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Abstract: The purpose of this paper is twofold, considering first the generalization of a multichannel
speckle filter in order to handle temporal stacks of polarimetric SLC SAR data, and secondly the
development of an ad hoc performance indicator based on the Polarimetric Orientation Angle (POA)
in order to better estimate the resulting speckle reduction than the standard Equivalent Number
of Looks (ENL) over densely vegetated regions, like tropical forests. Being based on the ability
of PolSAR measurements to retrieve ground slopes through dense vegetation, this performance
indicator requires the use of low frequencies such as P-band, as well as fully polarimetric data.
This study has thereby a particular interest in the context of the upcoming BIOMASS spaceborne
mission whose launch is scheduled in 2023, and makes use of data from the TropiSAR airborne
campaign initiated in the early stage of the mission developments. Conducted over several test sites
of tropical dense forests in French Guiana, this campaign gives us the opportunity herein to exploit
P-band temporal stacks with repeated time intervals transposable to BIOMASS in terms of signal
decorrelation. The application of the generalized multichannel speckle filter to the Paracou test site
dataset reveals the limitations of the standard ENL analytical formula to assess speckle reduction
in the case of spatially correlated media like dense forests, and for this purpose the interest of the
correlation between POA and azimuthal slopes computed from an independent Digital Surface
Model.

Keywords: multi-channel filtering (MCF); speckle filtering; equivalent number of looks (ENL);
PolSAR; BIOMASS mission; polarimetric orientation angle

1. Introduction

P-band synthetic aperture radar is an imaging technique operating in the low fre-
quency domain of micro-wave remote sensing, with frequencies ranging from 300 MHz
up to 1 GHz (corresponding to wavelengths of 30 cm to 1 m). Such waves can penetrate
through dense media such as forested areas [1] and interact with scatterers large enough to
infer the whole forest biomass. Given the core importance of forest Above Ground Biomass
(AGB) for environmental issues including climate change (Forest AGB is part of Essential
Climate Variable recognized by the United Nations Framework Convention on Climate
Changes [2]), the unique sensitivity of P-band to forest AGB has pushed the development
of BIOMASS as the seventh Earth Explorer mission by European Space Agency (ESA),
to be launched in 2023. This mission will be the first P band space mission in repeat
pass configuration, based on interval of about 3 days between acquisitions, whether for
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the so-called tomographic phase (with 7 passes) or the interferometric phase (3 passes).
Indeed, the first 15 months of the mission will be dedicated to SAR tomography (TomoSAR)
acquisitions and the rest of the mission to polarimetric SAR interferometry (PolInSAR). For
such repeat-pass configuration, a key interest of P-band lies in its ability to maintain the
coherence between image pairs to a sufficient level after several days (cf. [3]), hence this
value of 3-days also constrained by orbit and coverage requirements [4]. This makes P-band
much suitable than higher frequency bands to achieve repeat-pass TomoSAR and PolInSAR
measurements from space. It can be also recalled that such measurements are particularly
relevant at P-band since its penetration capabilities enable to retrieve signal contribution
from all vegetation layers, until the ground one for most cases [1]. Besides, such penetration
capabilities open the way to PolSAR based methods dedicated to the characterization of
ground slopes, as proposed in [5] with the Polarimetric Orientation Angle (POA).

Although innovative, these data also rise questions about their behaviour regarding
speckle effects, which are intrinsically related to the coherent sum of numerous contribu-
tions occurring within a resolution cell. A state-of-the-art review of the various speckle
filters developed over the past few decades is provided in [6]. This paper deals with the
development of an optimized filter adapted to PolSAR SLC (Single Look Complex) time
series, to be further considered for the future BIOMASS data. Our purpose is then to assess
the filter performances on SAR data over tropical forests (which concentrate the major
scientific objectives of the mission), using the commonly used boxcar filter as reference. In
order to assess their respective performances, the ENL (Equivalent Number of Looks) will
be employed together with a new indicator based on the correlation between the POA and
azimuthal slopes.

