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ABSTRACT
The characterization of stellar cores may be accomplished through the modelling of
asteroseismic data from stars exhibiting either gravity-mode or mixed-mode pulsations,
potentially shedding light on the physical processes responsible for the production, mixing, and
segregation of chemical elements. In this work, we validate against model data an analytical
expression for the period spacing that will facilitate the inference of the properties of stellar
cores, including the detection and characterization of buoyancy glitches (strong chemical
gradients). This asymptotically based analytical expression is tested both in models with
and without buoyancy glitches. It does not assume that glitches are small and, consequently,
predicts non-sinusoidal glitch-induced period-spacing variations, as often seen in model and
real data. We show that the glitch position and width inferred from the fitting of the analytical
expression to model data consisting of pure gravity modes are in close agreement (typically
better than 7 per cent relative difference) with the properties measured directly from the
stellar models. In the case of fitting mixed-mode model data, the same expression is shown
to reproduce well the numerical results, when the glitch properties are known a priori. In
addition, the fits performed to mixed-mode model data reveal a frequency dependence of the
coupling coefficient, q, for a moderate-luminosity red-giant-branch model star. Finally, we
find that fitting the analytical expression to the mixed-mode period spacings may provide a
way to infer the frequencies of the pure acoustic dipole modes that would exist if no coupling
took place between acoustic and gravity waves.

Key words: stars: evolution – stars: interiors – stars: oscillations.

1 IN T RO D U C T I O N

Stellar oscillations provide a direct probe of the chemical gradients
inside stars caused by different physical processes such as nuclear
burning, microscopic diffusion, and macroscopic mixing, in, and
beyond, the convectively unstable regions (e.g. Bossini et al. 2015;
Constantino et al. 2015; Pedersen et al. 2018). With the advent
of space missions with programmes dedicated to the observation
of stellar oscillations, such as CoRoT (Baglin et al. 2006) and
Kepler (Gilliland et al. 2010), the opportunity to use ultraprecise
and abundant seismic data to constrain these physical processes has

� E-mail: mcunha@astro.up.pt

flourished, establishing new challenges also for the understanding
of the relation between the details of the stellar structure and the
signatures imprinted by these details on the seismic data (e.g.
Hekker & Christensen-Dalsgaard 2017, for a recent review). In
this context, the study of internal gravity waves and waves of mixed
nature is of particular relevance.

Internal gravity waves are observed in intermediate- to high-
mass pulsators, subdwarf B stars, and white dwarfs. In addition,
in subgiant and red giant stars, waves of mixed nature may be
observed, which have the properties of a gravity wave in the inner
radiative layers and the properties of an acoustic wave in the stellar
envelope. The internal gravity waves are maintained by gravity
acting on density fluctuations, have frequencies below the buoyancy
frequency, and propagate in non-convective regions only. Their
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propagation speed depends directly on the buoyancy frequency,
defined by

N2 = g

(
1

γ1

d ln p

dr
− d ln ρ

dr

)
, (1)

where g is the gravitational acceleration, γ 1 is the first adiabatic
exponent, p is the pressure, ρ is the density, and r is the distance
from the stellar centre.

Asymptotically, the oscillation periods of eigenmodes of gravity
nature (hereafter, g modes) are approximately equally spaced.
Consequently, the difference between two modes of the same
degree, l, and consecutive radial orders, n, known as the period
spacing, �P, is approximately constant. This asymptotic value of
the period spacing is given by (Tassoul 1980; Aerts, Christensen-
Dalsgaard & Kurtz 2010)

�Pas = 2π2

ωg
, (2)

where

ωg ≡
∫ r2

r1

LN

r
dr, (3)

L2 = l(l + 1), and r1 and r2 are the inner and outer turning points,
respectively, which define the propagation cavity of the g mode.

The above assumes a spherically symmetric stellar equilibrium,
thus, it neglects the potential impact of rotation on the oscillations.
This can be critical, particularly when considering intermediate- to
high-mass pulsators that typically rotate fast (see Aerts, Mathis &
Rogers 2019, for a recent review). We shall keep this assumption
throughout the paper. However, given the importance of rotation for
pulsators in particular regions of the HR diagram, that effect shall
be considered in a follow-up work.

Sharp variations in the buoyancy frequency inside the g-mode
propagation cavity may deflect the oscillation periods from their
asymptotic values. This happens when the scale of variation of N is
comparable to or smaller than the local wavelength of the wave. This
kind of variations, known as structural (buoyancy) glitches, causes
the period spacing to deviate from the constant asymptotic value.
These glitches are associated with strong gradients in chemical
composition, resulting from a combination of physical processes,
such as nuclear burning, diffusion, and mixing, and may be found
at different locations, including at some borders, or former borders,
of convective regions and in nuclear burning shells.

The impact of a buoyancy glitch on the period spacing depends
strongly on the position of the glitch in the propagation cavity of
the g mode. That position is best measured in terms of the buoyancy
radius,1 defined by

ω̃r
g =

∫ r

r1

LN

r
dr, (4)

or the buoyancy depth, defined by ωr
g ≡ ωg − ω̃r

g. The closer the
glitch is to the middle of the propagation cavity (defined by ω̃r

g/ωg =
0.5), the shorter is the scale in which the period spacing varies with
frequency. For the remaining of this paper, we shall refer to the
inner half of the gravity wave propagation cavity as the region where
ω̃r

g/ωg < 0.5 and to the outer half as the region where ω̃r
g/ωg > 0.5.

1We note that in Cunha et al. (2015) we have mentioned that this definition
was different from that in Miglio et al. (2008). In fact, their definition is
entirely consistent with ours, the only difference being that we opted to
include L in our definition, while they do not do so.

In the case of red giant stars, where pulsations have a mixed
nature, the characteristic pulsation frequency spectrum shows
signatures of both gravity and acoustic pulsation spectra. Since
the oscillations are driven by convection, the oscillation power
is modulated by an envelope centred around the frequency of
maximum power νmax, which can be scaled from the solar case
(Brown 1991; Kjeldsen & Bedding 1995). Moreover, the period
spacing follows approximately the asymptotic expectation for g
modes for frequencies significantly different from what would be
the frequencies of pure acoustic modes in the star (i.e. eigenmodes
of pure acoustic nature, hereafter, p modes). However, close to
the pure acoustic frequencies, there is a strong coupling between
the oscillation in the inner (g) and outer (p) cavities and the period
spacing decreases significantly with respect to the asymptotic value.
These dips in the period spacing are approximately equally spaced
in frequency, by the large frequency separation, whose first-order
asymptotic value is given by (Tassoul 1980; Gough 1993)

�νas =
(

2
∫ R

0
c−1dr

)−1

, (5)

where c is the sound speed.
The impact of buoyancy glitches on the periods of g modes has

been theoretically addressed in previous works in the context of
the study of white dwarfs and main-sequence intermediate-mass
stars (e.g. Brassard et al. 1992; Miglio et al. 2008; Wu et al. 2018).
However, no explicit expression for the period-spacing variation was
presented by these authors, except for the case of the small-glitch
limit, when the variation is sinusoidal. Likewise, the frequencies of
mixed modes in red giant stars have been modelled by Mosser et al.
(2012), based on the asymptotic work by Shibahashi (1979) and
Unno et al. (1989). An explicit expression for the period-spacing
variations was presented in Mosser et al. (2015), but in a form that
requires an interpolation procedure. An equivalent formulation was
simultaneously presented by Cunha et al. (2015), and again, inde-
pendently, by Hekker & Christensen-Dalsgaard (2017), that does
not require such interpolation. Cunha et al. (2015) have also studied
the combined effect of buoyancy glitches and mode coupling in
mixed modes, deriving an explicit, asymptotically based analytical
expression for the period spacings where these effects are accounted
for. However, in that work, the authors addressed only the case of a
glitch modelled by a Dirac delta function, which does not reproduce
well the variety of glitch shapes that is found in stellar models
(potentially also in real data). Moreover, they concentrated on the
case of red giants, for which all observed modes are of mixed nature.

In this work, we investigate the impact of structural glitches on
the properties of stellar oscillations further, by considering glitches
of different shapes and the signatures they introduce both on mixed
modes and on pure gravity modes. We stress that our approach does
not assume that the glitch is small and, as a consequence, does not
lead to sinusoidal period-spacing variations, except in that limit. In
addition, we revisit the asymptotic description for the case when
coupling between acoustic and gravity waves occurs, but no glitch
is present in the g-mode cavity. In particular, we demonstrate that
the analytical expression proposed by Cunha et al. (2015), now
extended in the way discussed in the subsequent sections of this
paper, reproduces well the period spacings computed from model
data and that it can be used to: (1) model the impact of buoyancy
glitches on pure g modes in stars where they are observed, e.g.
main-sequence intermediate-mass stars, subdwarf B stars, and white
dwarfs, (2) model the coupling between the g and p modes in the
absence of glitches in red giant stars, and (3) model the combined

MNRAS 490, 909–926 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/909/5570600 by C
N

R
S - ISTO

 user on 22 M
ay 2023



Period-spacing analytical formulations 911

effect of the glitches and coupling on red-giant mixed modes. The
general analytical expression for the period spacing is presented in
Section 2. In Sections 3–5, this expression is tested against model
data for three different cases, namely, a case of a glitch and no cou-
pling (so, pure g modes), a case of coupling and no glitch (the typical
mixed modes), and a case of combined glitch and coupling effects
on mixed modes. In Section 6, we discuss our results and conclude.
The details of the analytical derivations are provided in Appendix A.

