
HAL Id: hal-03127350
https://hal.science/hal-03127350v2

Submitted on 6 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foldover-free maps in 50 lines of code
Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais,

Nicolas Ray, Dmitry Sokolov

To cite this version:
Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, et al..
Foldover-free maps in 50 lines of code. ACM Transactions on Graphics, 2021, 40 (4), Article No.102,
pp 1-16. �10.1145/3450626.3459847�. �hal-03127350v2�

https://hal.science/hal-03127350v2
https://hal.archives-ouvertes.fr

Foldover-free maps in 50 lines of code

VLADIMIR GARANZHA∗, IGOR KAPORIN∗, and LIUDMILA KUDRYAVTSEVA∗, Dorodnicyn Computing Cen-
ter FRC CSC RAS, Moscow, Russia, Moscow Institute of Physics and Technology, Moscow, Russia
FRANÇOIS PROTAIS†, NICOLAS RAY, and DMITRY SOKOLOV, Université de Lorraine, CNRS, Inria, LORIA,
F-54000 Nancy, France

Fig. 1. Our method of constructing injective maps opens a door for a large variety of applications. This figure shows an example of a thick prismatic mesh
layer (shown in green) built around a triangulated surface, a very challenging problem for highly curved objects. Thanks to our method, we are able to compute
such a layer free of folds and self-intersections.

Mapping a triangulated surface to 2D space (or a tetrahedral mesh to 3D

space) is an important problem in geometry processing. In computational

physics, untangling plays an important role in mesh generation: it takes

a mesh as an input, and moves the vertices to get rid of foldovers. In fact,

mesh untangling can be considered as a special case of mapping where the

geometry of the object is to be defined in the map space and the geometric

domain is not explicit, supposing that each element is regular. In this paper,

we propose a mapping method inspired by the untangling problem and

compare its performance to the state of the art. The main advantage of

our method is that the untangling aims at producing locally injective maps,

which is the major challenge of mapping. In practice, our method produces

locally injective maps in very difficult settings, both in 2D and 3D. We

demonstrate it on a large reference database as well as on more difficult

stress tests. For a better reproducibility, we publish the code in Python for a

basic evaluation, and in C++ for more advanced applications.

CCS Concepts: • Computing methodologies → Mesh models.

Additional KeyWords and Phrases: Parameterization, injective mapping,

mesh untangling

1 INTRODUCTION
Most geometric objects are represented by a triangulated surface

or a tetrahedral mesh. The mapping problem consists in generating

a 2D or 3D map of these objects. This is a fundamental problem of

computer graphics because it is much easier for many applications

to work in this map space than to directly manipulate the object

itself. To give few examples, texture mapping stores colors of a

surface as images in the map space, remeshing uses global maps

in 2D [Bommes et al. 2013] and 3D [Gregson et al. 2011; Nieser

et al. 2011]. In addition, mapping algorithms can be used to deform

∗
This work is supported by the Ministry of Science and Higher Education of the Russian

Federation, project No 075-15-2020-799

†
Corresponding author: francois.protais@inria.fr

Authors are listed in alphabetical order.

volumes [Li et al. 2020], or generate shells from surfaces [Jiang et al.

2020].

What is a good map? Most often maps are represented by the

position of the vertices in the map space, and interpolated linearly

on each element (triangle or tetrahedron). In a perfect world, the

map space would keep the geodesic distances of the object. Un-

fortunately, this is usually impossible due to Gaussian curvature,

and application-specific constraints such as constrained position of

vertices or overlaps in the map space. Therefore, the objective of the

mapping algorithms is to minimize the distortion between geomet-

ric and map spaces, opening the door for numerical optimization

approaches as detailed in the survey [Hormann et al. 2008].

What about the invertibility? Unfortunately, when high distortion

is required to satisfy the constraints, these algorithms may lose the

fundamental property of a maps: injectivity. A solution to preserve

it [Floater 1997] relies on Tutte’s theorem [Tutte 1963], however the

surface boundary must be mapped to a convex polygon. Despite

this strong limitation, it still remains the reference algorithm to gen-

erate injective maps. Lower distortion can be obtained by changing

weights of the barycentric coordinates [Eck et al. 1995] (as long

as they are not negative), and alternative solutions [Campen et al.

2016; Shen et al. 2019] have been explored to improve robustness to

numerical imprecision by modifying the mesh connectivity. Once an

invertible map is obtained, its distortion can be minimized, but the

prevention of global overlaps often requires a coarse representation

of the object to be tracktable [Su et al. 2020; Ye et al. 2020].

Local invertibility. In many applications, maps are used to access

a neighborhood of a point within a coherent local coordinate system.

To this end, global injectivity is not required, and we instead look

for local injectivity [Schüller et al. 2013; Smith and Schaefer 2015].

Their approach starts from an injective map [Floater 1997], and

maintains the local injectivity when minimizing the distortion and

Author version, 2021.

102:2 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

enforcing the constraints. This allows them to optimize at the same

time the parameterization and the texture packing [Jiang et al. 2017],

with a possibility to scale to larger meshes [Rabinovich et al. 2017].

Recover local injectivity. Local injectivity can also be recovered for
a map with few foldovers present. For example, in 2D [Lipman 2012]

and 3D [Aigerman and Lipman 2013], the map is projected on a class

of bounded distortion maps. Alternating between projection and

optimization steps [Fu and Liu 2016; Kovalsky et al. 2015; Naitsat

et al. 2020; Su et al. 2019] often allows to produce foldover-free maps

with low distortion, as compared to our results in §3.2. The numerical

methods are however unlikely to succeed for stiff problems.

Recovering local injectivity is also known as mesh untangling.

Originally related to Arbitrary Lagrangian-Eulerian moving mesh

approach, the mesh untangling problem considers a simplicial com-

plex with misoriented elements and attempts to flip them back by

optimizing the position of the vertices. There is an abundant litera-

ture on mesh untangling [Du et al. 2020; Escobar et al. 2003; Freitag

and Plassmann 2000; Knupp 2001; Toulorge et al. 2013], however

the common opinion is that untangling is a very hard problem and

algorithms are not robust enough. As a manifestation of frustration

over this problem [Danczyk and Suresh 2013] investigates a finite

element method working directly on tangled (sic!) meshes.

Elastic deformations. To recover local injectivity, we propose a

method stemming from the computational physics. It is very im-

portant to note that there is rich literature on mesh deformation in

the community working on grid generation for scientific computa-

tion. Numerical simulation of hydrodynamic instability of layered

structures requires sound mathematical foundations behind moving

deforming mesh algorithms. In the ’60s Winslow and Crowley, inde-

pendently one from another, introduced mesh generation methods

based on inverse harmonic maps [Crowley 1962; Winslow 1966].

Since then, a lot of effort was spent on mesh generation based on

elastic deformations [Jacquotte 1988], but mostly for regular grids. In

1988, at the time of domination of finite difference mapped grid gen-

eration methods, S. Ivanenko introduced the pioneering concept of

barrier variational grid generations methods guaranteeing construc-

tion of non-degenerate grids [Charakhch’yan and Ivanenko 1997;

Ivanenko 1988]. To generate deformations with bounded global dis-

tortion (bounded quasi-isometry constant), Garanzha proposed to

minimize an elastic energy for a hyperelastic material with stiffening

suppressing singular deformations [Garanzha 2000]. Invertibility

theorem for deformation of this material was established in the 3D

case as well [Garanzha et al. 2014].

A solid mathematical ground for these methods was laid by J.

Ball who introduced in 1976 his theory of finite elasticity based on

the concept of polyconvex distortion energies [Ball 1976]. He not

only proved Weierstrass-style existence theorem for this class of

variational problems, but also formulated a theorem on invertibility

of elastic deformations for quite general 3D domains [Ball 1981].

It is important to note that Ball invertibility theorem is proved for

Sobolev mappings and can be applied directly for finite element

spaces, i.e. to deformation of meshes, as was pointed out in [Rumpf

1996].

Our contributions. Inspired by these results on untangling and

elastic deformations, we propose a simple numerical recipe for fixed

connectivity mesh untangling. This method outperforms recent

state of the art on locally injective parameterization [Du et al. 2020]

in terms of robustness, quality and supported features.

The main idea of the untangling algorithm is to start from an

arbitrary mesh and get directly to the optimal mesh past the barrier

delimiting the admissible set. Mesh elements are penalized according

to negative value of signed volume. While the general concepts

used in our algorithm (deformation of hyperelastic material and

penalization of folds) are known since the 80s, a transition to a

working algorithm is not trivial. We are the first to actually bring

guarantees for the mesh untangling problem.

To sum up, our main contribution is the algorithm whose ingre-

dients are carefuly chosen to get well-founded and well-behaved

subproblems:

• This algorithm contains the very first penalization strategy

with theoretical guarantees of possibility of untangling in a

finite number of steps.

• In addition to that, we guarantee boundedness of the defor-

mation energy and the fact that positive definite part of the

Hessian matrix is spectrally equivalent to finite element stiff-

ness matrix for Laplace operator. This guarantees absence of

extremely stiff problems when crossing the barrier.

• Last, but not least, is the “in 50 lines of code”. The solution we

propose is simple, with virtually no tuning required from the

user, leading to easiness of adoption of our mapping approach

by a potentially wide range of applications. To ease the repro-

ducibility, we publish the code in Python (refer to Listing 1)

for a basic evaluation, and a C++ code in the supplemental

material [Sokolov 2021] for more advanced applications.

The rest of the paper is organized as follows: we start with pre-

senting our method in § 2, then we evaluate its performance (§ 3.1

and § 3.2) as well as its limitations (§ 3.3). Then we present theoreti-

cal guarantees for our resolution scheme: in § 4.2 we prove that our

approximation of Hessian matrix is positive definite, and finally in

§ 4.3 we prove that our choice of the regularization parameter se-

quence guarantees that a minimization algorithm
1
can find a mesh

free of inverted elements in a finite number of steps.

2 PENALTY METHOD FOR MESH UNTANGLING
In this section we present our method of computing a foldover-free

map ®𝑢 : Ω ⊂ R𝑑 → R𝑑 , i.e. we map the domain Ω to a parametric

domain. This presentation is unified both for 2D and 3D settings,

and by 𝑑 we denote the number of dimensions; in our notations we

use arrows for all vectors of dimension 𝑑 .

The section is organized as follows: in § 2.1 we give a primer

on the variational formulation of mapping problem in continuous

settings, then we state our problem in § 2.2 as a regularization of

this variational formulation, and finally we present our numerical

resolution scheme in § 2.3.

1
The minimization algorithm is subject to conditions of Th. (1); from our numerical

experiments we observe that our minimization algorithm almost always respects the

conditions.

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:3

2.1 Variational formulation for grid generation
Let us denote by ®𝑢 (®𝑥) a map to a parametric domain: for the flat 2D

case we can write as ®𝑢 (𝑥,𝑦) = (𝑢 (𝑥,𝑦), 𝑣 (𝑥,𝑦)), and for a 3D map

®𝑢 (𝑥,𝑦, 𝑧) = (𝑢 (𝑥,𝑦, 𝑧), 𝑣 (𝑥,𝑦, 𝑧),𝑤 (𝑥,𝑦, 𝑧)).
Consider the following variational problem:

argmin

®𝑢

∫
Ω

(𝑓 (𝐽) + 𝜆𝑔(𝐽)) 𝑑𝑥, (1)

where 𝐽 is the Jacobian matrix of the mapping ®𝑢 (®𝑥), and

𝑓 (𝐽) :=
{

tr 𝐽 ⊤ 𝐽

(det 𝐽)
2

𝑑

, det 𝐽 > 0

+∞, det 𝐽 ≤ 0

𝑔(𝐽) :=
{

det 𝐽 + 1

det 𝐽
, det 𝐽 > 0

+∞, det 𝐽 ≤ 0

Problem (1) may be subject to some constraints that we do not write

explicitly. To give an example, one may pin some points in the map.

