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Abstract

The resection of small, low-dense or deep lung nodules during video-assisted thoracoscopic surgery (VATS)
is surgically challenging. Nodule localization methods in clinical practice typically rely on the preoperative
placement of markers, which may lead to clinical complications. We propose a markerless lung nodule
localization framework for VATS based on a hybrid method combining intraoperative cone-beam CT (CBCT)
imaging, free-form deformation image registration, and a poroelastic lung model with allowance for air
evacuation. The difficult problem of estimating intraoperative lung deformations is decomposed into two
more tractable sub-problems: (i) estimating the deformation due the change of patient pose from preoperative
CT (supine) to intraoperative CBCT (lateral decubitus); and (ii) estimating the pneumothorax deformation,
i.e. a collapse of the lung within the thoracic cage. We were able to demonstrate the feasibility of our
localization framework with a retrospective validation study on 5 VATS clinical cases. Average initial errors
in the range of 22 to 38 mm were reduced to the range of 4 to 14 mm, corresponding to an error correction
in the range of 63 to 85%. To our knowledge, this is the first markerless lung deformation compensation
method dedicated to VATS and validated on actual clinical data.

Keywords: Biomechanical modeling, Image registration, Lung deformation, Video-assisted thoracoscopic
surgery

∗Corresponding author.
Email addresses:

pablo-arturo.alvarez@univ-rennes1.fr (Pablo Alvarez),
simon.rouze@chu-rennes.fr (Simon Rouzé),
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1. Introduction

Lung cancer is the leading cause of cancer death
among both men and women, making up more than
18% of all cancer deaths (Bray et al., 2018). The
high mortality of lung cancer is associated with its
asymptomatic nature that hinders its early detection,
diagnosis and treatment. However, the advent of
screening programs with low-dose computed tomog-
raphy (CT) have significantly increased patient sur-
vival (Henschke et al., 1999; National Lung Screening

Preprint submitted to Medical Image Analysis



Trial Research Team et al., 2011). Surgical resec-
tion is considered one of the best curative treatments
for patients with early-stage lung cancer. Histori-
cally, lung lobectomy (i.e. the removal of entire lung
lobes) through open thoracotomy was the chosen pro-
tocol. Within the last decades, clinical practice has
evolved towards less invasive, better tissue preserving
techniques. For instance, minimally-invasive video-
assisted thoracoscopic surgery (VATS) has proven to
yield equivalent clinical outcomes while improving
patient care, and decreasing both the length of hos-
pitalization and post-operative complications (Falcoz
et al., 2016). In parallel, the interest for smaller, non-
anatomical resections (wedge resections) has arisen
for small nodules as a substitute to lung lobectomy.
Although no consensus has been reached yet, studies
suggest that the use of appropriate negative margins
during wedge resections could provide patient out-
comes equivalent to those of traditional lobectomies
(Mohiuddin et al., 2014; Wolf et al., 2017). How-
ever, this shift from lung lobectomy to wedge re-
section through minimally-invasive VATS has intro-
duced new surgical challenges. For instance, thoracic
incisions to insert surgical instrument break the pres-
sure equilibrium in the intrapleural space and cause
air to flow into the thoracic cage. This abnormal air
inflow, known as a pneumothorax, induces very large
tissue deformation by collapsing the lung. While this
voluntary induced pneumothorax is required to cre-
ate surgical workspace, it significantly impairs the
intraoperative localization of lung nodules, especially
for small nodules that are generally not visible to
the naked eye nor palpable through thoracoscopic
instruments (Chao et al., 2018). Failing to localize
lung nodules during VATS may ultimately result in
unplanned surgical conversion to open thoracotomy,
with a conversion rate as high as 54% reported in
some studies (Suzuki et al., 1999). Therefore, several
nodule localization strategies are commonly used in
clinical practice. The main approach consists in plac-
ing fiducial markers in the nodule to facilitate its in-
traoperative localization. This nodule marking gen-
erally requires an additional preoperative procedure,
before surgery, for the placement of hookwires, micro-
coils, or dyes under fluoroscopy guidance (Keating
and Singhal, 2016). Despite the high success rates re-

ported for these nodule localization techniques (Chao
et al., 2018), the risk of marker migration is still non
negligible and the patient is subject to additional ra-
diation exposure. Furthermore, the optimal coordi-
nation of the two procedures (i.e. preoperative local-
ization and surgical resection) may become a logistic
burden, while the patient is at risk during the transfer
from the CT suite to the operating room.

To overcome the problems associated with preop-
erative localization procedures, intraoperative nod-
ule localization has been proposed. This strategy
relies on intraoperative imaging to guide nodule-
marker placement immediately before surgery, gen-
erally in a hybrid operating room. For instance,
Gill et al. (2015) have introduced the iVATS system
that uses a C-arm to localize nodules placing metal
fiducial markers under fluoroscopy guidance. Other
groups have implemented similar approaches com-
bining intraoperative CT guidance with either hook-
wire (Zhao et al., 2016), dye (Yang et al., 2016), or
double nodule marking (Chao et al., 2019). Chao
et al. (2018) showed that these intraoperative lo-
calization techniques were associated with decreased
time at risk but increased time in the operating room,
without any significant difference in clinical outcomes
with respect to preoperative localization.

Another intraoperative localization paradigm con-
sists in markerless approaches. The idea is to use
intraoperative imaging on the patient under operat-
ing conditions, namely, after the insertion of surgical
ports and the induction of pneumothorax. This al-
lows to localize the nodule immediately before its sur-
gical resection. Several authors have proposed to use
intraoperative ultrasound for the localization of lung
nodules (Kondo et al., 2009; Rocco et al., 2011; Wada
et al., 2016). In these images, nodules can be identi-
fied as hyperechoic regions with hypoechoic shadows
(Kondo et al., 2009). However, this strategy is highly
expert-dependent and requires a fully deflated lung,
which is in many cases unfeasible. Another method
has been introduced by Rouzé et al. (2016) in a hy-
brid operating room. A Cone Beam CT (CBCT) im-
age of the semi-deflated lung is used for the localiza-
tion and delineation of the nodule. This delineation
is then registered to intraoperative fluoroscopic im-
ages that are used for guidance. A clinical study per-
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formed on 8 patients demonstrated the feasibility of
this approach. While promising, all these intraoper-
ative markerless approaches rely entirely on the nod-
ule visibility in the images, which may be limited in
many cases by the reduced quality and contrast of in-
traoperative images. For instance, the fuzzy borders
and low-density of ground glass opacity (GGO) nod-
ules could make them indistinguishable from normal
parenchyma in a low-contrast CBCT or US image. To
overcome this limitation, we believe that image regis-
tration techniques can be used to bring preoperative
surgical planning information into the intraoperative
setting.

Image registration has been previously used to
compensate for lung deformation to improve the ef-
ficiency of medical lung imaging in the diagnosis,
treatment-planning, and guided intervention of lung
diseases (McClelland et al., 2013). Several registra-
tion methods have been proposed based on image in-
tensity (Murphy et al., 2011), biomechanical models
(Al-Mayah et al., 2010; Seyfi Noferest et al., 2018),
or a combination of both (Han et al., 2017). The
applicability of these methods is currently restricted
to lung breathing motion, mainly for conformational
radiation therapy. However, lung deformation is con-
siderably larger during VATS (Alvarez et al., 2018)
which increases the difficulty of the registration prob-
lem. To our knowledge, only a handful of works
have addressed the problem of lung nodule localiza-
tion during VATS through image registration (Al-
varez et al., 2019a; Uneri et al., 2013; Lesage et al.,
2020). This paper presents a novel method to ad-
dress this problem, evaluated for the first time on
actual VATS clinical cases.

The contributions of this work can be summarized
as follows: (i) we propose a markerless approach for
lung nodule localization during VATS that is based
on intraoperative CBCT imaging and image registra-
tion techniques; (ii) we propose a hybrid registration
method combining intensity-based and biomechanics-
based image registration; (iii) we specifically take into
account lung deformation resulting from the patient’s
change of pose, the pneumothorax, the diaphragm
movements, and the hilum deformation during the
surgical procedure; and (iv) we evaluate our method
on 5 retrospective clinical cases of patients that un-

derwent wedge resection through VATS.

The remaining of this document is organized as fol-
lows: Sec. 2 presents an overview of existing methods
for lung deformation estimation. Sec. 3 provides an
overview of our proposed approach. Sec. 4 describes
the lung biomechanical model used, then Secs. 5, 6,
and 7 describe the processing steps of our registration
method. Results are reported in Sec. 8 and discussed
in Sec. 9, and Sec. 10 provides final concluding re-
marks.

2. Related works

The lung is a very soft, highly deformable organ in
constant deformation due to breathing, heart beats,
and body movements. A wide variety of image reg-
istration techniques based on image intensity, biome-
chanical models, or hybrid approaches have been de-
veloped to compensate for such deformation. These
techniques were proposed mainly in the context of
breathing motion, with CT images typically acquired
by pairs at the end of inhalation and exhalation,
or during the entire breathing cycle through 4DCT.
In this study, our interest is the compensation of
lung deformation during VATS using intraoperative
CBCT imaging. Breathing deformation and VATS
deformation have different causes and orders of mag-
nitude, the latter being significantly larger. During
normal breathing, lung deformation results from the
contraction and relaxation of respiratory muscles that
induce volumetric changes. The lung parenchyma
can slide against the thoracic cage thanks to the lu-
bricating liquid that separates these structures. Dur-
ing VATS, lung deformation results mostly from a
change of patient pose, the insertion of surgical ports,
and the general anesthesia. The insertion of surgical
ports induces a pneumothorax that deflates the lung
parenchyma and deforms the hilum. General anes-
thesia also relaxes the diaphragm muscle that con-
sequently moves towards the apex, pushed by the
weight of abdominal organs. The combination of
these factors with the reduced quality of intraoper-
ative CBCT images make the compensation of lung
deformation for nodule localization during VATS a
real challenge.
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2.1. Intensity-based image registration methods for
lung deformation compensation

Besides large lung deformation, sliding motion
against the thoracic cage is widely known to be one
of the major challenges encountered when dealing
with intensity-based elastic registration of the lung
parenchyma. Anatomically, the deformation of the
lung and surrounding structures are constrained at
the interface in the normal direction, but move al-
most freely in the tangential direction. However,
most transformation models used in medical image
registration assume a continuous deformation field
that can not model this sliding effect (Maintz and
Viergever, 1998; Sotiras et al., 2012).