2 G E N E R A L A NA LY T I C A L F O R M U L AT I O N
A N D M O D E L S

The starting point for the work presented here is the expression
for the relative period spacing, �P/�Pas, in the presence of mode
coupling and a buoyancy glitch presented by Cunha et al. (2015),
according to which

�P

�Pas
≈ 1

1 − (ω2/ωg) [dϕ/dω + d	/dω]
, (6)

where we recall that the asymptotic period spacing �Pas on the
left-hand side can be expressed in terms of the buoyancy size of
the g-mode cavity, ωg, following equation (2). The coupling phase,
ϕ, incorporates the effect of the coupling between p and g modes
on the period spacing and is given by equation (34) in Cunha et al.
(2015), namely,

ϕ = atan

[
q

tan
[(

ω − ωa,n

)
/ωp

]
]

, (7)

where

ωp =
(∫ r4

r3

c−1dr

)−1

, (8)

r3 and r4 are the turning points of the p-mode cavity, and q is the
coupling coefficient (Unno et al. 1989; Takata 2016). Also, ωa, n

is the angular frequency of what would be the pure acoustic mode
of (pressure) radial order n, in the absence of mode coupling. The
glitch phase, 	, incorporates the effect of the structural buoyancy
glitch. Both phases are frequency dependent. Moreover, in the most
general case, the glitch phase 	 depends on the coupling phase ϕ.
This is because the impact of the structural glitch on the oscillation
period depends on the phase of the wave at the glitch position and
that phase, in turn, may depend on the mode coupling. We further
note, from inspection of equations (8) and (5), that the quantity ωp

is related to the model asymptotic large frequency separation by ωp

≈ 2�νas, with the restriction that the left-hand side is never smaller
than the right-hand side term. Moreover, while ωp may depend on
frequency, through a possible frequency dependence of the turning
points, �νas is fully defined by the equilibrium model, hence, is, by
definition, frequency independent.

Analytical expressions for the coupling and glitch phases were
presented in Cunha et al. (2015) for the case of a glitch modelled
by a Dirac delta function located in the outer half of the g-mode
cavity. Here we shall present, in addition, formulations for the cases
of glitches modelled either by a step function or by a Gaussian-like
function, which describe more adequately the types of structural
variations that are seen in the stellar models considered in this work.

In the absence of a structural glitch, 	 = 0. Then, equation (6)
reduces to

�P

�Pas
≈ 1

1 − (ω2/ωg) (dϕ/dω)
≡ ζ (ω), (9)

an expression that was first presented in Christensen-Dalsgaard
(2012), with the explicit form of ϕ given later by Cunha et al. (2015)
(cf. equation 7). In Mosser et al. (2015), this relative bumped period
spacing was identified with the function ζ (ω) defined by Deheuvels
et al. (2015) (following on the work by Goupil et al. 2013) in
the context of the study of mixed-mode rotational splittings. The
frequency position of the acoustic resonances, characterized by an
abrupt decrease of the period spacing, corresponds to the minima of
the function ζ , and, in turn, to the maxima of −dϕ/dω. We shall see,
in Section 4, that the analytical expression for the relative period
spacing presented by Cunha et al. (2015) for the case of coupling
and no glitch is equivalent to the function ζ (ω), but that it is written
in such a way that it is much easier to fit to real data than the version
presented by Deheuvels et al. (2015).

It is important to note that the impacts on the period spacing from
the mode coupling and from a structural glitch are, generally, not
additive. When the glitch effect is small, meaning∣∣∣∣1 − ω2

ωg

dϕ

dω

∣∣∣∣ �
∣∣∣∣ω2

ωg

d	

dω

∣∣∣∣ , (10)

equation (6) can be approximated by

�P

�Pas
≈ ζ (ω) + ω2

ωg

d	

dω
. (11)

In this limit case (equation 11), the relative period-spacing variation
is found to be similar to that presented by Mosser et al. (2015) (their
equation 28). However, even in this case, there is an important differ-
ence between the two results that is worth noting: In equation (11),
the glitch term [second term on the right-hand side (rhs)] generally
depends on the coupling term, through the dependence of the glitch
phase 	 on the coupling phase ϕ, while that fact was not considered
in the work of Mosser et al. (2015). As briefly discussed by Cunha
et al. (2015), the fact that 	 generally depends on ϕ has significant
implications for the combined period-spacing modulation at the
acoustic resonances, requiring that the two effects are modelled
simultaneously, rather than sequentially.

In this work, stellar models will be used to test the analytical
expression given by equation (6) in its various forms described
in detail in Sections 3–5. The models, whose global properties
are summarized in Table 1, are computed with the evolution
code ASTEC (Christensen-Dalsgaard 2008a) and the corresponding
pulsation frequencies are computed with the adiabatic pulsation
code ADIPLS (Christensen-Dalsgaard 2008b). For the study of the
glitch effect on the periods of pure gravity waves, we consider
a main-sequence stellar model with a mass M = 6 M� (Section 3)
and a 1 M� red-giant-branch (RGB) model located at the luminosity
bump (the same as Model 1a in Cunha et al. 2015). For the latter, we
used the ASTER code2 to compute the frequencies of what would be
the pure g modes if no coupling existed, by artificially disregarding
the p-mode cavity, as explained in Cunha et al. (2015) (their section
3.2.3). The effect of the mode coupling in the absence of structural
glitches is tested on a 1 M� RGB stellar model with a luminosity that
is lower than the luminosity bump (Section 4). Finally, the combined
effect of mode coupling and a buoyancy glitch is tested on the 1 M�
RGB model located at the luminosity bump (Section 5), using the
mixed-mode frequencies computed with ADIPLS. The choice of this

2The ASTER code computes the solutions to the adiabatic pulsation equations
under the Cowling approximation considering only the g modes. This is done
by taking the local radial wavenumber K to be defined by the relation K2 =
−(L2/r2)(1 − N2/ω2).
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Table 1. Properties of the stellar models considered in this work. The frequencies of maximum power for the lower
luminosity and higher luminosity RGB models are, respectively, νmax = 105 and 40 μHz.

Model Mass (M�) Radius (R�) Effective temp. (K) Luminosity (L�) Age (Gyr)

Main sequence 6.0 3.5 18 661 1328 0.0236
RGB-1 (no core glitch) 1.0 5.8 4624 14.0 11.37
RGB-2 (core glitch) 1.0 9.7 4438 32.7 11.45

Figure 1. Hydrogen profile (panel a) and buoyancy frequency (panel b) for the 6 M� main-sequence model and helium profile (panel c) and buoyancy
frequency (panel d) for the RGB model. The figures show the regions where the glitches are located in these models. The black curves show the results from
ASTEC while the red crosses show the models described by equation (12) (panel b) and equation (13) (panel d) used to derive the analytical expressions for
the relative period-spacing variation. The grey, dashed lines in the two bottom panels show the buoyancy frequency recovered from the same models when
adopting the parameters inferred from the fit of the analytical expressions to the numerical period spacings.

latter RGB model is motivated by the fact that a clear buoyancy
glitch is found at that luminosity. Thus, even if mixed modes may
be harder to detect observationally in such high-luminosity RGBs
(Mosser et al. 2018), the analytical expression is best validated in
such a clear case.

3 BU OYA N C Y- G L I T C H EF F E C T O N P U R E
G R AV I T Y WAV E S

The impact of buoyancy glitches on pure gravity waves has been
addressed through asymptotic analysis in previous theoretical works
related to white dwarfs (Brassard et al. 1992) and relatively massive
main-sequence stars (Miglio et al. 2008). In both cases, the glitch
was assumed to be well described by a step function and no explicit
expression for the period-spacing modulation was presented, except
in the limit case of small glitches. In Cunha et al. (2015), an explicit
expression for the period-spacing modulation was provided for the
effect of a glitch on pure gravity waves, but only for the case
of a glitch modelled by a Dirac delta function.3 Since that work
concerned only red giant stars, the analytical expression was tested
on models by computing the pulsation equations with modified
boundary conditions that assumed that no p modes were present, to

3We note that in that paper there is a typo in equation (25): a minus sign
should have preceded the expression for FG. The same sign is missing in
the second term on the right-hand side of equation (39) of the same paper.
Nevertheless, all results presented in that work have considered the correct
sign and are, therefore, correct.

avoid the effect of mode coupling. It was found that, except for the
amplitude dependence on frequency, the analytical expression pro-
vided a good fit to the numerical results. The mismatch between the
frequency dependences of the analytical and numerical amplitudes
found by the authors is explained by the fact that in the numerical
model the glitch presented a finite width, which was not accounted
for when modelling it with a Dirac delta function. To overcome that
limitation, here we model again the glitch seen in that RGB model
(Model 1a in Cunha et al. 2015) but using, instead, a Gaussian-like
function. Moreover, for the case of the main-sequence intermediate-
mass model, the glitch will be modelled with a step-like function,
as detailed below.

The bottom panels of Fig. 1 show the buoyancy frequency around
the position of the glitch for the two models considered in this
section, as a function of the relative distance from the centre of the
star, r/R, where R is the stellar radius. In the 6 M�, main-sequence
stellar model, the buoyancy frequency (Fig. 1b) drops abruptly at
r�/R = 0.17, from the plateau resulting from the steep slope in the
hydrogen profile outside the retracting convective core (Fig. 1a). We
note that no smoothing of the composition profile was considered
during the evolution of this model. The drop in the buoyancy
frequency can be modelled by the discontinuous function,

N =
{

Nin for r < r�

Nout for r > r� , (12)

with N varying by �N = Nin|r→r�− − Nout|r→r�+ at r = r�. The glitch
is thus characterized by two parameters, namely, the relative step
amplitude Ast = [Nin/Nout]r� − 1, and the position r�.

