Let k ∈ N and p ∈ [1,∞[. Let Λ ⊂ Rd be a bounded domain, let E ⊂ ∂Λ be closed
and as before define ΛF as the interior of the set Λ ∪ E. Every linear, continuous extension

operator F : W k,p
E (Λ) → W k,p

E (Rd) factorizes as F = FFExt(Λ,ΛF) through a linear, continuous

extension operator FF : W k,p
E (ΛF)→W k,p

E (Rd).

Proof. Let S be the restriction operator from W k,p
E (ΛF) to W k,p

E (Λ). Then we define, for every

f ∈ W k,p
E (ΛF), FFf := FSf . We obtain FFExt(Λ,ΛF) = FSExt(Λ,ΛF) = F. This shows that

the factorization holds algebraically. However, one also has

‖FFExt(Λ,ΛF)f‖Wk,p
E (Rd) = ‖Ff‖Wk,p

E (Rd) ≤ ‖F‖L(Wk,p
E (Λ);Wk,p

E (Rd))‖f‖Wk,p
E (Λ)

= ‖F‖L(Wk,p
E (Λ);Wk,p

E (Rd))‖Ext(Λ,ΛF)f‖Wk,p
E (ΛF). �

Having extended the functions already to ΛF one may proceed as follows: Since E is closed, so

is EF := E∩∂ΛF. So, one can now consider the space W 1,p
EF

(ΛF) and has the task to establish an

extension operator for this space – while afterwards one has to take into account that the original
functions were 0 also on the set E ∩ ΛF and have not been altered by the extension operator
thereon. However, note carefully that EF := E ∩ ∂ΛF may have a worse geometry than E. For
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example, take Figure 2 and suppose that this time only Σ forms the whole Dirichlet part of the
boundary. Then E is a (d− 1)-set whereas even Hd−1(EF) = 0 holds.

To sum up, if one aims at an extension operator E : W k,p
E (Λ) → W k,p

E (Rd), one is free to
modify the domain Λ to ΛF. In most cases this improves the local geometry concerning Sobolev
extensions and we do not have examples where the situation gets worse. Though we do not claim
that this is, in a whatever precise sense, the generic case.

6.2. Sobolev extendability is a local property. Below, we make precise in which sense
Sobolev extendability is a local property. We set up the following notation.

Definition 6.4. A domain Λ ⊂ Rd is a W k,p-extension domain for given k ∈ N and p ∈ [1,∞[ if
there exists a continuous extension operator Ek,p : W k,p(Λ)→W k,p(Rd). If Λ is a W k,p-extension
domain for all k ∈ N and all p ∈ [1,∞[ in virtue of the same extension operator, then Λ is a
universal Sobolev extension domain.

Proposition 6.5. Let k ∈ N and p ∈ [1,∞[. Let Λ be a bounded domain and let E be a closed

part of its boundary. Assume that for every x ∈ ∂Λ \ E there is an open neighborhood Ux of x
such that Λ ∩ Ux is a W k,p-extension domain. Then there is a continuous extension operator

Ek,p : W k,p
E (Λ)→W k,p(Rd).

Moreover, if each local extension operator Ex maps the space W k,p
Ex

(Λ∩Ux) into W k,p
Ex

(Rd), where

Ex := E ∩ Ux ⊂ ∂(Λ ∩ Ux), then also

Ek,p : W k,p
E (Λ)→W k,p

E (Rd).

Proof. For the construction of the extension operator let for every x ∈ ∂Λ \ E denote Ux the

open neighborhood of x from the assumption. Let Ux1
, . . . , Uxn be a finite subcovering of ∂Λ \ E.

Since the compact set ∂Λ \ E is contained in the open set
⋃
j Uxj , there is an ε > 0, such that the

sets Ux1
, . . . , Uxn , together with the open set U := {y ∈ Rd : dist(y, ∂Λ \ E) > ε}, form an open

covering of Λ. Hence, on Λ there is a C∞0 -partition of unity η, η1, . . . , ηn, with the properties
supp(η) ⊂ U , supp(ηj) ⊂ Uxj .

Assume ψ ∈ C∞E (Λ). Then ηψ ∈ C∞0 (Λ). If one extends this function by 0 outside of Λ, then

one obtains a function ϕ ∈ C∞∂Λ(Rd) ⊂ C∞E (Rd) ⊂ W k,p
E (Rd) with the property ‖ϕ‖Wk,p(Rd) =

‖ηψ‖Wk,p(Λ).

Now, for every fixed j ∈ {1, . . . , n}, consider the function ψj := ηjψ ∈ W k,p(Λ ∩ Uxj ). Since

Λ ∩ Uxj is a W k,p-extension domain by assumption, there is an extension of ψj to a W k,p(Rd)-
function ϕj together with an estimate ‖ϕj‖Wk,p(Rd) ≤ c‖ψj‖Wk,p(Λ∩Uxj

), where c is independent

from ψ. Clearly, one has a priori no control on the behavior of ϕj on the set Λ\Uxj . In particular
ϕj may there be nonzero and, hence, cannot be expected to coincide with ηjψ on the whole of Λ.
In order to correct this, let ζj be a C∞0 (Rd)-function which is identically 1 on supp(ηj) and has
its support in Uxj . Then ηjψ equals ζjϕj on all of Λ. Consequently, ζjϕj really is an extension

of ηjψ to the whole of Rd which, additionally, satisfies the estimate

‖ζjϕj‖Wk,p(Rd) ≤ c‖ϕj‖Wk,p(Rd) ≤ c‖ηjψ‖Wk,p(Λ∩Uxj
) ≤ c‖ψ‖Wk,p(Λ),

where c is independent from ψ. Thus, defining Ek,p(ψ) = ϕ+
∑
j ζjϕj one gets a linear, continuous

extension operator from C∞E (Λ) into W k,p(Rd). By density, Ek,p uniquely extends to a linear,
continuous operator

Ek,p : W k,p
E (Λ)→W k,p(Rd).

Finally, assume that the local extension operators map W k,p
Exj

(Λ ∩ Uxj ) into W k,p
Exj

(Rd). Using

the notation above, this means that ϕj can be approximated in W k,p(Rd) by a sequence from
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C∞Exj
(Rd). Since ζj is supported in Uxj , multiplication by ζj ∈ C∞0 (Rd) maps C∞Exj

(Rd) into

C∞E (Rd) boundedly with respect to the W k,p(Rd)-topology. Hence, ζjϕj ∈ W k,p
E (Rd). Since in

any case ϕ ∈W k,p
E (Rd), the conclusion follows. �

Remark 6.6. By construction one gets uniformity for E with respect to p and k if one invests
the respective uniformity concerning the extension property for the local domains Λ ∩ Ux. In

particular, one obtains an extension operator that is bounded from W k,p
E (Λ) into W k,p(Rd) for

each k ∈ N and each p ∈ [1,∞[ if the local domains are universal Sobolev extension domains.