Several authors have introduced methods for tak-
ing into account sliding interfaces for lung registra-
tion. Anatomical segmentations can be used to in-
dependently register the structures at the interface
(Rietzel and Chen, 2006). With this technique, clas-
sical image registration algorithms can be used with
little or no modification. However, gaps or overlaps
may appear at the interface as a result of the inde-
pendent registration. One solution consists in using
a boundary-matching penalty method so that the in-
terfaces are tied together. Wu et al. (2008) proposed
to dilate the segmentations after a masking proce-
dure to enforce the alignment of the interface. An-
other strategy is based on decomposing the deforma-
tion field at the interface into normal and tangen-
tial components. Sliding motion can be preserved
by applying regularization on the normal component
(Schmidt-Richberg et al., 2012), or by using a com-
posite transformation with a shared normal compo-
nent but independent tangential components (Del-
mon et al., 2013). The main drawback of these meth-
ods is the need for anatomical segmentations. Indeed,
these segmentations are time-consuming to extract
manually or may be inaccurate if extracted automat-
ically, especially for pathological lungs or low contrast
images. To overcome this issue, other works have
proposed methods without prior anatomical segmen-
tations. Ruan et al. (2009) presented a regulariza-
tion strategy that discriminates the divergence and
the curl of the deformation field separately. Sliding
motion is preserved by allowing large shearing while
penalizing other forms of non-smooth deformation.

Another technique consists in using several layers of
supervoxels (i.e. groups of neighboring voxels with
similar intensities) connected using minimum span-
ning trees (Heinrich et al., 2016). The deformation
field is enforced to be smooth across edge connec-
tions via regularization. However, non-connected su-
pervoxels are allowed to be registered independently,
hence preserving sliding motion.

In a previous preliminary study, we applied the
method proposed by Wu et al. (2008) to register two
intraoperative CBCT images of the undeformed and
deformed lung acquired during a VATS intervention
(Alvarez et al., 2019b). We managed to obtain rea-
sonable alignment of the lung surface, but insufficient
alignment of the internal structures. To our knowl-
edge, no other study has addressed the same problem
using intensity-based image registration only.

2.2. Biomechanical model-based methods for lung de-
formation compensation

Another approach for lung deformation compensa-
tion is the use of biomechanical models describing the
lung’s behavior. The Finite Element Method (FEM)
is commonly used to obtain numerical solutions to
the underlying equations. For instance, Zhang et al.
(2004) proposed a Finite Element (FE) deformable
model of the lung reconstructed at the end of exhala-
tion to simulate lung expansion motion. The thoracic
cage surface at the end of inhalation was included
in the formulation as frictionless contact conditions
that constrained lung expansion. A uniformly dis-
tributed negative surface pressure was applied to the
deformable model until it filled the thoracic cage. A
similar approach to lung expansion motion was pro-
posed by Werner et al. (2009). The authors per-
formed a study on 12 lung tumor patients and eval-
uated how changing tissue parameters affect the es-
timated deformations. The results suggested that if
tissue homogeneity was considered, changing tissue
parameters could only produce marginal perturba-
tions in lung deformation, since it was mainly dic-
tated by the limiting geometry of the thoracic cage.
Another study investigated the effect of tissue het-
erogeneity while modeling lung expansion (Ilegbusi
et al., 2014). The elasticity modulus was estimated
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locally using an inverse non-invasive method. In av-
erage, the obtained values decreased with proximity
to the diaphragm. The authors showed that the his-
tory of deformation as well as its spatial distribu-
tion were different when considering heterogeneous
versus homogeneous material properties. Other au-
thors have also investigated the use of non-constant,
non-uniformly distributed negative surface pressures
to produce lung expansion. Eom et al. (2010) com-
puted negative pressure values from patient-specific
Pressure-Volume (P-V) curves calculated from 4DCT
data. The FE deformation predictions for the whole
breathing cycle were more accurate than simple linear
interpolation between end expiration and end inspira-
tion deformations. Fuerst et al. (2015) automatically
divided the lung surface in disjoint contact zones.
The negative pressure applied at the surface was then
differentiated for each contact zone, the specific val-
ues being found through an inverse problem formula-
tion. Although the authors used homogeneous mate-
rial properties, the results suggested an improvement
of the deformation estimation thanks to the hetero-
geneous surface pressures.

Several works have also approached lung deforma-
tion estimation during breathing as a contraction mo-
tion. Al-Mayah et al. (2008) proposed a deformable
model of the lung and surrounding structures recon-
structed at the end of inhalation. Surface displace-
ments from the end inhalation to the end exhalation
phases were found using a mesh morphing method.
These displacements were imposed as boundary con-
ditions on the inner surface of the thoracic cage,
which is in direct contact with the deformable lung
model. Interactions between the lung and thoracic
cage were modeled via frictionless contact, which al-
lowed the integration of lung sliding. This study was
further extended to investigate the effects of contact
friction (Al-Mayah et al., 2009) or heterogeneous ma-
terial properties (Al-Mayah et al., 2010), as well as
the influence of linear and non-linear elasticity con-
stitutive laws (Al-Mayah et al., 2011).

All the methods reported above model the lung
parenchyma as a single elastic continuum. In reality,
the volume occupied by the lung is composed of not
only the parenchyma but also a great quantity of air
stored inside the airways and alveoli. External forces

exerted by the respiratory muscles allow the inhala-
tion or exhalation of air from the lung, ultimately re-
sulting in tissue deformation. Following this interpre-
tation, the lung can be modeled as a porous medium
composed of two coexisting physical domains: a solid
domain (i.e. the parenchyma) and a fluid domain
(i.e. the air flowing inside the lung). Physical laws
governing the behavior of such porous medium con-
stitute the theory of poroelasticity, which has been
previously used to model breathing deformation. For
instance, Ilegbusi et al. (2012) proposed a poroelas-
tic model to simulate lung deformation for a com-
plete breathing cycle. Boundary conditions for the
fluid and solid domains consisted in a time varying
positive pressure and a fixed support, respectively.
The authors reported realistic deformations includ-
ing a hysteresis deformation effect when accounting
for heterogeneous material properties. Gravity was
later added in the loads which improved the accuracy
of the predicted deformation (Seyfi Noferest et al.,
2018). Berger et al. (2016) also proposed a dynamic
poroelastic model of the lung tightly coupled with
an airway network modeling the airways. Physio-
logically realistic global measurements were reported
for normal and physiological breathing, using varying
airflow resistance and local elasticity.

To our knowledge, a single study has been very
recently proposed by Lesage et al. (2020) to simu-
late lung deflation during a pneumothorax. A hy-
perelastic model is constrained by external pressure,
reducing the model volume until matching the ob-
served deflated lung volume. However, two CT im-
ages of the whole lung in supine position are used
in this study which provides much more information
than what can be available during VATS. In terms of
modeling, a limit could be to estimate the deforma-
tion by large tissue strain only while the loss of air
can be preeminent for a pneumothorax during VATS.
A poroelastic model could instead be better suited to
separate the deformation of the two different media,
to model the air-tissue coupling in a macro-scale and
cost-effective manner, as well as to simulate air loss
from the fluid domain.
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2.3. Hybrid methods for lung deformation compensa-
tion

Both image intensity-based and biomechanical-
based methods have advantages and disadvantages.
Intensity-based methods are limited by the intrin-
sic quality of intraoperative images and the need
for complex regularization strategies for realistic mo-
tion estimation. On the other hand, good results
can be obtained on a voxel-by-voxel basis, especially
for internal structures, provided that images of ad-
equate quality are available. Biomechanical models
are limited by the uncertainties in boundary condi-
tions needed for realistic lung motion simulations,
the large variability in tissue parameters that could
be difficult to estimate accurately, or the compliance
of their computational needs with clinical practice.
However, when compared with intensity-based meth-
ods, biomechanical models can work with less data as
the underlying biophysical representation naturally
constrains the solution space. In addition, these mod-
els are boundary-valued problems, which are com-
patible with environments where primarily only sur-
face information is available. Also, approaches that
use modeled physical and physiological phenomena
may provide insight into understanding disease and
its effects on lung behavior. The hypothesis of hybrid
methods is that combining the two strategies allows
to compensate for their individual limitations.

Hybrid methods have already been investigated for
lung deformation estimation. Li et al. (2008) used
intensity-based image registration to estimate a de-
formation field from end of exhalation to end of in-
halation breathing phases. Dirichlet boundary con-
ditions (i.e. imposed displacements) were then com-
puted by interpolating the deformation field on the
surface nodes of a deformable FE lung mesh. A sim-
ilar approach was employed by Tehrani et al. (2015),
who used Demons image registration to estimate sur-
face displacement boundary conditions at several mo-
ments of the breathing cycle. In addition, the authors
studied the effects of tissue parameters and non-linear
elasticity laws on tumor displacement estimation ac-
curacy, reporting best results under non-linear elas-
ticity assumptions.

Other studies have used intensity-based image reg-
istration to reduce residual errors resulting from

biomechanical model motion estimation. For exam-
ple, Samavati et al. (2015) used a elasticity lung
model to estimate lung contraction between end of
inhalation and end of exhalation. The estimated
deformation was then refined using intensity-based
registration, which improved their estimation accu-
racy. Han et al. (2017) applied the same methodol-
ogy to lung expansion deformation estimation dur-
ing breathing. The authors compared their approach
to only intensity-based or only biomechanical-model
based registration, and also evaluated the influence
of tissue parameters, contact friction and tissue het-
erogeneity. Their results show a better performance
of the hybrid approach, similar to that of intensity-
based approaches that account for sliding motion.
The uncertainty of model parameters was accounted
for by the refinement image-intensity step, allowing
the use of simplified assumptions for the biomechan-
ical models in hybrid approaches.

Finally, Uneri et al. (2013) carried out a prelim-
inary study using CBCT images of an inflated and
deflated ex-vivo pig lung. Although the authors did
not use biomechanical modeling, a hybrid approach
was implemented combining surface morphing and
nonrigid intensity-based image registration. The re-
ported results were promising, but the applicability
of their method to clinical practice remains to be de-
termined, since the quality of intraoperative VATS
images is potentially lower than that of the images
used by the authors. Nakao et al. (2019) proposed
a surface-based shape model of lung deflation vali-
dated on Beagle lungs, and more recently incorpo-
rated manually placed landmarks to help with their
estimation (Maekawa et al., 2020). However, valida-
tion results were reported only for surface landmarks,
and the applicability to internal lung deformation re-
mains to be investigated. To our knowledge, these are
to date the only studies within the VATS context, but
are limited to animal specimens in non-clinical con-
ditions.