MNRAS 490, 909–926 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/909/5570600 by C
N

R
S - ISTO

 user on 22 M
ay 2023



Period-spacing analytical formulations 913

In the case of the 1 M� red-giant model, the buoyancy frequency
(Fig. 1d) shows a hump at r�/R = 0.0216. This hump results from the
strong chemical gradient generated at the time of the first dredge-
up and left behind by the retreating convective envelope (Fig. 1c).
Here, numerical diffusion associated with the treatment of the mesh
in the stellar evolution code leads to a smoother composition profile,
hence also to a broader feature in the buoyancy frequency. We model
this glitch using a Gaussian-like function by defining

N = N0

[
1 + AG√

2π�g

exp

(
− (ωr

g − ω�
g)2

2�2
g

)]
, (13)

where N0 is the glitch-free buoyancy frequency. In this case, the
glitch is characterized by three parameters, the constants AG and
�g, which measure, respectively, the amplitude and width of the
glitch, and the glitch position r�, which enters the buoyancy depth
at the glitch position, ω�

g = ∫ r2
r� (LN/r)dr . This is in contrast to

the model assumed in Cunha et al. (2015), where the glitch was
characterized by two parameters only, namely, the amplitude Aδ

and the position r�.
The derivation of the eigenvalue condition in the presence of

a glitch that leads to the definition of the phase 	 for each case
described above is carried out in a way similar to that presented
in Cunha et al. (2015) for the case of a glitch modelled by a
Dirac delta function. The details are presented in Appendix A.
For each glitch considered, we differentiate the glitch phase (given
by equation A9 for the step-like glitch and by equation A18 for the
Gaussian-like glitch), introduce it into equation (6), and take dϕ/dr
= 0 (in accordance with the no mode coupling assumption made in
this section), to obtain the corresponding period spacing.

For a glitch modelled by a step function and located in the inner
half of the cavity (as in the main-sequence model considered here),
it follows that 4

�P

�Pas
≈

[
1 − ω̃�

g

ωg

−Ast sin β̃1 + A2
st cos2 β̃2

(1 + Ast cos2 β̃2)2 + (0.5Ast cos β̃1)2

]−1

, (14)

where β̃1 = 2ω̃�
g/ω + 2δ and β̃2 = ω̃�

g/ω + π/4 + δ. Here, quan-
tities marked with a superscript � refer to values taken at r = r�

and δ is a phase related to the details of the mode reflection near
the turning points of the propagation cavity (see Appendix A for
details).

For the glitch modelled by a Gaussian-like function, the deriva-
tion of the eigenvalue condition is not as straightforward as for the
cases of glitches modelled by a Dirac delta or a step function.
The reason is that for the Gaussian-like glitch the derivation
requires knowledge of the eigenfunction inside the glitch. As the
asymptotic approximation breaks down when the background varies
on scales comparable with or smaller than the local wavelength, the
asymptotic solution is unlikely to provide an adequate description
of the eigenfunction inside the glitch. For a small enough glitch,
this problem can be overcome by making use of the variational
properties of the solutions that allow us to derive the perturbation
to the oscillation periods without explicitly taking into account the
perturbation to the eigenfunctions. However, for a glitch such as the
one considered here, that option is not available and proceeding with
the derivation of the eigenvalue condition and glitch phase requires
a somewhat arbitrary choice for the description of the eigenfunction

4The signature on the period spacing from a step-like glitch depends on the
side of the cavity where it is located. Deriving the expression for the case of
a glitch located in the outer half of the cavity is straightforward following
the same steps as in Appendix A.

inside the glitch. We have considered two different options for that
choice that we discuss in detail in Appendix A. We have tested both
cases against the limit of a small glitch modelled by a Gaussian-like
function, which can be derived without explicit knowledge of the
wave solution. Both the cases reproduce the functional form derived
in the small-glitch limit, but with a frequency attenuation of the
glitch signature that differs from that found in the limit case. In the
limit of a small glitch, the perturbation to the periods derived from
the variational principle varies exponentially as exp(−2�2

gω
−2),

whereas the derivation made in Appendix A, which takes the
eigenfunction inside the glitch explicitly into account, predicts
that the perturbation to the periods varies as exp(−0.5�2

gω
−2).

Clearly, the expression for a glitch of arbitrary amplitude must
reproduce the expression valid in the limit of a small glitch, so
it is reasonable to conclude that the difference found results from
the inadequate modelling of the eigenfunction inside the glitch.
Acknowledging that the very nature of the asymptotic analysis
used in our derivation precludes us from improving it, we have
changed the factor in the exponential function to ensure that the
analytical expression representing the perturbation induced by a
glitch of arbitrary strength satisfies the result found in the small-
glitch limit, and then tested the modified analytical expression
against numerical results. The results from these tests, detailed
in Appendix A, support the change in the factor introduced in the
exponential function, indicating that such a change is necessary also
when the glitch is strong. With the correction mentioned above, both
analytical expressions derived in Appendix A provide an adequate fit
to the numerical results, although significantly different amplitudes
are recovered from the two fits. Here we discuss the analytical
expression that was found to perform best against the numerical
results, leaving the detailed comparison with the other case to
Appendix A.

Considering a glitch located in the outer half of the cavity (as
in the case of the RGB model considered here), it follows that the
period spacing for the Gaussian-like glitch is given by5

�P

�Pas
≈

[
1 + AGf

�g
ω

ω�
g

ωg

×
[
cos β1 +

(
ω/ω�

g(1 − 4�2
g/ω

2) − AGf
�g
ω

)
sin2 β2

]
(1 − 0.5AGf

�g
ω cos β1)2 + (AGf

�g
ω sin2 β2)2

]−1

,

(15)

where we introduced the frequency-dependent function f
�g
ω =

ω−1e−2�2
gω−2

. Moreover, here β1 = 2ω�
g/ω + 2δ and β2 = ω�

g/ω +
π/4 + δ.

The analytical expressions for the relative period spacing pre-
sented above will be useful for fitting real data and extracting
information about the structural variations. Here we test their
suitability based on fits to model data in the following. In this
context, it is important to emphasize that in addition to the glitch
parameters discussed before (two in the case of the step model and
three in the case of the Gaussian model) these expressions contain
also one global seismic parameter, namely, �Pas = 2π2/ωg, and the
phase parameter, δ. Tables 2 and 3 summarize the values inferred
for the parameters from the fitting of the analytical expressions to
the model data, for the two glitches considered. The inferred glitch
parameters are to be compared with their estimated values obtained
directly from the buoyancy profiles [red crosses in Figs 1(b) and (d)].

5For a glitch located on the inner half of the cavity, the expression would be
the same, but with ω�

g replaced by ω̃�
g.
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914 M. S. Cunha et al.

Table 2. Parameters derived from the fit of the analytical expression for the
step-like glitch (equation 14) to the period spacing derived from ADIPLS for
the main-sequence model. Their distributions are shown in Fig. 2. The values
shown correspond to the median of the distributions and the 68 per cent
confidence intervals. For a comparison, the values of the glitch parameters
estimated directly from the buoyancy frequency obtained with ASTEC are
also shown. The glitches reconstructed from the inferred and estimated
parameters are compared in Fig. 1(b).

�Pas (s) Ast ω̃�
g (10−6 rad s−1) δ

Fit 8472+50
−50 4.74+0.44

−0.39 351.61+0.73
−0.72 0.602+0.019

−0.019
Estimated – 5.3 349 –

The rhs of equation (14) was fitted to the period spacings com-
puted from the eigenfrequencies obtained with the pulsation code
ADIPLS for the main-sequence model, �PADIPLS, using the python
module emcee implementation of the affine-invariant ensemble
sampler for Markov chain Monte Carlo (Foreman-Mackey et al.
2013) with the likelihood defined by

L = 1√
2πσ

exp

(
−1

2
χ2

)
, (16)

where the uncertainty σ was left as a free parameter and

χ2 =
∑

i

(
�Pi − �PADIPLS,i

σ

)2

. (17)

The probability density functions obtained for the parameters in
the fit are shown in Fig. 2. A comparison of the glitch parameters
derived in this way with the values inferred directly from the
buoyancy frequency (Table 2) shows a reasonable agreement. While
the small differences appear significant, given the errors, they are
fully justified by the fact that the step function does not provide
an accurate description of the glitch, as seen from Fig. 1(b). In
this figure, we show, for a comparison, the glitch model used to
estimate the parameters provided in Table 2 (red crosses) and the
glitch recovered from the parameters inferred from the fit to the
period spacings (dashed, grey line). The estimated position of the
glitch shown in red was taken to be the mid-point between the
plateaus on the right and left sides of the buoyancy jump. However,
given that the jump has a finite extent, the uncertainty associated
with this position is more significant than the difference between
the estimated and inferred values. Similarly, Fig. 1(b) indicates that
the difference between the estimated and inferred amplitudes can be
accounted for by the deviation of the glitch from a true step function.
Fig. 3 shows a comparison of the period spacing computed from the
ADIPLS results (black) and that obtained from equation (14) (red)
with the parameters of the most likely model for the fit considered
in Fig. 2.

To test the analytical expression for the relative period-spacing
variation caused by a Gaussian-like glitch, the rhs of equation (15)

was fitted to the period spacings computed from the eigenfrequen-
cies of pure g modes obtained with the ASTER code for the RGB-2
model (cf. Table 1). The probability density functions obtained for
the parameters entering the fit are shown in Fig. 4. Fig. 5 shows
a comparison of the period spacing computed from the ASTER

results (black) and that obtained from equation (15) (red) with the
parameters of the most likely model from that fit.

A comparison of the glitch parameters inferred in this way with
the values derived directly from the buoyancy frequency (Table 3)
shows that the inferred width of the glitch is in agreement with
the estimated one. As for the buoyancy depth of the glitch, ω�

g,
the value inferred from the fit differs from that estimated by ∼
7 per cent. This difference is significant, given the small errors,
and we have checked that it cannot be explained by an uncertainty
in the estimated parameter. In fact, from inspection of Fig. 1(d),
it seems unlikely that it is related to the modelling of the glitch,
which is well represented by equation (13). On the other hand,
we note that the difference is smaller than the width of the glitch.
Given the approximations made in the course of the derivation of
the analytical expression, the width of the glitch may, in fact, set
a limit to the accuracy with which ω�

g can be derived through this
method. Finally, the amplitude inferred from the fitting is clearly
overestimated, indicating that the predictive power of the analytical
expression is more limited for this parameter. The buoyancy glitch
that results from assuming the parameters inferred from the fitting
is shown in grey in Fig. 1(d), for a comparison with the glitch seen
on the ASTEC model.

