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Irregular propagation environments with complex scattering effects challenge traditional ray-tracing-based
localization. However, the environment’s complexity enables solutions based on wave fingerprints (WFPs).
WFPs leverage the complexity to naturally multiplex scene information across a diverse set of measurement
modes, yielding a unique measurement vector for each object position. Often a single detector suffices by
making use of the spectral or configurational diversity that is offered by the medium’s natural frequency
diversity or reconfigurable intelligent surfaces, respectively. Yet, since WFPs rely on the extreme sensitivity
of the chaotic wave field to geometrical details, it is not clear how viable WFP techniques may be in a realistic
dynamically evolving environment. Here, we reveal that environmental perturbations reduce both the diversity
of the WFP dictionary and the effective signal-to-noise ratio (SNR), such that the amount of information that
can be obtained per measurement is reduced. This unfavorable effect can, however, be fully compensated by
taking more measurements. We show in simulations and experiments with a low-cost software-defined radio that
WFP localization of noncooperative objects is possible even when the scattering strength of the environmental
perturbation significantly exceeds that of the object to be localized. Our results underline that diversity is only one
important ingredient to achieve high sensing accuracy in compressed sensing, the other two being SNR and the
choice of decoding method. We find that sacrificing diversity for SNR may be worthwhile and observe that simple
artificial neural networks outperform traditional decoding methods in terms of the achieved sensing accuracy,
especially at low SNR. Our results on robust position sensing have direct technological relevance in wireless
communication, ambient-assisted living, human-machine interaction, retail analytics, and security applications.

DOI: 10.1103/PhysRevResearch.2.043224

I. INTRODUCTION

Precise position sensing is a highly sought ability for
countless context-aware devices in our modern life, including
wireless communication with new-generation protocols rely-
ing on beam forming, high-value asset tracking and customer
analytics in retail, ambient-assisted living solutions for remote
health care, untethered virtual reality, intruder localization in
classified facilities, and victim-detection technologies for first
responders. Microwave-based sensing solutions are appealing
due to their ability to operate through optically opaque mate-
rials or fog, their independence of external illumination and
target color, limited potential privacy infringements, and the
nonionizing nature of microwaves. Moreover, existing wire-
less infrastructure can often be leveraged, endowing it with a
dual communication and sensing functionality.

Traditional microwave position sensing relies on ballis-
tic wave propagation and leverages ray-tracing approaches,
the simplest example being triangulation. Unfortunately, the
above-listed applications involve irregular propagation envi-
ronments which give rise to significant multipath effects. In
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some cases, the position to be identified may not even be
within the sensor’s line of sight, but hidden around a corner.
In such complex environments, a propagating wave front can
get completely scrambled such that its angle or time of ar-
rival cannot be used for position sensing with conventional
ray-tracing analysis. Considerable research effort thus goes
into overcoming the issues posed by multipath effects, for in-
stance, using distributed sensor networks encircling the region
of interest in combination with a statistical analysis of shad-
owing effects and/or geometry-based environment models to
account for reflections as virtual anchors [1–5].

A completely different approach consists in embracing
the complexity of the propagation medium as virtue rather
than obstacle. An indoor environment is electrically large
compared with the wavelength and can be characterized as
ray chaotic: The separation of two rays launched from the
same location in slightly different directions will increase
exponentially in time. A wave-chaotic field is extremely
sensitive to both source location and the enclosure’s geome-
try. Inspired by the quantum-mechanical concept of fidelity
loss [6], this sensitivity has been leveraged to distinguish
nominally identical enclosures [7], to detect the presence
or motion of small changes in the enclosure’s geometry
(without localizing them) [8,9], and to quantify volume-
changing perturbations [10]. For the problem of position
sensing, the wave-chaotic field’s sensitivity implies that dif-
ferent positions are associated with distinguishable wave
fields that can act like wave fingerprints (WFPs) for the
positions.
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Wave fingerprinting can be be applied to the localization
of cooperative objects (emitting a beacon signal or equipped
with a tag) [11–16] as well as to noncooperative objects (no
compliance with localization task) [17–19]. While the former
leverages the sensitivity of ray chaos to the source location,
the latter leverages its sensitivity to geometrical perturbations.
From the wave’s point of view, different object positions in-
evitably correspond to different geometries of the propagation
environment. To ensure the distinguishability of WFPs, the
chaotic wave field must be probed in a number of “inde-
pendent” ways. Traditionally, this is achieved using spatial
or spectral diversity with a network of sensors or broad-
band measurements, respectively. Given the hardware cost of
radio-frequency chains, single-detector schemes that do not
rely on spatial degrees of freedom are appealing. A more
recent single-detector alternative to the reliance on spectral
diversity is to use configurational diversity by reprogramming
the propagation environment with a “reconfigurable intelli-
gent surface” (RIS). Using a programmable metasurface as
RIS, Ref. [19] leveraged configurational diversity to localize
multiple noncooperative objects outside the line of sight with
single-port single-frequency measurements.