In a preliminary study, we recently proposed a
hybrid approach to account for pneumothorax re-
lated lung deformations (Alvarez et al., 2019a). This
method was evaluated on a retrospective clinical case
of needle biopsy with pneumothorax complication,
using a preoperative CT of the inflated lung and a
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postoperative low-dose CT of the deflated lung. The
present work complements our deformation compen-
sation approach and propose its adaption to actual
intraoperative CBCT images acquired during VATS
interventions.

3. Method Overview

From the preoperative, routinely acquired struc-
tural chest CT image to the intraoperative surgical
conditions, the lung undergoes very large deforma-
tion. This deformation may be understood as a com-
bination of two main factors: (i) a change of the
patient pose from supine to lateral decubitus, which
changes the orientation of the body and hence the in-
fluence of gravity on internal structures; and (ii) the
pneumothorax, which induces lung and hilum defor-
mation. Accounting for these two sources of defor-
mation at once is a nontrivial task. To reduce the
complexity of this challenge, we thus introduced a
functional approach that treats each source of defor-
mation independently in two sequential phases. The
lung deformation caused by the change of patient
pose was first estimated, followed by the one result-
ing from the pneumothorax. Intraoperative CBCT
images at each phase provided structural informa-
tion of the deformed lung, which was integrated into
our hybrid nonrigid registration framework. In to-
tal, three anatomical images were used in this study:
a preoperative CT image containing the whole lung
of the patient in supine position (CT), and two in-
traoperative CBCT images of the patient in lateral
decubitus position. The CBCT images provide a par-
tial view of the inflated lung before pneumothorax
(CBCTinf ) and the deflated lung after pneumotho-
rax (CBCTdef ), respectively. It should be noted that
only the CT image is used in the clinical protocol of a
VATS intervention. Figure 1 shows the three images
for one clinical case.

The overall methodology proposed in this work is
depicted in Fig. 2. A patient-specific biomechanical
lung model was first built from the preoperative CT
image. As a first approximation, we considered the
lung as a single unified structure. The three or two
lobes of a right or left lung, respectively, were then
not modeled separately. A poroelastic constitutive

Figure 1: Left: preoperative CT image with the patient in
supine position. Right: intraoperative CBCT images of the
inflated (CBCTinf ) and deflated (CBCTdef ) lung with the
patient in lateral decubitus position. Middle: superposition
of the preoperative CT image rigidly registered to the intra-
operative CBCTdef image. The FOV of the CBCTdef image
(outlined in yellow) only provides a partial view of the lung.
The nodule is encircled in the preoperative CT image and is
visible in all other images.

law was chosen to represent the parenchyma and the
air flow within the lung.

The first stage of our process, later referred as
Phase 1, estimates the deformation associated to the
patient change of pose. Nonrigid intensity-based im-
age registration was performed between the CT and
CBCTinf images to compute the deformation within
the field of view (FOV) of the CBCTinf image. The
biomechanical model was then used extrapolate this
deformation to the whole extent of the lung, including
portions that are not visible in CBCTinf . This esti-
mation of the whole lung geometry will allow defin-
ing proper boundary conditions in the next phase,
which would not be possible with only the lung por-
tion included in the CBCTinf FOV. After this Phase
1, that will be detailed in Sec. 6, the complete in-
traoperative lung geometry before pneumothorax is
thus estimated.

The second stage of our method, Phase 2, esti-
mates the deformation induced by the pneumotho-
rax. Surface information of the deflated lung was
first extracted from the CBCTdef image, while also
evaluating the associated deformation of the hilum.
An inverse problem was then iteratively solved, using
biomechanical simulations, to identify the model pa-
rameters that minimize a distance between the lung
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Figure 2: Overview of the proposed nodule localization frame-
work. The process is split into two stages, Phase 1 and Phase
2, that respectively estimate the change of pose deformation
then the pneumothorax deformation.

model and the CBCTdef inputs. At the end of this
process the final pneumothorax deformation is ap-
plied to the preoperative CT image, which provides
an estimation of the intraoperative lung nodule posi-
tion. Phase 2 of our methodology will be described
in Sec. 7.

4. Poroelastic model of the lung

The physical laws governing the poroelastic mate-
rial used in this work were first introduced in Biot’s
theory of 3D soil consolidation (Biot, 1941, 1955).
The total stress in the porous material is carried
partly by the fluid and partly by the solid structure.
The hydrostatic pressure of the fluid inside the pores
generates tensile/compressive stresses that cause de-
formation of the whole medium. It is assumed that
the total stress on the porous medium can be decom-
posed as the sum of the stress carried by the solid
structure and the stress carried by the fluid (Ver-
ruijt, 2013). This is known as the principle of effec-

tive stress and is described by the expression

σt = σe − αpI (1)

where σt and σe are the stress tensors for the to-
tal and effective stresses, p is the hydrostatic pore
pressure and I is the second-order identity tensor.
The parameter α is the Biot-Willis coefficient that
describes the amount of bulk volume change that is
explained by a pore pressure change under constant
stress.

The definition of the effective stress tensor σe de-
pends upon the mechanical behavior assumed for the
solid medium. In this work, we used a first order ap-
proximation and adopted the theory of linear elastic-
ity. We hypothesized that most of the deformation is
caused by the fluid medium, thus, the solid medium
was assumed linearly elastic (i.e. undergoing small
deformation). The solid medium was also considered
isotropic. It should be noted that more elaborate
fluid-solid interaction non-linear models are possible
and this work represents a linearization of consider-
ably complex physics as a first step in understanding
the potential of a model-based approach. Following
these assumptions, the effective stress σe is related to
the deformation tensor ε by the Hooke’s constitutive
equation

σe = λ tr(ε)I + 2µε (2)

where λ and µ are the Lamé constants that char-
acterize the tissue’s response to stress. These Lamé
constants can also be written in terms of the Young’s
Modulus E and Poisson’s ratio ν through the rela-
tions

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
(3)

The strain tensor ε of Eq. (2) is defined in terms
of tissue displacements u as

ε =
1

2
(∇u+∇uT ) (4)

This corresponds to the definition of the infinites-
imal strain tensor, where second-order terms are ne-
glected. This is a first-order geometrical approxima-
tion of tissue deformation.
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Mechanical equilibrium is reached when stresses
within the porous medium are in balance with ex-
ternal loads. If inertial forces are not considered and
the only external force is gravity, the total stress ten-
sor σt must then satisfy the equilibrium equation

∇ · σt + ρg = 0 (5)

where ρ is the density of the porous medium and
g is the gravitational acceleration vector. Since the
porous medium is composed of two phases, its den-
sity may also be defined in terms of its constituent
densities as

ρ = ρs(1− φ) + ρf φ (6)

where ρs and ρf are the densities of the solid and
fluid media, respectively, and φ is the porosity of the
whole medium.

An additional equation is needed in order to com-
plete the description of the continuum. In Biot’s the-
ory of consolidation, the fluid flows through the pores
according to Darcy’s law. This law proposes a rela-
tionship between the instantaneous flow rate q of an
incompressible fluid through a porous medium, which
is expressed by the equation

q = − κ

µf
∇p (7)

where κ is the intrinsic permeability of the porous
medium and µf the dynamic viscosity of the fluid.
The conservation of fluid and solid mass is expressed
by the storage equation

∇ · q + S
∂p

∂t
= −α∂ε

∂t
(8)

where S is the storativity parameter and
ε = ∂ux/∂x + ∂uy/∂y + ∂uz/∂z = ∇ · u is
the volumetric strain.

The term to the right hand of Eq. (8) expresses the
time rate of change of dilatation/contraction of the
solid matrix and how that affects the nature of fluid
mass transport. For instance, if we consider the pores
to be totally saturated with fluid, a negative rate of
volumetric strain will shrink the porous material and
immediately squeeze fluid out of the pores by means
of raising interstitial pressure. Such fully saturated

porous medium is modeled by choosing the parame-
ters α = 1 and S = 0. On the contrary, if the pores
are not fully saturated with fluid, the rate of volu-
metric strain does not have an instantaneous effect
on the distribution of pore pressure. This is repre-
sented by the second term of Eq. (8) being nonzero,
which results in a delay on the transferal of volumet-
ric strain to net fluid flow. The storativity parameter
S is also understood as the amount of fluid that can
be forced into the porous medium while maintaining
a constant bulk volume. Eq. (8) is in essence a mass
conservation law that relates changes in volumetric
strain of the solid medium to changes in hydration
level.

Animal studies were carried out by Miga et al.
in order to evaluate the applicability of a poroe-
lastic model to brain shift deformation compensa-
tion. The authors extracted in vivo measurements
of displacement and interstitial pressure of intersti-
tial fluid within the context of two separate defor-
mations sources, an expanding mass represented by
a balloon catheter (Paulsen et al., 1999), and a tem-
poral piston-delivery system (Miga et al., 2000). The
objective was to determine the accuracy of the poroe-
lastic model to compensate for the main bulk brain
deformation under surgically realistic loads. The re-
sults reported in those studies in conjunction with
more recent follow-up studies (Narasimhan et al.,
2018) suggest that deformation and interstitial pres-
sure gradients measured from tissue can be predicted
reasonably well using relatively simple boundary con-
ditions on the poroelastic model. Another finding
in the human environment was that sources of brain
deformation were identified that involved significant
fluid exchange with the parenchymal space as a re-
sult of hyperosmotic agents (Chen et al., 2011). This
exchange is very similar to the evacuation of air oc-
curring in the collapsing lung. Based on that work,
an additional source term was incorporated into Eq.
(8) to represent this fluid evacuation dynamic, so that
the storage equation is rewritten as

∇ · q + S
∂p

∂t
= −α∂ε

∂t
− κb(p− pc) (9)

with −κb(p − pc) being the source term allowing for
fluid evacuation. The parameter κb represents in-
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trabronchi permeability. The parameter pc repre-
sents the pressure at the interior of the anatomi-
cal structures that allow fluid evacuation. In this
present work, pc corresponds to intrabronchi pres-
sure. It can be seen from Eq. (9) that fluid evacua-
tion (i.e. fluid sinking) occurs for positive values of
κb(p − pc). This modified version of the poroelastic
equations was used to estimate brain shift deforma-
tion (Dumpuri et al., 2007; Kay Sun et al., 2014),
and more recently yielded promising results to esti-
mate lung pneumothorax deformation (Alvarez et al.,
2019a).