An important aspect to note when comparing the signatures on
the period spacing of glitches modelled by different functions is
that the frequency dependence of the glitch signature’s amplitude
(i.e. the maximum to minimum period-spacing variation induced
by the glitch) is different. For the step-like glitch, we see from
equation (14) that the amplitude of the glitch signature on the
period spacing is determined by the glitch amplitude, Ast, and by
the glitch location (implicit in ω̃�

g), both of which are frequency
independent. Thus, the signature’s amplitude is also independent
of frequency. On the other hand, for the Gaussian-like glitch, we
see from equation (15) that the amplitude of the glitch signature
depends, in addition, on the function f

�g
ω . As a consequence, in this

case the amplitude of the glitch signature decreases with decreasing
frequency at low frequencies and with increasing frequency at high
frequencies. This difference is not so evident in Figs 3 and 5 because
the frequency range shown is relatively small, but it is clear when
one compares the case of the Gaussian-like glitch and the case of
the Dirac delta glitch adopted by Cunha et al. (2015) (see their
fig. 4). In the latter case, the amplitude of the glitch signature shows
a strong increase with decreasing frequency. That is the reason why
the expression for the glitch modelled by a Dirac delta adopted
in their work did not reproduce well the signature of the glitch
seen in the RGB model. In fact, when the oscillation frequency

Table 3. Parameters derived from the fit of the analytical expression for the Gaussian-like glitch (equation 15) to the
period spacing derived from ASTER for the RGB-2 model (at the luminosity bump). Their distributions are shown in
Fig. 4. The values shown correspond to the median of the distributions and the 68 per cent confidence intervals. For a
comparison, the values of the glitch parameters estimated directly from the buoyancy frequency obtained with ASTEC

are also shown. The glitches reconstructed from the inferred and estimated parameters are compared in Fig. 1(d).

�Pas (s) AG (10−6 rad s−1) ω�
g (10−6 rad s−1) �g (10−6 rad s−1) δ

Fit 67.534+0.005
−0.005 607+27

−25 1747.3+7.6
−7.7 158.5+3.4

−3.4 −0.872+0.034
−0.034

Estimated – 380 1632 156 –
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Period-spacing analytical formulations 915

Figure 2. Marginalized distributions for the parameters considered in the fit of the rhs of equation (14) to the period spacing derived from ADIPLS for the
main-sequence model.

decreases, the characteristic scale of the gravity wave at the glitch
position decreases, and the width of the glitch eventually becomes
comparable with the local wavelength. As a consequence, the glitch
impact on the wave propagation decreases, leading to a decrease of
the amplitude of the glitch effect on the period spacing, as seen in
the Gaussian-like case. However, when the glitch is modelled by
a Dirac delta function, its width is infinitely small and, therefore,
always infinitely smaller than the local wavelength, preventing the
above effect from taking place.

Similar differences in the frequency dependence of the glitch
signature’s amplitude, according to the glitch model adopted, have
been found also in a number of previous works related to both
buoyancy and acoustic glitches (e.g. Monteiro et al. 1994; Houdek
& Gough 2007; Miglio et al. 2008).

4 C OUPLI NG BETWEEN P AND G WAV ES IN
T H E A B S E N C E O F G L I T C H E S

In red giants, when no structural glitches are present, the period
spacing deviates from the asymptotic value due to the coupling
between acoustic and gravity waves in a manner described by
equation (9). According to Cunha et al. (2015), in this case we have

�P

�Pas
≈
[
1 + ω2

ωg

q

ωp

[
sin2

(
ω − ωa,n

ωp

)
+ q2 cos2

(
ω − ωa,n

ωp

)]−1
]−1

≡ ζ (ω), (18)

where the coupling coefficient, q, is considered to be independent
of the frequency (a condition that will be revisited below).
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916 M. S. Cunha et al.

Figure 3. Top panel: comparison between the period spacing derived from
ADIPLS (black line and asterisks) for the main-sequence model and that
obtained from equation (14) with the most likely parameters from our fit,
performed in the frequency range shown in the figure (red line and triangles).
Bottom panel: the residuals (‘ADIPLS period spacing’ − ‘analytical period
spacing’).

We used the analytical expression provided by equation (18) to
fit model data following the same approach as in Section 3. In
Cunha et al. (2015), a series of 1 M� stellar models obtained from
evolution tracks covering the RGB evolution phase was tested for
the presence of structural glitches in the core. Signatures of these
glitches were found only in models at the luminosity bump. Thus, a
model with luminosity below the bump, extracted from that series,
was chosen to test equation (18) (model RGB-1 in Table 1).

In this case, the parameters to be fitted are the global quantities
�Pas = 2π2/ωg and ωp ≈ 2�νas, the coupling coefficient, q,
and the pure acoustic frequencies ωa, n. However, the asymptotic
analysis of the pulsation equations allows us to estimate ωa, n from
the frequencies of radial modes. With this in mind, when fitting
equation (18) to model data we have considered two different
options to obtain ωa, n, both based on the asymptotic expression
for the eigenfrequencies (see Appendix B, for details), namely:

1. The frequency ωa, n is estimated from the frequency of the
radial mode with the same radial order, ω0

a,n through

ωa,n = ω0
a,n + π�ν0 + 4π2C

(ω0
a,n + π�ν0)

. (19)

2. The frequency ωa, n is estimated through the relation

ωa,n = 2π(n + 0.5)�ν0 + 2πGa,n + 4π2C

(ω0
a,n + π�ν0)

. (20)

In both the cases, C is a constant parameter to be fitted and �ν0

is the average large frequency separation for radial modes in the
range of radial orders considered. Moreover, the term 2πGa, n is
obtained by linearly interpolating ω0

a,n − 2πn�ν0, at the frequency
ω0

a,n + π�ν0. By using either of the options above, we require only a
single parameter, C, and knowledge of the radial mode frequencies,
to express all ωa, n. This reduces the total number of parameters in
the fit, and, at the same time, guarantees that the ωa, n values are
related in a way that makes physical sense.

The potential advantage of equation (20), over equation (19),
is that it accounts for additional frequency dependences of the

eigenfrequencies that are common to modes of degree l = 0 and
1, including a possible large-scale frequency variation of the phase
that enters the first-order term of the asymptotic expression, as
well as variations introduced by a departure from the asymptotic
expression, in particular by acoustic glitches in the outer convective
envelope. We tested these two formulations on a standard solar
model, for which the l = 1 modes are not mixed and, therefore, are
known a priori. The results of that test confirm that equation (20)
reproduces the true l = 1 frequencies significantly better (the details
are discussed in Appendix B).

Fig. 6 shows the comparison between the period spacing
computed from the ADIPLS results for a glitch-less RGB model
and those obtained from equation (18) adopting the parameters of
the most likely solution found from the fit. The left- and right-
hand panels differ only in the option adopted for the estimate
of ωa, n (equations 19 and 20, respectively). While the quality of
the fit for option 2 is the better of the two, it is quite clear from
Fig. 6 that for both the options the analytic formulation fails to
reproduce the dips. This is not entirely surprising, because models
predict that the coupling coefficient for stars ascending the RGB
should be frequency dependent (Jiang & Christensen-Dalsgaard
2014; Hekker, Elsworth & Angelou 2018). That dependence, which
is present for models with νmax � 100 μHz, results from the fact
that the acoustic cavity becomes deeper with increasing frequency
while the g-mode cavity barely changes, resulting in a decrease
of the width of the evanescent region, with increasing frequency.
According to Jiang & Christensen-Dalsgaard (2014), the frequency
dependence of q is well represented by a linear function, for models
ascending the RGB.

To test the frequency dependence of q, we have performed a third
fit to the period spacings obtained from ADIPLS, considering a linear
frequency-dependent coupling coefficient, defined by

q = q1 [α (ν/νmax − 1) + 1] , (21)

thus replacing the parameter q by the pair of parameters (q1, α).
Since q enters the definition of the coupling phase ϕ, its dependence
on frequency needs to be taken into account when differentiating ϕ

in equation (9). In that case, the analytical expression for the period
spacing in the presence of mode coupling, without a buoyancy
glitch, previously given by equation (18), is replaced by

�P

�Pas
≈

[
1 + ω2

ωg

q

ωp

[
sin2

(
ω − ωa,n

ωp

)
(22)

+ q2 cos2

(
ω − ωa,n

ωp

)]−1

+ Q (ω)

]−1

,

where the function Q(ω) is given by

Q(ω) = q1αω2

2πνmaxωg

[
q2 cot

(
ω − ωa,n

ωp

)
+ tan

(
ω − ωa,n

ωp

)]−1

. (23)

The results of the fit when q is considered frequency dependent
are shown in Table 4 and Figs 7 and 8. Clearly, the parameter α

introduced in association to the frequency dependence of q is well
constrained in a region that excludes zero (Fig. 7), confirming that
a frequency-independent q does not provide a good fit. The quality
of the fit is also found to be substantially better than when q is taken
to be constant, a fact that is noticeable when comparing Fig. 8 with
Fig. 6. Naturally, the larger the number of radial orders fitted, the
more noticeable the frequency dependence becomes. When fitting
observational data, with a limited number of radial orders available,
one must thus verify whether adding one additional parameter to
characterize the frequency dependence of q is a relevant option.
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Period-spacing analytical formulations 917

Figure 4. Marginalized distributions for the parameters considered in the fit of the rhs of equation (15) to the period spacing derived from ASTER for our
RGB-2 model (with a core glitch), when coupling between the p and g modes is ignored.