The paper is organized as follows. The data used for the study are described in
Section 2. Section 3 presents the different steps of the filtering methods and the performance
assessment is introduced. Results obtained with data acquired during the TropiSAR
campaign in Amazonia (French Guiana, [7]) are presented in Section 4. The consistency
and possible improvements of the filtering method are then discussed in Sections 5 and 6.

2. Data Selection

The study presented in this article is based on data acquired during TropiSAR cam-
paign [7] over the Paracou test site (French Guiana), which offers an unique database
particularly relevant to simulate the future PolSAR time series of BIOMASS data. Indeed,
a sequence of 7 PolSAR images have been acquired in about one month, with variable
time intervals from 2 to 7 days. These time intervals are very close in term of temporal
decorrelation to the 3 days planned for BIOMASS, as shown by previous studies [8] based
on the TropiScat experiment (from 2011 to 2014, cf. [3]), also part of the Paracou test
site and representative of tropical dense forest. Moreover, this dataset includes not only
the original full bandwidth version (125 MHz, meaning a range resolution about 1 m),
but also a reprocessed version at 6 MHz to simulate the future spaceborne configuration
of BIOMASS.

Based on previous work on this study case [9], we also use the DEM (Digital Elevation
Model) from SRTM products in order to characterize the effects of terrain slopes. Since
the SRTM DEM is derived from short wavelength radar data (C-band, i.e a wavelength of
6 cm), it is important to recall that this product only provides elevations at canopy level,
while it is used to account for the topographic effects at ground level. In order to overcome
this limitation, we use the 90 m resolution product which is supposed to be less impacted
by forest gaps or forest/non-forest transitions than the 30 m product. Indeed, slope errors
caused by the use of canopy elevations to estimate ground slopes can be significantly
reduced by a degradation of the DEM resolution, as shown in [10] for similar tropical forest
areas in Brazil.

It is also worth to note that the Paracou test site is characterized by a variable terrain
topography, from flat areas to rather hilly ones with significant effects on the SAR images [9].
This region is also mostly covered by typical tropical rainforest with a very high density
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and diversity of trees, but also includes bare soil areas, a river and human settlements.
As detailed in [11], this test site can also benefit from high quality in-situ measurements,
distributed over several representative regions of interest (ROI) covering about 84 ha.
Depending on purpose, these ROI can be used at several scales (from 25 × 25 m2 to 25 ha).
In order to get a suitable trade-off between AGB estimates [12], geolocation and overlapping
errors, we use subplots from 6.25 ha to 1 ha subplots as detailed in [11], and as shown in
the result section hereinafter.

3. Multi Temporal and Multi Channel Speckle Filter

The proposed Multi Temporal and Multi Channel filter is an extension of the scalar
multi-temporal approach proposed in [13] to the case of multivariate data, i.e., acquired
with an arbitrary mode of diversity, here over different polarization channels.

3.1. Intensity-Based Multi-Temporal Filtering Techniques

The objective of a multi temporal speckle filter is to estimate σ = E(p), the expectation
of p = [I1, . . . , Ik]

T ∈ R+K, a multi-temporal vector composed of k multi-looked intensity
values sampled at different dates. Among the different possible approaches, the solution
retained in [13] proposes to perform this estimation using a linear filter

r = WTp with W = [w1, . . . , wK] ∈ RK×K (1)

where wk represents the K-element filter used to compute rk, the estimate of σk, by linearly
combining the different elements of p. The quality of a speckle filter is often measured
through the equivalent number of looks, ENL, of the filtered intensity [14], defined under
the assumption of a fully developed speckle (for normally distributed complex data) [15] as

Lrk =
E2(rk)

var(rk)
(2)

Maximizing the output ENL under the constraint of mean preservation, that is E(rk) =
σk, leads to the following linearly constrained minimum variance optimization problem

ŵk = arg min
wk

var(rk) subject to E(rk) = wT
k σ = σk (3)

whose solution writes

rk = f σk with f =
σTC−1p
σTC−1σ

and C = E
(
(p− σ)(p− σ)T

)
(4)

where f is a filtering coefficient which does not depend on the filtered channel, C the
covariance matrix of the input intensities and E(r) = σ [13]. The expression in (4) con-
tains unknown second-order quantities, σ, and a fourth-order matrix, C, whose accurate
estimation generally requires numerous samples.