Finally, Eqs. (5) and (9) fully describe the dy-
namic behaviour of a poroelastic material with al-
lowance for fluid evacuation. However, computing
the transition from the undeformed configuration to
the equilibrium configuration is not necessary in our
context. Instead, we only seek to estimate the defor-
mation once the lung has settled after the pneumoth-
orax. Consequently, computing only the equilibrium
configuration is sufficient. We then implemented the
steady-state version of the poroelastic equations pre-
viously presented, simplified as:

∇ · σe − α∇p+ ρg = 0 (10)

−∇ ·
(
κ

µf
∇p
)

+ κb(p− pc) = 0 (11)

The solution to these equations was computed us-
ing a FEM formulation implemented on the open
source library GetFEM (http://getfem.org/). The
tissue parameters and boundary conditions used for
each simulation are described in Sec. 7.2.

5. Preprocessing of the CBCT images

CBCT scanners produce image reconstruction ar-
tifacts as any other conventional CT scanner. How-
ever, the acquisition of the CT and CBCT images
differ on the projection data used, namely 1D for the
CT (fan-beam) and 2D for the CBCT (cone beam).
The 2D projection strategy relies on larger detectors
that allow the CBCT scanner to have a better spa-
tial resolution and reduced irradiation dose (Kalen-
der and Kyriakou, 2007). These are desirable fea-
tures that make the CBCT scanner portable and OR-
compatible. However, the benefits come in detriment

of the image quality, since the larger detector suffers
from higher image intensity scattering (Schulze et al.,
2011), and the particular mechanics of the acquisi-
tion process introduce cupping, aliasing and trunca-
tion artifacts (Kalender and Kyriakou, 2007; Schulze
et al., 2011). The presence of these artifacts will un-
dermine the performance of any processing algorithm
based on Hounsfield unit (HU) values. We thus pro-
posed to pre-process CBCT images before applying
our registration method.

Two artifacts affect HU values: the truncation ar-
tifact that appears when the imaged object is larger
than the scanner FOV (Lehr, 1983), and the cupping
artifact due to scatter radiation. As a result, the re-
constructed images present an overestimation of HU
values near the circular border of the FOV and an
underestimation of HU values towards the center of
the FOV. In this work, we assumed the reconstructed
image to be the sum of real HU values and artifact
effects. We modeled these artifact effects via a piece-
wise linear function that is circular symmetric with
respect to the cranio-caudal axis (i.e. the rotation
axis of the CBCT scanner) and constant across axial
slices. The shape of this function was designed em-
pirically by observing CBCT images. The artifact-
corrected images were obtained by subtracting the
modeled artifacts to the reconstructed images.

In addition to HU artifacts, reconstruction errors
are also present at the superior and inferior borders
of the FOV, in the cranio-caudal direction. These
errors are caused by projection data missing in sev-
eral projections of the whole gantry rotation, as well
as beam scattering and aliasing. As a consequence,
the reconstructed image is severely distorted in these
regions, where structural information is almost com-
pletely lost. We observed that this effect is present in
the axial slices of the first and last 12 mm of the im-
age approximately. For all the processing algorithms
described in subsequent sections, we did not take into
account the information contained in these slices.

6. Phase 1: Estimation of the change of pose
deformation

This section describes the Phase 1 processes of the
general workflow presented in Fig. 2. The aim is to
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estimate the complete geometry of the lung in intra-
operative conditions from the CBCTinf image, be-
fore the pneumothorax is induced. A schema of these
Phase 1 processes is presented in Fig. 3.

First, a deformation field was computed between
the preoperative CT and intraoperative CBCTinf

images via intensity-based image registration. The
computed deformation field then defined imposed dis-
placement boundary conditions for a biomechanical
model, to extrapolate the deformation to the entire
lung.

6.1. Image-based change of pose estimation

The intensity-based change of pose estimation con-
sists in an initial rigid registration of the spine fol-
lowed by a sub-anatomical elastic registration ap-
proach as proposed by Wu et al. (2008). This ap-
proach independently registers sliding structures by
selectively masking image intensities with anatom-
ical segmentations. Thus, a segmentation of lung
parenchyma is necessary for each image. While this
can be performed automatically in the CT image, it
is much more challenging in the CBCTinf image due
to artifacts, noise, and lung deformation after the
change of pose.

Therefore, a multi-step method was implemented
as follows: (i) alignment using rigid registration over
the spine; (ii) lung segmentation in the CT image;
(iii) initial elastic registration with the CT lung seg-
mentation; (iv) lung segmentation of the CBCT im-
age using the obtained deformation field, followed by
a sub-anatomical elastic registration with both seg-
mentations. The three registration processes were
performed with the Elastix toolbox (Klein et al.,
2010).

6.1.1. Rigid registration of the spine

The CT and CBCTinf images are defined in non-
overlapping reference frames, as they were acquired
by distinct scanners with the patient in a different
pose. An initial rigid transformation between the two
images is thus necessary before considering any local
deformations. In this study, we used the spine for the
rigid registration process, as it is the only structure
that remains relatively rigid between the two images.

Only small changes of curvature were observed, which
were later captured with the elastic registration steps.

The spine was semi-automatically segmented in the
CBCTinf image. First, a line profile crossing the
spine was computed. Then, a minimal Region of In-
terest (ROI) containing the whole spine was deter-
mined using the spatial derivative of intensities on
the line profile. After thresholding the image inten-
sities within the ROI, connected component analysis
and morphological operations yielded the final spine
segmentation.

The rigid registration process was carried out with
the preoperative CT as the moving image and the in-
traoperative CBCTinf as the fixed image. A Normal-
ized Correlation Coefficient (NCC) similarity metric
was computed over a series of 2000 image points ran-
domly pooled from the spine segmentation. Since
vertebrae resemble significantly one another, one
spine landmark was manually selected to initialize
the transformation and avoid shifting in the spine’s
direction.

6.1.2. Segmentation of the lung parenchyma in the
CT image

The lung parenchyma was segmented in the
preoperative CT image using our customized
version of Chest Imaging Platform (https://
chestimagingplatform.org/), an open source li-
brary for image processing and analysis of chest CTs.
First, Otsu’s thresholding method was used to gen-
erate an initial segmentation containing both lungs
and the airways. A point inside the trachea was
then automatically detected using connected com-
ponent analysis on an axial slice at 40 mm from
the top of this segmentation. This point was used
as the starting seed of a 3D region growing algo-
rithm that segmented the trachea and the first air-
way branches. The resulting airways segmentation
was removed from the initial segmentation, which al-
lowed the separation of the lungs. The segmenta-
tion of the operated lung was manually adjusted to
include areas that remained poorly-segmented, no-
tably near the hilum. Finally, morphological closing
was used to fill in the remaining holes and to smooth
out any sharp contours. With respect to the original
method in Chest Imaging Platform, our implementa-
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Figure 3: Schematic diagram of the Phase 1 process to estimate the change of pose deformation. The top block illustrates the
image-based registration of the preoperative CT and intraoperative CBCTinf images. After rigidly registering the spine, an
elastic registration based on anatomical segmentations of the lung is carried out. The bottom block concerns the estimation of
the complete lung geometry after the change of pose deformation. The previously computed deformation field is transferred as
imposed displacements boundary conditions on a FEM model. This model extrapolates the deformation to the whole extent of
the lung, including regions that are not within the FOV of the CBCTinf image.

tion detects automatically the seed point for the 3D
region growing algorithm, and uses heuristics based
on segmented volume ratios to avoid leakage during
region growing.

6.1.3. Initial elastic registration

An initial elastic registration step was carried out,
where the NCC similarity metric was computed from
voxels inside the rigidly registered CT lung segmen-
tation. Large deformations were accounted for using
a multi-resolution Free Form Deformation (FFD) ap-
proach, with a B-Splines transformation model pa-
rameterized on a regular grid in the fixed image do-
main (i.e. CBCTinf ). A total of 5 incremental grid
resolutions were used, with increments being com-
puted by factors of two. The finest resolution had a
regular grid size of 16 mm.

6.1.4. Sub-anatomical elastic registration

After the initial elastic registration, the CT lung
segmentation was warped with the resulting defor-
mation field to provide an estimation of the lung
parenchyma segmentation in the CBCTinf image.
The resulting segmentation was manually adjusted
to correct for poorly-segmented regions.

Finally, following Wu et al. (2008), both images
were masked with the lung segmentations. Vox-
els outside the segmentations were replaced with
a constant HU value below the range of possible
parenchyma values (i.e. below -1000 HU, correspond-
ing to air). The lung segmentation in the intraoper-
ative CBCTinf image was extended by 5 mm using
morphological dilation, and elastic registration was
performed again as described before (Sec. 6.1.3) but
using the masked volumes and this extended segmen-
tation. Using this approach, points lying outside the
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lung in the fixed image are registered to the same in-
tensity values in the moving image, which also lie out-
side the lung. In addition, matching outside points
has no cost in terms of the similarity metric, which
results in the registration process to be guided mostly
by the information within the lung. As a result, this
process minimizes the misalignment error of the in-
ternal lung structures while allowing sliding at the
lung interface.

The resulting deformation field maps all points
from the fixed image (CBCTinf ) domain to the mov-
ing image (rigidly registered CT) domain. Thanks
to the multi-grid, multi-resolution transformation
model, the spatial Jacobian of the deformation field
is positive throughout the whole domain (Yongchoel
Choi and Seungyong Lee, 1999). This ensures the in-
vertibility of the deformation field, which was impor-
tant to later compute imposed displacement bound-
ary conditions.

6.2. Extrapolation of the deformation to the entire
lung

The deformation field obtained in the previous step
provides a first estimation of the change of pose de-
formation, but is limited to the FOV of the CBCTinf

image. A FEM model was then used to extrapolate
this deformation to the entire lung, especially in the
lung apex and/or the diaphragm area that are usually
at least partially not visible.The hypothesis is that
the unknown deformation in these regions can be es-
timated by means of mechanical forces that emerge
to counter external loads applied in the middle of the
lung (i.e. inside the FOV). In other words, defor-
mation in unknown regions is estimated by finding
a state of mechanical equilibrium after imposing the
partially known deformation. Note that we did not
try to simulate the very complex mechanisms of the
patient change of pose; we have so far no means of
estimating the actual external and body loads of this
complex phenomenon. Instead, we tried to estimate
the entire lung deformation for the practical purposes
of intraoperative surgical guidance.

The following subsections describe the FE extrap-
olation process as illustrated at the bottom of Fig. 3.

6.2.1. FE mesh generation

The geometry of the lung was meshed from the
preoperative lung segmentation using CGAL library
(https://www.cgal.org/). This FE mesh consisted
of approximately 27000 first order tetrahedral ele-
ments with an average size of 8 mm.