The increase of the depth of the acoustic cavity with frequency,
used as an argument to make q frequency dependent, influences
also the parameter ωp, defined by equation (8), which, as a
result, decreases with frequency. Due to the roles of q and ωp in
equation (18), this frequency dependence of ωp, not accounted for
in the previous fit, would emphasize even further the need for a
frequency dependence of q. However, according to the work by
Jiang & Christensen-Dalsgaard (2014), the frequency dependence
of ωp is generally small and becomes even smaller at the highest
frequencies, being well fitted by a second-order polynomial. To
verify whether this dependence influences the significance found in
our previous fit for a frequency dependence of q, we have performed
a fourth fit, taking both q and ωp as frequency dependent, allowing
that dependence to go to second order. We found that the parameters

characterizing the frequency dependence of ωp were consistent
with this parameter being constant, confirming that its frequency
dependence is small. Moreover, the q parameter was confirmed to
be well described by a linear dependence on frequency (the second-
order term being consistent with zero), with an α value consistent
with that found in the previous fit, albeit less well constrained, as
expected, given the larger number of parameters being fitted.

5 C O M B I N E D E F F E C T O F M O D E C O U P L I N G
A N D A BU OYA N C Y G L I T C H

When both mode coupling and a structural glitch in the core
are present, the exact form of equation (6) depends again on the
functional form adopted to model the glitch. In Cunha et al. (2015),
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918 M. S. Cunha et al.

Figure 5. Top panel: comparison between the period spacing derived from
ASTER for our RGB-2 model with a core glitch (black line and asterisks),
when coupling between the p and g modes is ignored, and that obtained
from equation (15) with the most likely parameters from our fit, performed
in the frequency range shown in the figure (red line and triangles). The
short-scale variations in the black curve result from rapid variations in the
second derivative of the buoyancy frequency at the H-burning shell, which
are unphysical and, thus, not accounted for in the analytical model. Bottom
panel: the residuals (‘ASTER period spacing’ − ‘analytical period spacing’).

the authors presented the expression for the case of a core glitch
placed in the outer half of the g-mode cavity, where the glitch was
modelled with a Dirac delta function6 and the coupling coefficient
q was considered to be independent of frequency.

Here, we provide the analytical expression for the case of a
glitch in the outer half of the cavity7 modelled by the Gaussian-like
function discussed in Section 3. We thus assure that the functional
form adopted for the glitch represents adequately the core glitch
seen in the RGB model located at the luminosity bump (model
RGB-2), discussed in Section 3. In the case of a Gaussian-like glitch,
equation (6) can be rewritten as (see Appendix A, for details)

�P

�Pas
≈ [

1 − FG,C

]−1
, (24)

where

FG,C = ω2

ωg

dϕ

dω

{
1 + AGf

�g
ω

B2

[
cos

(
β1,ϕ

) − AGf
�g
ω sin2

(
β2,ϕ

)]}

−ω�
g

ωg

AGf
�g
ω

B2

{
cos

(
β1,ϕ

)
+

[
ω/ω�

g(1 − 4�2
g/ω

2) − AGf
�g
ω

]
sin2

(
β2,ϕ

)}
(25)

and B2 is given by

B2 =
[
1 − 0.5AGf

�g
ω cos

(
β1,ϕ

)]2
+

[
AGf

�g
ω sin2

(
β2,ϕ

)]2
. (26)

6We note again that there is a typo in that expression and the reader is
advised to see footnote 1 in this paper for further details.
7In the case of mixed modes, the signature from the Gaussian-like glitch
is not invariant with respect to symmetric changes about the centre of the
g-mode cavity (cf. discussion in Appendix A).

Here, the arguments of the sinusoidal functions are changed with
respect to the Gaussian glitch case presented in Section 3, now
being given by β1, ϕ = β1 + 2ϕ and β2, ϕ = β2 + ϕ, where β1,
β2, and other glitch-related quantities are defined in that section.
This change is a consequence of the dependence of the glitch phase
on the coupling phase. Moreover, based on the results of Section 4,
when testing this analytical expression against model data, q will be
taken to depend on the frequency according to equation (21). The
explicit form of dϕ/dω is obtained from the analytical differentiation
of equation (7).

To test the analytical expression defined by equations (24)–(26),
we fit it to the period spacings derived from the ADIPLS frequencies
for our RGB model located at the luminosity bump (model RGB-2),
following the same approach as in Section 3. We start by fixing the
glitch parameters, AG, �g, ω�

g, and δ at the values derived in Section 3
and adopt equation (20) to describe the pure acoustic frequencies
ωa, n. The problem thus involves fitting five parameters: two char-
acterizing the global seismic properties (ωp and �Pas), two other
characterizing the mode coupling (q1 and α), and one characterizing
the relation between the frequencies of pure acoustic modes (C).

The results of the fit are shown in Fig. 9, left-hand panel, where
it can readily be noticed that the model, with the parameters from
the best fit, fails to reproduce adequately the ADIPLS results near
some of the coupling dips. We note, however, that in the model
under consideration the variation of the period spacing near the
pure acoustic frequencies is extremely large. Hence, the accuracy
to which one derives the ωa, n values can be of importance to the
quality of the fit. In particular, it is important to establish whether
the failure to properly fit the model period spacings is a consequence
of the inadequacy of the analytical expression used in the fit, or if it
results, instead, from the insufficient accuracy of the pure acoustic
frequencies estimated from equation (20).

In the case of the Sun, discussed in Appendix B, we find
that some frequency-dependent residuals remain when the l = 1
model frequencies are compared with the estimates obtained from
equations (19) and (20). To test the impact of small variations of
ωa, n on the fit, we performed the fit on RGB-2 model again, under
two different conditions: (i) estimating ωa, n from equation (19) and
(ii) letting the ωa, n values be independent free parameters. In the
first case, we found that the quality of the fit got worse compared
to Fig. 9 (left-hand panel), reflecting that the estimates of the pure
acoustic frequencies worsened, as expected from the results for the
solar case. On the other hand, the fit was much improved when
these frequencies were let free, as seen from the inspection of Fig. 9
(right-hand panel).

The significant improvement in the fit observed in the last case
discussed above is not a surprise in itself, given the increase in the
number of free parameters. It is, thus, important to assess whether
the set of ωa, n retrieved from the fit in this case makes physical sense,
or, rather, is simply a combination of unrelated departures from the
previous estimates that results from the fitting procedure attempting
to correct a possible inadequacy of the analytical representation
of the period spacing. To clarify this matter, we computed the
differences between the frequencies ωa, n obtained from the fit
where these have been left as free parameters and those obtained
from equations (19) and (20) with values of C derived from the
corresponding fits. The comparison is shown in Fig. 10 for a
sample of 30 best-fitting models (with similar likelihood). The
comparison of the results in Fig. 10 with those found for the solar
model S (Fig. B1) is very encouraging. In particular, the difference
between the freely determined ωa, n and the ωa, n estimated from
equation (19) shows a trend with frequency that resembles that
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Period-spacing analytical formulations 919

Figure 6. Top panels: comparison between the period spacing derived from ADIPLS for our RGB-1 model (with no core glitch) (black line and asterisks) and
that obtained from equation (18) with the most likely parameters from our fit, performed in the frequency range shown in the figures (red line and triangles).
Left is for ωa, n estimated through equation (19) and right is for ωa, n estimated through equation (20). Bottom panels: the residuals (‘ADIPLS period spacing’
− ‘analytical period spacing’) for each case. The red symbols mark the residuals at the minima of the ADIPLS period spacing.

Table 4. Parameters derived from the fit of the analytical expression in
equation (22) to the period spacing derived from ADIPLS for the model RGB-
1. Their distributions are shown in Fig. 7. The values shown correspond to
the median of the distributions and the 68 per cent confidence intervals. We
recall that �νas ≈ ωp/2.

�Pas (s) ωp/2 (μHz) q1 C (μHz2) α

80.10+0.10
−0.09 11.02+1.55

−1.17 0.128+0.015
−0.015 19.93+0.53

−0.53 0.692+0.046
−0.048

found for the solar model when the frequencies estimated by
equation (19) are subtracted from the exact l = 1 model frequencies.
This is particularly significant, because the estimate of ωa, n through
equation (19) does not depend on any interpolation procedure whose
adequacy may be different for the Sun and for a red-giant model.
We note that the differences shown in Fig. 10 (scaled to the model
large frequency separation) for the RGB model are about one
order of magnitude larger than those found for the solar model,
for the same range of radial orders around νmax. This is true both
for the differences illustrated by the curve in grey and for those
illustrated by the curve in red. That can be understood from the fact
that both the frequency signature of acoustic glitches associated
with the helium second ionization and the large-scale frequency
variation associated with surface effects are, after scaling by the
large separation, about one order of magnitude larger in the RGB
model compared to the solar model (e.g. Houdek & Gough 2007;
Broomhall et al. 2014). In addition, in the solar model, the signature
of the glitches on the frequencies is better resolved, because of the
denser acoustic frequency spectrum. These two facts explain that
the difference between the true frequencies and the estimated ones
is more significant in the RGB model. Given the evidence above,
we are confident that the estimates of the ωa, n derived from the
fit of the analytical expression defined by equations (24)–(26) to
the period spacing of this luminous RGB model are the best of the
three possible estimates considered here. So, we trust that having
ωa, n free when fitting such a luminous RGB star is the best option
in the present case.

Following on the results discussed above, we attempted to
perform the same fits, with the different options for the pure
acoustic frequencies, by considering the glitch parameters to be
free. Unfortunately, none of the options considered produced
reasonable constraints to the glitch parameters. This is because the
χ2 minimization is heavily influenced by small departures between
the analytical expression and the model data at the frequencies
around the acoustic dips, where the period spacing varies abruptly.
Hence, the quality of the fit is not sufficiently sensitive to the
glitch parameters in this case. As an example, we find that fits
corresponding to a no-glitch solution (with a flat period spacing
everywhere except around the coupling dips) can have a similar χ2

as that shown in Fig. 9 (right-hand panel). This experience points
towards the need to adopt a different strategy, perhaps not based
on a global χ2 criterion, to constrain the parameters of the glitch
from the analytical expression presented in equations (24)–(26).
However, the results found when fixing the parameters of the glitch
do confirm that the proposed analytical expression provides a good
representation of the model period spacing in the presence of a core
structural glitch and mode coupling.