As shown in [14], the equivalent number of looks after filtering is then given, according
to (2), by

Leq = σTC−1σ (5)

Under the assumption of uncorrelated multi-temporal intensities, C is diagonal and
the different components of the filtering coefficient become

Leq = σTC−1σ =
K

∑
k=1

σ2
k

var(Ik)
=

K

∑
k=1

LIk (6)
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with LIk the ENL of Ik. Likewise with C diagonal it follows that :

σTC−1p =
K

∑
k=1

σ2
k

var(Ik)

Ik
σk

=
K

∑
k=1

LIk

Ik
σk

(7)

which makes possible to define the filtering coefficient f as :

f =
1

Leq

K

∑
k=1

LIk

Ik
σk

(8)

At this stage, it is worth to note that this formulation considers the regional estimates
σk for the intensities as priors to the higher resolution ones rk, under the hypothesis of
spatial stationarity whose validity is likely to be effective for small regions, hence the
semi-empirical choices further detailed to optimize this trade-off.

3.2. Extension to SLC Data
3.2.1. General Form

In the multi channel case, K coherent vector acquisitions performed at different dates,
{kk}K

k=1, are used to compute second-order matrix representations, {Tpk}K
k=1, Tpk being an

estimate of the (N × N) covariance matrix of kk. Replacing Ik by Tpk in (1) and (4) leads to
the following expression for the MCMT filter :

Trk = fMCTσk (9)

where fMC represents a filtering coefficient that is common to all the acquisition dates, as in
the scalar case, and to all the channels, though preserving any distortion of the multivariate
information during the filtering process. In order to account for the statistical behavior of
all the processed channels and date, the filtering coefficient is computed as in (4), using
vectors containing multi temporal and multi channel intensities

xMC = vec(diag(Tx1), . . . , diag(Txk )) ∈ R+NK with x = p, σ (10)

where diag(X) provides a vector containing the elements located on the diagonal of X. The
expressions of fMC may be obtained from (4) and (8) by replacing p and σ by their multi
channel and date counterparts, pMC and σMC, respectively, defined in (10). A synopsis
of the MCMT filter is given in Figure 1 where the red rectangular blocks represent input
datasets and blue blocks with rounded corners represent the processing steps.

Figure 1. Synopsis of the proposed MCMT filter.

3.2.2. Application to Polarimetric SAR Data

Fully polarimetric coherent acquisitions may be represented using a three-element
target vector, k, from which one may compute a polarimetric coherency matrix as

T = E(kk∗T) with k =
1√
2

[
SHH + SVV , SHH − SVV ,

√
2SHV

]T
(11)
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One may show that, due to the semi definite positiveness of the second-order repre-
sentation in (11), the filtering coefficient in (9) is a positive real number. In the case of a
multi-temporal acquisition performed over a period of time small enough so that the K
measurements depict a stationary behavior, one may compute a mean estimate using an
additional boxcar filter operating in the time direction.

Tr =
1
K

K

∑
k=1

Trk (12)

4. Results

In this section, the contributions of the MCMT filter on the time series of the Paracou
test site presented in the Section 2 have been studied. The reference filter used to estimate
the contribution of the MCMT filter is a widely used boxcar filter, noted REF, separately
applied to each image of the stack, i.e., which does not take into account the temporal
dimension. Three criteria were used to evaluate the properties and performance of the
MCMT filter. The first criterion, relating to the filter properties, is to evaluate the variations
of the average filter intensity through the t0 indicator presented in [9]. The next two
criteria are used to estimate the filter performances through the ENL and the azimuthal
slopes estimated from the filtered P-band data. The last indicator, related to azimuthal
slopes, is specific to the use of PolSAR P-band data which are particularly sensitive to
topographic effects.

