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Near-Optimal Performance with Low Complexity
ML-based detector for MIMO Spatial Multiplexing

Hussein Hijazi, Ali Haroun, Majed Saad, Ali Chamas Al Ghouwayel and Achraf Dhayni

Abstract—In Spatial Multiplexing MIMO systems, many pow-
erful non-linear detection techniques as sphere decoding have
emerged to overcome the performance limitations of linear detec-
tion techniques. However, these non-linear techniques suffer from
high complexity that increases dramatically with the number
of antennas and the modulation order. Hence, they cannot be
implemented on highly parallel hardware architecture and are
thus not suitable for real-time high data rate transmission. In
this paper, a new detection technique is proposed to approach
the optimal performance obtained by Maximum Likelihood
(ML) detector without increasing the complexity significantly.
This detector is denoted by OSIC-ML since it combines two
techniques: the Ordered Successive Interference Cancellation
(OSIC) and the ML. The proposed OSIC-ML detector shows
a near-optimal performance at very low complexity even with
large scale MIMO and imperfect channel estimation, where this
complexity can be efficiently controlled to achieve the desired
complexity-performance tradeoff.

Index Terms—Multiple-Input Multiple-Output (MIMO), De-
tection algorithms, Equalizers, Maximum Likelihood (ML) de-
tection, Sphere Decoding (SD), Ordered Successive Interference
Cancellation (OSIC).

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (MIMO) systems us-
ing Spatial Multiplexing (SMX) technique allows

reaching higher Spectral Efficiency (SE) than MIMO systems
using a diversity technique. However, the decoding of the
received signal at the receiver side becomes a very complex
task.

In general, the performance of such systems highly depends
on the receiver detection methods where the best estimate is
obtained by the Maximum Likelihood (ML) detector. How-
ever, the ML detector complexity increases exponentially
with the number of Transmit Antennas (TAs), and it is not
practical for high order modulation schemes due to the huge
number of possible multiplexing combinations. Consequently,
the complexity of soft detection of MIMO-QAM is reduced
by avoid computing all the Euclidean Distances (EDs) [2].

Moreover, some known solutions in the sate of art which
make use of ML criteria such as Sphere Decoding (SD) [3]-[5]
and QR decomposition with order M Maximum Likelihood
Decoding (QRM-MLD) [6] preserve the optimal performance,
but they still suffer from major drawbacks. For instance, the
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This proposed idea was already patented in USA [1] and Europe.

SD complexity is highly dependent on the initial value for
the search radius: if the search radius is chosen too small,
there may be no solution in the hypersphere, but if the search
radius is chosen too large, the number of points to explore
may become too large, and the algorithm will encounter the
same issue as ML-based detection algorithms [7]. Also, its
complexity is very dependent on the Signal-to-Noise Ratio
(SNR) and on the channel modeling parameters used for
implementing the algorithm. Compared with SD, QRM-MLD
technique, which only keeps the best M candidates for the
next level search, has fixed throughput and is suitable for
pipelined hardware implementation. However, it involves very
high complexity, especially for higher modulation schemes
like 256 Quadrature Amplitude Modulation (QAM). Finally,
these techniques cannot be implemented on highly parallel
hardware architecture and are thus not suitable for real-time
high data rate transmission.

In addition, the linear detector based on Zero-Forcing (ZF)
or Minimum Mean Square Error (MMSE) [8] or Ordered
Successive Interference Cancellation (OSIC) criteria [9] have
a low complexity but the overall performance is limited by
an error-floor compared to the ML detector. Moreover, the
performance of OSIC detector highly depends on the strongest
detected signal and can suffer from an error propagation due
to the added interference when a symbol is wrongly detected.

In this paper, a new detection technique, called OSIC-ML,
is investigated which combines the linear technique OSIC
with the non-linear technique ML. It aims to approach the
complexity of linear detectors while maintaining the perfor-
mance of non-linear detectors. The system performance with
perfect/imperfect channel estimation and the computational
complexity of the proposed detector are evaluated with dif-
ferent configurations to highlight its advantages.