6 C O N C L U S I O N S

In this work, we have tested an analytical representation of the
dipole-mode period spacing derived from asymptotic analysis
against model data. The analytical expression is relevant for the
modelling of stars exhibiting pure gravity modes as well as stars
exhibiting mixed modes. The impact of different types of structural
glitches that may be present in the cores of the stars has been fully
accounted for, as has the coupling between p and g modes, when
present. Rotation effects have not been considered.

With the exception of the amplitude in one of the cases consid-
ered, our results show that the buoyancy-glitch parameters can be
adequately recovered by fitting the proposed analytical expression
to model data consisting of pure gravity modes. We stress that
unlike in previous works, the analytical expression tested here is
valid also when the glitch is not small and, consequently, when the
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920 M. S. Cunha et al.

Figure 7. Marginalized distributions for the parameters considered in the fit of the rhs of equation (22) to the period spacing derived from ADIPLS for the
RGB model below the luminosity bump (model RGB-1, with no glitch), when considering a frequency-dependent q according to equation (21).

glitch-induced period-spacing variations are not sinusoidal. This is
important because when the glitch is not small the period spacing is
asymmetric with respect to the asymptotic value, and fitting it with a
sinusoidal function, such as that predicted in the small-glitch limit,
may lead to a biased estimation of the asymptotic period spacing,
as well as of the glitch parameters.

For the case of pure gravity modes, the relative differences
between the glitch parameters estimated directly from the buoyancy
frequency and those inferred from the fits of the analytical expres-
sion to the period spacings for the two cases studied here are smaller
than 7 per cent, for all parameters, but the amplitudes. For the
step-like glitch, the amplitude value estimated from the buoyancy
frequency is 11 per cent larger than the median of the distribution
inferred from the fit to the period spacings. However, Fig. 1(b)

reassures us that the glitch amplitude is adequately recovered when
considering the uncertainty introduced by the adopted step-function
model. In the case of the glitch modelled by a Gaussian, the inferred
amplitude is found to be about 60 per cent larger than expected.
This difference is likely related to our inability to correctly model
the eigenfunction inside the glitch, where the asymptotic analysis
fails. Further tests shall be performed in future work covering a
larger set of models, to calibrate the inferred amplitude against the
true one and establish the range of applicability of the expression
in the case of the Gaussian-like glitch.

In addition, we find that the analytical expression describing
the period spacing for mixed modes propagating in the presence
of a buoyancy glitch represents well the period spacing derived
numerically for a red-giant model exhibiting such a glitch. However,
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Period-spacing analytical formulations 921

Figure 8. Top panel: comparison between the period spacing derived from
ADIPLS for the RGB-1 model (with no core glitch) (black line and asterisks)
and that obtained from equation (22) with a frequency-dependent q, with the
most likely parameters from our fit, performed in the frequency range shown
in the figure (red line and triangles). Bottom panel: the residuals (‘ADIPLS

period spacing’ − ‘analytical period spacing’). The red symbols mark the
residuals at the minima of the ADIPLS period spacing.

our results indicate that in the case considered here, of an RGB star at
the luminosity bump, the fit of the analytical expression to the model
period spacing based on a global χ2 minimization criterion does
not allow us to constrain the glitch parameters. This is because the
period-spacing variations are dominated by the effect of the mode
coupling. Alternative approaches to fit the analytical expression to
model data that may allow us to highlight the impact of the glitch
on the oscillation periods and, thus, constrain the glitch parameters
are being considered and will be discussed in a future work.

Figure 10. Difference between the pure acoustic frequencies νa, n =
ωa, n/2π estimated from fitting equations (24)–(26) to the model period
spacings with ωa, n taken as free parameters and those estimated from
otherwise similar fits but with ωa, n given by: (i) equation (19) (grey curve)
and (ii) equation (20) (red-dashed curve; diamonds). The difference is scaled
by the large frequency separation and is shown for a sample of 30 best-
fitting models (with similar likelihood), whose superposition is reflected in
the slight broadening of the lines plotted.

Finally, our fit of the analytical expression to mixed-mode model
data in the absence of buoyancy glitches indicates a clear frequency
dependence of the coupling coefficient q. This dependence, which is
theoretically expected for stars with νmax smaller than ∼100μHz,
may need to be considered when fitting data of intermediate- to
high-luminosity red giant stars, depending on the number of radial
orders observed.

Interestingly, our results also show that by fitting the proposed
analytical expression to the dipole mixed-mode period spacing, it
might be possible to extract the frequencies of the pure acoustic
dipole modes that would exist, had these modes not been mixed in
red giant stars.

Figure 9. Top panels: comparison between the period spacing derived from ADIPLS for our RGB-2 model (with a core glitch) (black line and asterisks)
with that obtained from equations (24)–(26) with the most likely parameters from our fit, performed in the frequency range shown in the figure (red line and
triangles). Left is for ωa, n derived from equation (20) and right is for ωa, n left as free parameters in the fit. Moreover, q was taken to depend linearly on the
frequency, according to equation (21) and the glitch parameters were fixed from the outset, based on the results of Section 3. Bottom panels: the residuals
(‘ADIPLS period spacing’ − ‘analytical period spacing’). The red symbols mark the residuals at the minima of the ADIPLS period spacings.
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A P P E N D I X A : SI G NAT U R E O F BU OYA N C Y
G L I T C H E S

The signature on the period spacing from a buoyancy glitch
modelled by a Dirac delta function has been derived by Cunha
et al. (2015) based on the variable � = (r3/gρf̃ )1/2δp, where
δp is the Lagrangian pressure perturbation and f̃ is a function of
frequency and of the equilibrium structure [the f-mode discriminant
defined by equation (35) of Gough (2007)]. Here we present similar
derivations for the cases of buoyancy glitches modelled by a step
function and by a Gaussian function, respectively.

The starting point is the wave equation,

d2�

dr2
+ K2� = 0, (A1)

derived from the linear, adiabatic pulsation equations, for the
case of a spherically symmetric equilibrium under the Cowling
approximation. The radial wavenumber K is defined by

K2 = ω2 − ω2
c

c2
− L2

r2

(
1 − N 2

ω2

)
, (A2)

where ωc and N are generalizations of the usual critical acoustic
frequency and buoyancy frequency, respectively, which account for
all terms resulting from the spherical geometry of the problem. The
exact forms of these quantities can be found in equations (5.4.8)
and (5.4.9) of Gough (1993). In practice, N is very similar to N
throughout the wave propagation cavity, where it will be relevant
for our analysis, and, thus, we approximate the former by the latter
from the outset, similar to what has been done in Cunha et al. (2015).

A1 Impact on pure gravity modes

In short, the derivation of the signature on the period spacing from
the buoyancy glitch is performed by considering the asymptotic
solutions to equation (A1) on each side of the glitch and applying
appropriate matching conditions at the glitch location. We recall that
the asymptotic solutions well inside the g-mode cavity, inwards and
outwards from the glitch position, are, respectively,

�in ∼ �̃inK
−1/2
in sin

(∫ r

r1

Kindr + π

4

)
, (A3)

and

�out ∼ �̃outK
−1/2
out sin

(∫ r2

r

Koutdr + π

4

)
, (A4)

where �̃in and �̃out are constants and Kin and Kout refer to K
computed from Nin and Nout, respectively.
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Glitch modelled by a step function

In the case of the glitch modelled by the step-like function, the
discontinuity in the buoyancy frequency at r = r� leads to a
discontinuity in the wavenumber at the same position. Well inside
the g-mode cavity, K ≈ LN

ω r
and, thus, the relative amplitude of the

discontinuity in the wavenumber is given by

�K

K�
out

≈ N�
in

N�
out

− 1 = Ast, (A5)

where �K = Kin|r→r�− − Kout|r→r�+ and the subscript � indicates
that the quantities are to be taken at r → r�

±.
Similarly to the case of the glitch modelled by the Dirac delta

function, we impose the continuity of � at r = r�.8 Moreover, by
integrating the wave equation (A1) once across the glitch, letting the
width of the region where the integration is performed tend to zero,
it becomes evident that the derivative of � must also be continuous
at r = r�, unlike what was found in the case of the glitch modelled
by the Dirac delta function. This is because the integral of the step
function is a continuous function, while the integral of a Dirac delta
function is not.

Imposing that both � and its derivative, taken asymptotically, are
continuous at the glitch position, we find

sin

(∫ r2

r1

Kdr + π

2

)
=

−Ast sin

(∫ r2

r�

Koutdr + π

4

)
cos

(∫ r�

r1

Kindr + π

4

)
. (A6)

Equation (A6) provides the eigenvalue condition in the presence
of a glitch modelled by a step-like function. It differs in two main
aspects from the condition derived by Cunha et al. (2015) for
the glitch modelled by a Dirac delta function (their equation 13).
First, the amplitude multiplying the sinusoidal functions on the
rhs is independent of frequency, implying that the amplitude of the
signature of the glitch on the period spacing will also be independent
of the frequency in this case. Secondly, the rhs does not remain
invariant when the arguments inside the sinusoidal functions are
interchanged, highlighting the fact that in the present case glitches
positioned symmetrically about the centre of the cavity produce
different signatures.

Next, we consider the specific case of a glitch located in the inner
half of the propagation cavity, i.e. ω̃�

g/ωg < 0.5. Writing

∫ r2

r�

Koutdr + π

4
=

∫ r2

r1

Kdr + π

2
−

∫ r�

r1

Kindr − π

4
, (A7)

and substituting in equation (A6), we find

sin

(∫ r2

r1

Kdr + π

2
+ 	

)
= 0, (A8)

where 	, and a new quantity, B, are defined by the following system
of equations:⎧⎪⎪⎨
⎪⎪⎩

B cos 	 = 1 + Ast cos2
(∫ r�

r1
Kindr + π/4

)

B sin 	 = − 1
2 A st cos

(
2
∫ r�

r1
Kindr

)
.

(A9)

8Strictly speaking, the continuity condition is satisfied by δp. However, we
have verified from the numerical solutions computed with ADIPLS that this
condition is also very closely satisfied by �.