4.1. Implementation

We considered full resolution data obtained with 125 MHz bandwidth. The interest
of this time series is that it perfectly respects the BIOMASS acquisition protocol, with an
acquisition interval time of several days that allows us to observe an intensity correlation
corresponding to a moment of order 4 that oscillates around 0.6 equivalent to a coherence
about 0.8 [3].

Despite the high correlation values between the different components of the time
series, we chose to apply the version of the MCMT filter that does not take the correlation
into account. Indeed, calculating a moment of order 4 for a time series of this length is very
time consuming because the number of samples required for an accurate estimate of C is
very large. The choice of this sub-optimal but more robust version of the MCMT filter is
discussed in Section 5.

As detailed in (11) we calculate the coherence matrices T for each component of
the time series by applying a boxcar filter to perform a spatial smoothing of the speckle.
We can thus define pMC = vec(Tx1 , . . . , Txk ) to estimate the contributions of the MCMT
filter. We also define the σMC = vec(diag(Tx1), . . . , diag(Txk )) where the filter window
applied to σMC is twice as large as that applied to pMC, respecting local homogeneity
constraints. The MCMT filtering is then applied following the steps of Figure 1. The
time series data are also filtered with the REF filter which corresponds to a boxcar with a
window size equivalent to σMC to get a reference.

Figure 2 allows to observe in slant range resolution the contribution of MCMT filtering
compared to REF for one of the components Tk

ij from pMCk . The two maps on the left
are obtained after applying the REF and MCMT filters on the Paracou time series for an
output resolution equivalent to 5 m. The two maps on the right have a resolution of 50 m
equivalent to the future resolution of the BIOMASS mission data. The differences between
the images filtered with REF or MCMT are not visually significant, so that we prefer a
quantitative assessment in the following analysis. For this study, four regions of interest
(ROI), visible on the maps to the left of the Figure 2, were established on areas of forest
or savannah chosen as homogeneous as possible. Within the framework of the BIOMASS
mission, field measurements are also available in the same area as ROI 1 [11].
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Figure 2. Results of REF and MCMT filtering of an image T33 = 4〈S∗HV〉 from the data from the Paracou test site acquired
during the TropiSAR airborne campaign. The two maps on the left have an output resolution of 5 m, the two maps on the
right have an output resolution of 50 m.

4.2. Preservation of the Average

Overall, speckle filters do not necessarily preserve the average values of the filtered
intensities. For our concerns in the frame of forest AGB retrieval, average preservation is es-
sential, as pointed out by the calibration constrains on the future BIOMASS mission [16,17],
or by the developments of backscattering coefficients to account from geometrical and
scattering effects which may impact the raw intensities.

In order to minimise these effects, PolSAR P-band intensities are commonly studied
through polarimetric indicators, expressed as a function of forest biomass, which allow to
take into account the data acquisition geometry and the disturbing effects related to forest
volume or local topography [7]. The polarimetric indicator t0, detailed in [9], uses all the
polarisations of the intensity matrix S, transposed into the coherence matrix T, to minimise
disturbance effects. This feature makes t0 a better indicator to quantify the properties
of the MCMT filter in terms of conservation of the average intensity and highlights the
importance of independently filtering all the polarimetric and temporal channels of T to
maximise the t0 performances.

Its expression is recalled in (13), where N0 corresponds to the normalization coefficient
related to the minimization of geometric effects and double bounce phenomena, and TΘ

33
is the coefficient T33 of T after application of the Θ rotation related to the polarimetric
orientation angle that minimizes the effects of local topography [9].

t0 =

〈
1

N0 .TΘ
33

〉
(13)

Figure 3 (left side), shows the t0 values as a function of forest biomass from different
ROIs presented in the Section 2 which range from 6.25 to 25 ha. On Figure 3 (right side),
the ROIs have been divided into 1 ha plots, thus considerably increasing the number of
available ROIs. The results from the REF filtering are shown in red, those from the MCMT
filtering are shown in blue. For each type of filtering, a first logarithmic model has been
estimated from the ROI and their parameters are detailed in the Table 1 below.
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Figure 3. Estimation of t0 as a fonction of forest biomass obtained for the P-band PolSAR data from the Paracou test site
acquired with a bandwidth of 125 MHz with a resolution after filtering equivalent to 5 m. On the left, 15 ROIs of 6.25 ha are
considered as well as 1 ROI of 25 ha. On the right, 84 ROIs of 1 ha are considered.