In this formulation, functions 𝑓 (𝐽) and 𝑔(𝐽) have concurrent goals,
one preserves angles and the other preserves the area, and thus 𝜆

serves as a trade-off parameter.

As a side note, with 𝜆 = 0 and 𝑑 = 2, Prob. (1) presents a varia-

tional formulation of an inverse harmonic map problem. Namely, if

we write down the Euler-Lagrange equations for Prob. (1) and in-

terchange the dependent and independent variables
2
, we obtain the

Laplace equation Δ®𝑥 (®𝑢) = ®0 (not to be confused with omnipresent

Δ®𝑢 (®𝑥) = ®0!). For this case, Prob. (1) is often referred to as Winslow’s

functional, however Winslow himself has never formulated the

variational problem, working with inverse Laplace equations. To

the best of our knowledge, the first publication of the variational

problem is made by Brackbill and Saltzman [Brackbill and Saltzman

1982].

There is a rich history behind both terms 𝑓 and 𝑔 of the defor-

mation energy (1), and most publications were overlooked by the

computer graphics community. The idea of isochoric-volumetric

split, where deformation energy is represented as 𝑓𝑖

(
𝐽/(det 𝐽)1/𝑑

)
+

𝑓𝑣 (det 𝐽) goes back to the 60s [Flory 1961; Penn 1970]. Function 𝑓

was also introduced in the theory of 𝑑-dimensional quasi-conformal

mappings in the 60s, for example, Reshetnyak [Reshetnyak 1966]

established precise relations between 𝑓 and standard matrix con-

dition number. [Ivanenko 1988] was the first to use 𝑓 as it is for

2D meshing. It was brought to the graphics community by [Hor-

mann and Greiner 2000]. First 3D implementation of 𝑓 for mesh

generation can be attributed to [Knupp 2000a], however earlier 3D

implementations of similar split-based hyperelastic energies for de-

formations of solids date back to 1988 [De Borst et al. 1988]. It seems

that [Garanzha 2000] was the first to use 𝑔 for meshing.

2.2 Penalty method
Prob. (1) is known for decades, it provides a simple and efficient

tool to optimize the quality of the map. Note that the energy (1)

is a polyconvex function (refer to App. B–Rem. 3 for a proof) so

Euler-Lagrange equations for optimal deformation satisfy the ellip-

ticity conditions, and therefore it is very well suited for a numerical

2
Attention, this step assumes that the solution of Prob. (1) is a diffeomorphism.

D

χ(D, ε)

ε = 3ε = 4

ε = 2
ε = 1

Fig. 2. Regularization function for the denominator in Eq. (3). When 𝜀 tends
to zero, 𝜒 (𝜀, 𝐷) tends to 𝐷 for positive values of 𝐷 , and to 0+ for negative
values of 𝐷 .

optimization provided that we have an initial guess in the admissible

domain min

Ω
𝐽 (®𝑢) > 0.

The problem, however, is that while being theoretically sound,

this problem statement does not offer any practical way to get rid of

foldovers in a map, because for a map with foldovers the energy is

infinite and provides no indications on how to improve the situation,

hence we propose to alter a little the problem statement.

Numerical optimization is hard due to non-positive denomina-

tors in 𝑓 and 𝑔. For example, for quasiconformal maps in 2D the

dilatation coefficient allows [Weber et al. 2012] to avoid them. Here,

we need a more general strategy of folds penalization. The idea

goes back to [Ivanenko 1988]. In this paper we improve (§ 4.3) the

heuristic penalty technique proposed in [Garanzha and Kaporin

1999]. Namely, we use a regularization function 𝜒 for a positive

value of 𝜀 (Fig. 2):

𝜒 (𝐷, 𝜀) := 𝐷 +
√
𝜀2 + 𝐷2

2

, (2)

Then we define a regularized version 𝑓𝜀 , 𝑔𝜀 of functions 𝑓 and 𝑔:

𝑓𝜀 (𝐽) :=
tr 𝐽⊤ 𝐽

(𝜒 (det 𝐽 , 𝜀))
2

𝑑

, 𝑔𝜀 (𝐽) :=
det

2 𝐽 + 1
𝜒 (det 𝐽 , 𝜀) , (3)

so that Prob (1) is reformulated as

lim

𝜀→0
+
argmin

®𝑢

∫
Ω

(𝑓𝜀 (𝐽) + 𝜆𝑔𝜀 (𝐽)) 𝑑𝑥 (4)

Under certain assumptions
3
solutions of Prob. (4) are solutions

of Prob. (1), however, Prob. (4) does offer a way of getting rid of

foldovers if a foldover-free initialization is not available.

In practice, the map ®𝑢 is piece-wise affine with the Jacobian ma-

trix 𝐽 being piece-wise constant, and can be represented by the

coordinates of the vertices in the parametric domain {®𝑢𝑖 }#𝑉𝑖=1. Let us

denote the vector of all variables as 𝑈 :=

(
®𝑢⊤
1
. . . ®𝑢⊤

#𝑉

)⊤
, then our

optimization problem can be discretized as follows:

3
The fact that the solution of Prob. (4) is a diffeomorphism is sufficient (but not neces-

sary) for the equivalence.

Author version, 2021.

102:4 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

lim

𝜀→0
+
argmin

𝑈

𝐹 (𝑈 , 𝜀), (5)

where 𝐹 (𝑈 , 𝜀) :=
#𝑇∑
𝑡=1

(𝑓𝜀 (𝐽𝑡) + 𝜆𝑔𝜀 (𝐽𝑡)) vol(𝑇𝑡),

#𝑉 is the number of vertices, #𝑇 is the number of simplices, 𝐽𝑡 is the

Jacobian matrix for the simplex 𝑡 and vol(𝑇𝑡) is the volume of the

simplex 𝑇𝑡 in the original domain.

2.3 Resolution scheme
To solve Prob. (5), we use an iterative descent method. We start

from an initial guess𝑈 0
, and we build a sequence of approximations

𝑈 𝑘+1 := 𝑈 𝑘 + Δ𝑈 𝑘 . For each iteration we need to carefully choose

the regularization parameter 𝜀𝑘 . Starting from 𝜀0 := 1, we define

the sequence as follows:

𝜀𝑘+1 :=

{
2

√
𝜇𝑘 (𝜇𝑘 − 𝐷𝑘+1−) if 𝐷𝑘+1− < 𝜇𝑘

0 if 𝐷𝑘+1− ≥ 𝜇𝑘 ,
(6)

where 𝐷𝑘+1− := min

𝑡 ∈1...#𝑇
det 𝐽𝑘+1𝑡 is the minimum value of the Jaco-

bian determinant over all cells of the mesh at the iteration 𝑘 + 1,
𝜎𝑘 := max

(
1

10
, 1 − 𝐹 (𝑈 𝑘+1,𝜀𝑘)

𝐹 (𝑈 𝑘 ,𝜀𝑘)

)
is descent coefficient and 𝜇𝑘 :=

(1 − 𝜎𝑘)𝜒 (𝐷𝑘+1− , 𝜀𝑘). This formula is justified by Th. 1 (§ 4.3) on

finite untangling sequence.

The simplest way to find Δ𝑈 𝑘 is to call a quasi-Newtonian solver

such as L-BFGS [Liu and Nocedal 1989]. The only thing we need

to implement is the computation of the function 𝐹 (𝑈 𝑘 , 𝜀𝑘) and its

gradient ∇𝐹 (𝑈 𝑘 , 𝜀𝑘). It should also be possible to adapt solvers

specialized in geometry processing problems [Shtengel et al. 2017;

Smith et al. 2019; Zhu et al. 2018].

Another option is to compute analytically the Hessian matrix

instead of estimating it. The problem, however, is that the Hessian

matrix
𝜕2 𝐹

𝜕𝑈 𝜕𝑈 ⊤ is not positive definite. In this paper we propose its

approximation that ensures the positive definiteness. The modified

Hessian matrix 𝐻+ (𝑈 𝑘 , 𝜀𝑘) of the function 𝐹 with respect to 𝑈 at

the point𝑈 𝑘 is built out of 𝑑 × 𝑑 blocks

𝐻+𝑖 𝑗 ≈
𝜕2 𝐹

𝜕 ®𝑢𝑖 𝜕 ®𝑢⊤𝑗
(𝑈 𝑘 , 𝜀𝑘) .

Here, the matrix 𝐻+
𝑖 𝑗

is placed on the intersection of 𝑖-th block

row and 𝑗-th block column; the ≈ symbol means that we remove

all the terms depending on the second derivative of 𝜒 and second

derivatives of det 𝐽 to keep𝐻+ positive definite. Refer to Appendix A
for the formulae, and to § 4.2 for the proof of the positive definiteness

of 𝐻+.
A detailed description of the resolution scheme is given in Alg. 1.

Refer to List. 1 and Fig. 3 for a complete working example of Python

implementation and the corresponding input/output generated by

the code. Note that our method is not limited to simplicial meshes

only: in this particular example we evaluate the Jacobian matrix

for every triangle forming quad corners, what corresponds to the

trapezoidal quadrature rule.

ALGORITHM 1: Computation of a locally injective map

Input:𝑈 0
; // initial guess (vector of size #𝑉 × 𝑑)

Input: useQuasiNewton; // boolean to choose the optimization scheme
Output:𝑈 ; // final locally injective map (vector of size #𝑉 × 𝑑)

1 𝑘 ← 0;

2 repeat
3 compute 𝜀𝑘 ; // regularization parameter, Eq. (6)
4 if useQuasiNewton then
5 𝑈 𝑘+1 ← L-BFGS (𝑈 𝑘 , 𝜀𝑘) ; // inner L-BFGS loop
6 else
7 compute a modified Hessian matrix 𝐻+ (𝑈 𝑘 , 𝜀𝑘) ;

Δ𝑈 𝑘 ← (𝐻+)−1 ∇𝐹 (𝑈 𝑘 , 𝜀𝑘) ; // conjugate gradients
8 𝑈 𝑘+1 ← argmin

𝜏
𝐹 (𝑈 𝑘 + 𝜏 Δ𝑈 𝑘 , 𝜀𝑘) ; // line search

9 end
10 𝑘 ← 𝑘 + 1;
11 until min

𝑡∈1...#𝑇
det 𝐽 𝑘𝑡 > 0 and 𝐹 (𝑈 𝑘 , 𝜀𝑘) > (1 − 10−3) 𝐹 (𝑈 𝑘−1, 𝜀𝑘−1) ;

12 𝑈 ← 𝑈 𝑘
;

Fig. 3. The input mesh with foldovers and the untangling produced by the
Listings 1 and 2. Left: a quad 2D mesh to untangle. The boundary (in red)
is locked, and the black mesh is free to move. Right: fold-free result.

Fig. 4. Injective mapping sanity check: swap any two points inside a square.
Left: the input problem, all locked points are shown in red. Right: foldover-
free result obtained with our method.

3 RESULTS AND DISCUSSION
In this section we provide an experimental evaluation of the method.

In the field of computer graphics, any claim about map injectivity

always faces a simple sanity check (Fig. 4): take a square and swap

any two inner points. Our method successfully avoids the desk-

reject, so we start this section (§ 3.1) by testing our method on the

benchmark [Du et al. 2020], then we continue with further tests we

have found relevant (§ 3.2), and finally we discuss the limitations of

the approach in § 3.3.

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:5

Initialization Our result [Du et al. 2020]

min det 𝐽 ≈ 4 · 10−4

max
𝜎1 (𝐽)
𝜎2 (𝐽) ≈ 69

min det 𝐽 ≈ 4 · 10−4

max
𝜎1 (𝐽)
𝜎2 (𝐽) ≈ 72

min det 𝐽 ≈ 4 · 10−4

max
𝜎1 (𝐽)
𝜎2 (𝐽) ≈ 70

min det 𝐽 ≈ 1 · 10−20

max
𝜎1 (𝐽)
𝜎2 (𝐽) ≈ 24104

min det 𝐽 ≈ 9 · 10−17

max
𝜎1 (𝐽)
𝜎2 (𝐽) ≈ 16500

Fig. 5. Constrained boundary injective mapping challenge proposed by [Du et al. 2020]: the “Lucy” mesh is mapped to a P-shaped domain by constraining the
vertices shown in red. Left column: three different initializations for the same problem. Middle column: our method produces the same (up to a numerical
precision) result on all three initializations, we chose 𝜆 = 0.01. Right column: total lifted content method [Du et al. 2020] fails to solve for the randomly
initialized interior vertices, and produces very different results on other two initializations. Three miniature images of “Lucy” show in red the portion of the
surface visible in the corresponding close-ups.