6.2.2. Computation of imposed displacements

The FEM boundary conditions were computed
from the rigid transformation and the deformation
field described previously in Sec. 6.1. First, the
patient-specific preoperative FE mesh was rigidly reg-
istered to the intraoperative setting using the rigid
transformation parameters. Then, we calculated the
deformation associated to every node of the mesh ly-
ing within the bounds of the change of pose defor-
mation field. The deformation field at every node
position was inverted using the iterative algorithm
proposed by Crum et al. (2007), to define the dis-
placement from the rigidly registered CT domain to
the CBCTinf domain. As a result, we obtained a
set of displacement vectors that can be used as nodal
boundary conditions in a FE simulation. In the fol-
lowing, we will refer to these boundary conditions as
imposed displacements.

6.2.3. FE estimation of the change of pose

The lung was modeled as a homogeneous and
isotropic medium, governed by the laws described by
Eqs. (10) and (11). We hypothesized that the change
of pose deformation is mostly caused by gravity and
contacts between the lung and its surrounding struc-
tures. Thus, effects of the fluid domain were assumed
to be negligible at this stage, which implies fluid mass
conservation with no flow throughout the whole do-
main.

For the fluid domain, we prescribed homogeneous
Dirichlet boundary conditions of pressure at the
whole lung surface, with the intrabronchi permeabil-
ity parameter κb set to zero to ensure mass con-
servation. For the solid domain, imposed displace-
ments were applied to surface and internal nodes us-
ing Dirichlet boundary conditions and Lagrange mul-
tipliers, respectively. The remaining nodes were left
unconstrained.
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Since imposed displacements boundary conditions
enforce the final deformation, tissue parameters have
little influence on the final equilibrium state. Thus,
we simply used the parameters of the pneumothorax
estimation phase described in Sec. 7.2.4.

7. Phase 2: Estimation of the pneumothorax
deformation

This section describes the second stage of the gen-
eral workflow presented in Fig. 2. The pneumotho-
rax deformation was estimated using a pipeline based
on an inverse formulation, as illustrated in Fig. 4.
This inverse formulation fitted the lung biomechan-
ical model to the real intraoperative deflated state
observed in the CBCTdef image. The nodule posi-
tion was then updated by warping the preoperative
CT with the change of pose deformation and then the
simulated pneumothorax deformation.

7.1. Intraoperative data processing

The intraoperative CBCTinf and CBCTdef images
can be in misalignment, because the patient may had
to be moved between the two scans so that the sur-
geon could better perform the thoracic incisions. We
thus rigidly registered these images using the spine
as before (Sec. 6.1.1). The resulting transformation
served to align the FE extrapolated lung model with
the CBCTdef image. Afterwards, this image was pro-
cessed to extract the surface of the deflated lung and
to estimate the hilum deformation after pneumotho-
rax.

7.1.1. Segmentation of the deflated lung surface

The lung deflation causes the complete collapse of
some airway branches and alveoli. This condition,
known as atelectasis, locally increases the density
of the lung parenchyma, making its boundary with
other soft tissues barely distinguishable in some re-
gions. Therefore, automatically segmenting the de-
flated lung is extremely challenging. Since providing
an automatic method was out of the scope of this pa-
per, we decided to segment this surface manually. In
this study, only the external surface of the deflated
lung is considered.

A set of about 300 points were manually placed
over the CBCTdef image along the surface of the de-
flated lung. The distance between points varied with
the local curvature of the deflated surface, ranging
roughly from 10 mm to 30 mm. MeshLab (Cignoni
et al., 2008) was used to reconstruct a triangular
surface from these points. First, the convex-hull
of the point cloud provided an initial estimation of
the surface. Then, a high resolution cloud of evenly
spaced points was sampled from this initial surface
using the Poisson disk sampling algorithm (Corsini
et al., 2012). Finally, the ball-pivoting algorithm
(Bernardini et al., 1999) was used to reconstruct a
surface from the sampled point cloud. This latter
algorithm forms triangles each time a ball of a prede-
fined radius touches three points without containing
any other point. This complete procedure allowed
the reconstruction of a refined surface of triangles
from a sparse cloud of manually placed points. It
is worth noting that because of the convex-hull algo-
rithm, all concave details from the initial point cloud
(such as lobe sliding and fissure opening) were not re-
constructed. However, this goes in accordance with
our single structure assumption for representing the
lung anatomy.

7.1.2. Estimation of the hilum deformation

During pneumothorax, the hilum deforms in the
same direction that the lung deflates. The extent of
this deformation is intervention-dependent and un-
known a priori. In addition, regions of the lung
parenchyma closest to the hilum are often totally col-
lapsed by the pneumothorax. The image intensity
of the hilum and the collapsed parenchyma become
nearly indistinguishable. For these reasons, in this
study, we used the deformation of the main airways as
a surrogate for the hilum deformation. We estimated
this airways deformation by means of intensity-based
image registration. First, the three main level air-
ways were semi-automatically segmented from the
CBCTdef image. This segmentation was extended
by 5 mm using morphological dilation in order to
ensure the inclusion of airway contours (see purple
contours on Fig. 4). Elastic registration between the
rigidly registered CBCTinf and the CBCTdef images
was then performed using the NCC similarity metric
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Figure 4: Schematic diagram of the Phase 2 stage to estimate the pneumothorax deformation. Intraoperative images are
processed to segment the surface of the deflated lung, and to compute a deformation field approximating the hilum deformation
between CBCTinf and CBCTdef . An inverse problem based on FE simulations estimated the pneumothorax deformation.
Tissue parameters were optimized until the simulated model best fits the intraoperative data. Finally, the intraoperative nodule
position is obtained by warping the undeformed position with the simulated pneumothorax deformation.

computed over the airways segmentation. The result-
ing deformation field was used as an estimation of the
hilum deformation.

7.2. Simulation of the pneumothorax

Alveoli have a strong tendency to collapse caused
by the inward recoil of their distended walls. These
forces are present in varying degree at every moment
during normal breathing. The reason why the lung
does not collapse is because it gets pulled outwards
by the chest wall and diaphragm, whose forces act on
the lung surface thanks to the negative pressure in
the pleural cavity. This outward pull corresponds to
the transmural pressure, which is defined as the pres-
sure gradient between the interior of the lung and
the pleural cavity. At the end of expiration, these in-
trapleural and transmural pressures are estimated to
-5 cm H2O and to 5 cm H2O, respectively (Levitzky,
2007).

During pneumothorax, the rupture of the chest
wall resulting from surgical thoracic incisions creates

a direct connection of the pleural cavity with the at-
mosphere. This increases the intrapleural pressure
as air rushes in, until it becomes equal to the atmo-
spheric pressure. This in turn decreases the trans-
mural pressure that normally holds the lung open,
which causes alveolar walls to collapse and squeeze
air out of the lung. As illustrated in Fig. 5, the lung
deflation during pneumothorax then occurs because
the alveoli recoil forces become unopposed after the
“disappearance” of outward-pulling forces at the sur-
face of the lung. In addition, the deflating lung sags
downwards under the effect of gravity.

A fully detailed modeling of the lung and pneu-
mothorax phenomenon would require a stress-free
model of the deflated lung loaded with all forces and
pressures until equilibrium, which would be very com-
plex. Therefore, we opted for a simpler functional
approach in which the inflated lung at the end of
expiration is considered stress-free, and the disap-
pearance of the transmural pressure is approximated
with a hydrostatic air pressure of the same amount
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Figure 5: Schematic representation of the pneumothorax phe-
nomenon. Left, at end of expiration the lung is in equilibrium
and there is no airflow. Right, the rupture in the chest wall
causes an increase of the intrapleural pressure and a decrease
of the transmural pressure. The chest wall no longer pulls the
surface of the lung outwards. The lung collapses due to alveoli
inward recoil and gravity. The flow of air is indicated with
black arrows.

(5 cm H2O). This fixed pressure is applied as Dirich-
let boundary conditions for the fluid domain at all
surface nodes of the FE mesh. In combination with
the fluid evacuation term κb(p − pc) of Eq. (9), this
setup allows for pressure gradients to develop within
the lung. Thanks to the effective-stress principle
(Eq. (1)), these gradients induce shrinking internal
forces similar to alveoli recoil. In other words, this ap-
proach produces lung deflation via compressive body
forces at every material point, rather than normal
forces applied at the lung surface.

7.2.1. Boundary conditions and loads

For the fluid domain, a fixed hydrostatic pressure
of 5 cm H2O was prescribed to all surface nodes
through Dirichlet boundary conditions, whereas the
remaining nodes were left with the natural no-flux
boundary condition. As for the solid domain, nodes
inside the main airways were constrained with im-
posed displacements coming from the estimation of
the hilum deformation. Remaining nodes were left
with the natural stress-free boundary condition. Fi-
nally, a gravitational load was applied to the whole
porous medium in the lateral to medial direction
(horizontal axis in the CBCTdef image).

7.2.2. Contact with the thoracic cage

Frictionless contact conditions were used to sim-
ulate the deforming lung sliding along the parietal
pleura, i.e. the inner surface of the thoracic cage.
This surface corresponds to the outer surface of the
initial FE lung mesh, before simulation, that was
re-sampled with a coarser mean triangle size of ap-
proximately 20 mm. This re-sampled surface, later
referred as the contact surface, was assumed rigid
throughout the simulations. Node-to-node friction-
less contact conditions were prescribed on all surface
nodes of the FE lung model, excluding the nodes with
imposed displacement boundary conditions. These
contact conditions restrict the deformation of the
lung, and can be expressed using the following in-
equality constraints:

g(x) ≥ 0 (12)

σn(x) ≤ 0 (13)

g(x)σn(x) = 0 (14)

where g(x) is the gap distance between the contact
surface and the deformable surface at the material
point x; and σn(x) is the applied normal contact
force at the material point x.

The gap distance is calculated as g(x) = g0(x) +
u(x) · v, where v is the inward pointing normal of
the contact surface, g0(x) is the initial gap distance
before deformation, and u(x) is the displacement vec-
tor. The distance g(x) is thus negative when there is
penetration of the deformable surface into the contact
surface. The term σn(x) is a shorthand notation for
(σ(x)n) · n, the projection of the Cauchy traction
at the material point x onto the outward pointing
normal n.

The Eqs. (12) to (14) correspond to the Signorini’s
conditions. The expression in Eq. (12) represents im-
penetrability, while Eq. (13) states that the contact
forces must always be compressive. The complemen-
tary condition in Eq. (14) allows contact forces to be
generated only during contact.