With real-life applications in mind, a fundamental chal-
lenge for indoor localization with WFPs arises: How does one
handle a dynamic evolution of the propagation environment
independent of the objects of concern? Indeed, given the
extreme sensitivity of the chaotic wave field to geometrical
details, one could expect that a perturbation not related to the
object to be localized alters the wave field to an extent that
makes it unrecognizable in light of a previously established
WFP dictionary.

Here, we systematically study the impact of perturbations
of the propagation environment on the localization accuracy,
considering a frequency-diverse model system both in sim-
ulation and experiment. We investigate an interpretation of
the perturber as effective source of noise and the extent to
which the perturber affects the diversity of the WFP dictio-
nary. We demonstrate that the reduction of the amount of
information that can be obtained per measurement as the
perturber size is increased can be compensated by taking more
measurements, even in the regime where the perturber’s scat-
tering strength exceeds that of the object to be localized. Our
results stress the importance of appreciating the information-
theoretic encoding-decoding cycle of the sensing process in its
entirety and reveal that machine-learning decoders outperform
traditional decoding techniques especially in the regime of
low signal-to-noise ratio (SNR).

II. EXPERIMENTAL SETUP AND WFP FORMALISM

Our experimental setup is shown in Fig. 1: An object
is located on one of P = 5 possible predefined positions
in an irregular metallic enclosure. N = 51 complex-valued
transmission measurements between two simple monopole
antennas are taken in the interval 1 GHz < f < 2.58 GHz
with a software-defined radio (SDR, LimeSDR Mini). Note
that the predefined object positions are clearly outside the
line of sight of the antenna pair. Dynamic perturbations of
the propagation environment are introduced in our experiment
with a metallic object of variable size mounted on a stepper

FIG. 1. Experimental setup. The triangular object to be local-
ized (base 9 × 9 cm2, height 6.5 cm) is placed on one of P = 5
predefined positions (here, position 3) inside a complex scattering
enclosure of dimensions 0.8 × 0.83 × 0.5 m3 (top wall removed to
show interior). The transmission between two monopole antennas is
measured with a LimeSDR Mini. The object to be localized is outside
the antenna pair’s line of sight. A dynamic perturber consists of a
metallic object of variable size (here, the third largest) mounted on
a stepper motor. The top inset shows the different considered sizes
of the dynamic perturber in comparison to the object size. The three
largest perturbers are obtained by mounting a U-shaped extension
on a smaller perturber, similar to the spirit of Matryoshka dolls. The
bottom inset illustrates the WFP multiplexing mechanism.

motor which can place the object in an arbitrary angular
orientation.

A measured transmission spectrum S( f ) can be decom-
posed into four contributions:

S( f ) = Scav( f ) + Sobj( f ) + Spert ( f ) + N ( f ). (1)

Spert ( f ) accounts for rays that encountered the perturber,
Sobj( f ) accounts for rays that encountered the object but not
the perturber, Scav( f ) accounts for rays that bounced around
in the cavity without encountering either the object or the
perturber, and N ( f ) denotes the measurement noise. Given
the chaotic nature of the complex scattering enclosure, it is
customary to assume that real and imaginary components of
the entries of the first three terms are drawn from zero-mean
Gaussian distributions. The measurement noise is typically
also zero-mean Gaussian. The decomposition in Eq. (1) has
several subtleties. First, we note that if the perturber size is
increased, more rays will encounter the perturber such that
not only will the elements of Spert ( f ) be drawn from a dis-
tribution with larger standard deviation but also at the same
time the standard deviation of the distributions of Scav( f )
and Sobj( f ) will decrease. In other words, Scav( f ) and Sobj( f )
are not independent of the perturbing object. Second, since
all the terms are assumed to be drawn from zero-mean dis-
tributions, in principle one would expect that by averaging
over an ensemble of realizations of the perturber one can
estimate Scav( f ) + Sobj( f ) and by additionally averaging over
an ensemble of object positions one can identify Scav( f ). In
practice, proper averaging requires a sufficient number of
realizations, and P = 5 may be insufficient for averaging over
an ensemble of object positions.