6.3. Preservation of traces. Proposition 6.5 allows to construct Sobolev extension operators

from W k,p
D (Ω) into W k,p(Rd) and gives a sufficient condition for preservation of the Dirichlet

condition. In this section we prove that in fact every such extension operator has this feature.
Recall that this is the crux of the matter in Assumption (iii) of Theorem 3.1. The key lemma is
the following.

Lemma 6.7. Let k ∈ N and p ∈ ]1,∞[. Let Λ ⊂ Rd be a domain, let E ⊂ ∂Λ be closed and

let Ek,p : W k,p
E (Λ)→W k,p(Rd) be a bounded extension operator. Any of the following conditions

guarantees that Ek,p in fact maps into W k,p
E (Rd).

(i) For (k, p)-quasievery y ∈ E balls around y in Λ have asymptotically nonvanishing relative
volume, i.e.

lim inf
r→0

|B(y, r) ∩ Λ)|
rd

> 0.(6.1)

(ii) The set E is an l-set for some l ∈ ]d− p, d] and (6.1) holds for Hl-almost every y ∈ E.
(iii) There exists q > d such that Ek,p maps C∞E (Λ) into W k,q(Rd).

Proof. As C∞E (Ω) is dense in W k,p
E (Λ) and since Ek,p is bounded, it suffices to prove that given

v ∈ C∞E the function u := Ek,pv belongs to W k,p
E (Rd). The proof of (i) is inspired by [50, pp.

190-192]. Easy modifications of the argument will yield (ii) and (iii).

(i) Fix an arbitrary multiindex β with |β| ≤ k − 1. Let Dβu be the representative of the
distributional derivative Dβu of u defined (k − |β|, p)-q.e. on Rd via

Dβu(y) := lim
r→0

1

|B(y, r)|

∫
B(y,r)

Dβu(x) dx.

Recall from (4.3) that then

lim
r→0

1

|B(y, r)|

∫
B(y,r)

|Dβu(x)−Dβu(y)| dx

≤ lim
r→0

(
1

|B(y, r)|

∫
B(y,r)

|Dβu(x)−Dβu(y)|p dx

)1/p

= 0.

(6.2)

holds for (k − |β|, p)-q.e. y ∈ Rd. Since (6.1) holds for (k, p)-quasievery y ∈ E, it a
fortiori holds for (k − |β|, p)-quasievery such y. Let now N ⊂ Rd be the exceptional set
such that on Rd \N the function Dβu is defined and satisfies (6.2) and such that (6.1)
holds for every y ∈ E \N . Owing to Theorem 4.11 the claim follows once we have shown
Dβu(y) = 0 for all y ∈ E \N .

For the rest of the proof we fix y ∈ E \N . For r > 0 we abbreviate B(r) := B(y, r)
and define

Wj := {x ∈ Rd \N : |Dβu(x)−Dβu(y)| > 1/j}.(6.3)
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Thanks to (6.2) for each j ∈ N we can choose some rj > 0 such that |B(r) ∩Wj | <
2−j |B(r)| holds for all r ∈ ]0, rj ]. Clearly, we can arrange that the sequence {rj}j is
decreasing. Now,

W :=
⋃
j∈N

{(
B(rj) \B(rj+1)

)
∩Wj

}
(6.4)

has vanishing Lebesgue density at y, i.e. r−d|B(r)∩W | vanishes as r tends to 0: Indeed,
if r ∈ ]rl+1, rl], then

|B(r) ∩W | ≤
∣∣∣(B(r) ∩Wl

)
∪
⋃

j≥l+1

(
B(rj) ∩Wj

)∣∣∣
≤ 2−l|B(r)|+

∑
j≥l+1

2−j |B(rj)| ≤ 2−l+1|B(r)|.

Now, (6.1) allows to conclude

lim inf
r→0

|B(r) ∩ Λ ∩ (Rd \W ))|
rd

> 0.

Since u is an extension of v ∈ C∞E (Λ) and y is an element of E it holds Dβu = 0
a.e. on B(r) ∩ Λ with respect to the d-dimensional Lebesgue measure if r > 0 is small
enough. The previous inequality gives |B(r) ∩ Λ ∩ (Rd \ W ))| > 0 if r > 0 is small
enough. In particular, there exists a sequence {xj}j in Rd \W approximating y such
that Dβu(xj) = 0 for all j ∈ N. Now, the upshot is that the restriction of Dβu to
Rd \W is continuous at y since if x ∈ Rd \W satisfies |x− y| ≤ rj then by construction
|Dβu(x)−Dβu(y)| ≤ 1/j. Hence, Dβu(y) = 0 and the proof is complete.

(ii) If E is an l-set for some l ∈ ]d− p, d], then we can appeal to Theorem 4.12 rather than
Theorem 4.11 and the same argument as in (i) applies.

(iii) By assumption u ∈W k,q
E (Rd), where q > d. By Sobolev embeddings each distributional

derivative Dβu, |β| ≤ k−1, has a continuous representative Dαu. As each y ∈ E ⊂ ∂Λ is
an accumulation point of Λ\E and since Dαu = Dαv holds almost everywhere on Λ, the

representative Dαu must vanish everywhere on E and Theorem 4.11 yields u ∈W k,p
E (Rd)

as required. �

Remark 6.8. If Λ is a d-set and E a (d− 1)-set, then Lemma 6.7 is proved in [22, Sec. VIII.1].

We can now state and prove the remarkable result that every Sobolev extension operator that
is constructed by localization techniques as in Proposition 6.5 preserves the Dirichlet condition.

Theorem 6.9. Let k ∈ N and p ∈ [1,∞[. Let Λ be a bounded domain and let E be a closed part

of its boundary. Assume that for every x ∈ ∂Λ \ E there is an open neighborhood Ux of x such
that Λ ∩ Ux is a W k,p-extension domain. Then there exists a continuous extension operator

Ek,p : W k,p
E (Λ)→W k,p

E (Rd).

For the proof we recall the following result of Hai lasz, Koskela and Tuominen.

Proposition 6.10 ([18, Thm. 2]). If a domain Λ ⊂ Rd is a W k,p-extension domain for some
k ∈ N and p ∈ [1,∞[, then it is a d-set.