7.2.3. Contact with the upward moving diaphragm

During surgery, the use of curare (a muscle re-
laxant) relieves tension in the diaphragm that then
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deforms under the pressure from abdominal or-
gans. This deformation is transferred to the lung
parenchyma which moves upwards towards the apex.
Although this phenomenon is clinically observed for
all patients, those with higher indices of obesity un-
dergo larger diaphragm displacement.

During intraoperative imaging, the position of the
diaphragm is not always in the FOV of the CBCT
images. We thus introduced an additional contact
surface representing the diaphragm that can push the
lung model upwards during the FE simulations. This
diaphragm contact surface was initialized as the lower
surface of the initial FE lung mesh, before simulation,
that was re-sampled with a coarser mean triangle size
of approximately 20 mm. Since the position of this
diaphragm surface was unknown in the intraopera-
tive CBCT images, we defined its position with an
additional parameter ddiaph. The surface is allowed
to move towards the apex along the principal axis of
the lung’s geometry, which was computed using Prin-
cipal Component Analysis (PCA) on the mesh nodes.
ddiaph represent the distance, along the vertical axis,
between the current diaphragm position and its ini-
tial position. This displacement was included in the
parameters to be optimized by our inverse problem
formulation, with a minimum value of 15 mm defined
empirically by clinical observation.

7.2.4. Material properties

The lung tissue was considered as an isotropic
and homogeneous poroelastic continuum. An impor-
tant characteristic of our pneumothorax modeling ap-
proach is the allowance of air evacuation. We hypoth-
esized that during pneumothorax air exchanges hap-
pen at the level of small bronchi, resulting in air being
transported out of the porous medium through the
airways. These exchange effects were approximated
by an organ-wide distributed term κb(p−pc) that al-
lowed the simulation of air evacuation (Eq. (9)). In
addition, we hypothesized that tissue porosity may
change from patient to patient according to his/her
response to general anesthesia and mechanical ven-
tilation, and the amount of atelectasis. The values
for tissue porosity and intrabronchi permeability are
unknown for every particular surgery, and were then
included in the parameters to be optimized by our in-

Table 1: Material properties and their values during pneu-
mothorax simulations. The last three parameters are patient
and intervention specific and varied within the reported range
during an optimization process.

Parameter Value Units
E 550 Pa
ν 0.35 -
α 1.0 -
ρs 700 kg / m3

ρf 1.205 kg / m3

κ 2.75× 10−17 m2

µf 1.83× 10−5 Pa·s
pc 0 Pa
g 9.81 m / s2

φ [0.00 , 0.93] -
κb [1.0× 10−14 , 1.0× 10−4] 1 / Pa·s

ddiaph [15× 10−3 , 40× 10−3] m

verse problem formulation. For the remaining mate-
rial properties, values and ranges reported in previous
studies were chosen (Alvarez et al., 2019a; Kay Sun
et al., 2014; Seyfi Noferest et al., 2018). Table 1 col-
lects the values used during the pneumothorax simu-
lations.

7.3. Inverse problem formulation

The amount of pneumothorax deformation ob-
served during a VATS intervention is patient and in-
tervention dependent. This difference in deformation
can be translated as different values for specific model
parameters. Since these values are unknown in ad-
vance, we proposed to estimate them using an inverse
problem formulation. The goal was to simulate sev-
eral pneumothorax deformations and to optimize the
parameters until the model best reproduces the ob-
served intraoperative deformation.

The trust-region non-linear optimization method
was used to solve the inverse problem. The cost func-
tion was defined as a surface-to-surface distance be-
tween the lung deflated surface, segmented from the
CBCTdef image (c.f. Sec. 7.1.1), and the simulated
lung deformed surface. Formally, we solved the fol-
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lowing problem:

arg min
θ

Ω(θ) =
1

N

N∑
i=1

‖pi − qi(θ)‖2 (15)

where θ is a set of tissue parameters and Ω the
surface-to-surface distance. N is the total number of
nodes in the target surface segmented in CBCTdef ,
pi is an indexed node of that surface and qi(θ) is
its corresponding closest node on the surface of the
deformed FE mesh.

Since the optimization may be highly sensitive to
initialization, we repeated the process three times
with a different initialization parameter vector θ0.
Values were each time randomly generated from re-
alizations of uniform distributions with empirically-
defined ranges (see Table 1). In this study all three
simulations were always consistent, and only the first
simulation results were reported in the results sec-
tion.

7.4. Nodule localization

Tissue parameters (θ) that solve the optimization
problem defined in Eq. (15) produce the lung defor-
mation that more closely approaches the intraopera-
tive observed lung surface. The associated deforma-
tion field is defined on a spatial domain bounded by
the FE mesh, and can be computed at any point by
means of barycentric interpolation. This interpola-
tion was used to warp the preoperative CT, which
provided an estimation of the nodule position after
pneumothorax.

8. Results

This section presents and comments on the quan-
titative and qualitative findings from this study. The
clinical dataset used for validation is first described,
followed by the evaluation of the deformation esti-
mated after the change of pose (Phase 1 ) and pneu-
mothorax (Phase 2 ).

8.1. Clinical dataset

Our retrospective study included five patients with
single pulmonary nodules detected by CT examina-
tion. All were enrolled for a VATS wedge resection

guided by intraoperative CBCT imaging. Our exper-
imental protocol is an extension of the original work
introduced by Rouzé et al. (2016), with two CBCT
acquisitions instead of one, one before and one af-
ter induction of the pneumothorax. This study was
performed at Rennes University Hospital (France)
with the approval of the local ethics committee (2016-
A01353-48 35RC16 9838). All patients signed an in-
formed consent before surgery.

The preoperative CT is the standard diagnostic im-
age. This image was acquired under breath-hold at
end-of-inhalation and with the patient in supine po-
sition. During surgery, all patients were anesthetized
and intubated with a double lumen tube (Bron-
chocath, Mansfield, MA, USA) that allows indepen-
dent ventilation of the operated and non-operated
lungs. Both CBCT images were acquired with a C-
arm system (Artis Zeego, Siemens Healthcare, Ger-
many) after general anesthesia and mechanical venti-
lation, with the patient in lateral decubitus position.
The first CBCT image (CBCTinf ) was acquired be-
fore the creation of surgical incisions, with the oper-
ated lung still inflated; ventilation was momentarily
stopped at the end of expiration. The second CBCT
image (CBCTdef ) was acquired after pneumothorax,
with the operated lung deflated. The amount of lung
deflation was controlled to provide sufficient space
for maneuvering during surgery while avoiding total
lung collapse. This was achieved by means of two
mechanisms. For the first mechanism, patients were
put under single-lung ventilation (breathing through
the non-operated lung only) and air entered naturally
into the pleural cavity through the thoracic incisions.
The amount of deflation was controlled by insufflat-
ing oxygen into the operated lung through the lumen
of the tube. For the second mechanism, airtight tro-
cars were used and CO2 was insufflated into the pleu-
ral cavity with the patient under double-lung venti-
lation. The amount of deflation was controlled by
modulating the CO2 pressure.

For validation purposes, paired anatomical land-
marks were manually placed on the CT, CBCTinf

and CBCTdef images. This was performed by a sin-
gle rater, the expert thoracic surgeon who performed
all the VATS interventions. A total of 23 to 45 land-
marks were placed for each patient. These landmarks

18



Table 2: Study characteristics for each clinical case. The pneu-
mothorax was controlled following two techniques: mechani-
cal control of air inflow into the lung through the intubation
tube; or pressurized insufflation of CO2 into the thoracic cage
through airtight trocars. The number of validation landmarks
depends on the visibility of lung structures in the images.

Case Operated lung Pneumothorax # landmarks
1 Left Air 27
2 Right Air 40
3 Right Air 46
4 Right Air 23
5 Left CO2 23

were distributed among vessel and airway bifurca-
tions in the most complex image, i.e. the CBCTdef

image, and then were localized in the CBCTinf and
CT images. The validation was based on Target
Registration Errors (TRE) computed as the distance
between corresponding landmarks after deformation
compensation. Differences among TRE distributions
were tested with the non parametric Wilcoxon signed
rank test, with a confidence level of 5%. The study
characteristics for each clinical case are detailed in
Table 2.

Landmark positions are illustrated in two represen-
tative cases in Fig. 6. Since these anatomical land-
marks are used for validation, their positions should
be distributed inside the lung parenchyma as homo-
geneously as possible. However, the restrictions of
the image quality were difficult to surpass and re-
duced the spatial distribution of these landmarks in
some cases. Notably, structures of medium-size and
below that are clearly visible in the preoperative CT
image were impossible to locate in the CBCTdef im-
age. It is clear from Fig. 6 that validation can only
be performed for regions of the lung inside the FOV
of the CBCT scans. Notably, regions of the apex and
diaphragm do not contain any landmarks.

8.2. Results: Phase 1, estimation of the change of
pose

The change of pose deformation estimation relies
heavily on the computation of a deformation field
through intensity based image registration. The ac-
curacy of this deformation field was evaluated with

Figure 6: Spatial distribution of anatomical landmarks within
the lung FE mesh reconstructed from the preoperative CT
image.

TRE distributions computed from the landmarks of
the preoperative CT and intraoperative CBCTinf im-
ages. Figure 7 depicts the obtained TRE distribu-
tions for all clinical cases. First, rigid registration
provided an insight on the amount of deformation
induced by the change of patient pose. We could ob-
serve large deformations, with the main structures
in major miss-alignment. We obtained mean (±
standard deviation) TREs of 6.8 mm (±1.9 mm),
12.1 mm (±4.1 mm), 13.5 mm (±3.2 mm), 25.8 mm
(±5.0 mm), and 18.0 mm (±7.1 mm) for cases 1 to 5,
respectively. These errors are even larger than those
reported for respiratory motion in the lung registra-
tion literature (e.g. a mean error of 8.4 mm reported
by Delmon et al. (2013)). After elastic registration,
TREs were significantly reduced to mean values of
1.5 mm (±1.4 mm), 1.0 mm (±0.5 mm), 1.6 mm
(±1.4 mm), 2.7 mm (±2.7 mm), 1.6 mm (±1.4 mm),
respectively. This registration accuracy is compara-
ble to the one reported in studies for lung breathing
motion compensation (Murphy et al., 2011).