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 37

min det 𝐽 ≈ 0.03

(a)

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 58

min det 𝐽 ≈ 0.02

(b)

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 759

min det 𝐽 ≈ 0.003

(c)

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 659

min det 𝐽 ≈ 0.002

(d)

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 524

min det 𝐽 ≈ 0.002

(e)

max
𝜎1 (𝐽)
𝜎3 (𝐽) ≈ 3391

min det 𝐽 ≈ 0.0004

(f)

Fig. 6. Constrained boundary injective mapping stress test. We have generated an isotropic tetrahedral mesh of a cube subtracted from a larger cube, and
we rotate the inner cube’s boundary to test the robustness. Top row and bottom row correspond to two different slices of the same mesh. Columns (a)–(d):
injective maps produced by our method, columns (e) and (f): injective maps produced by [Du et al. 2020]. The method by [Du et al. 2020] fails to generate
injective maps for 135° and 180° inner cube rotations. The color map illustrates the relative volume scaling: green for det 𝐽 ≈ 1, red for inflation, blue for
compression.

Author version, 2021.

102:6 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

3.1 Benchmark database
As we have already mentioned, recently Du et al. have published a

method for building locally injective maps for constrained boundary

problems. There is an elegant idea behind Total Lifted Content (TLC):

the authors propose to minimize the total unsigned area of a mesh to

untangle. This energy is regularized by lifting simplices to a higher-

dimensional space. After the regularization the energy becomes

smooth, and every global minimum of the energy is achieved by an

injective embedding.

Along with their paper, Du et al. have published a valuable bench-

mark database. It contains a huge number of 2D and 3D constrained

boundary injective mapping challenges. To the best of our knowl-

edge, TLC [Du et al. 2020] and our method are the only ones passing

the benchmark without any fail. For 2D challenges, the benchmark

contains 3D triangulated surfaces to flatten, and not flat 2D meshes

as we have described in § 2.1. Nevertheless, our method can handle

it directly because the mapping is still R2 → R2 on each triangle.

A representative example from the database is given in top row

of Fig. 5. The challenge is to map the “Lucy” mesh statuette from

the Stanford Computer Graphics Laboratory to a P-shaped domain.

This mesh has a topology of a disk, and its boundary vertices are

uniformly spaced on the P-shape boundary. As an initialization

to the problem, Du et al. have computed the corresponding Tutte

embedding that obviously contains a foldover (Fig. 5–top left). Then

the problem boils down to a mesh untangling with locked boundary.

Mapping quality measure. How to measure quality of a map?Well,

it depends on the goal. An identity is an unreachable ideal; tradi-

tional competing goals are (as much as possible) angle preserving

and area preserving maps. We can measure the extreme values of

the failure of a map to be conformal or authalic. Our maps being

piece-wise affine, the Jacobian matrix 𝐽 is constant per element. Let

us define the largest singular value of 𝐽 as 𝜎1 (𝐽), and the smallest

singular value as 𝜎𝑑 (𝐽); then the quality of a mapping can be re-

duced to extreme values of the stretch (max
𝜎1 (𝐽)
𝜎𝑑 (𝐽)) and the scaling

(min det 𝐽).

For the “Lucy-to-P” challenge (Fig. 5–top row) our map differs

from the TLC result by 12 orders of magnitude in terms of minimum

scaling, and by two orders of magnitude in terms of maximum

stretch. To visualize this difference in scaling, we have provided

the close-ups: Fig. 5–top middle shows a map of the Lucy’s torch,

whereas the same level of zoom on the result by Du et al. (Fig. 5–top

right) contains not only the torch, but also both wings, the head and

the right arm!

Note also that the input “Lucy” mesh is slightly anisotropic; our

method allows us to prescribe the element target shape, so the dress

pleats are clearly visible in our mapping.

Benchmark database. Our method successfully passes all chal-

lenges from the benchmark [Du et al. 2020]. The benchmark con-

sists of 10743 meshes to untangle in 2D and 904 meshes in 3D under

locked boundary constraints. In Fig. 7 we provide quality plots

of the resulting locally injective maps. These are log− log scatter

plots: each dot corresponds to a quality of the corresponding map

reduced to two numbers: the maximum stretch (max
𝜎1 (𝐽)
𝜎𝑑 (𝐽)) and

the minimum scaling (min det 𝐽). Left column of Fig. 7 shows the

2D dataset (10743 challenges)

3D dataset (904 challenges)

Fig. 7. Quality plot of the resulting locally injective maps for every challenge
from the database provided by [Du et al. 2020]. Our results are shown in blue,
whereas the results by Du et al. are shown in red. Each dot corresponds to
a quality of the corresponding map reduced to two numbers: the maximum
stretch and theminimum scale.Top row:mapping quality on the 2D dataset.
Bottom row: mapping quality on the 3D dataset. Left column shows the
absolute maximum stretch and absolute minimum scale, whereas the right
column shows the maximum stretch and minimum scale for the top 95% of
measurements.

worst quality measurements for every 2D problem (top) as well

as for every 3D challenge (bottom) of the dataset. Our results are

shown in blue, whereas TLC results are shown in red. To illustrate

the distribution of the elements’ quality, for each injective map we

have removed 5% of worst measurements: the right column of Fig. 7

shows the maximum stretch and the minimum scaling for the top

95% of measurements.

Note the dot arrangements forming lines in the plot: these dots

correspond to the few sequences of deformation present in the

database.

Timings. Fig. 8 provides a log− log scatter plot of our running

time vs mesh size for all the challenges from the database [Du et al.

2020]: for each run, the time varies from a fraction of a second to

several minutes for the largest meshes. These times were obtained

with a 12 cores i7-6800K CPU @ 3.40 GHz. As in Fig. 8, the ver-

tical lines in the 3D dataset plot correspond to the sequences of

deformation in the benchmark.

There are two scatter plots superposed, both represent the same

resolution scheme with an exception corresponding to the way we

compute 𝜀𝑘 (Alg. 1–line 3). The green scatter plot corresponds to a

conservative update rule (Eq. (6)) offering guarantees on untangling

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:7

Fig. 8. Performance of our method tested on the benchmark [Du et al. 2020].
Each dot corresponds to a challenge from the database (10743 in 2D and
904 in 3D). Blue dots show the running times obtained using a heuristic
regularization [Garanzha and Kaporin 1999, Eq. 6.3], green dots correspond
to Eq. (6).

in a finite number of steps (refer to Th. 1), whereas the blue scatter

plot is obtained using the heuristic update rule [Garanzha and Ka-

porin 1999, Eq. 6.3]. This formula was chosen empirically, however

it performs well in the vast majority of situations. For instance, it

allows for all the database [Du et al. 2020] to pass the injectivity

test.

3.2 Further testing
Sensitivity to initialization. Our next test is the sensitivity to the

initialization. We have generated two other initializations for the

“Lucy-to-P” challenge: the one with all interior vertices collapsed

onto a single point (Fig. 5–middle row), and with the interior vertices

being randomly placed withing a bounding square (Fig. 5–bottom

row).

Our method produces virtually the same result on all three initial-

izations, whereas TLC generates very different results for the first

two, and fails for the third one. It is interesting to note that TLC is

heavily depending on the initialization: it alters very little the input

geometry. Our experiments with the source code [Du et al. 2020]

show that most challenges from the benchmark fail under a random

initialization. Moreover, the sanity check (Fig. 4) fails as well.

Large deformation stress test. For our next test we have generated
an isotropic tetrahedral mesh of a cube with a cavity, and we ro-

tated the inner boundary to test the robustness of our method to

large deformations. Figure 6 shows the results. Our L-BFGS-based

optimization scheme succeeds up to the rotation of 135°, and we

had to switch to the Newton method to reach the 180° rotation. TLC

method had succeeded on 45° and 90°, and failed for the 135° and

180°. Note that as in the previous test, even when the untangling

succeeds, TLC alters very little the input map, thus producing heav-

ily stretched tetrahedra, whereas our method evenly dissipates the

stress over all the domain.

Free boundary injective mapping. To the best of our knowledge,
our method is the only one passing the constrained-boundary bench-

mark, but able to produce inversion-free maps with free boundary.

Since TLC tries to minimize the overall volume, relaxing the bound-

ary constraints results in degenerate maps.

(a) (b)

Fig. 9. Free boundary injective mapping. The vertices shown in red are
constrained, all other vertices are free to move. (a): a compression test, (b):
a bend test. Refer to Fig 10–a for the rest shape.

(a) (b)

(c) (d)

Fig. 10. Free boundary injective mapping: influence of the parameter 𝜆 in
Prob. (5). The vertices shown in red are constrained, all other vertices are
free to move. (a): the rest shape; (b): a stretch preserving the shape of the
elements (𝜆 = 0); (c): an area-preserving stretch (𝜆 = 10

4); (c): a trade-off
between the shape and the area preservation (𝜆 = 1).

Fig. 9 shows two maps obtained with our method: a 2D shape

being compressed and the same shape being bent. The boundary is

free to move, we lock the vertices shown in red. Refer to Fig. 10-a for

the rest shape. The shape behaves exactly as a human would expect

it: upon compression the shape chooses one of the two possible

results (Fig. 9–a), and successfully passes the bend test (Fig. 9–b),

note the geometrical details that are naturally rotated.

Shape-area trade-off 𝜆. Our final tests illustrate the influence of
the parameter 𝜆 in Prob. (5) on the resulting map. We have com-

puted three free boundary maps of the rest shape (Fig. 10–a) being

stretched. First we chose 𝜆 = 0, that is, only the shape quality term

is taken into account in Prob. (5). When we optimize for the angles,

the area of the triangles is forced to change, refer to Fig. 10–b for

the resulting map. Naturally, an area preserving map (𝜆 = 10
4
) must

deform the elements to satisfy the area constraint (Fig. 10–c). Finally,

in Fig. 10–d we show an example with a trade-off between the area

and angles preservation.

Map quality: comparison with LSCM. To assess quality of our

maps, we computed a discrete conformal map of the “Lucy” model

by setting 𝜆 = 0; we compare the result to least squares confor-

mal map (LSCM) [Lévy et al. 2002]. LSCM is a very widespread

Author version, 2021.

102:8 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

(a) (b)

Fig. 11. Comparison of two discrete conformal maps for the “Lucy” mesh.
(a): Least-squares conformal map, (b): our map obtained with 𝜆 = 0. Top
row: flattenings, bottom row: log-log histograms of conformal maps ele-
ment quality.

method requiring to solve one linear system with a symmetric pos-

itive definite matrix. The idea is to compute a 𝑃1 finite element

approximation of the Cauchy-Riemann conditions over all triangles

of the mesh. Numerical results are shown in Figure 11. As before, to

compare quality of the maps, we use the condition number of the

Jacobian matrix
𝜎1 (𝐽)
𝜎2 (𝐽) , where 𝜎1 and 𝜎2 stand for the singular values

of 𝐽 . In our map maximum condition number is equal to 5.1. The

vast majority of mesh elements in LSCM method is mapped with

very small shape deformation error, however the number of badly

distorted elements (the distortion goes beyond 1000) is considerable

and even some inverted elements are present.

Map quality: comparison with Simplex Assembly. Simplex Assem-

bly (SA) [Fu and Liu 2016] is a method to compute inversion-free

mappings with bounded distortion on simplicial meshes. The idea

is to project each simplex into the inversion-free and distortion-

bounded space. Having disassembled the mesh, the simplices are

then assembled by minimizing the mapping distortion, while keep-

ing the mapping feasible.