Proof of Theorem 6.9. According to Proposition 6.5 it suffices to check that each local extension

operator Ex maps W k,p
Ex

(Λ ∩ Ux) into W k,p
Ex

(Rd), where Ex := E ∩ Ux ⊂ ∂(Λ ∩ Ux). Owing to

Proposition 6.10 the W k,p-extension domain Λ ∩ Ux is a d-set and as such satisfies (6.1) around
every of its boundary points. So, Lemma 6.7.(i) yields the claim. �
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Remark 6.11. The extension operator in Theorem 6.9 is the same as in Proposition 6.5. Hence,
the former result asserts that every Sobolev extension operator built by the common gluing-
together of local extension operators automatically preserves the Dirichlet condition on E under
the mere assumption that this set is closed. Moreover, all uniformity properties as in Remark 6.6
remain valid.

6.4. Geometric conditions. In this subsection we finally review common geometric conditions
on the boundary part ∂Λ \ E such that the local sets Λ ∩ Ux really admit the Sobolev extension
property required in Proposition 6.5.

A first condition, completely sufficient for the treatment of most real world problems, is the
following Lipschitz condition.

Definition 6.12. A bounded domain Λ ⊂ Rd is called bounded Lipschitz domain if for each
x ∈ ∂Λ there is an open neighborhood Ux of x and a bi-Lipschitz mapping φx from Ux onto a
cube, such that φx(Λ ∩ Ux) is the (lower) half cube and ∂Λ ∩ Ux is mapped onto the top surface
of this half cube.

It can be proved by elementary means that bounded Lipschitz domains are W 1,p-extension
domains for every p ∈ [1,∞[, cf. e.g. [17] for the case p = 2. In fact, already the following
(ε, δ)-condition of Jones [21] assures the existence of a universal Sobolev extension operator.

Definition 6.13. Let Λ ⊂ Rd be a domain and ε, δ > 0. Assume that any two points x, y ∈ Λ,
with distance not larger than δ, can be connected within Λ by a rectifiable arc γ with length l(γ),
such that the following two conditions are satisfied for all points z from the curve γ:

l(γ) ≤ 1

ε
‖x− y‖, and

‖x− z‖‖y − z‖
‖x− y‖

≤ 1

ε
dist(z,Λc).

Then Λ is called (ε, δ)-domain.

Theorem 6.14 (Rogers). Each (ε, δ)-domain is a universal Sobolev extension domain.

Remark 6.15. (i) Theorem 6.14 is due to Rogers [44] and generalizes the celebrated result
of Jones [21]. Bounded (ε, δ)-domains are known to be uniform domains, see [47, Ch. 4.2]
and also [21, 36, 37, 35] for further information. In particular, every bounded Lipschitz
domain is an (ε, δ)-domain, see e.g. [12, Rem. 5.11] for a sketch of proof.

(ii) Although the uniformity property is not necessary for a domain to be a Sobolev extension
domain [49] it seems presently to be the broadest known class of domains for which this
extension property holds – at least if one aims at all p ∈ ]1,∞[. For example Koch’s
snowflake is an (ε, δ)-domain [21].

Plugging in Rogers extension operator into Theorem 6.9 lets us re-discover [4, Thm. 1.3] in
case of bounded domains and p strictly between 1 and ∞. We even obtain a universal extension

operator that simultaneously acts on all W k,p
E -spaces and at the same time our argument reveals

that the preservation of the trace is irrespective of the specific structure of Jones’ or Roger’s
extension operators.

We believe that this sheds some more light also on [4, Thm. 1.3] though – of course – our
argument cannot disclose the fundamental assertions on the support of the extended functions
obtained in [4] by a careful analysis of Jones’ extension operator. We summarize our observations
in the following theorem.

Theorem 6.16. Let Λ be a bounded domain and let E be a closed part of its boundary. Assume
that for every x ∈ ∂Λ \ E there is an open neighborhood Ux of x such that Λ ∩ Ux is a bounded
Lipschitz or, more generally, an (ε, δ)-domain for some values ε, δ > 0. Then there exists a

universal operator E that restricts to a bounded extension operator W k,p
E (Λ)→W k,p

E (Rd) for each
k ∈ N and each p ∈ ]1,∞[.
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7. Poincaré’s inequality

In this section we will discuss sufficient conditions for Poincaré’s inequality, thereby unwinding
Assumption (ii) of Theorem 3.1. Our aim is not greatest generality as e.g. in [39] for functions
defined on the whole of Rd, but to include the aspect that our functions are only defined on a do-
main. Secondly, our interest is to give very general, but in some sense geometric conditions, which
may be checked more or less ‘by appearance’ – at least for problems arising from applications.

The next proposition gives a condition that assures that a closed subspace of W 1,p may be
equivalently normed by the Lp-norm of the gradient of the corresponding functions only. We
believe that this might also be of independent interest, compare also [50, Ch. 4]. Throughout 1
denotes the function that is identically one.

Proposition 7.1. Let Λ ⊂ Rd be a bounded domain and suppose p ∈ ]1,∞[. Assume that X
is a closed subspace of W 1,p(Λ) that does not contain 1 and for which the restriction of the
canonical embedding W 1,p(Λ) ↪→ Lp(Λ) to X is compact. Then X may be equivalently normed by

v 7→
(∫

Λ
|∇v|pdx

)1/p
.

Proof. First recall that both X and Lp(Λ) are reflexive. In order to prove the proposition, assume
to the contrary that there exists a sequence {vk}k from X such that

1

k
‖vk‖Lp(Λ) ≥ ‖∇vk‖Lp(Λ).

After normalization we may assume ‖vk‖Lp(Λ) = 1 for every k ∈ N. Hence, {∇vk}k converges to
0 strongly in Lp(Λ). On the other hand, {vk}k is a bounded sequence in X and hence contains a
subsequence {vkl}l that converges weakly in X to an element v ∈ X. Since the gradient operator
∇ : X → Lp(Λ) is continuous, {∇vkl}l converges to ∇v weakly in Lp(Λ). As the same sequence
converges to 0 strongly in Lp(Λ), the function ∇v must be zero and hence v is constant. But by
assumption X does not contain constant functions except for v = 0. So, {vkl}l tends to 0 weakly
in X. Owing to the compactness of the embedding X ↪→ Lp(Λ), a subsequence of {vkl}l tends to
0 strongly in Lp(Λ). This contradicts the normalization condition ‖vkl‖Lp(Λ) = 1. �

Remark 7.2. It is clear that in case X = W 1,p
D (Ω) the embedding X ↪→ Lp(Ω) is compact, if

there exists a continuous extension operator E : W 1,p
D (Ω) → W 1,p(Rd). Hence, the compactness

of this embedding is no additional requirement in view of Theorem 3.1.