The paper is organized as follows. Section II describes the
SMX-MIMO system model, whereas the proposed OSIC-ML
detector is presented in section III. Section IV shows and
discusses the results of OSIC-ML as compared to linear/non-
linear detectors. Finally, Section V concludes the paper.

The notations adopted are as follows. We use boldface with
uppercase (lower case) letters X for matrices (x for vectors).
(.)H and (.)−1 are used to denote the Hermitian transpose and
the inverse of a matrix respectively. CN(µ, σ2) denotes the
complex normal distribution of a random variable having mean
µ and variance σ2. ‖.‖ stands for the Frobenius norm.

II. SYSTEM MODEL

A SMX-MIMO system using Nt TAs and Nr receive an-
tennas (RAs) is considered as depicted in Fig. 1, where all
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Fig. 1: MIMO transceiver System Model with Nt TAs and Nr RAs.
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Fig. 2: OSIC-ML model with/without ordering. ’EN’ is a boolean
variable to activate the ordering technique prior to detection and
interference cancellation. The stream estimator in the Nt receive
circuits is based on a linear symbol detection.
TAs transmit simultaneously different symbols of modulation
order M . The received signal vector y is expressed as:

y = Hx + z, (1)
where H = [h1, ..., hNt ] is the Nr × Nt MIMO channel
matrix with hi is the column vector of Nr elements, x =
[x1, . . . , xNt ]

T is the transmitted vector, z is Nr × 1 channel
noise vector and its elements zr obeys the independent and
identically distributed (i.i.d.) additive white Gaussian noise
with zero-mean and variance of σ2

z , i.e, CN(0, σ2
z ) for r =

1, . . . , Nr . The power of the transmitted symbol vector x is
normalized to unity.

At the receiver side, the ML detector for estimating x
performs an exhaustive search over all the possible transmit
vectors as described by:

x̂ML = arg min
x∈χ
‖y − Ĥx‖2, (2)

where χ denotes the set of all possible transmit vectors of size
MNt , x̂ is the estimated transmit vector, and Ĥ is the estimated
channel. In the sequel, the channel matrix is assumed perfectly
estimated.

III. PROPOSED OSIC-ML DETECTOR
A. Algorithm

A possible implementation for an OSIC-ML-based receiver
(RCV) is depicted in Fig. 2. The receiver aims to estimate
the Nt emitted symbols, x̂1, x̂2, x̂3, ..., x̂Nt . This detector can
include any existing ordering technique used with the conven-
tional OSIC detector for better interference cancellation. In
the following, we consider a detection without any ordering
and with the simplest ordering technique based on the channel
matrix columns norm (‖hi ‖

2). This power ordering technique
computes once the Nt norms and sorts them in decreasing
order to identify the order of symbol detection. The notation
x(i) is used to represent the ith symbol after ordering, while
xi represents the emitted symbol from the ith TA. Note that
x(i) and xi are the same when the ordering is not considered
(OSIC-ML without power priority).
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Fig. 3: The tree search for the OSIC-ML MIMO detectors of Nt
height and Nei branching factor. The corresponding branches of each
node in the tree are numbered from 1 to Nei .

The received signal y can be expanded as:

y = h(1)x(1) + h(2)x(2) + h(3)x(3) + ... + h(Nt )x(Nt ) + z, (3)

where h(i) represents the (i)th column vector of the ordered
(if any) channel matrix H. Each of the Nt receiving circuits
(RCV1, ..., RCVNt ) computes and removes the interference
successively while detecting the symbols. The successive in-
terference cancellation is performed in cascade by subtracting
the interference of the previous detected symbol x̂(i−1) from
the reduced-interference observation ỹ(i−1) as shown in Fig.
2. The interference cancellation process in each RCVi can be
expressed as:

ỹ(i) = ỹ(i−1) − h(i−1) x̂(i−1). (4)
Note that if the symbol is correctly detected, then the inter-
ference is successfully canceled in the course of estimating
x(i+1). Otherwise, error propagation is incurred.

To avoid this possibility that impairs the decoding process-
ing, we consider not only the sliced (quantized) estimate x̂(i),
but also the Nei nearest neighbors of the raw estimate (non-
sliced) x̌(i) to create the neighbor subset C(i) for i = 1, . . . , Nt .