SA is a quite robust method, nevertheless having some failure

cases over the benchmark database. Fig. 12 provides a quality com-

parison of SA with our quasi-isometric (𝜆 = 1) map for a free-

boundary mapping of the “Lucy” mesh. Note that for the 2D case

SA energy is exactly the same as the one we use (for the 3D case

the energy comes from [Knupp 2000b]), however SA includes an

optimization for the distortion bounds, thus reaching better map

quality.

Map quality: comparison with LBD. Large-scale Bounded Distor-

tion Mappings (LBD) [Kovalsky et al. 2015] is another method to

compute free-boundary mappings. Given an input map (potentially

with folds), LBD looks for an injective map as close as possible to the

input map, but satisfying some constraints such as the orientation

and distortion bounds. Fig. 13 provides a comparison of LBD with

(a) (b)

Fig. 12. Two quasi-isometric maps for the “Lucy” mesh. (a): Simplex assem-
bly, (b): our map obtained with 𝜆 = 1. Top row: flattenings, middle and
bottom rows: log-log histograms of element quality.

(a)

(b) (c)

Fig. 13. Comparison of LBD vs our method (a): 3D surface to flatten is a
regular triangular mesh of a square patch that was lifted and noised. (b):
The map obtained by LBD. (c): The map computed with our method by
setting 𝜆 = 0. Top row: flattenings of (a), colors correspond to the quality of
elements. Middle and bottom rows: log-log element quality histograms.

our method. The 3D surface to flatten is a regular simplicial mesh

of a rectangular patch that was lifted and noised. LBD has an opti-

mization of the distortion bounds, thus the worst element quality of

the map by LBD is better than in our map. Note however, that LBD

has a lot of elements near the worst bound, whereas our methond is

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:9

(a)

(b) (c)

Fig. 14. Tetrahedral mesh deformation, locked vertices are shown in red.
(a): Rest shape, (b): ABCD, (c): our result with 𝜆 = 1. Top row: flattenings,
middle and bottom rows: log-log histograms of element quality.

based on the elasticity theory, and providing better overall quality

distribution.

Map quality: comparison with ABCD. We conclude the quality

comparison by an example of 3D mesh deformation. Adaptive Block

Coordinate Descent for Distortion Optimization (ABCD) [Naitsat

et al. 2020]. Fig. 14 provides the quality plots. We took a tetrahedral

mesh of a combination wrench, and we imposed positional con-

straints on the vertices located on both ends of the wrench. The

deformation by ABCD is computed using ARAP energy, whereas

our deformation is a quasi-isometry with 𝜆 = 1. In this experiment,

our deformation has a slightly better, but overall comparable quality.

3.3 Limitations
While globally performing very well in practice, our method still

presents some limitations. We have two main sources of limita-

tions: theoretical limitations as well as very practical ones related

to numerical stability of our resolution scheme.

Overlaps. First of all, an inversion-free map does not imply global

injectivity. Fig. 15–a provides an example of an inversion-free map

with two cases of non-injectivity when optimizing for a map with

free boundaries: the map can present global overlaps as well as

the boundary can “wind up” around boundary vertices, i.e. the

total angle of triangles incident to a vertex can be superior to 2𝜋 .

Moreover, while being less frequent, similar situations may occur on

interior vertices, as mentioned in [Weber and Zorin 2014]. In both

cases, the map of the boundary is self-intersecting, as demonstrated

in [Aigerman and Lipman 2013] for the 3D case. Typically this

situation happens near constraints causing a local compression in

the shape.

Let us illustrate this behavior on a very simplistic mesh consisting

of a single fan of 12 triangles. All vertices are free to move, the target

shape is set to be the unit equilateral triangle for all elements. For this

problem Fig. 16–a shows a local minimum, and the Fig. 16–c shows

the global minimum respecting perfectly the prescribed total angle

of 4𝜋 around the center vertex. Both are inversion-free maps, but

(a) (b)

Fig. 15. Free boundary mapping limitations. (a): this mesh presents two
kinds of problems, namely, a global overlap and the mesh wrapped around
a boundary vertex. (b): Both problems can be avoided by embedding the
mesh into an outer triangulation.

(a) (b) (c)

Fig. 16. Free boundary mapping limitations: three maps of a very simplistic
mesh made of 12 triangles. (a) and (c) both are inversion-free maps and
thus allowed by our method, whereas the map (b) has inverted elements,
and thus is prohibited by our method.

only the map in Fig. 16–a is a globally injective one. Depending on

the initialization and the resolution scheme chosen, we can converge

to either minimum. Note, however, that the center vertex has the

winding number 1 in one map and 2 in the other, and thus we can

not deform continuously one to the other without inverting some

elements. Note also that the configurations like in the Fig. 16–b

present inverted elements and thus can not be generated by our

method.

Fig. 17 illustrates the problem on a larger mesh: we took a regular

mesh of a square, swapped two vertices, and untangled the resulting

mesh. Only two vertices are locked, the rest of the mesh is free to

move. Fig. 17–a provides the rest shape, the vertices to be swapped

are highlighted in red and blue, respectively. Depending on the

minimization toolbox chosen, untangling may result in a mesh with

a double covering present (Fig. 17–b) or produce the correct result,

namely, a rigid transformation of the input mesh (Fig. 17–c).

It is possible to avoid all overlaps altogether by embedding our

shape to optimize into an outer triangulation, and performing a

“bi-material” optimization, as in [Jiang et al. 2017]. In this case, both

global overlaps and fold-2-coverings are prohibited by the the fact

that the outer material must not have inverted elements (refer to

Fig. 15–b). The thick prismatic layer in Fig. 1 was generated by a

similar procedure: we have generated a very thin layer of triangular

prisms around the dragon, and tetrahedralized the exterior bounded

by a cube. After calling the untangling procedure, we have obtained

an offset surface with exactly the same mesh connectivity as the

original dragon mesh.

While this embedding kind of approach works well for certain

applications, for other it may be hard to apply. Another option is

to add some extra triangles (resp. tets) in Eq. (5), but it is out of the

scope of this article.

Author version, 2021.

102:10 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

(a) (b) (c)

Fig. 17. Loss of invertibility under a free boundary deformation: exchanging
two vertices (shown in red and blue) in the mesh and then untangling. Only
two vertices are locked, the rest of the mesh is free to move. (a): input mesh,
(b): foldover-free but not invertible deformation, (c): invertible deformation.

Numerical challenges. Even when the problem is well-posed, a ro-

bust implementation may present significant difficulties. As we have

said above, the quasi-Newtonian optimization scheme performs well

for “simple” problems (it passes all the benchmark database!), but

may fail for large deformations, where Newton iterations are nec-

essary. While our modified Hessian matrix is symmetric positive

definite, note that for stiff problems the Jacobi preconditioned conju-

gate gradients can fail and one might need the incomplete Choleski

decomposition and beyond.

In practice we have found the method being very robust in 2D

settings: we have not encountered a practical test case we were

not able to treat with our method. In 3D, however, it can fail due

to the numerical challenges in very anisotropic and highly twisted

meshes.

4 ANALYSIS
This section presents a rigorous analysis of the penalty method. We

start with a discussion on invertibility conditions in the discrete

and continous case (§ 4.1). Next, in § 4.2 we prove that the modified

Hessian matrix 𝐻+ (𝑈 , 𝜀) is indeed positive definite, and finally in

§ 4.3 we show the origins of Eq. (6) for the regularization parame-

ter sequence {𝜀𝑘 }...
𝑘=0

. Namely, we prove that if the problem has a

solution, then an idealized minimization method can reach the ad-

missible set min det 𝐽 > 0 in a finite number of steps. An immediate

consequence of this theorem is that if the problem has a solution,

then for some 𝐾 < ∞ the solution argmin

𝑈

𝐹 (𝑈 , 𝜀𝐾) belongs to the

admissible set.

4.1 Invertibility of the minimizer
A legitimate question arises: does the minimizer of our problem

really give us an invertible mapping? This is not an easy question.

On discrete level, the functional in Prob. (5) has an infinite barrier

on the boundary of the set of admissible meshes. It means that any

finite energy minimizer is free of inverted elements. Augmenting

this barrier property with proper boundary conditions, say with

prescribed boundary homeomorphism, one can prove that overall

mesh deformation is a homeomorphism [Aigerman and Lipman

2013; Prokhorova 2008].

On the other hand, for the continuous settings the situation is

much more subtle. Variational Prob. (1), while originating from

the elasticity, violates the conditions formulated by Ball for its ex-

istence [Ball 1976] and invertibility [Ball 1981] theorems. More

precisely, the functional does not respect the growth conditions of

the theorems. It does not mean that Prob. (1) is ill-posed, however

we can say very little beyond that.

Why does it work so well in discrete settings? In fact, for every

mesh deformation with finite energy the distortion measure for

each cell is bounded from above. Hence, our numerical algorithm

acts on the space of quasi-isometric homeomorphisms.

Consider following (continuous) problem related to construction

of deformations with prescribed quality [Garanzha 2000]:

argmin

®𝑢 (®𝑥)

∫
Ω

𝛽 (𝐽)
1 − 𝑡𝛽 (𝐽) 𝑑𝑥, 𝛽 (𝐽) = 𝑓 (𝐽) + 𝜆𝑔(𝐽)

𝑑 + 2𝜆 (7)

This integral can be finite only in the case 𝛽 (𝐽) < 1

𝑡 . Note that

Prob. (1) is a special case of Prob. (7) for 𝑡 = 0, here parameter

𝑡 is the lower quality bound of the deformation. It is important

to note that the density of the deformation energy is polyconvex

and thus variational Prob. (7) is well-posed. Moreover, the exis-

tence theorem can be proved and under proper boundary conditions

admissible deformations for Prob. (7) are quasi-isometric homemor-

phisms [Garanzha et al. 2014] both in 2D and 3D, i.e. the invertibility

theorem [Ball 1981] can be applied.

One may consider Prob. (5) as a minimization of functional (7)

with arbitrarily small constant 𝑡 > 0. In its turn, Prob. (7) with

near-zero value of 𝑡 can be seen as a regularized solution of (1).

As a side note, a transformation similar to (7) can be applied to a

very broad class of polyconvex isochoric-volumetric split based en-

ergies which originally violate conditions of the Ball’s invertibility

theorem. This transformation suppresses singularities of deforma-

tions which is quite natural since singular deformations are beyond

the scope of assumptions of elastic theory and should rely on other

physical models.

4.2 Modified Hessian matrix
Recall that in our resolution scheme we use the modified Hessian

(𝑑 #𝑉) × (𝑑 #𝑉) matrix 𝐻+ (𝑈 , 𝜀) of the function 𝐹 (𝑈 , 𝜀) built out of
𝑑×𝑑 blocks𝐻+

𝑖 𝑗
placed on the intersection of 𝑖-th block row and 𝑗-th

block column. It is a common practice to add some regularization

terms to the Hessian matrix to make it positive definite, but we

propose to modify the finite element (FE) matrix assembly procedure

by eliminating some terms potentially leading to an indefinite FE

matrix.

To this end, we restrict our attention to a single simplex and we

study a function 𝜙 (𝐽) of the Jacobian matrix defined as follows:

𝜙 (𝐽) := 𝑓𝜀 (𝐽) + 𝜆𝑔𝜀 (𝐽) =
tr 𝐽⊤ 𝐽

(𝜒 (det 𝐽 , 𝜀))
2

𝑑

+ 𝜆 det
2 𝐽 + 1

𝜒 (det 𝐽 , 𝜀) (8)

Let us denote by 𝑎 ∈ R𝑑2 the (column-wise) flattening of the

Jacobian matrix 𝐽 , i.e. the vector composed of the elements of 𝐽 .