In the case that E is l-thick, the following lemma presents two conditions that are particularly
easy to check and entail 1 /∈W 1,p

E (Λ). Loosely speaking, some knowledge on the common frontier
of E and ∂Λ \ E is required: Either not every point of E should lie thereon or ∂Λ must not be
too wild around this frontier.

Lemma 7.3. Let p ∈ ]1,∞[, let Λ be a bounded domain and let E ⊂ ∂Λ be l-thick for some

l ∈ ]d− p, d]. Both of the following conditions assure 1 /∈W 1,p
E (Λ).

(i) The set E admits at least one relatively inner point x. Here, ‘relatively inner’ is with
respect to ∂Λ as ambient topological space.

(ii) For every x ∈ ∂Λ \ E there is an open neighborhood Ux of x such that Λ ∩ Ux is a
W 1,p-extension domain.

Proof. We treat both cases separately.

(i) Assume the assertion was false and 1 ∈ W 1,p
E (Λ). Let x be the inner point of E from

the hypotheses and let B := B(x, r) be a ball that does not intersect ∂Λ \ E. Put
1
2B := B(x, r2 ) and let η ∈ C∞0 (B) be such that η ≡ 1 on 1

2B. We distinguish whether

or not x is an interior point of Λ.
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First, assume it is not. For every ψ ∈ C∞E (Λ) the function ηψ belongs to W 1,p
0 (Λ∩B)

and as such admits a W 1,p-extension η̂ψ by zero to the whole of Rd. In particular,

η̂ψ(y) =

{
ψ(y), if y ∈ 1

2B ∩ Λ

0, if y ∈ 1
2B \ Λ

and consequently,

‖∇η̂ψ‖Lp( 1
2B) = ‖∇ψ‖Lp( 1

2B∩Λ).

Since by assumption 1 is in the W 1,p(Λ)-closure of C∞E (Λ) and since the mappings

W 1,p
E (Λ) 3 ψ 7→ ∇η̂ψ ∈ Lp( 1

2B) and W 1,p
E (Λ) 3 ψ 7→ ∇ψ ∈ Lp(Λ ∩ 1

2B) are continuous,
the previous equation extends to ψ = 1:

‖∇η̂1‖Lp( 1
2B) = ‖∇1‖Lp( 1

2B∩Λ) = 0.

On the other hand x is not an inner point of Λ so that in particular 1
2B \Λ is non-empty.

Since this set is open, | 12B \Λ| > 0. Recall that by construction η̂1 ∈W 1,p(B) vanishes

a.e. on 1
2B \ Λ. Hence, for some c > 0 the Poincaré inequality

‖η̂1‖Lp( 1
2B) ≤ c‖∇η̂1‖Lp( 1

2B),

holds, cf. [50, Thm. 4.4.2]. However, we already know that the right hand side is zero,
whereas the left hand side equals | 12B∩Λ|1/p, which is nonzero since 1

2B∩Λ is nonempty
and open – a contradiction.

Now, assume x is contained in the interior of Λ. Upon diminishing B we may assume
B ⊂ Λ. For every ψ ∈ C∞E (Rd) we have ηψ ∈ C∞E (Rd) with an estimate

‖ηψ‖W 1,p(Rd) ≤ c‖ψ‖W 1,p(B) = c
(∫

B

|ψ|p + |∇ψ|p dx
)1/p

for some constant c > 0 depending only on η and p. By our choice of B split

B = B ∩ Λ = (B ∩ Λ) ∪ (B ∩ ∂Λ) = (B ∩ Λ) ∪ (B ∩ E).

Since ψ vanishes in a neighborhood of E,

‖ηψ‖W 1,p(Rd) ≤ c
(∫

B∩Λ

|ψ|p + |∇ψ|p dx
)1/p

≤ c‖ψ‖W 1,p(Λ).(7.1)

Taking into account η ≡ 1 on 1
2B, the same reasoning gives∫

1
2B

|∇(ηψ)|p dx =

∫
1
2B

|∇ψ|p dx ≤
∫

Λ

|∇ψ|p dx.(7.2)

By assumption there is a sequence {ψj}j ⊂ C∞E (Λ) tending to 1 in the W 1,p(Λ)-topology.
Due to (7.1) and the choice of η, the sequence {ηψj}j ⊂ C∞E (Rd) then tends to some

u ∈ W 1,p
E (Rd) satisfying u = 1 a.e. on 1

2B ∩ Λ. Due to (7.2), ∇u = 0 a.e. on 1
2B,

meaning that u is constant on this set. Since 1
2B ∩ Λ as a non-empty open set has

positive Lebesgue measure, all this can only happen if u = 1 a.e. on 1
2B. Hence,

lim
r→0

1

|B(y, r)|

∫
B(y,r)

u dx = 1

for every y ∈ 1
3B ∩ E, which by Theorem 4.11 is only possible if C1,p(

1
3B ∩ E) = 0. By

Theorem 4.11 this in turn implies H∞l ( 1
3B ∩ E) = 0 in contradiction to the l-thickness

of E.
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(ii) Again assume the assertion was false. Then by (i) there exists some x ∈ E that is not
an inner point of E with respect to ∂Λ. Hence x is an accumulation point of ∂Λ \E and
by assumption there is a neighborhood U = Ux of x such that Λ∩U is a W 1,p extension
domain. We denote the corresponding extension operator by E. We shall localize the
assumption 1 ∈W 1,p

E (Λ) within U to arrive at a contradiction.

To this end, let r0 > 0 be such that B(x, r0) ⊂ U and let η ∈ C∞0 (U) be such that

η ≡ 1 on B(x, r0). Then also η = η1 ∈ W 1,p
E (Λ) and in particular η|Λ∩U belongs to

W 1,p
F (Λ∩U), where F := B(x, r0/2) ∩ E ⊂ ∂(Λ∩U). Recall from Proposition 6.10 that

the W 1,p-extension domain Λ ∩ U satisfies in particular

lim inf
r→0

|B(y, r) ∩ Λ ∩ U)|
rd

> 0.

around every y ∈ ∂(Λ ∩ U). Thus, Lemma 6.7(i) yields u := E(η|Λ∩U ) ∈W 1,p
F (Rd).