For clarification, each receiving circuit RCVi computes first
the raw estimation x̌(i) for the symbol in the ith order of
detection using a linear detector like ZF and MMSE, then
they are sliced (quantized to Nei nearest symbols by taking the
Nei constellation points that have the minimum EDs between
x̌(i) and the M possible constellation points) to provide the
constellation set C(i) of Nei nearest sliced estimates. Other
detection techniques are also possible, as the proposed detector
is not restricted to any specific technique. In the following, we
will consider the ZF equalization/decoding where its weight
matrix is defined as:

WH(i)
ZF = (H

H
(i).H(i))

−1HH
(i). (5)

where the sub-matrix H(i) obtained from H by removing the
columns of the previously detected symbols {(1) to (i − 1)}.
Thus, the raw estimation can be deduced by using the (i)th

row of WH(i)
ZF as follows:

x̌(i) =WH(i)
ZF

(
(i), :

)
y, (6)

The next receiving circuit RCVi+1 is executed for each
possible estimated symbol in the constellation subset C(i),
and similarly for the subsequent receiving circuits in order to
generate the different constellation subsets C(1),C(i), ...,C(Nt ).
Then, these constellation subsets are provided to the ML
verification module as candidates to select a final estimate
x̂OSICML for the vector x:

x̂OSICML = arg min
x̂(1)∈C(1),..., x̂(Nt )∈C(Nt )

‖y −Hx̂‖2
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= arg min
x̂(1)∈C(1),..., x̂(Nt )∈C(Nt )

‖WZFy − x̂‖2. (7)

This problem can be represented as a search in a tree of
height Nt and branching factor Nei , as depicted in Fig. 3. The
number of possible transmit MIMO vector provided by the
tree is NNt

ei .
For the ML optimal MIMO detection, Nei will be equal

to the modulation scheme order M (Nei = M) that results
in MNt possible transmit vectors. It is clear that the ML
complexity increases exponentially with the number of TAs
and leads to a huge complexity with high order modulation
schemes. However, the proposed OSIC-ML allows controlling
the system’s performance-complexity by selecting a suitable
1 ≤ Nei ≤ M . The raw estimate x̌(1) is the root of the tree, and
its Nei nearest neighbors constitutes the set C(1) containing the
candidate for the first symbol in the detection order. Then, for
each branch of C(1) the corresponding interference cancellation
is performed prior to the next raw estimate x̌(2) and its Nei

nearest neighbor selections. Similarly, the constellation subsets
for all the Nt transmitted symbols are obtained successively.
Finally, the ML verification step is performed on the reduced
subset of NNt

ei possible transmit vector instead of the MNt

possibilities as in ML detector.
The OSIC-ML algorithm to estimate x̂OSICML is summarized

in Algorithm 1, where Q(.) denotes the quantization operation
that gives the Nei nearest sliced neighbors of the raw estimate
x̌(i). Note the Matlab matrix notations were used, and the input
to this algorithm can be the ordered ỹ, and ZF can be replaced
by MMSE to deduce the raw estimations.

B. Complexity Analysis
The offline complexity of the pre-computations COffline in

OSIC-ML includes the ZF weight matrix estimation of size
Nt×Nr (line 3 in Algorithm I), and those for the raw estimation
of size Nrem × Nr (line 16) where the number of remained
un-detected APM symbols Nrem decreases progressively from
(Nt −1) to 1 in the recursion nested calls. Note that the pseudo
inverse of a matrix of Nrem × Nr contains N3

rem + 2N2
remNr

Complex Multiplications (CMs) and N3
rem + N2

rem(Nr − 1) +
Nrem(Nrem − 1)Nr Complex Additions (CAs).

CCM
offline =

Nt−1∑
i=0

(
(Nt − i)3 + 2(Nt − i)2Nr

)
(8)

CCA
offline =

Nt−1∑
i=0

(
(Nt − i)3 + (Nt − i)2(Nr − 1)

+ (Nt − i)(Nt − i − 1)Nr

)
(9)

The number of Real Multiplications (RMs) and Real Additions
(RAs) for offline computations can be easily deduced as
follows 4CCM

offline RMs and 2CCM
offline + 2CCA

offline RAs respectively
since each CM contains 4 RMs and 2 RAs. Note that when
the channel is static over a long period, the complexity of any
pre-processing steps becomes negligible.