Table 1. Parameters of regression models estimated for t0 = f (AGB) shown in Figure 3 and
associated statistics (Pearson Coefficient (rp), Root Mean Squared Error (RMSE), χ2 parameter).

16 ROIs a b rp RMSE χ2

REF 5.79 −25.51 0.78 21.84 5.13
MCMT 5.97 −26.0 0.76 19.37 5.33

84 ROIs a b rp RMSE χ2

REF 5.65 −25.12 0.54 33.63 27.14
MCMT 5.84 −25.62 0.54 33.84 32.53

Figure 3 and Table 1 show the very strong similarity between the regression models
estimated after application of the REF and MCMT filters on T, confirming that the MCMT
filter allows the conservation of the mean intensities allowing a gain in resolution compared
to the REF filter. To illustrate this property, Figure 4 shows the values of t0

MCMT as a function
of t0

REF for the two cases shown in Figure 3. In both cases, the data are perfectly aligned on
the 1:1 reference line, which means that the MCMT filter retains the average intensities.

Figure 4. Estimation of t0
MCMT as a function of t0

REF obtained for the P-band PolSAR data from the Paracou test site acquired
with a bandwidth of 125 MHz with a resolution after filtering equivalent to 5 m. On the left, 15 ROIs of 6.25 ha are considered
as well as 1 ROI of 25 ha. On the right, 84 ROIs of 1 ha are considered.
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4.3. Analysis in Terms of Speckle Reduction
4.3.1. The Equivalent Number of Looks (ENL)

The study of ENL improvement is anchored in the process of quantifying the perfor-
mance of a speckle filter. In this paper, the contribution of the MCMT filter in terms of ENL
improvement has been studied as a function of the output data resolution after filtering.

Four ROIs have been defined in Figure 2 to study the variation in ENL between data
filtered simply with REF and data that have been filtered with the MCMT filter. The ENL,
noted Leq and defined in (2) is represented in Figure 5 depending on the resolution of the
data obtained after filtering. Figure 5 (left side) shows that for the 4 targeted ROIs, the ENL
after MCMT filtering is greater than using simply REF filtering. The trend curves confirm
the contribution of the MCMT filter on the Leq. However, we note that the dispersion of
the Leq is increasing between the ROIs when the resolution becomes coarser.

Figure 5. Impact of the multilook pixel size on the equivalent number of looks Leq (left) and on the ratio ρ = LMCMT
eq /LREF

eq
(right) for the 4 ROIs shown in Figure 2.

In general, speckle filtering allows a clear increase in ENL according to the filtering
spatial resolution through a progressive smoothing of the speckle. In the study presented
here, regardless of the filter used, the growth of ENL is very limited, as shown in Figure 5
(left side). This phenomenon is expected under the common statistical assumptions (inde-
pendent and identically distributed realizations between each pixel).

To illustrate the added-value of the MCMT in comparison to the REF filter, the evolu-
tion of the ratio ρ = LMCMT

eq /LREF
eq can be seen in Figure 5 (right side). The ratio ρ is always

greater than 1 which confirms that the Leq from MCMT filtered data is always higher than
those obtained with REF filtered data. We also note that even if the standard deviation of
the ratios around the mean remains rather constant, the added-value of the MCMT tends
to decrease. This phenomenon can be explained by the homogeneity hypothesis which
becomes questionable for such large spatial multilook, and also by the higher temporal
correlation between larger regions from the image pairs.