On the other hand, similar to the proof of Lemma 6.7 let u be the representative of
u that is defined by limits of integral means on the complement of some exceptional
set N with C1,p(N) = 0 and fix y ∈ F \ N . Take W as in (6.3) and (6.4). Repeating
the arguments in the proof of Lemma 6.7 reveals that the restriction of u to Rd \W is
continuous at y and that |B(y, r) ∩ Λ ∩ U ∩ (Rd \W )| > 0 if r > 0 is small enough. By
construction u = 1 a.e. on B(y, r)∩Λ∩U ∩ (Rd \W ) if r < r0. Hence, there is a sequence
{xj}j approximating y such that u(xj) = 1 for every j ∈ N. By continuity u(y) = 1
follows. This proves that u = 1 holds (1, p)-quasieverywhere on F .

By Theorem 4.11 this can only happen if C1,p(F ) = 0, which as in (i) contradicts the
l-thickness of E. �

Remark 7.4. (i) The proof of (i) shows that 1 /∈W 1,p
E (Λ) if E is merely closed and contains

a relatively inner point that is not an inner point of Λ.
(ii) Of course the Poincaré inequality holds in the case E = ∂Λ irrespective of any geometric

considerations as long as Λ is bounded. This can be rediscovered by the results of this
section. Indeed, E then only consists of relatively inner points and as ∅ 6= ∂Λ ⊂ ∂Λ = E
holds, it cannot be contained in the interior of Λ. Hence 1 /∈W 1,p

0 (Λ). The compactness

of the embedding W 1,p
0 (Λ) ↪→ Lp(Λ) is classical and Theorem 7.1 gives the claim.

Under the second assumption of Lemma 7.3 there exists a linear continuous Sobolev extension
operator E : W 1,p

E (Λ) → W 1,p
E (Rd), see Theorem 6.9. Then the compactness of the embedding

W 1,p
E (Λ) ↪→ Lp(Λ) is classical and owing to Theorem 7.1 we can record the following special

Poincaré inequality.

Proposition 7.5. Let p ∈ ]1,∞[ and let Λ be a bounded domain. Suppose that E ⊂ ∂Λ is

l-thick for some l ∈ ]d− p, d] and that for each x ∈ ∂Λ \ E there is an open neighborhood Ux of

x such that Λ ∩ Ux is a W 1,p-extension domain. Then W 1,p
E (Λ) may equivalently be normed by

v 7→
(∫

Λ
|∇v|pdx

)1/p
.

Now, also Theorem 3.2 follows. In fact, this result is just the synthesis of the above proposition
with Theorems 3.1 and 6.9.

8. Proof of Theorem 3.4

The strategy of proof is to write u as the sum of v ∈W 1,p(Ω) with v/dist∂Ω ∈ Lp(Ω) and w ∈W 1,p

with support within a neighborhood of ∂Ω \D. Then v can be handled by the following classical
result.

Proposition 8.1 ([10, Thm. V.3.4]). Let ∅ ( Λ ( Rd be open and let p ∈ ]1,∞[. Then if

u ∈W 1,p(Λ) and u/dist∂Λ ∈ Lp(Λ), it follows u ∈W 1,p
0 (Λ).
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For w we can – since local extension operators are available – rely on the techniques developed
in Section 6. A key observation is an intrinsic relation between the property u

distD
∈ Lp(Ω) and

Sobolev regularity of the function log(distD). In fact, a formal computation gives

∇(u log(distD)) = log(distD)∇u+
u

distD
∇ distD .

Details are carried out in the following five consecutive steps.

Step 1: Splitting u and handling the easy term. As in the proof of Proposition 6.5 for
every x ∈ ∂Ω \D, let Ux be the open neighborhood of x from the assumption, let Ux1 , . . . , Uxn

be a finite subcovering of ∂Ω \D and let ε > 0 be such that the sets Ux1
, . . . , Uxn , together with

U := {y ∈ Rd : dist(y, ∂Ω \D) > ε}, form an open covering of Ω. Finally, let η, η1, . . . , ηn be a
subordinated C∞0 -partition of unity. The described splitting is u = v + w, where v := ηu and
w :=

∑n
j=1 ηju = (1− η)u. Since

dist∂Ω(x) ≥ min{ε,distD(x)} ≥ min{εdiam(Ω)−1, 1} · distD(x)

holds for every x ∈ supp(η) ∩ Ω, the function v ∈W 1,p(Ω) satisfies∫
Ω

∣∣∣∣ v

dist∂Ω

∣∣∣∣p dx ≤ c
∫

Ω

∣∣∣∣ v

distD

∣∣∣∣p dx ≤ c
∫

Ω

∣∣∣∣ u

distD

∣∣∣∣p dx <∞

by assumption on u. Now, Proposition 8.1 yields v ∈W 1,p
0 (Ω) ⊂W 1,p

D (Ω).

Step 2: Extending w. By assumption the sets Ω∩Uxj , 1 ≤ j ≤ n, are W 1,p-extension domains.
Since w = (1−η)u, where (1−η) has compact support in the union of these domains, an extension
ŵ ∈W 1,p(Rd) of w ∈W 1,p(Ω) with compact support within

⋃n
j=1 Uxj can be constructed just as

in the proof of Proposition 6.5. Now, if we can show w ∈W 1,p
D (Ω), then by Step 1 also u = v+w

belongs to this space.

Step 3: Estimating the trace of ŵ. To prove ŵ ∈ W 1,p
D (Rd) we rely once more on the

techniques used in the proof of Lemma 6.7. So, let ŵ be the representative of ŵ defined on Rd \N
via

ŵ(y) := lim
r→0

1

|B(y, r)|

∫
B(y,r)

ŵ dx,

where the exceptional set N is of vanishing (1, p)-capacity. Put

UF :=

n⋃
j=1

Uxj , ΩF := Ω ∩ UF, and DF = D ∩ UF ⊆ ∂ΩF.

Since ŵ has support in UF it holds ŵ(y) = 0 for every y ∈ D \DF. For the rest of the step let
y ∈ DF \N .

By Proposition 6.10 each set Ω∩Uxj is a d-set and it can readily be checked that this property
inherits to their union ΩF. Hence, ΩF satisfies the asymptotically nonvanishing relative volume
condition (6.1) around y with a lower bound c > 0 on the limes inferior that is independent of
y and – just as in the proof of Lemma 6.7 – a set W ⊂ Rd can be constructed such that the
restriction of ŵ to Rd \W is continuous at y and such that |B(y, r) ∩ΩF ∩ (Rd \W )| ≥ crd/2 if
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r > 0 is small enough. By these properties of W :

|ŵ(y)| =

∣∣∣∣∣ limr→0

1

|B(y, r) ∩ ΩF ∩ (Rd \W )|

∫
B(y,r)∩ΩF∩(Rd\W )

ŵ dx

∣∣∣∣∣
≤ lim sup

r→0

2

crd

∫
B(y,r)∩ΩF

|ŵ| dx

= lim sup
r→0

2

crd

∫
B(y,r)∩ΩF

|w| dx.