The online computational complexity comes mainly from
raw estimations, neighbors search, interference cancellation,
and ML verification. The row multiplication in line (4) and
(17) of Algorithm 1 includes Nr CMs and Nr − 1 CAs, and
these operations are performed on each node that leads to
1−Nei

Nt

1−Nei
times. Note that each CM in these steps can be

computed with 3 RMs and 3 RAs since WZF is known in

Algorithm 1 Proposed OSIC-ML

1: procedure OSIC-ML(y,H, Nei, Nt )
2: C = 0Nt×Nei

Nt
. OSIC-ML MIMO vector candidates

3: WH
ZF = (H

H .H)−1HH . ZF weight matrix over H
4: x̌(1) =WH

ZF (1, :) y . Zero-Forcing equalization
5: x̂(1) = Q(x̌(1)) . Find Nei nearest sliced neighbors
6: C =RECURSION(x̂(1), y,H, Nt,C, 1, 1)
7: x̂OSICML = arg min

x̂∈C
‖WZF y − x̂‖2. . ML Verification

8: end procedure

9: function RECURSION(x̂, yp,Hp, Nt,C, i,m)
10: for j = 1 + (m − 1)Nei to mNei do
11: v = 1 + ( j − 1)Nei

Nt−i : jNei
Nt−i

12: C(i, v) = x̂( j − (m − 1)Nei)

13: y = yp −Hp(:, 1)x̂( j − (m − 1)Nei) . Cancel interference
14: H(i) = Hp(:, 2 : end) . Remove 1st column in Hp
15: if H(i) not empty then . End of tree if H(i) is empty

16: WH(i)
ZF
= (HH

(i)
.H(i))−1HH

(i)

17: x̌ =WH(i)
ZF
(1, :) y . Zero-Forcing equalization

18: x̂ = Q(x̌) . Find Nei nearest sliced neighbors
19: C =RECURSION(x̂, y,H(i), Nt,C, i + 1, j)
20: end if
21: end for
22: return C

advance [10, Eq. (12)]. Note that the quantization (slicing) of
raw estimations and the selection of the Nei nearest neighbors
requires M EDs (‖ x̌ − x‖2) equivalent to 2M RMs and 3M
RAs, and it is done after each raw estimation. The number of
operations for interference cancellation is one less than that
of raw estimations, where each one contains a CM between
a column of H with a complex number, which is equivalent
to 4Nr RMs and 2Nr RAs. Finally, there are Nei

Nt EDs in
OSIC-ML, and the complexity of each square of ED for the
vector with Nt complex elements is 2Nt RMs and 4Nt−1 RAs.
Thus, the online computational complexity C of the proposed
detector in terms of RMs and RAs are given by:

CRM
online = (7Nr + 2M)

( 1 − NNt

ei

1 − Nei

)
− 4Nr + 2NtNNt

ei
(10)

CRA
online = (7Nr + 3M − 2)

( 1 − NNt

ei

1 − Nei

)
− 2Nr + (4Nt − 1)NNt

ei
(11)

Therefore, the total complexity in terms of real operations is
COSIC-ML = 4CCM

offline + 2CCA
offline + C

RA
online + C

RM
online.

IV. SIMULATIONS RESULTS AND DISCUSSIONS

The performance of MIMO-SMX systems with the pro-
posed OSIC-ML detector is evaluated through the measure-
ment of uncoded Bit Error Rate (BER) versus SNR. It is
assumed that the MIMO flat fading channel H is follow-
ing Rayleigh distribution with their complex values are i.i.d
complex Gaussian CN(0, 1), and it is perfectly known at
the receiver. Hence, the SNR per RA can be expressed as
SNR = 1

σ2
z
. The proposed detector with\without power priority

(ordering) is compared to the linear detectors (ZF and MMSE),
conventional OSIC with power priority, the non-linear SD and
the optimal ML detector. The BER in these simulations is the
average BER over different channel realizations.