We decompose the 𝑑2 × 𝑑2 Hessian matrix of 𝜙 with respect to the

Jacobian matrix entries into two parts:
𝜕2 𝜙

𝜕 𝑎 𝜕 𝑎⊤ = 𝑀+ +𝑀±, where
𝑀+ is a positive definite matrix, and𝑀± can be an indefinite matrix

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:11

that we neglect. The matrix 𝑀± contains all terms depending on

𝜒 ′′ and second derivatives of det 𝐽 with respect to elements of the

Jacobian matrix 𝐽 . Our map is affine on the simplex of interest,

therefore its Jacobian matrix 𝐽 is a linear function of the vertices of

the simplex. The idea is to compute a positive definite matrix𝑀+ (𝐽),
and use the chain rule to get the Hessian matrix with respect to our

variables𝑈 and assemble the matrix 𝐻+.
So, we choose some arbitrary point 𝐽0 and we want to show the

way to decompose
𝜕2 𝜙

𝜕 𝑎 𝜕 𝑎⊤ (𝐽0) into a sum of 𝑀+ (𝐽0) and 𝑀± (𝐽0)
with 𝑀+ (𝐽0) > 0. To do so, first we write down the first order

Taylor expansion 𝑞(𝐷) of the function 𝜒 (𝐷, 𝜀) around some point

𝐷0 = det 𝐽0:

𝑞(𝐷) := 𝜒 (𝐷0, 𝜀) +
𝜕 𝜒

𝜕 𝐷
(𝐷0, 𝜀) (𝐷 − 𝐷0).

Next we define a function Φ(𝑎, 𝐷) as follows:

Φ(𝑎, 𝐷) := |𝑎 |2

(𝑞(𝐷))
2

𝑑

+ 𝜆𝐷
2 + 1
𝑞(𝐷) .

Note that Φ differs a bit from 𝜙 : it has one more argument and

𝜒 is replaced by its linearization in the denominator. While this

maneuver might seem obscure, light will be shed very shortly. Φ
has a major virtue of being convex! The convexity is easy to prove,

refer to Appendix B for a formal proof.

Having built a convex function Φ, it is straightforward to verify

that the following decomposition holds:

𝜕2 𝜙

𝜕 𝑎 𝜕 𝑎⊤
(𝐽0) = 𝑀+ (𝐽0) +𝑀± (𝐽0), (9)

where

𝑀+ :=
(
𝐼 𝜕 𝐷

𝜕 𝑎

) (
𝜕2 Φ

𝜕 𝑎 𝜕 𝑎⊤
𝜕2 Φ
𝜕 𝑎 𝜕 𝐷

𝜕2 Φ
𝜕 𝐷 𝜕 𝑎⊤

𝜕2 Φ
𝜕 𝐷2

) (
𝐼 𝜕 𝐷

𝜕 𝑎

)⊤
, and

𝑀± :=
𝜕 Φ

𝜕 𝐷

𝜕2 𝐷

𝜕 𝑎 𝜕 𝑎⊤
− 𝜒
′′

𝜒

(
2

𝑑
𝑓𝜀 + 𝜆𝑔𝜀

)
𝜕 𝐷

𝜕 𝑎

𝜕 𝐷

𝜕 𝑎⊤
.

The easiest way to check that the equality (9) holds is to note that

at the point 𝐽0 we have 𝑞 = 𝜒 , 𝑞′ = 𝜒 ′, and therefore we have

𝜕 𝜙 (𝑎)
𝜕 𝑎

=
𝜕 Φ(𝑎, 𝐷 (𝑎))

𝜕 𝑎
+ 𝜕 Φ(𝑎, 𝐷 (𝑎))

𝜕 𝐷

𝜕 𝐷 (𝑎)
𝜕 𝑎

.

To calculate the Hessian
𝜕2 𝜙

𝜕 𝑎 𝜕 𝑎⊤ (𝐽0), it suffices to differentiate this

expression one more time and add the terms in 𝜒 ′′ that were zeroed
out by the linearization.

To sum up, in our computations, for each simplex we approximate

the Hessian matrix
𝜕2 𝜙

𝜕 𝑎 𝜕 𝑎⊤ by the 𝑑2×𝑑2 matrix𝑀+ and we neglect
the term𝑀±. Thanks to the convexity of Φ, it is trivial to verify that
for any choice of 𝐽0 the matrix𝑀+ is positive definite. Then we use

the chain rule over 𝑀+ to get the Hessian matrix with respect to

our variables𝑈 , and we assemble a (𝑑 #𝑉) × (𝑑 #𝑉) approximation

𝐻+ of the Hessian matrix for the energy function 𝐹 (𝑈 , 𝜀). Matrix

𝐻+ is positive definite provided that at least 𝑑 mesh vertices are

fixed. If less than 𝑑 points are fixed, rigid body transformations are

allowed. The energy is invariant w.r.t rigid body transformations,

so when constraints allow for such transformations, matrix 𝐻+

becomes positive semi-definite. Note that the leading blocks 𝐻+
𝑖𝑖
are

always positive definite. Refer to Appendix A for further details

on the finite element assembly procedure. Appendix C proves that

positive definite part of the Hessian matrix is spectrally equivalent

to finite element stiffness matrix for Laplace operator.

4.3 Choice of 𝜀𝑘

In this section we provide a strategy for the choice of the regu-

larization parameter 𝜀𝑘 at each iteration. Namely, we prove that

an idealized minimization algorithm reaches the admissible set

min det 𝐽 > 0 in a finite number of iterations.

Theorem 1. Let us suppose that the admissible set is not empty,
namely there exists a mesh 𝑈 ∗ satisfying 𝐹 (𝑈 ∗, 0) < +∞. We also
suppose that we have a minimization algorithm satisfying one of the
following efficiency conditions for some 0 < 𝜎 < 1:
• either the essential descent condition holds

𝐹 (𝑈 𝑘+1, 𝜀𝑘) ≤ (1 − 𝜎)𝐹 (𝑈 𝑘 , 𝜀𝑘), (10)

• or the vector𝑈 𝑘 satisfies the quasi-minimality condition:

min

𝑈
𝐹 (𝑈 , 𝜀𝑘) > (1 − 𝜎)𝐹 (𝑈 𝑘 , 𝜀𝑘). (11)

Then the admissible set is reachable by solving a finite number of
minimization problems in𝑈 with 𝜀𝑘 fixed for each problem. In other
words, under a proper choice of the regularization parameter sequence
𝜀𝑘 , 𝑘 = 0 . . . 𝐾 , we obtain 𝐹 (𝑈𝐾 , 0) < +∞.

Proof. The main idea is to expose an explicit way to build a

decreasing sequence {𝜀𝑘 }∞
𝑘=0

such that the sequence {𝐹 (𝑈 𝑘 , 𝜀𝑘)}∞
𝑘=0

is bounded from above. Then we can prove by contradiction that

the admissible set is reachable in a finite number of steps, since if it

is not, 𝐹 (𝑈 𝑘 , 𝜀𝑘) must grow without bounds.

First of all, the function 𝐹 (𝑈 , 𝜀) can be rewritten as follows

𝐹 (𝑈 , 𝜀) =
∑
𝑖

𝛼𝑖
𝜓𝑖 (𝑈)
𝜒 (𝐷𝑖 , 𝜀)

, (12)

where𝐷𝑖 = 𝐷𝑖 (𝑈) denotes the Jacobian determinant for 𝑖-th simplex

of the mesh (𝐷𝑖 = det 𝐽𝑖), and 𝛼𝑖 > 0 are positive, separated from

zero weights assigned to each simplex. The functions

𝜓𝑖 (𝑈 , 𝜀) := 𝜒 (𝐷𝑖 , 𝜀)1−
2

𝑑 tr 𝐽⊤𝑖 𝐽𝑖 + 𝜆(𝐷
2

𝑖 + 1)
defined according to Eq. (3) are positive and bounded from below as

𝛼𝑖𝜓𝑖 (𝑈 , 𝜀) ≥ 𝜆min

𝑖
𝛼𝑖 .

Note also that𝜓𝑖 (𝑈 , 𝜀) are increasing functions of 𝜀.

Our goal is to build a decreasing sequence {𝜀𝑘 }∞
𝑘=0

such that

the sequence {𝐹 (𝑈 𝑘 , 𝜀𝑘)}∞
𝑘=0

is bounded from above. We split the

construction into two parts: first we suppose that at some iteration

𝑘 the essential condition (10) is satisfied, and then we explore the

case (11).

Suppose that the condition (10) holds at iteration 𝑘 . In order to

guarantee that the function does not increase, it suffices to establish

the following inequality:

(1 − 𝜎)𝐹 (𝑈 𝑘+1, 𝜀𝑘+1) ≤ 𝐹 (𝑈 𝑘+1, 𝜀𝑘). (13)

By noting that𝜓𝑖 (𝑈 𝑘+1, 𝜀𝑘+1) ≤ 𝜓𝑖 (𝑈 𝑘+1, 𝜀𝑘), Ineq. (13) is implied

if the following condition holds:

∀𝑖 : (1 − 𝜎)𝜒 (𝐷𝑘+1𝑖 , 𝜀𝑘) ≤ 𝜒 (𝐷𝑘+1𝑖 , 𝜀𝑘+1) (14)

Author version, 2021.

102:12 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

where 𝐷𝑘+1
𝑖

:= 𝐷𝑖 (𝑈 𝑘+1) denotes the Jacobian determinant of sim-

plex 𝑖 at iteration 𝑘 + 1.
Let us show a constructive way to build 𝜀𝑘+1 such that Ineq. (14)

is satisfied. Assume that 𝜀𝑘+1 is found as the solution to equation

𝜒 (𝐷𝑘+1− , 𝜀𝑘+1) = (1 − 𝜎)𝜒 (𝐷𝑘+1− , 𝜀𝑘), (15)

where 𝐷𝑘+1− := min𝑖 𝐷
𝑘+1
𝑖

. Obviously, if 𝐷𝑘+1− < (1−𝜎)𝜒 (𝐷𝑘+1− , 𝜀𝑘),
there is a unique positive solution to this equation. Now let us

evaluate derivative of the function 𝑠 (𝐷) := 𝜒 (𝐷,𝑡1)
𝜒 (𝐷,𝑡2) , 𝑡1 < 𝑡2 . It is

straightforward to verify that the derivative 𝑠 ′(𝐷) > 0:

𝑠 ′(𝐷) =
(
𝜒 ′(𝐷, 𝑡1)
𝜒 (𝐷, 𝑡1)

− 𝜒
′(𝐷, 𝑡2)
𝜒 (𝐷, 𝑡2)

)
𝑠 =

©­­«
1√

𝐷2 + 𝑡2
1

− 1√
𝐷2 + 𝑡2

2

ª®®¬ 𝑠 > 0.

This inequality means that Eq. (15) for all 𝐷𝑘+1
𝑖
≥ 𝐷𝑘+1− induces

inequality

𝜒 (𝐷𝑘+1
𝑖

, 𝜀𝑘+1)
𝜒 (𝐷𝑘+1

𝑖
, 𝜀𝑘)

≥ 𝜒 (𝐷𝑘+1− , 𝜀𝑘+1)
𝜒 (𝐷𝑘+1− , 𝜀𝑘)

= 1 − 𝜎,

which is precisely Ineq. (14). Hence, if 𝑈 𝑘+1 is an approximate so-

lution of the minimization problem argmin

𝑈

𝐹 (𝑈 , 𝜀𝑘) with fixed pa-

rameter 𝜀𝑘 , we can use the following update rule for 𝜀𝑘+1 which is

the explicit solution of equation Eq. (15):

𝜀𝑘+1 = 2

√
𝜇𝑘 (𝜇𝑘 − 𝐷𝑘+1−), (16)

where

𝜇𝑘 := (1 − 𝜎)𝜒 (𝐷𝑘+1− , 𝜀𝑘) (17)

This update rule guarantees that Ineq. (13) is satisfied; coupled with

the assumption (10) of the theorem, this implies the required non-

growth property of the function values sequence:

𝐹 (𝑈 𝑘+1, 𝜀𝑘+1) ≤ 𝐹 (𝑈 𝑘 , 𝜀𝑘) . (18)

Consider now the case where condition (11) holds at iteration 𝑘 .
Note that condition (11) essentially means that our current solu-

tion 𝑈 𝑘 is very close to the global minimum of 𝐹 (𝑈 , 𝜀𝑘), and thus

Ineq. (10) cannot be satisfied. Nevertheless, we can use the same

update rule (16) for computation of 𝜀𝑘+1. Indeed, with this choice

we have

𝐹 (𝑈 𝑘+1, 𝜀𝑘+1) ≤ 1

(1 − 𝜎) 𝐹 (𝑈
𝑘+1, 𝜀𝑘) ≤ 1

(1 − 𝜎) 𝐹 (𝑈
𝑘 , 𝜀𝑘)

<
1

(1 − 𝜎)2
min

𝑈
𝐹 (𝑈 , 𝜀𝑘) < 1

(1 − 𝜎)2
min

𝑈
𝐹 (𝑈 , 0) .