In order to force these mean-value integral to vanish in the limit r → 0, introduce the function
log(distD)−1, which is bounded above in absolute value by | log r|−1 on B(y, r) if r < 1. It follows

|ŵ(y)| ≤ c lim sup
r→0

| log r|−1

(
1

rd

∫
B(y,r)∩ΩF

|w log(distD)| dx

)
.(8.1)

So, since | log r|−1 → 0 as r → 0 the function ŵ vanishes at every y ∈ DF \N for which the mean
value integrals on the right-hand side remain bounded as r tends to zero.

Step 4: Intermezzo on w log(distD). In this step we prove the following result.

Lemma 8.2. Let p ∈ ]1,∞[, let Λ ⊂ Rd be a bounded d-set, and let E ⊂ ∂Λ be closed and porous.
Suppose u ∈W 1,p(Λ) has an extension v ∈W 1,p(Rd) and satisfies u

distE
∈ Lp(Λ). If r ∈ ]1, p[ and

s ∈ ]0, 1[, then the function |u log(distE)| defined on Λ has an extension in the Bessel potential
space Hs,r(Rd) that is positive almost everywhere.

For the proof we need the following extension result of Jonsson and Wallin.

Proposition 8.3 ([22, Thm. V.1.1]). Let s ∈ ]0, 1[, p ∈ ]1,∞[ and let Λ ⊂ Rd be a d-set. Then
there exists a linear operator E that extends every measurable function f on Λ that satisfies

‖f‖Lp(Λ) +

(∫∫
x,y∈Λ
|x−y|<1

|f(x)− f(y)|p

|x− y|d+sp
dx dy

)1/p

<∞

to a function Ef in the Besov space Bp,ps (Rd) of all measurable functions g on Rd such that

‖g‖Lp(Rd) +

(∫∫
x,y∈Rd

|g(x)− g(y)|p

|x− y|d+sp
dx dy

)1/p

<∞.

Remark 8.4. The Besov spaces are nested with the Bessel potential spaces in the sense that
Bp,ps (Rd) ⊂ Hs−ε,p(Rd) for each s > 0 and every ε ∈ ]0, s[. Moreover, W 1,p(Rd) ⊂ Bp,ps (Rd).
Proofs of these results can be found e.g. in [45, Sec. 2.3.2/2.5.1].

Proof of Lemma 8.2. Using Remark 8.4 it suffices to construct an extension in Bp,ps with the
respective properties. Moreover, by the reverse triangle inequality it is enough to construct
any extension f ∈ Bp,ps (Rd) of u log distE – then |f | can be used as the required extension of
|u log distE |. These considerations and Proposition 8.3 show that the claim follows provided

‖u log(distD)‖Lr(Λ) +

(∫∫
x,y∈Λ
|x−y|<1

|u(x) log(distE(x))− u(y) log(distE(y))|r

|x− y|d+sr
dx dy

)1/r

(8.2)

is finite.
To bound the Lr norm on the left-hand side of (8.2) choose q ∈ ]1,∞[ such that 1

r = 1
p + 1

q

and apply Hölder’s inequality

‖u log(distE)‖Lr(Λ) ≤ ‖u‖Lp(Λ)‖ log(distD)‖Lq(Λ).
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For the second term on the right-hand we use that the Aikawa dimension of the porous set E is
strictly smaller than d, see Remark 4.4. This entails for some α < d and some x ∈ E the estimate∫

Λ

distE(x)α−d dx ≤
∫
B(x,2 diam Λ)

distE(x)α−d dx ≤ cα(2 diam Λ)α <∞.

Hence, some negative power of distE is integrable on Λ and by subordination of logarithmic
growth log(distE) ∈ Lq(Λ) follows. Altogether, u log(distE) ∈ Lr(Λ) taking care of the first term
in (8.2).

By symmetry the domain of integration for the second term on the left-hand side of (8.2) can
be restricted to distE(x) ≥ distE(y). By adding and subtracting the term u(y) log(distE(x)) it in
fact suffices to prove that(∫

Λ

∫
Λ

|u(x)− u(y)|r

|x− y|d+sr
| log(distE(x))|r dx dy

)1/r

(8.3)

and (∫
Λ

|u(y)|r
∫

x∈Λ
distE(x)≥distE(y)

| log(distE(x))− log(distE(y))|r

|x− y|d+sr
dx dy

)1/r

(8.4)

are finite. Fix s < t < 1, write (8.3) in the form(∫
Λ

∫
Λ

|u(x)− u(y)|r

|x− y|dr/p+tr
| log(distE(x))|r

|x− y|dr/q+sr−tr
dx dy

)1/r

and apply Hölder’s inequality with 1
r = 1

p + 1
q to bound it by

≤
(∫

Λ

∫
Λ

|u(x)− u(y)|p

|x− y|d+tp
dx dy

)1/p(∫
Λ

∫
Λ

| log(distE(x))|q

|x− y|d+(s−t)q dy dx

)1/q

≤ ‖ log(distE)‖Lq(Λ)

(∫
Λ

∫
Λ

|u(x)− u(y)|p

|x− y|d+tp
dx dy

)1/p(∫
|y|≤diam(Λ)

1

|y|d+(s−t)q dy

)1/q

Now, log(distE) ∈ Lq(Λ) has been proved above and the third integral is absolutely convergent
since d+ (s− t)q < d. Finally note that by assumption u has an extension v ∈ W 1,p(Rd). Since
W 1,p(Rd) ⊂ Bp,ps (Rd) the middle term above is finite as well, see Remark 8.4.

It remains to show that the most interesting term (8.4) is finite. Here, the additional assump-
tions on u, s and r enter the game. By the mean value theorem for the logarithm and since distE
is a contraction, the r-th power of this term is bounded above by∫

Λ

|u(y)|r
∫

x∈Λ
distE(x)≥distE(y)

|distE(x)− distE(y)|r

distE(y)r|x− y|d+sr
dx dy

≤
∫

Λ

∣∣∣∣ u(y)

distE(y)

∣∣∣∣r ∫
Λ

|x− y|r

|x− y|d+sr
dx dy

≤
∫

Λ

∣∣∣∣ u(y)

distE(y)

∣∣∣∣r dy

∫
|x|≤diam(Λ)

1

|x|d+r(s−1)
dx.