In Eq. (1), only the term Sobj( f ) encodes information about
the object position. To determine a WFP in the presence of
a perturber, we therefore average S( f ) over an ensemble of
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representative perturber realizations. Here, it is relatively easy
to ensure that the ensemble is sufficiently large to estimate
Scav( f ) + Sobj( f ) properly. We can then either define the WFP
as being Scav( f ) + Sobj( f ) or intend to approximate Sobj( f )
with

S(2)
obj( f ) = Scav( f ) + Sobj( f ) − 〈Scav( f ) + Sobj( f )〉obj. (2)

We will consider both options below and see that, counterin-
tuitively, the former one can be advantageous in certain cases.
Moreover, Eq. (1) naturally suggests that we interpret the
perturber as an effective source of noise. We can quantify the
scattering strength of the perturber relative to that of the object
via an effective perturber-induced SNR ρp. Ideally, to that end,
we would define ss and sn to be the standard deviation of the
distributions from which the entries of Sobj( f ) and Spert ( f ),
respectively, are drawn, to define ρp = s2

s /s2
n. In practice, we

do not know Sobj( f ). Depending on whether we choose to use
Scav( f ) + Sobj( f ) or S(2)

obj( f ) as WFP, we can define s(1)
s and s(2)

s

to be the respective standard deviations, yielding ρ (1)
p and ρ (2)

p .
These effective SNRs quantify to what extent the perturber
acts as noise on our chosen WFP but do not directly reflect
the ratio of scattering strengths of object and perturber.

The P × N WFP dictionary H merges the P WFPs (each
WFP is an N-element vector) into a single matrix. The WFP
approach can then also be framed as a multiplexing problem
Y = HX + N , where X is a 1 × P vector identifying the
object position, Y is the complex-valued 1 × N measurement
vector, and N is a 1 × N noise vector.

III. INFORMATION-THEORETIC PERSPECTIVE

One prerequisite for successful wave fingerprinting is the
diversity of H. In our case, the complexity of the propagation
environment naturally provides this diversity. The lower the
correlations between different WFPs are, the better they can
be distinguished. To get a quantitative grasp of the diversity
of H, it is instructive to consider its singular value (SV)
decomposition: H = U�VT , where � is a diagonal matrix
whose ith entry is the ith SV σi of H. The flatter the SV
spectrum is, the more diverse is H. A convenient metric
of diversity is the effective rank of H, which is defined as
Reff = exp[−∑n

i=1 σ̃iln(σ̃i )], where σ̃i = σi/
∑n

i=1 σi and n =
min(N, P) [20]. Note that only perfectly orthogonal channels
with zero correlation yield Reff = n.

Unfortunately, much of the compressed-sensing literature
is exclusively focused on the diversity of H to understand
the achievable performance. For instance, compression ratios
are often provided without even indicating at what SNR they
are valid. In principle, in the absence of any noise, the tiniest
amount of diversity could be sufficient to ensure complete
distinguishability even with N = 1. Here, we argue that the
achievable performance depends on the amount of (useful)
information that can be extracted per measurement. In the
physical layer, besides diversity the SNR is a second crucial
ingredient. Moreover, high diversity and low SNR only ensure
good performance if the deployed decoding method in the
digital layer is capable of extracting much of the relevant
encoded information from the measurement.

FIG. 2. Information about the object position is (inevitably)
physically encoded in the measured data via wave scattering in
the irregular propagation environment. Digital data processing then
seeks to retrieve the information from the measurements.

WFP-based sensing in its entirety as schematically sum-
marized in Fig. 2 can be interpreted as a process consisting of
physical encoding and digital decoding of information. Wave
propagation through the complex scattering environment nat-
urally (and inevitably) encodes information about the object
position in measurements of the wave field. Data processing
seeks to retrieve this information. Various decoding methods
exist that we will compare later on:

(i) Correlation. Identify which row of H has the highest
correlations with Y. If the WFPs rely on spectral diversity, this
procedure can be interpreted as “virtual time reversal” [16].

(ii) Inversion. Compute an inverse of H, for instance, via
Tikhonov regularization, and identify the entry of H−1Y with
the largest magnitude.