In Fig. 4, the performance of MIMO-SMX transmitting
QPSK symbols using Nt = 4, Nr = 5 (SE= 8 bit/channel
use (bcpu)), Nei = 2 and 3 is provided. The performance of
the linear detectors ZF and MMSE is far from the ML optimal
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Fig. 4: Uncoded BER performance of SMX-MIMO system using
different detectors. The system parameters are: QPSK, Nt = 4, Nr =
5, Nei = 2 and 3. The SE is 8 bpcu.
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Fig. 5: Uncoded BER performance of SMX-MIMO system using
different detectors. The system parameters are: 16−QAM, Nt = 4,
Nr = 5, Nei = 2 and 3. The SE is 16 bpcu.
performance by around 10 dB, whereas the conventional OSIC
with power priority reduces this gap to 7 dB. However,
the performance of the proposed OSIC-ML using Nei = 2
without/with power priority has 2.5 dB and 3.8 dB SNR
gain, respectively, compared to the conventional OSIC with
power priority. Moreover, further performance enhancement
with OSIC-ML can be achieved by increasing the number of
considered nearest neighbors, i.e., OSIC-ML using Nei = 3,
where 5 dB and 6.2 dB SNR gain are respectively obtained
without/with power priority. This makes the OSIC-ML at only
0.8 dB far from the ML optimal detector.

In Fig. 5 and 6, the performance is illustrated with the same
system parameters used in Fig. 4 but with a larger modulation
schemes: 16-QAM and 64-QAM. Similar results are achieved,
where the quasi-linear OSIC-ML detector remains the best
performance-complexity tradeoff even with higher modulation
schemes using small Nei = 2, 3 and 4. For instance with 64-
QAM and Nei = 4, there are MNt = 224 vector candidates in
ML detection wheras only Nei

Nt = 28 candidates in OSIC-
ML detection for a SNR loss of only 1 dB. Hence, the Nei

value should be selected to achieve a balanced complexity-
performance tradeoff where a near-optimal performance can
be achieved with Nei � M . Note that the proposed detector
becomes similar to ML when Nei = M .

Moreover, the proposed OSIC-ML detector is evaluated with

0 5 10 15 20 25 30 35 40
10

-4

10
-3

10
-2

10
-1

10
0

ZF

MMSE

OSIC with power priority

OSIC-ML with power priority

OSIC-ML without power priority

ML and Sphere Decoder

Fig. 6: Uncoded BER performance of SMX-MIMO system using
different detectors. The system parameters are: 64−QAM, Nt = 4,
Nr = 5, Nei = 2, 3 and 4. The SE is 24 bpcu.
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OSICML without power priority
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Fig. 7: Uncoded BER performance of SMX-MIMO system using
different detectors with different number of TAs. The system param-
eters are: 16−QAM, Nt = [4, 6, 8], Nr = Nt + 2, Nei = 4. The SE is
[16, 24, 32] bpcu.

different Nt and Nr in Fig. 7 to highlight its advantages for a
larger MIMO scale. The results of Fig. 7 reveals that OSIC-
ML reaches the optimal performance with low complexity due
to using small Nei = 4 when M = 16 even with high SE.
Furthermore, the robustness of OSIC-ML to imperfect Channel
Side Information (CSI) at the receiver is presented in Fig. 8.
The performance of the system depicted in Fig. 8 with 12
bcpu and different channel estimation error variance σ2

e shows
that the system performance using SD and OSIC-ML detectors
degrades by less than 0.5 dB with σ2

e = 10−3. Whereas a
higher performance degradation with all detectors is observed
with σ2

e = 10−3, but a low error floor at 3.2×10−5 is obtained
with SD and OSIC-ML in contrast to OSIC and ZF/MMSE
equalizers.

Finally, the relative complexity reduction ( CML−COSIC-ML
CML

) and
the required SNR to reach a BER= 10−4 for different system
configurations are summarized in Table I. It is clear from this
Table that the proposed detector allows reaching the optimal
performance while having very low complexity, and a slight
increase of the Nei parameter has a significant impact on
performance with negligible complexity increase. In addition,
Table I gives an idea about how to configure a dynamic system
in terms of complexity or SE requirements.