Now, the integral with respect to x is finite since r(s− 1) < 0. The integral with respect to y is
finite since by assumption u

distE
is p-integrable on the bounded domain Λ and thus r-integrable

for every r < p. �

On noting that by Definition 4.3 a subset of a porous set is again porous, Lemma 8.2 applies
to the bounded d-set ΩF and the porous set DF ⊂ D. Moreover, w = (1− η)u ∈ W 1,p(ΩF) has
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the extension ŵ ∈W 1,p(Rd) and satisfies∫
ΩF

∣∣∣∣ w(x)

distDF(x)

∣∣∣∣p dx ≤ ‖1− η‖∞
∫

Ω

∣∣∣∣ u(x)

distD(x)

∣∣∣∣p <∞.
Hence we can record:

Corollary 8.5. For every r ∈ ]1, p[ and every s ∈ ]0, 1[ the function |w log(distDF)| defined on

ΩF has an extension fs,r ∈ Hs,r(Rd) that is positive almost everywhere.

Step 5: Re-inspecting the right-hand side of (8.1). We return to (8.1). Given r ∈ ]1, p[
and s ∈ ]0, 1[ let fs,r ∈ Hs,r(Rd) be as in Corollary 8.5. By (4.3) we can infer

lim sup
r→0

1

rd

∫
B(y,r)∩ΩF

|w log(distD)| dx ≤ lim sup
r→0

1

rd

∫
B(y,r)

fs,r dx <∞

for (s, r)-quasievery y ∈ DF \ N . By the conclusion of Step 3 this implies ŵ(y) = 0 for (s, r)-
quasievery y ∈ DF \N . To proceed further, we distinguish two cases:

(i) It holds p ≤ d. Since the product sr < p ≤ d can get arbitrarily close to p, Lemma 4.8
yields for every r ∈ ]1, p[ that ŵ = 0 holds (1, r)-quasieverywhere on DF \N . Moreover,
since C1,p(N) = 0 by definition, ŵ = 0 holds even (1, r)-quasieverywhere on DF.

(ii) It holds p > d. Then ŵ is the continuous representative of ŵ ∈ W 1,p(Rd) and N is
empty, see the beginning of Step 3. Moreover, we can choose s and r such that d− l < sr
and conclude from the comparison theorem, Theorem 4.9, that ŵ vanishes H∞l -a.e. on
DF. Since D is l-thick and UF is open, for each y ∈ D ∩ UF the set B(y, r) ∩D ∩ UF

coincides with B(y, r) ∩D provided r > 0 is small enough and thus has strictly positive
H∞l -measure. So, the continuous function ŵ has to vanish everywhere on D∩UF as well
as on the closure of the latter set – which by definition is DF.

Summing up, ŵ = 0 has been shown to hold (1, r)-quasieverywhere on DF for every r ∈ ]1, p[.
From the beginning of Step 3 we also know that ŵ vanishes everywhere on D \ DF and as
ŵ ∈ W 1,p(Rd) has compact support, Hölder’s inequality yields ŵ ∈ W 1,r(Rd). Combining these
two observations with Theorem 4.11 we are eventually led to

ŵ ∈W 1,p(Rd) ∩
⋂

1<r<p

W 1,r
D (Rd).(8.5)

We continue by quoting the following result of Hedberg and Kilpeläinen.

Proposition 8.6 ([20, Cor. 3.5]). Let p ∈ ]1,∞[ and let Λ ⊂ Rd be a bounded domain whose
boundary is l-thick for some l ∈ ]d− p, d]. Then

W 1,p(Λ) ∩
⋂

1<r<p

W 1,r
0 (Λ) ⊂W 1,p

0 (Λ).

Remark 8.7. In [20] the requirement on Λ is that its complement is uniformly p-fat – a property
that by the ingenious characterization in [28, Thm. 1] holds for every bounded set with l-thick
boundary provided l ∈ ]d− p, d].

In order to apply this result to the case of mixed boundary conditions, we proceed similarly
to the proof of Theorem 3.1: With B ⊂ Rd an open ball that contains the compact support of ŵ
define again

C := {M ⊂ B \D : M open, connected and Ω ⊂M}
and

Ω• :=
⋃
M∈C

M.



22 MORITZ EGERT, ROBERT HALLER-DINTELMANN, AND JOACHIM REHBERG

Then ∂Ω• ∈ {D,D ∪ ∂B} by Corollary 5.4, subsequent to which it is also shown that ∂Ω• is
m-thick for some m ∈ ]d− p, d]. Finally, let η ∈ C∞0 (B) be identically one on the support of ŵ.

As ϕ 7→ (ηϕ)|Ω• induces a bounded operator W 1,p
D (Rd)→W 1,p

0 (Ω•), it follows from (8.5) that

ŵ|Ω• = (ηŵ)|Ω• ∈W 1,p(Ω•) ∩
⋂

1<r<p

W 1,r
0 (Ω•)

and thus ŵ|Ω• ∈W
1,p
0 (Ω•) thanks to Proposition 8.6. Since by construction Ω ⊂ Ω• and D ⊂ ∂Ω•,

we eventually conclude

w = ŵ|Ω ∈W 1,p
D (Ω)

and the proof is complete. �

9. A Generalization

If one asks: ‘What is the most restricting condition in Theorem 3.1?’, the answer doubtlessly is
the assumption that a global extension operator shall exist. Certainly, this excludes all geometries
that include cracks not belonging completely to the Dirichlet boundary part as in the subsequent
Figure.

Σ

Υ

Figure 2. The domain Ω is the cube minus the triangle Σ. The Dirichlet
boundary part D consists exactly of the six outer sides of the cube minus the
droplet Υ on the cover plate.

Since the distance function distD measures only the distance to the Dirichlet boundary part
D, points in ∂Ω that are far from D should not be of great relevance in view of the Hardy
inequality (3.1). In the following considerations we intend to make this precise. Let U, V ⊂ Rd
be two open, bounded sets with the properties

(9.1) D ⊂ U, V ∩D = ∅, Ω ⊂ U ∪ V.
The philosophy behind this is to take U as a small neighborhood of D which – desirably –
excludes the ‘nasty parts’ of ∂Ω \ D. More properties of U, V will be specified below. Let
ηU ∈ C∞0 (U), ηV ∈ C∞0 (V ) be two functions with ηU + ηV = 1 on Ω. Then one can estimate(∫

Ω

|u|p dist−pD dx
)1/p

≤
(∫

U∩Ω

|ηUu|p dist−pD dx
)1/p

+
(∫

V ∩Ω

|ηV u|p dist−pD dx
)1/p

.