Fig. 8 depicts the results obtained after rigid and
elastic registration. Coronal slices of the registered
CT and intraoperative CBCTinf images were super-
posed to show the quality of registration on two repre-
sentative clinical cases. It can be observed that inter-
nal structures were within reasonable alignment, as
suggested by the obtained TRE distributions. Also,
lung contours were well aligned thanks to the mask-
ing approach used during registration. However, we
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Figure 7: TRE distributions for rigid and elastic registration
between the preoperative CT and intraoperative CBCTinf

(Phase 1, change of pose).

found poorly-registered regions near the rim of the
CBCTinf images, where the lung is incomplete be-
cause of the limited FOV of the scanner and where
reconstruction artefacts were present (e.g. Case 1).
Furthermore, localized atelectasis also reduced the
registration quality, since voxel intensities drasti-
cally differed between images in the affected regions
(e.g. Case 4). These registration errors may be under-
represented in the TRE distributions of Fig. 7 given
the difficult landmark placement in these regions.
However, we consider that the achieved registration
accuracy is sufficient for the purpose of estimating
the complete lung geometry after the change of pose.

Due to the lack of landmarks outside the FOV of
the CBCT images, it was not possible to directly eval-
uate the quality of the complete lung geometry after
FEM extrapolation. Nonetheless, the benefit of this
extrapolation approach was assessed in comparison
to a baseline rigid registration approach, and the re-
sults are presented later in Sec. 8.4.

8.3. Results: Phase 2, estimation of the pneumotho-
rax

The solution to the inverse problem formulation
was used to warp the CBCTinf landmarks with
barycentric interpolation. The TRE distributions

Figure 8: Qualitative results of rigid and elastic registra-
tion between the preoperative CT (green) and intraoperative
CBCTinf (magenta) images. Coronal slices are shown for two
representative cases. The target CBCTinf image in gray-scale
is shown in the far right column.

were computed using these deformed landmarks and
the ground truth CBCTdef landmarks. To illustrate
our contribution, the errors that would be obtained
without a deformation compensation method were
also estimated in two ways. First, TREs between
the rigidly registered CT and CBCTdef images were
computed. This corresponds to the errors expected
when the CBCTinf image is not available and only a
rigid transformation of the preoperative data to the
intraoperative setting is possible. Second, TREs were
computed between the rigidly registered CBCTinf

and CBCTdef images. These would be the expected
errors when estimating the nodule position directly
from the CBCTinf image, without compensating for
the pneumothorax deformation. These TRE distri-
butions are presented for all clinical cases in Fig. 9.

Figure 9 first puts in evidence the large lung defor-
mation that occurs during a VATS procedure. After
rigid registration of the preoperative CT and intraop-
erative CBCTdef images, we obtained mean TREs of
33.8 mm (±10.1 mm), 34.1 mm (±3.7 mm), 22.0 mm
(±8.9 mm), 34.4 mm (±4.6 mm), and 37.9 mm
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Figure 9: TRE distributions for our complete deformation
compensation framework, alongside the errors expected with-
out deformation compensation. These latter distributions cor-
respond to rigidly registering the preoperative CT with the
CBCTinf and CBCTdef images, respectively.

(±8.2 mm) for cases 1 to 5, respectively. Likewise,
mean TREs after rigid registration of the CBCTinf

and CBCTdef images were 28.7 mm (±11.6 mm),
24.6 mm (±4.0 mm), 19.5 mm (±4.0 mm), 25.9 mm
(±6.8 mm), and 37.7 mm (±8.8 mm). This defor-
mation is considerably larger than both breathing
and change of pose deformations. Except for Case 5,
larger deformations were obtained from rigidly reg-
istering the preoperative CT image instead of the
CBCTinf image (maximum p = .018). This re-
sult corroborates that the change of patient pose
does have an influence in lung deformation during
VATS. Also, it is clear from Fig. 9 that our deforma-
tion compensation framework is able to account for a
considerable amount of this intraoperative deforma-
tion. Indeed, mean TREs were reduced to 4.9 mm
(±2.2 mm), 10.3 mm (±5.2 mm), 7.5 mm (±3.3 mm),
11.2 mm (±4.9 mm), and 14.3 mm (±7.5 mm), re-
spectively, which corresponds to a correction of 85%,
70%, 68%, 68%, and 63% (71% in mean) of the initial
error without compensation. Specifically, the nodule
localization errors were 8.4 mm, 13.4 mm, 9.9 mm,
11.6 mm and 10.2 mm, respectively.

Figure 10 illustrates quantitative results for two
clinical cases. It can be observed that the surfaces of

the deformed FE meshes were close to the intraoper-
ative deflated surfaces without fitting them perfectly.
This is a consequence of the chosen simplified ap-
proach to model the complex lung deformation. For
instance, the constant fluid pressure boundary con-
ditions generated highly symmetrical and homoge-
neous lung deformation, given that the contribution
of the fluid medium to total stress is purely volu-
metric. This symmetry was only constrained by the
shape of the estimated lung geometry (i.e. the de-
formable FE mesh and contact surfaces) and the di-
rection of gravity, which may be oversimplifying. For
Case 2, lobes also deform very independently from
each other, which is currently not taken into account
for modeling pneumothorax deformation. Finally, it
can also be observed in Fig. 10 that the landmarks
with the lowest registration errors were those clos-
est to the hilum. These better results in the hilum
area can be explained by the hilum deformation es-
timation step, which was based on intensity-based
registration of the main airways.

The tissue parameters obtained from our inverse
problem formulation are listed in Table 3. The op-
timization process resulted in values for the intra-
bronchi permeability (κb) and tissue porosity (φ)
that were consistent with a previous study (Alvarez
et al., 2019a). As for the diaphragm upward displace-
ment (ddiaph), we could observe that besides Case 1, a
value of 15 mm was found for all clinical cases. This
value corresponds to the lower bound of the range
specified during optimization, meaning that a higher
diaphragm displacement only increased the distance
from the FE deformed mesh and the target intraop-
erative deflated lung surface in these clinical cases.

The complete deformation compensation frame-
work allows the warping of the preoperative CT im-
age with the FE deformed meshes issued from Phase
1 and Phase 2. This warped CT image is shown in
Fig. 11 along with the preoperative CT, CBCTinf

and CBCTdef images, for two representative cases.
Color contours are used to illustrate the changing
shape of the FE lung mesh through the deformation
compensation stages: before change of pose (cyan),
after change of pose (orange), and after change of
pose and pneumothorax (purple). It can be observed
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Figure 10: Qualitative results of our deformation compensation framework for two clinical cases. Left: final deformed lung FE
mesh superposed over the extracted deflated lung surface (in green). Middle: Registered landmark errors, deformed FE lung
mesh and thoracic cage contact surface. Right: Initial nodule position (wireframe, black surface), ground truth nodule position
(wireframe, green surface) and predicted nodule position (solid, purple surface). Results for all cases are available in the online
supplementary materials.

Table 3: Tissue parameters estimated from our inverse
problem optimization approach: intrabronchi permeabil-
ity (κb), tissue porosity (φ), and diaphragm upward displace-
ment (ddiaph).

Case κb (1 / Pa s) φ (unitless) ddiaph (m)
1 14.44× 10−9 0.56 20.41× 10−3

2 95.31× 10−9 0.79 15.00× 10−3

3 2.61× 10−9 0.82 15.00× 10−3

4 1.23× 10−9 0.37 15.00× 10−3

5 37.29× 10−9 0.64 15.00× 10−3

that the diaphragm is completely out of the FOV of
both CBCT images for Case 1, and is only barely
visible in the CBCTdef image for Case 2. Also, the
cranio-caudal misalignment between both CBCTs
can be very important, as seen for Case 2, reducing
significantly the overlap between the intraoperative
images. In terms of deformation compensation, it
can be observed for Case 1 that the estimated de-
flated lung surface is well aligned with the CBCTdef

deflated surface. Also, the cranio-caudal height of the
oblique fissure fits well with its actual position. These
results are consistent with the mean TRE measured
below 5 mm. For Case 2, however, the estimated de-
formation is clearly poorer. In this highly complex

case, the lung lobes deformed independently during
pneumothorax, resulting in the opening of both fis-
sures and a highly heterogeneous lung deflation. Fur-
thermore, the lower lobe deflated more than the other
two lobes, causing a significant amount of atelecta-
sis. While the mean TRE is reduced from 34 mm
to 10 mm, the estimated deformed lung is too regu-
lar in comparison with its actual shape. While our
compensation framework seems promising for several
cases, further investigations will be necessary for such
complex deformations.

8.4. Variants of the method

The relevance of the main components of our de-
formation compensation framework was investigated
using variant implementations presented in this sec-
tion.

8.4.1. Influence of the change of pose and hilum es-
timation

Three variants of our method were implemented to
assess the influence of the change of pose and hilum
deformation estimation processing steps:

(A) No change of pose: neither the change of pose
deformation nor the hilum deformation between
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Figure 11: Qualitative results of our deformation compensa-
tion framework for two representative cases. The CT and
CBCTinf images are rigidly registered to the CBCTdef im-
age. Coronal slices of exactly the same region of interest are
shown for all images. The color contours illustrate the posi-
tion of the FE mesh at the beginning of Phase 1 (cyan) and
Phase 2 (orange), as well as at the end of Phase 2 (purple).
Results for all cases are available in the online supplementary
materials.

the CBCTinf and CBCTdef images were taken
into account. The preoperative CT image was
simply rigidly registered to the CBCTdef image
using the spine as the reference, as in Sec. 6.1.1.
The transformed lung segmentation was used to
generate the lung FE mesh and to define contact
surfaces. Boundary conditions were prescribed
as in Sec. 7.2, with the exception of the imposed
displacements in the airway inlet that were re-
placed with fixed boundary conditions (u = 0).

(B) No hilum deformation: the change of pose defor-
mation was taken into account but the hilum de-
formation between both CBCT images was not
compensated. Since no deformation field map-
ping the airways before and after pneumothorax
was available, fixed boundary conditions were
applied at the airway inlet (u = 0). The remain-
ing boundary conditions, introperative geometry
and contact conditions were applied as described

Figure 12: TRE distributions for three variants of the proposed
lung deformation compensation method.

in Sec. 7.2.

(C) Complete framework : This variant corresponds
to the implementation of all the methods de-
scribed in Sec. 7.2.

The TRE distributions of each variant are pre-
sented in Fig. 12. With the exception of Case 2, a sig-
nificant improvement can be observed of variant (B)
over (A) across cases (maximum p = .006). Likewise,
variant (C) provided better results than variant (B)
(maximum p = .019), except for Case 4. These re-
sults suggest that all processing steps of the complete
deformation compensation framework are important.
Even though the amount of change of pose and hilum
deformation varies among cases, taking these defor-
mations into account allows for a better final estima-
tion.