(iii) Optimized inversion. Use the result from method
(ii) as initial guess in a nonlinear minimization of ||Y −
HX || [21,22].

(iv) Learning. Train an artificial neural network (ANN)
to map Y to the corresponding object position. ANN-based
approaches have not been studied in the multiplexing liter-
ature to date. Besides their potential for superior decoding
performance, inference is extremely fast. One forward pass
through an ANN requires only a few matrix multiplications
but no correlations, matrix inversions, or nonlinear optimiza-
tion routines.

From an information-theoretic perspective, it is important
to understand fundamental bounds on the sensing perfor-
mance. A simple bound to compute is the generalized
Shannon capacity

C =
∑

i

log2

(
1 + ρ

P
σi

)
, (3)

which has been mentioned on a few occasions in a sensing
context [23,24]. Nonetheless, the meaningfulness of C for a
specific sensing scheme is limited for two reasons. First, an
ideal input distribution is assumed for X , but in reality all
entries of X are zero except for one which is unity. Second,
an ideal decoding method is assumed. Below we will see
examples where a system with nominally lower C nonetheless
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yields a higher sensing accuracy for certain decoding meth-
ods. It is thus essential to appreciate the sensing process in its
entirety, including both encoding and decoding as illustrated
in Fig. 2.

Having introduced the notion of diversity and SNR, we can
now briefly comment on how faithfully the metallic enclosure
in our experiment represents real-life scenarios. Without a
doubt, certain cases like the inside of a vessel or a bank vault
are very well represented. Other environments like the inside
of a building are less reverberant than a metallic enclosure.
Essentially, the quality factor of these “cavities” is lower. This
implies more correlations within a fixed frequency interval of
the transmission spectrum, as well as a lower SNR due to more
attenuation. Both result in a decrease of the information that
can be extracted per measurement; this effect can be compen-
sated by taking more measurements, for instance, with a wider
bandwidth. Nonetheless, from a fundamental perspective, the
physics of an indoor system is entirely captured by our metal-
lic enclosure. From a practical point of view, we note that
in scenarios with already existing wireless communication
infrastructure, the beacon signals thereof could be used to
implement position sensing with WFPs, saving energy and
reducing the amount of electromagnetic radiation.

IV. SEMIANALYTICAL SIMULATIONS

To begin with, we consider a two-dimensional (2D) ver-
sion of our experiment simulated as a 2D system of coupled
dipoles [25] which contains all the essential physical in-
gredients to simulate wave propagation, reverberation, and
scattering in our experiment. These simulations are not in-
tended to directly approximate our experimental setup and
reproduce the experimental data. Instead, they offer an ideal
platform to identify the general effect of dynamic perturba-
tions of the propagation environment on the sensing accuracy
without any measurement noise or errors due to imperfect
object positioning on the predefined positions, i.e., N ( f ) =
0. As shown in Fig. 3(a), a perturber of variable size with
arbitrary orientation and location (within a specified area)
simulates dynamic changes of the environment. Our simu-
lation setup evaluates the transmission between an antenna
pair at 25 distinct frequencies. We use an ensemble of 150
random perturber realizations (random orientation and ran-
dom location of its center within the allowed area) to estimate
H, Reff , and ρp. The probability density functions (PDFs) of
real and imaginary parts of Spert is seen in Figs. 3(b)–3(e)
to be zero-mean single-peaked and tends towards a Gaussian
distribution for larger perturbers.

A. Impact of perturbation on diversity and effective SNR

In Fig. 4 we contrast the use of Scav( f ) + Sobj( f ) or S(2)
obj( f )

as WFP in terms of the resulting diversity (Reff ), effective
SNR (ρp), and sensing capacity (C). As we will see below,
neither of these quantities is a reliable predictor of the sensing
accuracy, since they do not take the decoding method into
account. For the case of using Scav( f ) + Sobj( f ) as WFP, the
observed trend is clear: As the perturber size increases, both
Reff and ρp as well as C decrease. While the impact on ρp was
clearly expected, the reduction of diversity is more subtle. It

FIG. 3. (a) Setup of semianalytical coupled-dipole 2D simula-
tions. A linelike object is placed on one of P = 5 predefined positions
in an irregularly shaped enclosure (dipole fence) of dimensions on
the order of 25 × 15 wavelengths. A linelike perturbing object with
variable length is randomly rotated and located such that its center
lies within the indicated area. The transmission between transmitter
(TX) and receiver (RX) is evaluated. See Ref. [25] for technical
details on the simulation method. (b)–(e) PDFs of real and imaginary
parts of Spert and a Gaussian fit are shown for the smallest [(b) and
(c)] and largest [(d) and (e)] considered perturber size.

becomes intuitive by considering the extreme case in which
the perturbation alters the entire enclosure. Then, averag-
ing over realizations yields the result that would have been
obtained in an anechoic environment such that no diversity
thanks to wave chaos is left.