Actually, this result illustrates very well the impact of pixel correlation within specific
regions of the image, especially between ROIs 1 and 2: both are covered by a dense
vegetation but ROI 1 is characterized by a significant terrain topography which generates
a higher level of inter-correlation between pixels, hence a degraded efficiency of the
multilook (and smaller ENL). This inter-correlation between pixels implies violation of
the independent and identically distributed pixels hypothesis, which makes hazardous
the prediction of ENL as a function of filtering spatial resolution. As a result, the use of
the Gaussian based hypothesis analytical Formula (2) for the ENL is not necessary reliable
in all cases, and particularly not for forested areas under hilly terrains. To overcome this
limitation, the quality of the aforementioned POA estimate can investigated, as proposed
in the next subsection.
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4.3.2. Estimation of the Polarimetric Orientation Angle (ψ̂az
N )

The unique sensitivity of P-band microwaves to forest AGB is related to their penetra-
tion capabilities, which in addition open the way to the characterization of the underlying
terrain topography not only from interferometric or tomographic measurements but also
from PolSAR data. Indeed, it has been shown in [5] that azimuthal slopes can be estimated
from a rotation around the line of sight (LoS) of the coherency matrix T̂, although the
questions about the perturbing effects of dense vegetation on this method remain open.
This slope estimation results from the polarisation basis orientation which maximizes the
co-polarization response. The method is recalled in (14) where T22, T23, T33 are the terms of
the T̂ matrix described in (11).

ψ̂az
N =

[
tan−1

(
−4Re(T23)

−T22 + T33

)
+ π

]
/4 (14)

If ψ̂az
N > π/4, it is replaced by (ψ̂az

N − π/2). The results of estimated ψ̂az
N as a function

of the multilook pixel size for full resolution acquisitions are shown in Figure 6. The image
on the far left of the figure corresponds to the azimuthal slopes ψAz

N extracted from the
SRTM DEM using the method described in [9]. The four images, arranged in two lines on
the right side of the Figure 6, correspond to the ψ̂az

N estimated from the filtered coherency
matrices T̂REF and T̂MCMT with a spatial resolution at the output of the filter corresponding
to 25 m and 50 m. Figure 7 is a zoom of the area framed in red on Figure 6, organised in the
same layout which targets an area of variable topography that was chosen for its very hilly
topography with a high density of forest.

Figure 6. Azimuthal slopes estimation from Paracou test site. Image on the left side corresponds to azimuthal slopes
ψAz

N extracted from the SRTM DEM. The four images, arranged in two lines on the right side, corresponds to azimuthal
slopes ψ̂az

N , estimated from filtered coherency matrices T̂REF and T̂MCMT with a spatial resolution at the output of the filter
corresponding to 25 m and 50 m. The red box corresponds to the area of interest selected for Figures 7 and 8.
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Figure 7. Zoom corresponding to the red rectangle in Figure 6. Image on the left side corresponds to azimuthal slopes
ψAz

N extracted from the SRTM DEM. The four images, arranged in two lines on the right side, corresponds to azimuthal
slopes ψ̂az

N , estimated from filtered coherency matrices T̂REF and T̂MCMT with a spatial resolution at the output of the filter
corresponding to 25 m and 50 m.

Figure 8. In the left block, 2D histograms of ψaz
N versus ψ̂az

N computed for the red box area of the Figure 6. In the right block,
2D histogram of the left block with local slope filtering. On the first line, results obtained with a resolution of 25 m at the
filter output, on the second line, results obtained with a resolution of 50 m at the filter output.