Since distD is larger than some ε > 0 on supp(ηV ) ⊂ V , the second term can be estimated by
1
ε

(∫
Ω
|u|p dx

)1/p
. If one assumes, as above, Poincaré’s inequality, then this term may be estimated

as required. In order to provide an adequate estimate also for the first term, we introduce the
following assumption.

Assumption 9.1. The set U from above can be chosen in such a way that Λ := Ω ∩ U is again
a domain and if one puts Γ := (∂Ω \D) ∩ U and E := ∂Λ \ Γ, then there is a linear, continuous

extension operator F : W 1,p
E (Λ)→W 1,p

E (Rd).
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Clearly, this assumption is weaker than Condition (iii) in Theorem 3.1; in other words: Con-
dition (iii) in Theorem 3.1 requires Assumption 9.1 to hold for an open set U ⊃ Ω.

Let us discuss the sense of Assumption 9.1 in extenso. Philosophically spoken, it allows to focus
on the extension not of the functions u but the functions ηUu, which live on a set whose boundary
does (possibly) not include the ‘nasty parts’ of ∂Ω \D that are an obstruction against a global

extension operator. In detail: one first observes that, for η = ηU ∈ C∞0 (U) and v ∈W 1,p
D (Ω), the

function ηv|Λ even belongs to W 1,p
E (Λ), see [19, Thm. 5.8]. Secondly, we have by the definition

of E

∂U ∩ Ω = (∂U ∩ Ω) \ Γ ⊂ ∂Λ \ Γ = E.

This shows that the ‘new’ boundary part ∂U ∩ Ω of Λ belongs to E and is, therefore, uncritical
in view of extension. Thirdly, one has D = D ∩ U ⊆ ∂Ω ∩ U ⊂ ∂Λ, and it is clear that
the ‘new Dirichlet boundary part’ E includes the ‘old’ one D. Hence, the extension operator
F may be viewed also as a continuous one between W 1,p

E (Λ) and W 1,p
D (Rd). Thus, concerning

v := ηu = ηUu one is – mutatis mutandis – again in the situation of Theorem 3.1: ηu ∈
W 1,p
E (Λ) ⊂ W 1,p

D (Λ) admits an extension F(ηu) ∈ W 1,p
E (Rd) ⊆ W 1,p

D (Rd), which satisfies the
estimate ‖F(ηu)‖W 1,p

D (Rd) ≤ c‖ηu‖W 1,p
D (Λ), the constant c being independent from u. This leads,

as above, to a corresponding (continuous) extension operator F• : W 1,p
E (Λ)→W 1,p

0 (Λ•). Here, of
course, Λ• has again to be defined as the connected component of B \D that contains Λ. Thus

one may proceed again as in the proof of Theorem 3.1, and gets, for u ∈W 1,p
D (Ω),∫

Ω

( |ηu|
distD

)p
dx =

∫
Λ

( |ηu|
distD

)p
dx ≤

∫
Λ•

( |F•(ηu)|
dist∂Λ•

)p
dx ≤ c‖∇(F•(ηu))‖pLp(Λ•)

≤ c‖F•(ηu)‖pW 1,p(Λ•)
≤ c‖ηu‖pW 1,p(Λ) ≤ c

(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

)
,

since ηu belongs to W 1,p
E (Λ) ⊂ W 1,p

D (Λ). Exploiting a last time Poincaré’s inequality, whose
validity will be discussed in a moment, one gets the desired estimate.

When aiming at Poincaré’s inequality, it seems convenient to follow again the argument in the
proof of Proposition 7.1: as pointed out above, the property 1 /∈ W 1,p

D (Ω) has to do only with
the local behavior of Ω around the points of D, cf. Lemma 7.3. Hence, this will not be discussed
further here.

Concerning the compactness of the embedding W 1,p
D (Ω) ↪→ Lp(Ω), one does not need the

existence of a global extension operator E : W 1,p
D (Ω) → W 1,p(Rd). In fact, writing for every

v ∈W 1,p
D (Ω) again v = ηUv + ηV v and supposing Assumption 9.1, one gets the following:

If {vk}k is a bounded sequence inW 1,p
D (Ω), then the sequence {ηUvk|Λ}k is bounded inW 1,p

E (Λ).
Due to the extendability property, this sequence contains a subsequence {ηUvkl |Λ}l that converges
in Lp(Λ) to an element vU . Thus, {ηUvkl}l converges to the function on Ω that equals vU on
Λ and 0 on Ω \ Λ. The elements ηV vk in fact live on the set Π := Ω ∩ V and are zero on
Ω \ V . In particular they are zero in a neighborhood of D. Moreover, they form a bounded
subset of W 1,p(Π). Therefore it makes sense to require that Π is again a domain, and, secondly
that Π meets one of the well-known compactness criteria W 1,p(Π) ↪→ Lp(Π), cf. [39, Ch. 1.4.6].
Keep in mind that such requirements are much weaker than the global W 1,p-extendability, and
in particular include the example in Figure 2, as long as the triangle Σ has a positive distance to
the six outer sides of the cube. Resting on these criteria, one obtains again the convergence of a
subsequence {ηV vkl |Π}l that converges in Lp(Π) towards a function vV . The sequence {ηV vkl}l
then converges in Lp(Ω) to a function that equals vV on Π and zero on Ω \ V .

Altogether, we have extracted a subsequence of {vk}k that converges in Lp(Ω).

Remark 9.2. In fact one does not really need that Π is connected. By similar arguments as
above it suffices to demand that it splits up in at most finitely many components Π1, . . . ,Πn,
such that each of these admits the compactness of the embedding W 1,p(Πj) ↪→ Lp(Πj).
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We summarize these considerations in the following theorem.

Theorem 9.3. Let Ω ⊂ Rd be a bounded domain and D ⊂ ∂Ω be a closed part of the boundary.
Suppose that the following three conditions are satisfied:

(i) The set D is l-thick for some l ∈ ]d− p, d].

(ii) The space W 1,p
D (Ω) can be equivalently normed by ‖∇ · ‖Lp(Ω).

(iii) There are two open sets U, V ⊂ Rd that satisfy (9.1) and U satisfies Assumption 9.1.

Then there is a constant c > 0 such that Hardy’s inequality∫
Ω

∣∣∣ u

distD

∣∣∣p dx ≤ c
∫

Ω

|∇u|p dx

holds for all u ∈W 1,p
D (Ω).
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