Using Sobj( f ) as opposed to Scav( f ) + Sobj( f ) would
certainly improve the diversity by removing unnecessary cor-
relations (possibly at the expense of a better SNR such that
the overall effect on capacity is unclear), but this is not pos-
sible in practice. Our closest option to that effect is to use
S(2)

obj( f ). Straightforward simulations with random Gaussian
matrices show that the effective rank of Scav( f ) + Sobj( f ) may
exceed that of S(2)

obj ( f ) in cases where P is small (preventing
proper averaging over realizations of the object position) and
where the ratio of the standard deviations of the distributions
of Sobj and Scav is large. Nonetheless, in our semianalytical
simulations, we observe in Fig. 4(a) a higher effective rank
for S(2)

obj( f ) than for Scav( f ) + Sobj( f ). Yet, since ρ (2)
p is sub-

stantially lower than ρ (1)
p , the effect of using S(2)

obj( f ) on the
capacity is unfavorable.

Complex scattering enclosures are often seen as random-
field generators [26]. Reff is a measure of the number of
independent samples, and for N � P one expects Reff → P.
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FIG. 4. (a) Effect of perturber size in the Reff -ρp plane in the
semianalytical simulations. Curves for defining the WFP as Scav +
Sobj or S(2)

obj are shown for three setups. All three setups are like the one
in Fig. 3, but perturber area, predefined object positions, and antenna
positions are moved around. In all cases the object is outside the an-
tenna pair’s line of sight. (b) Sensing-capacity values corresponding
to the data in (a). The results in this figure are obtained using all
25 frequency points. To ease comparison with Fig. 6, we normalized
�n

i=1σ
2
i to unity; the SNR ρ in Eq. (3) incorporates adverse effects

on the dynamic range due to path loss.

Yet, in our simulations, Reff saturates below 4. This obser-
vation can be attributed to field correlations, here in the
frequency domain, that prevent the field observables from
being purely random variables [27]. Similar effects have been
observed for the case of using configurational diversity in a
complex scattering enclosure [28].

B. Dependence of sensing accuracy on perturber size,
number of measurements, and decoding method

The general trend is clear: The larger the perturbation,
the less information can be extracted per measurement, as
reflected by the sensing-capacity values plotted in Fig. 4(b).
However, this decrease in information per measurement can
be compensated with more measurements. At first sight,
one may expect that such a compensation is only feasi-
ble as long as the object’s scattering signature is stronger
than the perturber’s effect, i.e., for ρp > 0 dB. Our find-
ings in Fig. 5, however, reveal that there is no abrupt
phase change in the relation between achievable accuracy
versus perturber size. Instead, using more measurements, suc-
cessful position sensing is feasible at effective SNRs well
below 0 dB.

We systematically compare the previously outlined decod-
ing methods for both choices of WFP. For the learning-based
approach, we train a simple ANN consisting of two fully
connected layers; the first layer consists of 256 neurons and is
followed by a rectified-linear-unit (ReLU) activation, and the
second layer consists of P = 5 neurons and is followed by a
SoftMax activation. Using more neurons or an additional layer
does not appear to notably impact the results. We consider
two possibilities to provide training data from which the ANN
can learn to decode the measurements. The first option is to
simply use the raw data from all the perturber realizations
that we generated without a need for extracting H or other
quantities. This brute-force method may prove particularly
useful in cases where measurements are restricted to intensity-
only information which prevents averaging as simple means
to extract H, but this scenario is outside the scope of the

FIG. 5. Localization accuracy in semianalytical simulations. The
color scale goes from 0 (black) to 1 (white). For each choice of
WFP definition (columns) and decoding method (rows), the accuracy
is plotted as a function of perturber size (horizontal axis) and the
number of frequency points used to ink the WFP (vertical axis). ANN
results are averaged over 20 training runs with randomly initialized
weights; the standard deviation is below 2%. The black contour line
corresponds to 95% accuracy. To aid comparison, the red contour is
the same on all panels.