Figures 6 and 7, highlight the similarities between the azimuthal slopes of the SRTM
DEM and the topography estimated from ψ̂az

N . They illustrate the impact of the spatial
resolution of filtering on the estimation of azimuthal slopes. Areas of very changing
topography remain very uncertain despite the increase in the spatial resolution of filtering.
In the same way, the speckle that is visible for small spatial filtering resolutions (REF filter
at 25 m) completely disappears with large multilook pixel size. MCMT filtering results give
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more homogeneous maps, where remarkable regions are smoothed and identifiable for
smaller resolution and the number of areas of uncertainty with rapid variations in slope is
reduced compared to REF filtering results. On the zoom of Figure 7, details corresponding
to noise are notably observable for the ψ̂Az

N REF with the multi-look equivalent to 50 m
resolution and not for the ψ̂Az

N MCMT.
Using the reference azimuthal slopes ψAz

N from the 30 m SRTM DEM visible on the left
of Figure 6, it is possible to estimate the robustness of the estimated slopes from PolSAR
time series. The 2D histograms observed on the left of Figure 8 shows the correlation of the
ψ̂az

N with ψAz
N for several spatial resolution filtering on the reduced area framed in red on

Figure 6. The 2D histograms on the right of the Figure 8 have been normalised based on the
local slope, so that areas with flat topography are not taken into account in the expression
of the correlation.

Figure 8 shows that the correlation between ψAz
N and ψ̂az

N increases proportionally with
the spatial resolution filtering. This is explained by the decrease in rapid slope variations
and the gradual disappearance of the speckle. The dispersion around the diagonal of the
histogram shows that the data filtered with REF are much more noisy than those obtained
with the MCMT filter. The comparison of MCMT and REF filtering shows that the results
are equivalent to within one resolution. This confirms the impact of the MCMT filter on
the texture with a reflectivity maintenance.

The study was also carried out for data at 6 MHz for 50, 100 and 200 m multilook
pixel. The results obtained at 50 and 100 m are very interesting with the MCMT filter with
correlations between 0.2 and 0.3 as opposed to values below 0.2 for the REF.

This first study on the Paracou site allows to conclude that the radar information
related to the slope is contaminated by speckle at the largest multilook pixel size. Speckle
filtering allows to improve slope estimation at the pixel scale. However, it implies a
degradation of the multilook pixel size. The MCMT filter improves the result by having
less impact on the multilook pixel size. However, the contribution of the MCMT filter
decreases as the resolution of the multi-look increases. The latter is advantageous when
using data acquired with limited native resolution, where filtering the speckle while
preserving the resolution is a priority, as in the case of the future BIOMASS mission where
the bandwidth will be 6 MHz.

The study carried out in this paper showed the interest of using several indicators to
quantify the contributions of a multi-channel and multi-temporal filter applied to PolSAR
time series related to the observation of dense forests. The comparison of the results
obtained using the REF and MCMT filters have shown that the POA is a more decisive
performance indicator than the standard ENL and is truly decisive for the P-band PolSAR
data specific to the future BIOMASS mission. To synthesised our approach, the process
we used to compare the performance of the REF and MCMT filters is represented by the
flowchart given in Figure 9. The red rectangular blocks represent input datasets and the
blue blocks with rounded corners represent the processing steps.
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Figure 9. Flowchart representing the overall process for filtering P-band PolSAR time series and estimating properties and
performances indicators developed in this paper.

5. Discussion

For this article, we used data from the Paracou test site in French Guiana. This site is
known for the very dense structure of its forest cover as well as for its hilly topography. The
acquisitions made there during the airborne campaign TropiSAR were made in accordance
with the acquisition protocol of the future BIOMASS mission. A delay of 3 to 4 days
was respected between each shot, taken at an ideal road angle to maximize backscatter
phenomena related to ground contributions. As demonstrated in [9], the Paracou test site is
very well adapted to topography estimation and to the use of the t0 polarimetric indicator
for biomass estimation.

We have chosen not to use the data acquired during the AfriSAR campaign [18]
because of the acquisition protocol deployed. Indeed, the AfriSAR campaign was devoted
to TomoSAR acquisitions as a priority, so that we do not have PolSAR time series exceeding
3 acquisition dates. Moreover, the time intervals between the different acquisitions of
the same series are on the other side of minutes, to respect the TomoSAR configuration
and keep a maximum of coherence between the data. Too much consistency between the
data does not allow an optimal use of the MCMT filter because there are no differences
exploitable enough for the calculation of the f filtering term. These elements contribute to
the exclusion of the AfriSAR campaign for this article.