Here the last inequality provides a global bound on the function

values sequence, and it is based on the observation
𝜕
𝜕𝜀 𝜒 (𝐷, 𝜀) > 0.

To sum up, we have shown away to build a sequence {𝜀𝑘 }∞
𝑘=0

such

that the sequence {𝐹 (𝑈 𝑘 , 𝜀𝑘)}∞
𝑘=0

is bounded from above. Now let us

prove that the update rule (16), (17) allows to reach the admissible set

in a finite number of steps. To do so, we use a reductio ad absurdum
argument.

Suppose that the admissible set is never reached for an infinite

decreasing sequence {𝜀𝑘 }∞
𝑘=0

built using the update rule (16), (17)

i.e. 𝐷𝑘+1− < 0 ∀𝑘 ≥ 0.

One can readily see that the following identity can be deduced

from (16), (17), and (2):

(𝜀𝑘+1)2 = (1 − 𝜎)
(
(𝜀𝑘)2 − 4𝜎 (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2

)
. (19)

In particular, (19) shows the strict decrease of the sequence 𝜀𝑘 . More-

over, from (19) one obviously has

(𝜀𝑘)2 ≥ 4𝜎 (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2,
and using the latter with (19) gives the following inequality:

(𝜀𝑘)2 − (𝜀𝑘+1)2 = 𝜎 (𝜀𝑘)2 + 4𝜎 (1 − 𝜎) (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2

≥ 4𝜎2 (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2 + 4𝜎 (1 − 𝜎) (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2

= 4𝜎 (𝜒 (𝐷𝑘+1− , 𝜀𝑘))2 .
Hence for some 𝐾 > 0:

(𝜀0)2−(𝜀𝐾)2 ≥ 4𝜎

𝐾−1∑
𝑘=0

(𝜒 (𝐷𝑘+1− , 𝜀𝑘))2 ≥ 4𝜎𝐾 min

0≤𝑘<𝐾
(𝜒 (𝐷𝑘+1− , 𝜀𝑘))2,

with an immediate consequence that for an arbitrarily large 𝐾 we

have the following inequality:

max

0≤𝑘<𝐾
1

𝜒 (𝐷𝑘+1− , 𝜀𝑘)
≥
√
4𝜎𝐾

𝜀0
.

Since all terms 𝛼𝑖𝜓𝑖 (𝑈) in (12) are bounded from below, the resulting

estimate contradicts the boundedness of 𝐹 (𝑈 𝑘 , 𝜀𝑘), thus concluding
our proof. □

Remark 1. An important corollary of Th. 1 is that, provided that
the admissible set is not empty, there exists an iteration 𝐾 < ∞ such
that the global minimum of the function 𝐹 (𝑈 , 𝜀𝐾) belongs to the ad-
missible set. The proof is rather obvious: suppose we have an idealized
minimizer such that𝑈 𝑘+1 = argmin

𝑈

𝐹 (𝑈 , 𝜀𝑘). This minimizer always

satisfies the conditions of Th. 1, therefore it can untangle the mesh in
a finite number of steps.

Remark 2. In practice the global estimate𝜎 is not known in advance,
and the optimization routine may be far from the ideal. For each
minimization step we compute the local descent coefficient 𝜎𝑘 :

𝜎𝑘 := 1 − 𝐹 (𝑈
𝑘+1, 𝜀𝑘)

𝐹 (𝑈 𝑘 , 𝜀𝑘)
.

When 𝜎𝑘 ≥ 𝜎 one can use the update rule (16), (17) using the local
value 𝜎𝑘 guaranteeing that Ineq. (18) holds. In the case 𝜎𝑘 < 𝜎 one
should check that condition (11) holds for prescribed 𝜎 . If positive, we
can assign 𝜎𝑘 = 𝜎 and use update rule (16), (17). If one cannot assure
(11), it means that minimization procedure for 𝜀𝑘 failed and theorem
cannot be applied (it does not mean that Alg. 1 will not reach the
admissible set!). In numerical experiments we use value 𝜎 = 1

10
.

5 CONCLUSION
Producing maps without inverted elements is a challenge in geome-

try processing. Inspired by untangling solutions in computational

physics, our solution outperforms the state of the art in terms of

robustness. It is easy to use since we provide a simple implemen-

tation that is free of commercial product dependency (compiler,

library, etc.). Moreover, the energy is estimated independently on

Author version, 2021.

Foldover-free maps in 50 lines of code • 102:13

each triangle / tetrahedra, making it a good candidate to be adapted

to more difficult settings including free boundary and global param-

eterization.

REFERENCES
Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion Mappings

in 3D. ACM Trans. Graph. 32, 4, Article 106 (July 2013), 14 pages. https://doi.org/10.

1145/2461912.2461931

John M Ball. 1976. Convexity conditions and existence theorems in nonlinear elasticity.

Archive for rational mechanics and Analysis 63, 4 (1976), 337–403.
J. M. Ball. 1981. Global invertibility of Sobolev functions and the interpenetration of

matter. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 88, 3-4
(1981), 315–328. https://doi.org/10.1017/S030821050002014X

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4,
Article 98 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462014

J.U Brackbill and J.S Saltzman. 1982. Adaptive zoning for singular problems in two

dimensions. J. Comput. Phys. 46, 3 (1982), 342 – 368. https://doi.org/10.1016/0021-

9991(82)90020-1

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial

Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages. https://doi.

org/10.1145/2897824.2925890

AA Charakhch’yan and SA Ivanenko. 1997. A variational form of the Winslow grid

generator. J. Comput. Phys. 136, 2 (1997), 385–398.
WP Crowley. 1962. An equipotential zoner on a quadrilateral mesh. Memo, Lawrence

Livermore National Lab 5 (1962).
Josh Danczyk and Krishnan Suresh. 2013. Finite element analysis over tangled simplicial

meshes: Theory and implementation. Finite Elements in Analysis and Design 70-71

(2013), 57 – 67. https://doi.org/10.1016/j.finel.2013.04.004

R De Borst, PAJ Van Den Bogert, and J Zeilmaker. 1988. Modelling and analysis of

rubberlike materials. HERON, 33 (1), 1988 (1988).
Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.

Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.
39, 4, Article 120 (July 2020), 17 pages. https://doi.org/10.1145/3386569.3392484

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and

Werner Stuetzle. 1995. Multiresolution Analysis of Arbitrary Meshes. In Proceedings
of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’95). Association for Computing Machinery, New York, NY, USA, 173–182.

https://doi.org/10.1145/218380.218440

José Marıa Escobar, Eduardo Rodrıguez, Rafael Montenegro, Gustavo Montero, and

José Marıa González-Yuste. 2003. Simultaneous untangling and smoothing of tetra-

hedral meshes. Computer Methods in Applied Mechanics and Engineering 192, 25

(2003), 2775–2787.

Michael S. Floater. 1997. Parametrization and Smooth Approximation of Surface

Triangulations. Comput. Aided Geom. Des. 14, 3 (April 1997), 231–250. https:

//doi.org/10.1016/S0167-8396(96)00031-3

P. J. Flory. 1961. Thermodynamic relations for high elastic materials. Trans. Faraday
Soc. 57 (1961), 829–838. Issue 0. https://doi.org/10.1039/TF9615700829

Lori A Freitag and Paul Plassmann. 2000. Local optimization-based simplicial mesh

untangling and improvement. Internat. J. Numer. Methods Engrg. 49, 1-2 (2000),

109–125.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-Free Mappings by Simplex

Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages. https:

//doi.org/10.1145/2980179.2980231

VA Garanzha. 2000. The barrier method for constructing quasi-isometric grids. Com-
putational Mathematics and Mathematical Physics 40 (2000), 1617–1637.

VA Garanzha and IE Kaporin. 1999. Regularization of the barrier variational method.

Computational mathematics and mathematical physics 39, 9 (1999), 1426–1440.
V.A. Garanzha, L.N. Kudryavtseva, and S.V. Utyuzhnikov. 2014. Variational method for

untangling and optimization of spatial meshes. J. Comput. Appl. Math. 269 (2014),
24 – 41. https://doi.org/10.1016/j.cam.2014.03.006

J. Gregson, A. Sheffer, and E. Zhang. 2011. All-Hex Mesh Generation via Volumetric

PolyCube Deformation. Computer Graphics Forum (Special Issue of Symposium on
Geometry Processing 2011) 30, 5 (2011).

K. Hormann and G. Greiner. 2000. MIPS: An Efficient Global Parametrization Method.

In Curve and Surface Design. Vanderbilt University press.

Kai Hormann, Konrad Polthier, and Alia Sheffer. 2008. Mesh Parameterization: Theory

and Practice. In ACM SIGGRAPH ASIA 2008 Courses (Singapore) (SIGGRAPH Asia
’08). Association for Computing Machinery, New York, NY, USA, Article 12, 87 pages.

https://doi.org/10.1145/1508044.1508091

S.A. Ivanenko. 1988. Generation of non-degenerate meshes. U. S. S. R. Comput. Math.
and Math. Phys. 28, 5 (1988), 141–146. https://doi.org/10.1016/0041-5553(88)90023-7

Olivier-P Jacquotte. 1988. A mechanical model for a new grid generation method

in computational fluid dynamics. Computer methods in applied mechanics and
engineering 66, 3 (1988), 323–338.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-

mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages. https://doi.org/10.1145/3130800.3130895

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective

Projection in a Shell. ACM Trans. Graph. 39, 6, Article 247 (Nov. 2020), 18 pages.
https://doi.org/10.1145/3414685.3417769

Patrick Knupp. 2000a. Winslow Smoothing On Two-Dimensional Unstructured Meshes.

(05 2000).

Patrick M Knupp. 2000b. Achieving finite element mesh quality via optimization of the

Jacobian matrix norm and associated quantities. Part II—a framework for volume

mesh optimization and the condition number of the Jacobian matrix. International
Journal for numerical methods in engineering 48, 8 (2000), 1165–1185.

Patrick M Knupp. 2001. Hexahedral and tetrahedral mesh untangling. Engineering with
Computers 17, 3 (2001), 261–268.

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-scale

bounded distortion mappings. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH Asia) 34, 6 (2015).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential

Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM
Trans. Graph. 39, 4, Article 49 (July 2020), 20 pages. https://doi.org/10.1145/3386569.

3392425

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4, Article 108 (July 2012), 13 pages. https://doi.org/10.1145/2185520.

2185604

Dong C. Liu and Jorge Nocedal. 1989. On the Limited Memory BFGS Method for Large

Scale Optimization. Mathematical Programming 45, 1–3 (Aug. 1989), 503–528.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillo t. 2002. Least Squares

Conformal Maps for Automatic Texture Atlas Generation. In ACM SIGGRAPH
conference proceedings, ACM (Ed.). http://www.loria.fr/publications/2002/A02-

R-065/A02-R-065.ps

Alexander Naitsat, Yufeng Zhu, and Yehoshua Y Zeevi. 2020. Adaptive Block Coordinate

Descent for Distortion Optimization. In Computer Graphics Forum, Vol. 39. Wiley

Online Library, 360–376.