present paper. Note that with this approach the WFPs are
never explicitly evaluated, but only implicitly contained in
the ANN weights. The second option is to synthesize training
data with Y = HX + N using the estimated H and generating
N with entries drawn from a complex Gaussian distribution
whose standard deviations match those of the distribution of
Spert extracted from the data. This second method relies on
our hypothesis that Spert is normally distributed and offers the
possibility of generating a training data set of unlimited size.
In both cases we normalize the data (zero mean, unit variance)
and use the Adam method for stochastic optimization [29]
(step size 10−3) to train the ANN weights.

In Fig. 5, we show how the achieved sensing accuracy de-
pends on the perturber size and the number of measurements.
We ensure that the spacing of the utilized frequency points is
always the same and that they are always centered on the same
frequency. For instance, for N = 7 measurements we pick the
central frequency point out of the 25 available ones as well
as its three closest neighbors to the left and right. Our results
are thus for one specific system realization, which explains
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why the contours in Fig. 5 are not perfectly smooth. Several
important observations and conclusions follow from Fig. 5:

(i) WFP dictionaries with very different nominal sensing
capacities can yield the same accuracy. This is the case for
both ANN-based methods, in which the accuracy is (almost)
identical for WFP(1) and WFP(2).

(ii) The same WFP dictionary can yield very different
accuracies depending on the decoding method. ANN-based
decoders are seen to outperform correlation- and inversion-
based decoders.

(iii) The choice of WFP definition is irrelevant for
the optimized-inversion decoder as well as the ANN-based
decoders. For correlation- and inversion-based decoders, how-
ever, using WFP(1) yields significantly better results.

(iv) Irrespective of the perturber size, we achieve an accept-
able minimum accuracy (e.g., 95%). For larger perturbers, we
need more measurements to compensate the reduction in the
amount of information that can be extracted per measurement.
Future information-theoretic work should seek to model the
contour for a given accuracy in order to understand how the
need for additional measurements scales with ρp.

(v) At low effective noise levels, some decoders achieve
compression ratios above unity; that is, they achieve ac-
curacies � 95% to localize P = 5 objects with N < P
measurements. For instance, the ANN (raw data) decoder
with WFP(2) achieves 96% accuracy with N = 3 at the lowest
considered perturber size. However, as in any compressed-
sensing scenario, it is obvious that the compression ratio is
heavily dependent on the noise level (here, the effective noise
level due to the perturber size), the independence of differ-
ent measurements (here, determined to a large extent by the
interval between frequency points), and the decoding method
(here, an ANN trained with raw data). Thus a general claim of
achieving a compression ratio above unity is not presented as
a key result of this work.

Overall, these results clearly demonstrate that it is fal-
lacious to assume that the diversity or sensing capacity of
H could be a reliable indicator of the sensing accuracy,
hence the importance of considering the sensing process in
its information-theoretic entirety as in Fig. 2.

V. EXPERIMENTAL RESULTS

Having established an understanding of the perturber’s
effect under idealistic conditions in simulation, we now an-
alyze the experimental data. In an attempt to approximate the
sort of low-cost radio hardware that indoor geolocalization
schemes may leverage, our measurements are performed with
a low-cost and lightweight SDR as opposed to high-end bulky
measurement equipment such as a vector network analyzer.
Measurements with our SDR entail a few practical issues.
First, there is a ±π uncertainty in measured phase values,
originating from random phase jumps every time the phase-
locked loop (PLL) is locked (e.g., to change the frequency).
To obtain reliable data, we transform each measured com-
plex value z to |z| exp{2i mod[arg(z), π ]}; the factor 2 in
the exponent ensures that the transformed variable’s phase
explores the entire 2π range. Second, the transmitted energy
is clearly frequency dependent, which can be caused by the
frequency-dependent coupling of the monopole antennas to

FIG. 6. (a)–(d) PDFs of real and imaginary parts of Spert and a
Gaussian fit are shown for the smallest [(a) and (b)] and largest
[(c) and (d)] perturber size in the experiment. (e) Effect of per-
turber size in the Reff -ρp plane in the experiment. The blue curves
only consider perturber-induced effective noise, and the red curves
additionally account for measurement and positioning noise. (f) Nor-
malized sensing-capacity values corresponding to the data in (e). The
results in this figure are obtained using all 51 frequency points.

the cavity and/or frequency-dependent SDR components. The
strong frequency dependence means that we cannot simply
model our variables as being drawn from a unique distri-
bution; instead the distribution’s standard deviation becomes
frequency dependent. To maintain the SDR’s temperature con-
stant throughout the experiment, we installed a simple CPU
fan. We do not observe any significant amplitude or phase
drifts over the course of the experiment.