The use of supposedly decorrelated data for the MCMT filter raises an important
point regarding the quantification of the gain in terms of equivalent look number Leq if
correlation data is used. For this quantification, we used the TropiScat data which, using
a semi-empirical decorrelation model, allowed us to estimate the decorrelation of the
data as a function of time as shown in Figure 10 (left side). Several levels of correlation
were represented from non-diagonal C matrices. From the methods proposed in [13], it is
possible to estimate the gain in Leq obtained after using a MCMT filter. Figure 10 (right side)
shows the theoretical Leq obtained after filtering for 3 correlation levels 0.3, 0.5 and 0.7 as
a function of time. The solid lines are for MCMT filtering which takes into account the
decorrelation of the data. The dashed lines are for the MCMT filtering proposed in this
paper. The results of Figure 10 (right side) allow to conclude that the MCMT filtering is
slightly under optimal in terms of gain in Leq although, it remains very efficient.
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Figure 10. On the left: semi-empirical model of the repeat-pass correlation between the duration given along the x-axis,
with upper and lower bounds corresponding to 3-day correlations of 0.87 and 0.37 respectively. On the right: theoretical Leq

resulting from the filtering of 7 Biomass like polarimetric acquisitions as a function of the 3-day temporal correlation which
determines the other temporal baseline (up to 18 days) through the semi-empirical decorrelation model (on the left). The
various colors are for different stationary correlation between HH and VV, ranging from 0.7 to 0.3, and the dot and plain
lines are for the optimal or non-optimal versions of the MCMT filter respectively.

6. Conclusions and Further Prospects

Through the implementation of an innovative speckle filter adapted to temporal
sequences of polarimetric SAR SLC images, this paper puts forward a new performance
indicator in order to assess the filtering efficiency, particularly relevant at P-band in the
case where dense vegetation would jeopardize the microwave penetration through the
underlying ground.

In agreement with the qualitative improvement of texture throughout the filtered
images, this indicator enables to quantify the filter benefits, while the standard metric based
on the Equivalent Number of Looks (ENL) fails to capture these changes. The saturation of
the ENL has not been fully understood yet, but the most likely explanation for us lies in
the intrinsic spatial correlation due to the forest structure.

Being based on the correlation between the polarimetric orientation angle and the
azimuthal component of the ground slope estimated from an independent DEM, it is also
worth noting that this indicator requires fully polarimetric SAR data and a DEM adapted
to the microwave penetration. In our case with P-band SAR data, the DEM provided by
the SRTM product at 30 m provides a good proxy of the Digital Terrain Model (DTM).

Together with speckle reduction, the implementation of such a filter contribute to
preserve the spatial resolution, as well as the temporal resolution since the individual
mean of each sample of the temporal sequence is maintained. These two features are
particularly relevant in the frame of the BIOMASS dedicated to the temporal survey of the
above ground biomass distribution at global scale, in which the spatial range resolution is
limited by the 6 MHz bandwidth allocated to civilian spaceborne applications. In addition,
the preservation of the fully polarimetric covariance matrix is also very relevant, whether
to implement backscattering coefficients like t0 in order to optimize the sensitivity to forest
biomass, or to exploit the polarimetric channels in order to cope with perturbing effects
due to temporal variability.

This work also highlights the relevance of using the longest possible time series in
order to benefit from uncorrelated images, given that the filter optimization to correlated
images has shown a limited interest. Further prospects of development will also be
dedicated to the combined use of non-local filters, as well as the filter implementation
to other datasets in order to better cope with scenarios of correlated images. Beyond the
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direct objectives of BIOMASS, this work opens new perspectives of terrain slope estimation
and DTM reconstruction from PolSAR data, considering that ascending and descending
orbit are truly promising to cope with the method limitation related to the estimation of
azimuthal components only.
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