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover - Parameteriza-

tion of 3D Volumes. Computer Graphics Forum (2011). https://doi.org/10.1111/j.1467-

8659.2011.02014.x

Robert W. Penn. 1970. Volume Changes Accompanying the Extension of Rubber.

Transactions of the Society of Rheology 14, 4 (1970), 509–517. https://doi.org/10.1122/

1.549176

Marina Faivushevna Prokhorova. 2008. Problems of homeomorphism arising in the

theory of grid generation. Proceedings of the Steklov Institute of Mathematics 261, 1
(2008), 165–182.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.

Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (April

2017), 16 pages. https://doi.org/10.1145/2983621

Yu. G. Reshetnyak. 1966. Bounds on moduli of continuity for certain mappings. Siberian
Mathematical Journal 7 (1966), 879–886.

Martin Rumpf. 1996. A variational approach to optimal meshes. Numer. Math. 72, 4
(1996), 523–540.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.

Locally Injective Mappings. Computer Graphics Forum (proceedings of Symposium
on Geometry Processing) 32, 5 (2013).

Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019. Progressive

Embedding. ACM Trans. Graph. 38, 4, Article 32 (July 2019), 13 pages. https:

//doi.org/10.1145/3306346.3323012

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron

Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans.
Graph. 36, 4, Article 38 (July 2017), 11 pages. https://doi.org/10.1145/3072959.

3073618

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems

for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1, Article 3 (Feb. 2019),
15 pages. https://doi.org/10.1145/3241041

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.

ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages. https://doi.org/10.1145/

2766947

Dmitry Sokolov. 2021. Supplemental material for “Foldover-free maps in 50 lines of

code”. https://github.com/ssloy/invertible-maps. Accessed: 2020-04-26.

Jian-Ping Su, Xiao-Ming Fu, and Ligang Liu. 2019. Practical Foldover-

Free Volumetric Mapping Construction. Computer Graphics Fo-
rum 38, 7 (2019), 287–297. https://doi.org/10.1111/cgf.13837

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13837

Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient Bijective

Parameterizations. ACM Trans. Graph. 39, 4, Article 111 (July 2020), 8 pages. https:

//doi.org/10.1145/3386569.3392435

Author version, 2021.

https://doi.org/10.1145/2461912.2461931
https://doi.org/10.1145/2461912.2461931
https://doi.org/10.1017/S030821050002014X
https://doi.org/10.1145/2461912.2462014
https://doi.org/10.1016/0021-9991(82)90020-1
https://doi.org/10.1016/0021-9991(82)90020-1
https://doi.org/10.1145/2897824.2925890
https://doi.org/10.1145/2897824.2925890
https://doi.org/10.1016/j.finel.2013.04.004
https://doi.org/10.1145/3386569.3392484
https://doi.org/10.1145/218380.218440
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1039/TF9615700829
https://doi.org/10.1145/2980179.2980231
https://doi.org/10.1145/2980179.2980231
https://doi.org/10.1016/j.cam.2014.03.006
https://doi.org/10.1145/1508044.1508091
https://doi.org/10.1016/0041-5553(88)90023-7
https://doi.org/10.1145/3130800.3130895
https://doi.org/10.1145/3414685.3417769
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/2185520.2185604
https://doi.org/10.1145/2185520.2185604
http://www.loria.fr/publications/2002/A02-R-065/A02-R-065.ps
http://www.loria.fr/publications/2002/A02-R-065/A02-R-065.ps
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1122/1.549176
https://doi.org/10.1122/1.549176
https://doi.org/10.1145/2983621
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3241041
https://doi.org/10.1145/2766947
https://doi.org/10.1145/2766947
https://github.com/ssloy/invertible-maps
https://doi.org/10.1111/cgf.13837
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13837
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1145/3386569.3392435

102:14 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

Fig. 18. On each simplex the map ®𝑢 (®𝑥) is affine and is entirely defined by
the position of the vertices of the domain simplex { ®𝑥𝑖 } and its image {®𝑢𝑖 }.

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lam-

brechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013),
8–26.

W. T. Tutte. 1963. How to Draw a Graph. Proceedings of the London Mathemat-
ical Society s3-13, 1 (01 1963), 743–767. https://doi.org/10.1112/plms/s3-13.1.

743 arXiv:https://academic.oup.com/plms/article-pdf/s3-13/1/743/4385170/s3-13-1-

743.pdf

Ofir Weber, Ashish Myles, and Denis Zorin. 2012. Computing Ex-

tremal Quasiconformal Maps. Computer Graphics Forum 31, 5

(2012), 1679–1689. https://doi.org/10.1111/j.1467-8659.2012.03173.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03173.x

Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary

Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages. https:

//doi.org/10.1145/2601097.2601227

Alan M Winslow. 1966. Numerical solution of the quasilinear Poisson equation in a

nonuniform triangle mesh. Journal of computational physics 1, 2 (1966), 149–172.
Chunyang Ye, Jian-Ping Su, Ligang Liu, and Xiao-Ming Fu. 2020. Memory-

Efficient Bijective Parameterizations of Very-Large-Scale Models. Com-
puter Graphics Forum 39, 7 (2020), 1–12. https://doi.org/10.1111/cgf.14122

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14122

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-

Newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018),
14 pages. https://doi.org/10.1145/3197517.3201359

A COMPREHENSIVE DESIGN FORMULAE
Given a map ®𝑢, let us denote by ®𝑎𝑖 , 𝑖 = 1, 2 (, 3) the tangent basis,
i.e. vectors forming the columns of the Jacobian matrix 𝐽 . For ex-

ample, in 2D we have ®𝑎1 :=

(
𝜕𝑢
𝜕 𝑥

𝜕 𝑣
𝜕 𝑥

)⊤
and ®𝑎2 :=

(
𝜕𝑢
𝜕 𝑦

𝜕 𝑣
𝜕 𝑦

)⊤
.

Let us denote by
®𝑏𝑖 the dual basis, i.e. vectors chosen in the way

that ®𝑎⊤
𝑖
®𝑏 𝑗 = 𝛿𝑖 𝑗 det 𝐽 for all indices 𝑖, 𝑗 . In particular, for the 2D

settings the dual basis can be written as
®𝑏1 :=

(
𝜕 𝑣
𝜕 𝑦 − 𝜕𝑢𝜕 𝑦

)⊤
and

®𝑏2 :=

(
− 𝜕 𝑣𝜕 𝑥

𝜕𝑢
𝜕 𝑥

)⊤
. In the 3D case

®𝑏𝑘 = ®𝑎𝑖 × ®𝑎 𝑗 , where 𝑖, 𝑗, 𝑘 is

cyclic permutation from 1, 2, 3. It is a handy choice of variables, in

particular, tr 𝐽⊤ 𝐽 =
∑
𝑖 | ®𝑎𝑖 |2 and

𝜕 det 𝐽

𝜕 ®𝑎𝑖 = ®𝑏𝑖 . For further simplifi-

cation of notations we will use 𝜒 for 𝜒 (𝐷, 𝜀), 𝜒 ′ for 𝜕 𝜒 (𝐷,𝜀)
𝜕 𝐷

and

𝑎⊤ = (®𝑎⊤
1
. . . ®𝑎⊤

𝑑
), 𝑏⊤ = (®𝑏⊤

1
. . . ®𝑏⊤

𝑑
).

A.1 Gradient
In order to derive expressions for the gradient and the Hessian

matrix of 𝐹 , we write down explicitly the Jacobian matrix 𝐽 for the

affine map of a simplex 𝑇 with vertices ®𝑢0, ®𝑢1, . . . , ®𝑢𝑑 :

𝐽 = (®𝑎1 . . . ®𝑎𝑑) = (®𝑢1 − ®𝑢0 ®𝑢2 − ®𝑢0 . . . ®𝑢𝑑 − ®𝑢0) 𝑆−1 =
= (®𝑢0 . . . ®𝑢𝑑)𝑍,

where

𝑆 := (®𝑥1 − ®𝑥0 ®𝑥2 − ®𝑥0 . . . ®𝑥𝑑 − ®𝑥0), det 𝑆 > 0

is the shape matrix, ®𝑥𝑖 are vertices of “ideal” or “target” shape for
the image of the simplex 𝑇 , and 𝑍 is a (𝑑 + 1) × 𝑑 matrix defined as

𝑍 := {𝑧𝑖 𝑗 } :=
(
−1 . . . −1

𝐼

)
𝑆−1

Since the Jacobian matrix is a linear function of ®𝑢𝑖 , we have
𝜕 ®𝑎𝑖
𝜕 ®𝑢⊤

𝑗

= 𝑧 𝑗𝑖 𝐼 , 𝑖 = 1, . . . , 𝑑, 𝑗 = 0, . . . , 𝑑 .

The additive contribution to gradient of 𝐹 from the simplex 𝑇 can

be written using correspondence of local indices 0 − 𝑑 and global

indices 𝑔0 − 𝑔𝑑 in the list of vertices:

(∇𝐹)𝑔𝑗 +=
det 𝑆

𝑑!

𝑑∑
𝑖=1

𝜕 ®𝑎⊤
𝑖

𝜕 ®𝑢 𝑗
𝜕 𝜙

𝜕 ®𝑎𝑖
=

=
det 𝑆

𝑑!

𝑑∑
𝑖=1

𝑧 𝑗𝑖
𝜕 𝜙

𝜕 ®𝑎𝑖
, 𝑗 = 0, . . . , 𝑑,

where function 𝜙 (𝐽) is defined in § 4.2. Let us provide an explicit

expression for
𝜕 𝜙

𝜕 ®𝑎𝑖 :

𝜕 𝜙

𝜕 ®𝑎𝑖
=

2

𝜒
2

𝑑

®𝑎𝑖 −
1

𝜒

(
2

𝑑
𝑓𝜀 𝜒
′ − 2𝜆 det 𝐽 + 𝜆𝑔𝜀 𝜒 ′

)
®𝑏𝑖

A.2 Hessian
The blocks of the non-negative definite part of Hessian matrix of 𝐹

can be updated using the following general formula

𝐻+𝑔𝑗𝑔𝑖 +=
det 𝑆

𝑑!

∑
𝑚,𝑙

𝜕 ®𝑎⊤𝑚
𝜕 ®𝑢 𝑗

𝑀+
𝑚𝑙

𝜕 ®𝑎𝑙
𝜕 ®𝑢⊤
𝑖

,

where𝑀+
𝑚𝑙

denotes a 𝑑 × 𝑑 block of 𝑑2 × 𝑑2 positive definite matrix

𝑀+ defined in Eq. (9). Let us provide an explicit expression for the

matrix:

𝑀+ =
(
𝐼 𝑏

) (
𝜕2 Φ

𝜕 𝑎 𝜕 𝑎⊤
𝜕2 Φ
𝜕 𝑎 𝜕 𝐷

𝜕2 Φ
𝜕 𝐷 𝜕 𝑎⊤

𝜕2 Φ
𝜕 𝐷2

) (
𝐼 𝑏

)⊤
, where

𝜕2 Φ

𝜕 𝑎 𝜕 𝑎⊤
=

2

𝜒
2

𝑑

𝐼

𝜕2 Φ

𝜕 𝐷2
=

2

𝑑

(
1 + 2

𝑑

)
|𝑎 |2 𝜒 ′2

𝜒2+
2

𝑑

+ 𝜆
(
2

𝜒
− 4𝐷 𝜒 ′

𝜒2
+ 2(1 + 𝐷2) 𝜒

′2

𝜒3

)
𝜕2 Φ

𝜕 𝑎 𝜕 𝐷
= − 4

𝑑

𝜒 ′

𝜒1+
2

𝑑

𝑎.