We begin by quantifying two contributions to the N term
in Eq. (1) that were not present in the simulations. First, we
estimate the SNR due to measurement noise (by repeating the
same measurement multiple times) as ρ1 = 25.5 dB. Second,
we estimate the SNR due to both measurement noise and im-
perfect positioning of the objects on the predefined locations
(by repeating the same measurement multiple times after plac-
ing the object again on the same position) as ρ2 = 15.8 dB.

A. Impact of perturbation on diversity and effective SNR

Based on 150 perturber realizations (random orientations)
for each perturber size, in Figs. 6(a)–6(d) we plot the PDFs
of real and imaginary parts of Spert for the smallest and
largest perturber considered in our experiment. The zero-mean
single-peaked distributions are identical for real and imag-
inary components but thinner than a Gaussian distribution.
In Fig. 6(e) we plot Reff (H) versus the effective SNR. Since
N ( f ) �= 0 in the experiment, we plot two curves: The blue
one only accounts for perturber-induced effective noise, and
the red one additionally accounts for measurement and po-
sitioning noise. The difference between these two curves is
appreciable only for small perturber sizes since for larger
perturbers Spert dominates over N . Unlike in Fig. 4(a), using
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FIG. 7. Localization accuracy in experiments. The color scale
goes from 0 (black) to 1 (white). For each choice of WFP definition
(columns) and decoding method (rows), the accuracy is plotted as
a function of perturber size (horizontal axis) and the number of
frequency points used to ink the WFP (vertical axis). ANN results
are averaged over 20 training runs with randomly initialized weights;
the standard deviation does not exceed 10 and 3% for ANNs trained
with synthetic and raw data, respectively. The black contour line
corresponds to 95% accuracy. To aid comparison, the red contour
is the same on all panels.

S(2)
obj lowers not only the effective SNR but also the effective

rank. As in Fig. 4(b), we see in Fig. 6(f) that using S(2)
obj is

unfavorable in terms of the (normalized) sensing capacity. The
impact of N on C is only noticeable for small perturbers.

B. Dependence of sensing accuracy on perturber size,
number of measurements, and decoding method

In Fig. 7 we compare the achievable sensing accuracy in
our experiment with the two considered definitions of the
WFP and different decoding methods as a function of the
perturber size and number of measured frequency points. Note
that Figs. 5 and 7 should only be compared qualitatively
since the simulations do not reproduce the exact experimental
setup. The observations already made for the corresponding
simulation results in Fig. 5 about the unsuitability of Reff or C
to predict the sensing accuracy are confirmed once again by
Fig. 7. The most notable difference compared with Fig. 5 is
that in Fig. 7, except for the ANN trained with raw data, all
decoding methods fail to achieve at least 95% accuracy once

the perturber’s surface is larger than 200 cm2. We attribute this
to the ±π phase uncertainty of our SDR, which introduces
errors in the estimation of H. Only the ANN trained with raw
data does not rely on calculating H, so it is not affected by
the phase issue and performs well even with the experimental
data. Interestingly, we have thus a case in which it is better to
feed the ANN raw data rather than to use physical insight to
preprocess the ANN’s training data. The ANN decoder trained
with raw data is capable of achieving high sensing accuracies
despite significant amounts of noise [the effective SNR is
as low as −15 dB for the largest perturber; see Fig. 6(e)]
and distorted data. Using the ANN decoder trained with raw
data, we achieve 100% sensing accuracy with N = 3, i.e., a
compression ratio of P/N = 5/3 > 1, for perturbers with a
surface as large as 74 cm2. Again, we stress that the com-
pression ratio depends on the effective SNR, the measurement
independence, and the decoding method.