It is worth mentioning that the computational complexity of
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TABLE I: Relative Complexity reduction vs SNR for different system configurations at BER= 10−4.
System SE SNR for ML SNR for OSIC-ML Relative Complexity Reduction

Configuration (bpcu) (dB) (dB) with respect to ML (%)
Nt = 4, Nr = 5, M = 16, Nei = 2 16 22.8 26.7 99.9518
Nt = 4, Nr = 5, M = 16, Nei = 3 16 22.8 24.7 99.9075
Nt = 4, Nr = 5, M = 16, Nei = 4 16 22.8 23.1 99.8164
Nt = 4, Nr = 5, M = 64, Nei = 3 24 28.8 30.8 99.9994
Nt = 4, Nr = 5, M = 64, Nei = 4 24 28.8 30.3 99.9988
Nt = 6, Nr = 8, M = 16, Nei = 4 24 19.4 19.7 99.994
Nt = 8, Nr = 10, M = 16, Nei = 4 32 19.2 19.7 99.9997
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10
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ZF

MMSE

OSIC with priority

OSICML with power priority

OSICML without power priority

ML and Sphere Decoder

Fig. 8: Uncoded BER performance of SMX-MIMO system using
different detectors with perfect and imperfect channel estimation. The
system parameters are: QPSK, Nt = 6, Nr = 10, Nei = 2 and σ2

e =

[0, 10−2, 10−3]. The SE is 12 bpcu.
the proposed OSIC-ML is also lower than that of SD detector.
For instance, the dominant complexity for both detectors from
the ML verification module is proportional to Nei

Nt for OSIC-
ML, MNt for ML, and lower bounded by MγNt for SD where
γ depends mainly on the SNR ρ and constellation order M
[7]. The exponent factor γ is γ � 1 for low M and it is large
with high M-ary scheme (γ up to 1)[7]. For illustrating the
complexity of these detectors, the following example with M =
16 is provided: CML ∝ 24Nt , CSD ∝ 24Ntγ = [22.8Nt , 22.2Nt ]

respectively for ρ = [10, 15] dB [7], and COSIC-ML ∝ Nei
Nt =

[2Nt , 22Nt ] for Nei = [2, 4] respectively.
Therefore, the presented results show clearly that the per-

formance of the OSIC-ML method with a convenient Nei is
similar to the high-complexity optimal ML and SD detectors
even with large scale MIMO and imperfect CSI. Moreover,
the OSIC-ML allows a tremendous complexity reduction com-
pared to the ML-based solutions while attaining the near-
optimal performance, thanks to the added ML verification step
on a limited constellation subset.

V. CONCLUSION

This letter proposed the OSIC-ML quasi-linear detector
for MIMO spatial multiplexing, which enables an important
performance enhancement while keeping a lower complexity
compared to non-linear detectors of similar performance. The
proposed algorithm avoids redundant computations of ML
detector on all possible transmit vectors by selecting Nei

nearest neighbors around the estimated symbols and avoids
the tremendous complexity increase with the number of TAs
especially for high order modulation schemes. In addition,
the number of considered nearest neighbors for each raw
symbol estimation Nei controls the tradeoff performance-
complexity of the proposed OSIC-ML detector where higher

value achieves better performance and increases the constel-
lation subset in the ML verification. Simulation results show
that the proposed algorithm provides substantial complexity
reduction compared to the non-linear detectors and hence
exhibits a better performance-complexity tradeoff compared
to the existing linear/non-linear detectors even with imperfect
CSI and large scale MIMO.

Moreover, other more complex ordering techniques like
SNR, SINR, and received signal-based ordering used with
conventional OSIC detector can be used with the proposed
OSIC-ML to enhance the performance more but also at the
price of higher complexity.

Finally, the complexity of OSIC-ML can be further re-
duced by pruning the search-tree as an example, but this
will lead to a variable complexity upper bounded by NNt

ei
EDs estimation. Note that this complexity reduction can be
a drawback for the hardware implementation compared to the
fixed-rate initially proposed by the OSIC-ML detector that can
be easily implemented in a parallel architecture. For instance,
the detection techniques that have variable search space as
SD have undesirable highly variable decoding delays, and
thus they require additional buffers, which is a drawback for
hardware implementation [11].
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