8.4.2. Influence of the moving diaphragm

Another important element of our deformation
compensation framework is the modeling of the di-
aphragm movement. Its influence was evaluated by
comparing the results of the complete framework
with and without nullifying the diaphragm move-
ment, i.e. fixing ddiaph = 0 mm. The results are
shown in Fig. 13. Modeling the diaphragm upward
movement significantly reduced TREs for Cases 1, 3,
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and 4 (maximum p < .001). However, the estima-
tion accuracy remained unchanged for Case 5 and
actually decreased for Case 2 (p = .002). For this
complex case, the estimated diaphragm position af-
ter the change of pose compensation roughly matched
the actual diaphragm position barely visible in the
CBCTdef image (see Fig. 11). Therefore, any pos-
itive displacement of the diaphragm (ddiaph) would
worsen estimation accuracy.

It should be noted that for all clinical cases ex-
cept Case 1, the displacement ddiaph of the optimal
solution was 15 mm, namely the minimum value al-
lowed during the optimization process. However, an
observation of the predicted landmark positions with
respect to the ground truth landmarks suggests that
deformation compensation errors may be partially ex-
plained by a miss-prediction of this diaphragm move-
ment. An explanation could reside in the antago-
nism between a diaphragm upward movement and
the cost function of the optimization problem: mov-
ing the diaphragm upwards tends to enlarge the lung
outwards, in the opposite direction of lung deflation,
therefore increasing the surface-to-surface cost func-
tion distance.

While the effects of our diaphragm model are still
limited in several cases, our results suggest that ac-
counting for the diaphragm movement, even empiri-
cally, could allow for a better estimation of the intra-
operative deflated lung shape.

9. Discussion

Advantages, limits, and perspectives of the main
components of the proposed method are discussed in
this section.

9.1. Hybrid approach to deformation estimation

In this study, we used intensity-based image regis-
tration to estimate displacement boundary conditions
for FEM lung simulations of change of pose and pneu-
mothorax deformation. This hybrid approach was
crucial for the estimation of complex lung deforma-
tion that would have been more difficult, if not im-
possible, using purely intensity-based or FEM strate-
gies. For Phase 1, we estimated the change of pose

Figure 13: TRE distributions for our deformation compen-
sation framework with and without including the upward di-
aphragm movement.

deformation between the preoperative CT and the
intraoperative CBCTinf images with an algorithm
that accounts for sliding at the lung interface (Wu
et al., 2008). We found the magnitude of this de-
formation to be consistent with values reported in a
previous study (Alvarez et al., 2018). For Phase 2,
the hilum deformation was approximated by register-
ing the main airways of the intraoperative CBCTinf

and CBCTdef images. Final results suggest that even
though approximative, this approach provides better
estimations than alternatives not taking into account
hilum deformation. To go further, it will be necessary
to better capture the non-homogeneous variations of
the hilum deformation. This is quite challenging due
to the occurrence, to date unpredictable, of very lo-
calized atelectasis after pneumothorax. This collaps-
ing of the airways results in severe intensity and tex-
tural discrepancies of the CBCT images before and
after pneumothorax, which are difficult to cope with
using traditional segmentation and registration meth-
ods. We believe, however, that these challenges may
be overcome thanks to the efforts recently put for-
ward by the community, with registration algorithms
not requiring prior segmentation (Heinrich et al.,
2016) and/or relying on salient keypoints rather than
image intensity (Ruhaak et al., 2017). Incorporat-
ing such approaches into our framework could lead
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to substantial improvements that will be studied in
future work.

9.2. Modeling choices

For the pneumothorax simulations, we used a
poroelastic model of the lung with allowance for air
evacuation. This approach follows the principle of
effective stress that decomposes the total stress into
fluid and solid stresses. This principle permits the
macro-scale simulation of airflow-parenchyma inter-
action in a cost-effective manner. We hypothesized
that the solid medium behaves as a homogeneous,
linearly-elastic material undergoing small deforma-
tions. This assumption was supported by noting that
pneumothorax deformation during our simulations
was mainly caused by the stress generated from the
fluid phase. Also, this simplified model is in principle
computationally efficient, which would be important
in the future to comply with the time restrictions of
clinical practice. However, despite promising prelim-
inary results, the lung deformation can be underesti-
mated, for which several improvements can be inves-
tigated. For instance, we envision other constitutive
laws for the solid medium, such as the Saint Venant-
Kirchhoff model that does not linearize the strain
tensor to allow for large displacements (Seyfi Nofer-
est et al., 2018), or more complex hyperelastic non-
linear stress-strain relations (Berger et al., 2016). We
will also assess the use of heterogeneous material
properties estimated from measured lung deforma-
tion (Hasse et al., 2018).

In parallel to more adequate constitutive laws and
tissue parameters, a major improvement would be ex-
pected with a multiple-lobes lung model as opposed
to a single-structure lung model. As observed for
Case 2, lobes can slide against each other, the fissures
can open widely, or a combination of the two. Mod-
eling such effects will be challenging, as not only they
are technically difficult but also very unpredictable.

9.3. Inverse formulation approach

The inverse problem formulation based on the
poroelastic lung model allowed the compensation of
patient-specific and intervention-specific pneumoth-
orax deformation. This was achieved by fitting the

deformable lung model to the observed intraoperative
surface of the deflated lung, changing tissue porosity
(φ) and intrabronchi permeability (κb) parameters,
as well as simulating the upward movement of the
diaphragm (ddiaph). It should be acknowledged that
our inverse problem formulation did not take into ac-
count internal lung structural information, which had
a clear impact on the correct estimation of the up-
ward moving diaphragm, and possibly the complete
lung parenchyma. With improved processing of the
CBCT images, it should be possible to include inter-
nal lung structures such as vessels (Cazoulat et al.,
2016), salient keypoints (Ruhaak et al., 2017), or even
the lobe boundaries, in the inverse problem formula-
tion.

Finally, the inverse problem formulation currently
minimizes the surface-to-surface distance between the
deformable lung model and the intraoperative data
in a least-squares sense. Since the proposed model
has few degrees of freedom, the deformed lung sur-
face does not exactly fit the intraoperative data. An
alternative to this approach would be to use La-
grange multipliers to constrain the deformation so
that surface nodes of the FE mesh fit local surface
data (Morin et al., 2017).

9.4. Diaphragm movement

Clinically, it is known that the diaphragm tends
to move upwards due to the surgical setup. This
phenomenon was consistently observed on all cases,
based on inner-lung landmark measurements. There-
fore, a functional approach to model the diaphragm
movement was introduced, with the ddiaph parame-
ter as part of the optimization process. However, as
shown in Sec. 8.4.2, a meaningful estimation of di-
aphragm movement could be obtained for one case
only. Although several factors may be affecting this
issue, we believe the definition of the cost function
(Eq. (15)) to be among the most important. Indeed,
currently, it relies on surface data only, which may
not be well suited to compensate for longitudinal de-
formation. Improvements could consist in extracting
the diaphragm surface when it is partially visible in
the CBCT images (e.g. cases 4 and 2), and to in-
clude sub-surface information in the computation of
the cost function, as mentioned above.

25



9.5. Towards clinical practice: practicability and ac-
curacy

Since the aim of this study was to evaluate the
capacity to compensate for lung deformation during
VATS, we did not primarily focused on the clini-
cal practicality. Therefore, several processes required
manual interactions: the initialization of registration
or segmentation algorithms, the refinement of seg-
mentation masks, and the extraction of the CBCTdef

deflated lung surface. In total, these interactions
may take a considerable amount of time (more than
60 minutes for some cases), but we are confident
that most of them can be replaced by dedicated im-
age processing methods. Another important factor
will be the computational efficiency. Although our
intensity-based image registration steps are relatively
efficient (10 to 15 minutes per case), our inverse prob-
lem formulation is computationally intensive (4 to 6
hours per case). This situation is expected to worsen
when considering the methodological improvements
discussed previously, since these may introduce fur-
ther computations. Therefore, it will be necessary
to find a trade-off between accuracy and efficiency,
for which deformation atlas (Kay Sun et al., 2014)
or learning-based FEM (Mendizabal et al., 2020) ap-
proaches will be investigated.

Finally, no standard criteria stand to date regard-
ing the required accuracy for an intraoperative nod-
ule localization algorithm. It is thus not straightfor-
ward to evaluate the significance of our current re-
sults. Nodules indicated for surgical resection are at
least 8 mm in length, and small wedge resections are
approximatively 3 × 4 cm. Considering these mini-
mum sizes and our current nodule localization errors
of 8 to 13 mm, these nodules should always be within
the resection, at least partially, which is sufficient
for diagnostic purpose. However, maximum errors
could still be too large to guarantee the localization
for every patient. A long-term objective, defined by
our clinical partners, will be to achieve mean errors
around 5 mm with maximum errors below 10 mm.
This would also ensure sufficient negative margins of
15 mm as suggested by Wolf et al. (2017). Intraoper-
ative process time should be kept under 15 minutes.

10. Conclusion

To our best knowledge, this is the first study to
propose an intraoperative markerless lung nodule lo-
calization framework for VATS, which relies on a hy-
brid method combining intraoperative CBCT imag-
ing, intensity-based image registration, and biome-
chanical modeling techniques. We proposed to de-
couple the very challenging problem of intraoperative
deformation estimation into two more tractable sub-
problems: estimating the change of pose deforma-
tion (Phase 1 ) and then estimating the pneumotho-
rax deformation (Phase 2 ). We were able to demon-
strate the feasibility of our deformation compensation
framework on 5 retrospective clinical cases of patients
who underwent a VATS intervention. Average initial
errors in the range of 22 to 38 mm were reduced to the
range of 4 to 14 mm, which corresponds to a correc-
tion of 63 to 85% of the error without compensation
(71% in mean).

To improve the methods towards errors consis-
tently under the 5 mm objective, future works will
be mostly focused on allowing for lobes separation
within the model and taking into account sub-surface
lung information to drive the simulations. Another
challenge will be to acquire a single CBCT scan in-
stead of two (only CBCTdef after lung deflation) to
simplify the procedure and limit the radiation dose.
Finally, our overall objective aims at overlaying the
simulated deformed lung and the nodule position over
the CBCT image, and ultimately in real time in the
endoscopic view. By removing the need for a preoper-
ative nodule marking localization procedures and its
associated risks, and increasing the resection accu-
racy, the proposed method could significantly benefit
the clinical practice in thoracoscopic surgery.
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