VI. CONCLUSION AND OUTLOOK

From a practical point of view, our experiments, in
combination with an ANN-based decoder, demonstrated the
feasibility of precise position sensing with WFPs in dynam-
ically evolving scattering enclosures using a low-cost and
lightweight SDR. This capability is crucial to enable situa-
tional awareness in a plethora of emerging applications. Our
technique does not rely on detailed knowledge about the en-
vironment’s geometry and only requires a one-off calibration
phase with multiple representative realizations of the dynamic
perturbations that are expected during operation. From a con-
ceptual point of view, our work paves the way for a thorough
information-theoretic analysis of sensing with WFPs. The dy-
namic perturber’s unfavorable effect on diversity and effective
SNR of the WFP dictionary, resulting in the acquisition of less
useful information per measurement, can be fully compen-
sated by taking more measurements—even in the regime in
which the perturber’s scattering strength clearly exceeds that
of the object to be localized. We saw that the common practice
in compressed sensing to only consider the diversity or ca-
pacity of H is insufficient to anticipate the achievable sensing
accuracy. Our results are of very general nature: They can
be applied to other types of wave phenomena (sound, light,
etc.) and are equally valid for WFPs established not based
on spectral degrees of freedom (DoF) but with other means
such as using spatial, polarization, or configurational DoF by
employing a sensor network, a dual-polarized antenna, or a
RIS [19], respectively.

Our work bears great conceptual resemblance to the re-
construction of optical images after propagation through a
multimode fiber or multiply scattering medium [30]. In these
cases, a camera conveniently offers easy access to many spa-
tial DoF so there is no need to use spectral DoF as in our
work, but the measured data are also not “human readable”
and require (typically machine-learning-based) processing.
“Imaging” is the process of retrieving a representation of the
scene based on how it scatters waves; modern computational
imaging protocols heavily rely on a priori knowledge such
as sparsity of the scene in compressed sensing or knowing
that the object belongs to one class out of a set of predefined
classes in machine-learning-based optical image retrieval. In
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fact, the position-sensing task we consider in this paper can
be framed as an imaging problem: Assuming everything about
the scene is known a priori except for the object’s position, the
task of imaging the scene collapses to determining the object’s
position. It is hence interesting to ask if using a convolutional
neural network (CNN), as is customary in the literature on
optical image retrieval [30], may be beneficial for position
sensing. However, recent work [31,32] suggests that simple
feed-forward neural networks similar to the one we used in
this paper perform at least as well as CNNs because relevant
local features of the scene are scrambled and hence encoded
in long-range spatial structures, whereas CNNs are designed
to extract local features.

A key result of the present work, the importance of seeing
the entirety of the information-theoretic cycle, points towards
jointly optimizing encoding in a programmable propagation
environment and machine-learning-based decoding, as in the
recently proposed “learned sensing” paradigm [33,34]. In
contrast to compressed sensing, which indiscriminately en-
codes all information, learned sensing seeks to encode only
task-relevant information in the measurements. For posi-
tion sensing, one could carefully select the frequencies at
which measurements are taken (as opposed to linear spac-
ing) and/or engineer the propagation environment with a
RIS [35].

Looking ahead, it appears interesting to extend the present
work (i) to scenarios with multiple objects to be localized,
where neglected interobject scattering is an additional effec-
tive source of noise [19], (ii) to deeply subwavelength position
sensing [17], and (iii) to more complex tasks such as image
transmission [36]. Moreover, ANN-based decoders could be
enhanced with more advanced machine-learning techniques.

Transfer learning may enable one to pretrain the ANN on
simulated data and then fine-tune it to the experimental sit-
uation based on a very small experimental training data set.
While accurate simulations of wave propagation in 3D electri-
cally large irregularly shaped enclosures are computationally
very expensive, it would be interesting to see if the ANN
could learn useful knowledge about the problem’s underlying
physics even from the sort of 2D simulations we used here.
Transfer learning may also be applied to an ANN previously
employed for the same task in a slightly different setting, e.g.,
in a different room.

In this paper, the perturber was seen as an obstacle
for our task to localize an object. In other contexts, the
objective may be to characterize size and motion of a per-
turber. Diffuse wave spectroscopy [37–40] analyzes changes
of the broadband impulse response over time to estimate
the number or scattering cross section of objects moving
through a complex medium. Our work has evidenced that
the perturber’s scattering strength can also be clearly related
to the capacity of a multiplexing channel matrix averaged
over different realizations of the perturber’s position. Con-
sidering configuration-to-configuration multiplexing with two
dynamic metasurface transceivers [41] may thus enable sim-
ilar characterizations of a moving perturber with single-port
single-frequency measurements [9].
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