Finally, to relate the phase 	 to the parameters characterizing the
glitch, we approximate the integral in the arguments of the sinu-
soidal functions in equation (A9) by

∫ r�

r1
Kindr ≈ ∫ r�

r1

LN
ω r

dr + δ ≡
ω̃�

g

ω
+ δ. This approximation follows from approximating K by LN

ω r

inside the cavity. Because near the turning point, r1, the wavenumber
approaches zero, this approximation leads to a slight overestimation
of the value of the wavenumber integral, which is compensated by
the introduction of the phase δ. The phase δ is, thus, related to the
details of mode reflection near the turning points of the propagation
cavity, more specifically, in the present case near the inner turning
point.

The phase 	 defined by equation (A9), with the approximation
described above, is then differentiated and used in equation (6) to
derive the analytical expression for the period spacing given by
equation (14).

Glitch modelled by a Gaussian function

In the case of the glitch modelled by the Gaussian-like function,
the variation in the buoyancy frequency around r = r� produces a
variation in the wavenumber that can be expressed by

�K

K0
≈ AG√

2π�g

exp

(
− (ωr

g − ω�
g)2

2�2
g

)
, (A10)

where, as before, we have assumed that the glitch is located well
inside the g-mode cavity and, thus, approximated the wavenumber
by K ≈ LN

ω r
, and defined the unperturbed wavenumber as K0 ≈

LN0
ω r

.
Similarly to what was done in previous cases, to establish the

eigenvalue condition for this case, we need to match the asymptotic
solutions given by equations (A3) and (A4) and their derivatives
across the glitch. We note, however, that unlike the cases of glitches
modelled by a Dirac delta function and by a step-like function, here
the glitch is not infinitely thin. Therefore, the exact matching would
require that we establish first how the eigenfunctions are perturbed
inside the glitch, which is unknown within the framework of our
study, because the solutions that we are employing were derived
asymptotically (hence, neglecting small-scale perturbations to the
background).

To proceed, we therefore make a significant simplification to
the problem, which consists in assuming that the eigenfunction
inside the glitch has the same functional form as that derived
asymptotically in the absence of a glitch, with a slowly varying
amplitude and a rapidly varying oscillatory part. In practice, this
is achieved by extending the solutions on both sides of the glitch
all the way to r = r�, keeping the amplitude proportional to the
unperturbed K

−1/2
0 . Under this assumption, the continuity of � at r

= r� imposes that

�̃in = sin
(∫ r2

r� Kdr + π
4

)
sin

(∫ r�

r1
Kdr + π

4

) �̃out, (A11)

where Kin and Kout were assumed equal to K on each side of r�, and
the integration of the wave equation (A1) across the glitch gives[

d�out

dr
− d�in

dr

]
r�

= −
∫ r�+�r

r�−�r

�K�Kdr, (A12)

where ±�r defines the region of impact of the glitch.
Equation (A12) shows that under our assumption the integrated

impact of the glitch on the phase of the wave is taken at a single
position, namely r = r�. To compute the integral on the rhs
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of equation (A12), we need again to consider the eigenfunction
inside the glitch. For mathematical consistency, we should take
the extended solutions on each side of r�. However, in the actual
problem, the phase does not jump at a single position. Thus, using
the solution that incorporates that phase jump in the computation
of the phase jump itself is not necessarily a better approximation
than adopting a solution that does not incorporate a phase jump at
r�, as would be achieved by taking the inner solution or the outer
solution throughout the whole glitch. Given the above, we derive
the eigenvalue conditions for both cases, and test their performance
a posteriori through the comparison with the numerical results.
That comparison allows us also to check the implications of the
simplification introduced in this analysis.

Adopting the extended solutions on each side of the glitch, and
combining equations (A11) and (A12), we find, after some algebra,
the eigenvalue condition,

sin

(∫ r2

r1

Kdr + π

2

)(
1 + AGα

ω

)
=

AGf
�g
ω sin

(∫ r�

r1

Kdr + π

4

)
sin

(∫ r2

r�

Kdr + π

4

)
, (A13)

where α = 0.5 ωf
�g
ω erfi(a), with a = √

0.5 �gω
−1, f

�g
ω =

ω−1e−a2
, and erfi is the imaginary error function.

However, if we adopt either the extended inner solution or the
extended outer solution throughout the whole integral, we find

sin

(∫ r2

r1

Kdr + π

2

)
=

AGf
�g
ω sin

(∫ r�

r1

Kdr + π

4

)
sin

(∫ r2

r�

Kdr + π

4

)
. (A14)

Equation (A13) differs from equation (A14) due to the presence of
the term AGα/ω on the lhs. While α is always smaller than ∼0.3,
AG/ω may be large, as no assumption is made about the strength
of the glitch. In that case, the two eigenvalue conditions will differ
significantly. As we shall see, that difference will have an impact on
the amplitude recovered when fitting the analytical period spacing
derived for each case to the numerical one.

We note that both equations (A13) and (A14) predict that the
amplitude of the glitch signature is frequency dependent. This is
unlike what was found for the step-like glitch (cf. equation A6).
Moreover, in both cases, we can note that the rhs remains invariant
when the arguments inside the sinusoidal functions on the rhs are
interchanged, highlighting that glitches modelled by a Gaussian
function positioned symmetrically about the centre of the cavity
produce similar signatures on pure gravity waves. In reality, the
requirement that the wave solutions are regular at the centre of
the star is expected to introduce a slight asymmetry between the
boundary conditions on the left and right sides of the g-mode cavity,
leading to a slight asymmetry also in the glitch signature. That,
however, is not accounted for in the asymptotic analysis presented
here and shall be subject to further discussion in future work.

Next, we consider the specific case of a glitch located in the outer
half of the propagation cavity, i.e. ω�

g/ωg < 0.5. Writing

∫ r�

r1

Kdr + π

4
=

∫ r2

r1

Kdr + π

2
−

∫ r2

r�

Kdr − π

4
(A15)

and substituting in equations (A13) and (A14), we find

sin

(∫ r2

r1

Kdr + π

2
+ 	

)
= 0, (A16)

where 	 and B take different forms, depending on the eigenvalue
condition adopted. For the eigenvalue condition defined by (A13),
we find⎧⎪⎪⎨
⎪⎪⎩

B cos 	 = 1 + AGα

ω
− 1

2 AGf
�g
ω cos

(
2
∫ r2

r�
Kdr

)

B sin 	 = AGf
�g
ω sin2

(∫ r2
r�

Kdr + π
4

) (A17)

while for the eigenvalue condition defined by (A13) 	 and B take
the form⎧⎪⎪⎨
⎪⎪⎩

B cos 	 = 1 − 1
2 AGf

�g
ω cos

(
2
∫ r2

r�
Kdr

)

B sin 	 = AGf
�g
ω sin2

(∫ r2
r�

Kdr + π
4

)
.

(A18)

To relate 	 to the parameters characterizing the glitch, we

approximate
∫ r2

r�
Kdr ≈ ∫ r2

r�

LN
ωr

dr + δ ≡ ω�
g

ω
+ δ, where in this case

the phase δ is related to the details of the mode reflection near the
outer turning point.

When the phase 	, with the approximation above, is differenti-
ated and used in equation (6), the period spacing becomes

�P

�Pas
≈ [1 − FG]−1 , (A19)

where FG takes different forms, depending on whether we use
equations (A17) or equations (A18). If 	 and B are defined by
equations (A17), we find

FG = −AGf
�g
ω

B2

ω�
g

ωg

{(
1 + AGα

ω

)
cos β1

+
(

− ω

ω�
g

d ln f
�g
ω

d ln ω
− AGf

�g
ω − AGa√

πω�
g

)
sin2 β2

}
(A20)

with β1 = 2ω�
g/ω + 2δ, and β2 = ω�

g/ω + π/4 + δ. If, however, 	

and B are defined by equations (A18), we find

FG = −AGf
�g
ω

B2

ω�
g

ωg

[
cos β1 +

(
− ω

ω�
g

d ln f
�g
ω

d ln ω
− AGf

�g
ω

)
sin2 β2

]
.

(A21)

Given the symmetry of the eigenvalue condition discussed before,
the same expressions for the period spacing would be found if the
glitch had been located in the inner half of the propagating cavity,
but with ω�

g replaced by ω̃�
g.

The analytical expressions provided by equations (A20) and
(A21) have been tested against the period spacing derived directly
from the numerical solutions to the pulsation equations in the
absence of coupling between p and g modes, which were computed
with ASTER, for our RGB-2 model. The results are shown in
Table A1, where we confront the glitch parameters inferred from the
fit of each expression to the numerical results and those measured
directly from inspection of the buoyancy frequency.

While the analytical expressions given by equations (A20) and
(A21) provide a good fit to the numerical data (with a likelihood
comparable to the fit illustrated in Fig. 5), both the amplitude and
the width of the glitch inferred from the fit are about twice the
estimated value. To understand the origin of that, we recall that
the main impact expected from the width of the Gaussian glitch
is an attenuation of the glitch signature with decreasing frequency,
resulting from the fact that the local wavenumber approaches the
characteristic scale of the glitch, as the frequency decreases. It, thus,
seems quite likely that the simplification introduced in the analysis
presented here, namely, accounting only for the integrated effect of
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Period-spacing analytical formulations 925

Table A1. Second and third rows: parameters derived from the fit of the
analytical expressions given by equations (A20) and (A21) to the period
spacing derived from ASTER for the RGB-2 model (at the luminosity bump).
Fourth and fifth rows: the same as the preceding rows, but with the function

f
�g
ω in the analytical expressions replaced by f

�g
ω = ω−1e−4a2

. The values
shown correspond to the best-fitting model. For a comparison, the values
of the glitch parameters estimated directly from the buoyancy frequency
obtained with ASTEC (Fig. 1d) are also shown in the last row.