Author version, 2021.

https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1112/plms/s3-13.1.743
http://arxiv.org/abs/https://academic.oup.com/plms/article-pdf/s3-13/1/743/4385170/s3-13-1-743.pdf
http://arxiv.org/abs/https://academic.oup.com/plms/article-pdf/s3-13/1/743/4385170/s3-13-1-743.pdf
https://doi.org/10.1111/j.1467-8659.2012.03173.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03173.x
https://doi.org/10.1145/2601097.2601227
https://doi.org/10.1145/2601097.2601227
https://doi.org/10.1111/cgf.14122
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14122
https://doi.org/10.1145/3197517.3201359

Foldover-free maps in 50 lines of code • 102:15

Obviously the leading 𝑑 × 𝑑 blocks of the matrix 𝐻+ are strictly
positive definite and can be used to build Newton-type minimization

algorithm.

B CONVEXITY OF Φ

Recall that the function Φ is defined as follows (§ 4.2):

Φ(𝑎, 𝐷) := |𝑎 |
2

𝑞
2

𝑑

+ 𝜆𝐷
2 + 1
𝑞

,

where 𝑎 ∈ R𝑑2 is the (column-wise) flattening of the Jacobian matrix

𝐽 , i.e. the vector composed of the elements of 𝐽 .

Lemma 1. ∇∇⊤Φ > 0

Proof. It is straightforward to see that the (𝑑2 + 1) × (𝑑2 + 1)
Hessian matrix of Φ can be written in the 2× 2 block representation:

∇∇⊤Φ = 𝑃 + 𝜆𝑄,

where

𝑃 :=
©­­«

2

𝑞
2

𝑑

𝐼 − 4

𝑑

𝑞′𝑎

𝑞
1+ 2

𝑑

− 4

𝑑

𝑞′𝑎⊤

𝑞
1+ 2

𝑑

2

𝑑
(1 + 2

𝑑
) |𝑎 |

2𝑞′2

𝑞
2+ 2

𝑑

ª®®¬ and

𝑄 :=

(
0 0

0
2

𝑞 − 4𝐷
𝑞′

𝑞2
+ 2(1 + 𝐷2) 𝑞

′2

𝑞3

)
.

It is trivial to verify that 𝑄 ≥ 0, since 𝑄22 is a strictly positive

quadratic function of argument 𝐷 . Since the leading blocks of the

matrix 𝑃 are positive definite and the Schur complement

𝑃22 − 𝑃21𝑃−111 𝑃12 =
|𝑎 |2

𝑞2+
2

𝑑

2

𝑑

(
1 − 2

𝑑

)
≥ 0

is non-negative definite, overall convexity of Φ is established. □

Remark 3. Note that we have just proved the convexity of the
function Φ. As an immediate consequence we obtain polyconvexity of
the functional (1), because it is a particular case of our functional (4)
with 𝜒 = 𝑞.

C SPECTRAL BOUNDS FOR THE HESSIAN
Using assumption that function 𝐹 (𝑈 , 𝜀) is bounded, let us derive
(non-tight) spectral bounds for the positive definite part of the

Hessian matrix at the point 𝐽 = 𝐽0, 𝐷 = 𝐷0, 𝑞 = 𝜒 (𝐽0, 𝜀). Evidently
contribution from each simplex is bounded 𝜙 (𝐽0) < 𝐾 , meaning

that

1 + 𝐷2 <
𝐾

𝜆
𝜒 (𝐷, 𝜀), |𝑎 |2 < 𝐾 (𝜒 (𝐷, 𝜀))2/𝑑

From these inequalities and the fact that
𝜆
𝐾

< 𝑞 <
√
𝐷2 + 𝜀2, we can

deduce

𝐷2 + 𝜀2 >
𝜆2

𝐾2
, 𝐷2 <

𝐾2

𝜆2
, 𝑞 <

√
𝐾2

𝜆2
+ 𝜀2 .

Hence we immediately obtain

|𝑎 |2 < 𝐾

(
𝐾2

𝜆2
+ 𝜀2

)
1/𝑑

, |𝑏 | < 𝑑 |𝑎 |𝑑 < 𝑑𝐾𝑑
(
𝐾2

𝜆2
+ 𝜀2

)
.

The last inequality follows from the fact that 𝑏 consists of columns

of the matrix cof 𝐽 .

Now we can estimate spectral bounds for the matrix 𝑃 + 𝜆𝑄 .
Clearly,

𝜆max (𝑃 + 𝜆𝑄) ≤ tr(𝑃 + 𝜆𝑄)

=
2𝑑2

𝑞
2

𝑑

+ 2

𝑑
(1 + 2

𝑑
) |𝑎 |

2𝑞′2

𝑞2+
2

𝑑

+ 𝜆
(
2

𝑞
− 4𝐷 𝑞

′

𝑞2
+ 2(1 + 𝐷2)𝑞

′2

𝑞3

)
=

2𝑑2

𝑞
2

𝑑

+ 2

𝑑
(1 + 2

𝑑
) |𝑎 |

2𝑞′2

𝑞2+
2

𝑑

+ 2𝜆

𝑞

1

𝐷2 + 𝜀2

(
1 + 𝜀4

4𝑞2

)
,

where the relations

𝑞′

𝑞
=

1

√
𝐷2 + 𝜀2

, 𝑞 =
1

2

(𝐷 +
√
𝐷2 + 𝜀2)

were used to obtain the last equality.

A lower bound for the minimum eigenvalue 𝜆1 follows from

the simple estimate obtained from the arithmetic-geometric mean

inequality written for the eigenvalues 𝜆2 ≤ . . . ≤ 𝜆𝑑2+1 of 𝑃 + 𝜆𝑄 :

0 < 𝜆min (𝑃 + 𝜆𝑄) = 𝜆1 =
det(𝑃 + 𝜆𝑄)∏𝑑2+1

𝑘=2
𝜆𝑘

≥ det(𝑃 + 𝜆𝑄)(
1

𝑑2

∑𝑑2+1
𝑘=2

𝜆𝑘

)𝑑2 >

(
𝑑2

tr(𝑃 + 𝜆𝑄)

)𝑑2
det(𝑃 + 𝜆𝑄) .

The determinant can be bounded as

det(𝑃 + 𝜆𝑄) = 2
𝑑2

𝑞2𝑑
𝜆

(
2

𝑞
− 4𝐷 𝑞

′

𝑞2
+ 2(1 + 𝐷2)𝑞

′2

𝑞3

)
≥ 2

𝑑2+1

𝑞2𝑑+1
𝜆

1 + 𝐷2
,

where the last inequality is obtained by taking the minimum over

(𝑞′/𝑞) > 0 considered as independent variable.

The spectral estimates for matrix 𝑃 + 𝜆𝑄 can be expressed via

𝐾, 𝜆, 𝜀 and are guaranteed to be uniformly bounded from below

and from above, provided that 𝜆 > 0 and 𝜀 is bounded from above.

Since vector 𝑏 is uniformly bounded from above, we immediately

get uniform bounds

𝑘1𝐼 < 𝑀+ < 𝑘2𝐼 , 𝑘1 < 𝑘2

where parameters 𝑘𝑖 = 𝑘𝑖 (𝐾, 𝜆, 𝜀) > 0 are uniformly bounded from

above and from below. It means that

𝑘1Dℎ (𝑈) <
1

2

𝑈⊤𝐻+𝑈 < 𝑘2Dℎ (𝑈),

whereDℎ (𝑈) is the discrete Dirichlet functional for standard simpli-

cial linear finite elements which approximates Dirichlet functional

D(𝑢 (𝑥)) = 1

2

∫
Ω

∑
𝑖

|∇𝑢𝑖 |2 𝑑𝑥 .

Thus we have demonstrated stability of the positive definite part of

the Hessian matrix near the barrier.

Author version, 2021.

102:16 • Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov

Listing 1. A complete L-BFGS-based quad mesh untangling example, the result is shown in Fig. 3–right.

1 from mesh import Mesh
2 import numpy as np
3 from scipy.optimize import fmin_l_bfgs_b
4

5 mesh = Mesh() # generate a test quad mesh
6 n = mesh.nverts
7 Q = [np.matrix('-1,-1;1,0;0,0;0,1'), np.matrix('-1,0;1,-1;0,1;0,0'), # quadratures for
8 np.matrix('0,0;0,-1;1,1;-1,0'), np.matrix('0,-1;0,0;1,0;-1,1')] # every quad corner
9

10 def jacobian(U, qc, quad): # evaluate the Jacobian matrix at the given quadrature point
11 return np.matrix([[U[quad[0]], U[quad[1]], U[quad[2]], U[quad[3]]],
12 [U[quad[0]+n], U[quad[1]+n], U[quad[2]+n], U[quad[3]+n]]]) * Q[qc]
13

14 for iter in range(10): # outer L-BFGS loop
15 mindet = min([np.linalg.det(jacobian(mesh.x, qc, quad)) for quad in mesh.quads for qc in range(4)])
16 eps = np.sqrt(1e-6**2 + .04*min(mindet, 0)**2); # the regularization parameter 𝜀
17

18 def energy(U): # compute the energy and its gradient for the map ®𝑢
19 F,G = 0, np.zeros(2*n)
20 for quad in mesh.quads: # sum over all quads
21 for qc in range(4): # evaluate the Jacobian matrix for every quad corner
22 J = jacobian(U, qc, quad)
23 det = np.linalg.det(J)
24 chi = det/2 + np.sqrt(eps**2 + det**2)/2 # the penalty function 𝜒 (𝜀, det(𝐽))
25 chip = .5 + det/(2*np.sqrt(eps**2 + det**2)) # its derivative 𝜒′ (𝜀, det(𝐽))
26 f = np.trace(np.transpose(J)*J)/chi # quad corner shape quality
27 F += f

28 dfdj = (2*J - np.matrix([[J[1,1],-J[1,0]],[-J[0,1],J[0,0]]])*f*chip)/chi #
𝜕𝑓𝜀

𝜕 ®𝑎⊤𝑐
: derivative w.r.t the Jacobian

29 dfdu = Q[qc] * np.transpose(dfdj) # chain rule for the real variables
30 for i,v in enumerate(quad):
31 if (mesh.boundary[v]): continue # the boundary verts are locked
32 G[v] += dfdu[i,0]
33 G[v+n] += dfdu[i,1]
34 return F,G
35 mesh.x = fmin_l_bfgs_b(energy, mesh.x)[0] # inner L-BFGS loop
36 print(mesh) # print wavefront .obj file

Listing 2. A simplistic quad mesh class, the initialization is shown in Fig. 3–left
1 import numpy as np
2

3 class Mesh():
4 def __init__(self): # generate the test problem: a regular 2d grid with upper half shifted
5 n = 8
6 self.x = [i/n + int(j>=n//2)*3/5 for j in range(n) for i in range(n)] + \
7 [2*j/n - int(j>=n//2)*3/5 for j in range(n) for i in range(n)] # 2D geometry
8 self.quads = [[i+j*n, i+1+j*n, i+1+(j+1)*n, i+(j+1)*n] for j in range(n-1) for i in range(n-1)] # connectivity
9 self.boundary = [i==0 or i==n-1 or j==0 or j==n-1 for j in range(n) for i in range(n)] # vertex boundary flags
10

11 @property
12 def nverts(self):
13 return len(self.x)//2
14

15 def __str__(self): # wavefront .obj output
16 ret = ""
17 for v in range(self.nverts):
18 ret = ret + ("v %f %f 0\n" % (self.x[v], self.x[v+self.nverts]))
19 for f in self.quads:
20 ret = ret + ("f %d %d %d %d\n" % (f[0]+1, f[1]+1, f[2]+1, f[3]+1))
21 return ret

Author version, 2021.

	Abstract
	1 Introduction
	2 Penalty method for mesh untangling
	2.1 Variational formulation for grid generation
	2.2 Penalty method
	2.3 Resolution scheme

	3 Results and discussion
	3.1 Benchmark database
	3.2 Further testing
	3.3 Limitations

	4 Analysis
	4.1 Invertibility of the minimizer
	4.2 Modified Hessian matrix
	4.3 Choice of k

	5 Conclusion
	References
	A Comprehensive design formulae
	A.1 Gradient
	A.2 Hessian

	B Convexity of
	C Spectral bounds for the Hessian