AG

(10−6 rad s−1)
ω�

g

(10−6 rad s−1)
�g

(10−6 rad s−1)

Equation (A20) 898 1763 255
Equation (A21) 602 1747 315

Equation (A20); modified f
�g
ω 803 1754 155

Equation (A21); modified f
�g
ω 608 1748 159

Estimated 380 1632 156

the glitch on the phase of the wave, is responsible for the differences
seen in the numerical and analytical period spacings.

Since the asymptotic approach adopted here precludes us from
fully taking into account the finite width of the glitch, it is important
to compare the results from our simplified approach with those
derived in the limit case of a small glitch, for which we can derive
the impact of the glitch on the frequencies, to first order, without
knowledge of the perturbed eigenfunctions. We note that in this limit
the eigenvalue condition expressed by equation (A13) approaches
that given by equation (A14) because A/ω is small. That analysis has,
in fact, been carried out in previous works for the case of a Gaussian-
like acoustic glitch associated with the helium second ionization
zone (Gough 2002; Houdek & Gough 2007). Those authors studied
the impact of that glitch on the p modes and found an exponential
decrease of the amplitude of the glitch signature with the square of
the frequency,9 but with a factor of 4 greater than the one found in
the current analysis. Indeed, following their analysis, we recover the
analytical expression for the period spacing given by equation (A21)
if the function f

�g
ω is replaced by f

�g
ω = ω−1e−4a2

.
Motivated by that limit result, which should be satisfied by

the more general expression, we have multiplied the exponent
of the function f

�g
ω by a factor of 4 and performed new fits.

With this modification, the glitch width inferred from the fit of
both analytical expressions to the numerical period spacings is
brought into agreement with the value estimated directly from the
buoyancy frequency, as seen from the two last rows of Table A1.
The amplitudes, on the other hand, are hardly changed by the
modification introduced. We, thus, find that both modified analytical
expressions provide a good representation of the data [as illustrated
in Fig. 5, for the case of equation (A21) with the modified f

�g
ω ], but

both lead to an overestimation of the amplitude of the glitch. We
have tested the two modified expressions on an otherwise similar
model, but with a glitch with an amplitude about three times larger.
We found results very similar to those found for the model discussed
here, where the position and width of the glitch are adequately
recovered, but the amplitude is overestimated by the same factor as
before (∼1.5) in the case of equation (A21) and by a larger factor
in the case of equation (A20). The fact that equation (A20) is more

9We note that because the authors analysed the impact of an acoustic glitch
on the p modes the dependence on frequency they found is, as expected,
inverse to what is found here. While we find an exponential decrease
with decreasing frequency squared, they find an exponential decrease with
increasing frequency squared.

complex than equation (A21) and results in a larger overestimation
of the glitch amplitude leads us to the conclusion that equation (A21)
with the modified f

�g
ω provides the best of the four options discussed

here to fit the model data.

A2 Impact on mixed modes

To combine the effect of mode coupling with that of a glitch
modelled by a Gaussian function, we follow again the analysis
performed in Cunha et al. (2015) for the Dirac delta glitch. When
the waves propagate also in the p-mode cavity, equation (A4) is
substituted by

�out ∼ �̃outK
−1/2
out sin

(∫ r2

r

Koutdr + π

4
+ ϕ

)
, (A22)

where, as for the case of the Gaussian-like glitch without mode
coupling, this solution on the rhs of the glitch shall be extended all
the way to r = r�, keeping the amplitude proportional to K

−1/2
0 . The

frequency-dependent coupling phase ϕ is defined by equation (7)
and expresses the influence of the p-mode cavity on the wave
solution.

For the specific case of a glitch located in the outer half of
the propagation cavity, as is our RGB-2 model, it follows that the
eigenvalue condition can be expressed as

sin

(∫ r2

r1

Kdr + π

2
+ 	 + ϕ

)
= 0, (A23)

where, following the conclusions of Section A1, now 	 and B are
defined by the following system of equations:⎧⎪⎪⎨
⎪⎪⎩

B cos 	 = 1 − 1
2 AGf

�g
ω cos

(
2
∫ r2

r�
Kdr + 2ϕ

)

B sin 	 = AGf
�g
ω sin2

(∫ r2
r�

Kdr + π
4 + ϕ

)
.

(A24)

Here, as before, the function f is formally derived to be f
�g
ω =

ω−1e−a2 ≡ ω−1e− 1
2 �2

gω−2
, but for the reasons discussed in Sections 3

and A1 for the case of a Gaussian-like glitch and no coupling, it will
be replaced by f

�g
ω = ω−1e−2�2

gω−2
motivated by the low-amplitude

glitch limit and the numerical results.
Approximating,

∫ r2
r�

Kdr ≈ ∫ r2
r�

LN
ωr

dr + δ in equations (A24),
differentiating 	, and substituting it in equation (6), we finally
find the period spacing given by equations (24)–(26).

Finally, we note that unlike in the case of the pure gravity modes,
the signature on the mixed modes from the Gaussian-like glitch is
not invariant to symmetric changes of the glitch about the centre of
the g-mode cavity. The reason is that the conditions on the left and
right of the glitch are not the same, as a result of the p-mode cavity.
Mathematically, that is seen from the comparison of equation (A3)
with equations (A4) and (A22), respectively. While the first two
are identical when considering equivalent buoyancy distances from
each extreme of the cavity, the same is not true when the first and
last of these equations are considered.

APPENDI X B: ESTI MATI NG THE PURELY
AC OUSTI C DI POLE-MODE FREQUENCIES

In a red giant star, the modes of degree l = 1 have a mixed nature.
Hence, their frequencies are different from those that pure acoustic
modes would have in the same star. Nevertheless, knowledge of
those pure acoustic frequencies, ωa, n, may be necessary to apply the
analytic expressions provided in this work for the period spacing in
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926 M. S. Cunha et al.

Figure B1. Difference between the l = 1 acoustic frequencies, νn, 1,
computed with ADIPLS for the solar model S (Christensen-Dalsgaard et al.
1996) and those estimated from: (i) equation (B2) (grey curve) and (ii)
equation (B3) (red-dashed curve; diamonds). The difference is scaled by
the average solar large frequency separation computed from the l = 0
modes within the range of radial orders shown, namely 13 ≤ n ≤ 28. In
this case, the constant C = −AL2�ν2

0 was estimated through uniformly
weighted averages over the same range of n, 〈(νn, 1 − νn, 0 − 0.5�ν0)(νn, 0

+ 0.5�ν0)〉 and 〈(νn, 1 − (n + 0.5)�ν0 − G(νn, 0 + 0.5�ν0))(νn, 0 +
0.5�ν0)〉, respectively.

the presence of mode coupling. One possible way to estimate those
frequencies is to start from the frequencies of radial modes, which
are also observed in red giants and are always purely acoustic. In
Section 4, we proposed two expressions to estimate the frequencies
ωa, n. Here, we use the same expressions to estimate the frequencies
of l = 1 modes in a solar model. Because in the sun l = 1 modes are
purely acoustic, by doing so we can check the performance of each
expression against the known purely acoustic model frequencies.

Inspired by the results of the asymptotic analysis (Tassoul 1980),
we write the frequencies of high radial-order purely acoustic modes
in the following form:

νn,l ≈
(

n + l

2

)
�ν0 − AL2�ν2

0

νn,l

+ G
(
νn,l

)
, (B1)

where A is sensitive to the conditions in the innermost layers of the
star and G(νn, l) is a function of frequency that accounts for near-
surface effects considered, e.g. in the asymptotic analysis by Gough
(1993), and also for deviations from the asymptotically derived
frequencies introduced, e.g. by the presence of acoustic glitches
located inside the p-mode cavity. The important aspect to retain
is that these frequency-dependent effects are present both when
considering l = 0 and 1 modes. At the radial mode frequencies, the
function G reduces to G(νn, 0) ≈ νn, 0 − n�ν0.

Considering that the function G(νn, l) may vary slowly with fre-
quency (meaning, on a scale of many radial orders), we can consider,
first, the following rough approximation for the frequencies of the
l = 1 modes:

νn,1 ≈ νn,0 + 1

2
�ν0 + C(

νn,0 + 1/2�ν0

) , (B2)

where C = −AL2�ν2
0 . Expressing the above in terms of angular

frequencies, we find the option adopted in equation (19).
Alternatively, we may try to account for the fact that, for a

given radial order, the function G(νn, l) will take slightly different
values if considered at the frequency of the radial mode or at the
frequency of the dipole mode. That can, in principle, be done by
interpolating the function G derived from the radial modes, at the
frequencies estimated for the dipole modes. If G were indeed a
slowly varying function of frequency, one could consider fitting
it simultaneously across a number of l = 0 radial orders prior
to interpolating it. However, one of the contributions to G comes
from the acoustic glitches mentioned before, which may introduce
significant variations across just a few radial orders. For that reason,
after trying several fitting plus interpolation options we concluded
that the approach yielding the best results consists in linearly
interpolating G between each of the two consecutive radial mode
frequencies taking its value at νn, 0 + 1/2�ν0, which is the first-order
estimate of the dipolar mode frequencies. This option, applied to
equation (B1), leads us to the following estimate of the dipole-mode
acoustic frequencies:

νn,1 ≈
(

n + 1

2

)
�ν0 + C(

νn,0 + 1/2�ν0

) + G
(
νn,0 + 1/2�ν0

)
,

(B3)

where the last term on the rhs is to be interpreted as the value of the
function G obtained from interpolation at the frequencies defined by
the expression within the brackets. This estimate, expressed in terms
of angular frequencies, provides the option adopted in equation (20).

The comparison between the model S dipole-mode frequen-
cies, computed with ADIPLS , and the estimates proposed by
equations (B2) and (B3), corresponding to the options 1 and 2,
respectively, in Section 4, is shown in Fig. B1. As expected,
equation (B3) (option 2 in Section 4) represents more closely the
true model S dipole-mode frequencies. The differences that are still
found when that option is considered stem from the fact that acoustic
glitches introduce frequency variations that are not fully accounted
for by the linear interpolation between radial modes considered
here.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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