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Abstract. Tempo and genre are two inter-leaved aspects of music, gen-
res are often associated to rhythm patterns which are played in specific
tempo ranges. In this paper, we focus on the recent Deep Rhythm sys-
tem based on a harmonic representation of rhythm used as an input to
a convolutional neural network. To consider the relationships between
frequency bands, we process complex-valued inputs through complex-
convolutions. We also study the joint estimation of tempo/genre using a
multitask learning approach. Finally, we study the addition of a second
input branch to the system based on a VGG-like architecture applied to
a mel-spectrogram input. This multi-input approach allows to improve
the performances for tempo and genre estimation.

Keywords: Tempo estimation, genre classification, deep-learning, com-
plex network, multitask, multi-input.

1 Introduction

Tempo is usually defined as the rate at which a listener taps while listening to
a piece of music (Fraisse, 1982). The large number of works dedicated to its
automatic estimation somehow demonstrates how important this task is in the
Music Information Retrieval (MIR) community, but also that there is still room
for improving its estimation.

The work on tempo estimation has for a long time concentrated on the devel-
opment of hand-crafted systems, often based on the perceptual process used
in human tempo inference. As an example, one of the earliest system proposed
by (Scheirer, 1998) used a bank of band-pass filters followed by resonant comb-
filters and a peak-picking process. Nearly a decade later, (Klapuri, Eronen, &
Astola, 2006) still used resonant comb-filters but as input to a process to track
the rhythm at several metric levels. (Gainza & Coyle, 2011) developed a hybrid
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multi-band decomposition using autocorrelation of onset functions across mul-
tiple frequency bands. These works highlighted the strong relationship between
tempo and beat tracking, since tempo can be estimated as the period between
successive beats. Overviews of these systems can be found in (Gouyon et al.,
2006; Zapata & Gómez, 2011; Peeters, 2011).

The appearance of large datasets annotated into tempo or beat/downbeat
positions has favored the development of data-driven systems where the ma-
chine learns from the annotated data using machine-learning (ML) algorithms.
The first ML algorithms used were K-Nearest-Neighbors (KNN) (Seyerlehner,
Widmer, & Schnitzer, 2007), Gaussian Mixture Model (GMM) (Xiao, Tian, Li,
& Zhou, 2008; Peeters & Flocon-Cholet, 2012), Support Vector Machine (SVM)
(Chen, Cremer, Lee, DiMaria, & Wu, 2009; Gkiokas, Katsouros, & Carayannis,
2012; Percival & Tzanetakis, 2014), bags of classifiers (Levy, 2011), Random For-
est (Schreiber & Müller, 2017). Then deep learning (DL) became the most used
ML algorithms in MIR. One of the first DL systems proposed for beat-tracking
is the one of (Böck, Krebs, & Widmer, 2015) which used resonant comb-filters
applied to the output of a Reccurent Neural Network (Bi-LSTM) that predicts
the beat position inside the raw audio and then estimates the periodicity as the
predicted tempo. Later, (Schreiber & Müller, 2018) proposed the first end-to-end
DL system (although starting from the mel-spectrogram) for tempo estimation.
The mel-spectrogramm is used as input to a convolutional architecture that sim-
ulates a resonant comb filters. Their system considers the tempo prediction task
as a classification task into tempo classes.

Recently, (Foroughmand & Peeters, 2019) proposed to combine the two types
of systems in the so called “Deep Rhythm” system for tempo estimation and
rhythm pattern/genre classification. It relies on a new harmonic representation
of rhythm (the Harmonic Constant-Q Modulation - HCQM) used as input to a
Convolutional Neural Network.

The HCQM represents the rhythm content of an audio signal in the spectral
domain (as proposed by (Peeters, 2011)) and extends this representation with an
extra dimension representing the harmonic series related to each frequency (as
proposed by (Bittner, McFee, Salamon, Li, & Bello, 2017)). More precisely, onset
strength functions are extracted in various acoustical frequency bands b (denoted
by ob(t)). Their temporal evolution are then independently represented by the
modulus of a Constant-Q-Transform with frequencies in the modulation range
(0Hz - 240 Hz) which directly correspond to the tempo range (0 - 240 BPM). This
leads to a 2D representation (acoustic frequency bands b, modulation frequency
Φ) which is extended to a third dimension h representing the harmonic series of
each modulation frequency Φ. This representation is computed over segments of
8s with a frame analysis of hop-size 8 s. We denote by τ ′ the time of the frames.
The result is a 4-dimensional representation of size (τ ′ × Φ× b× h).

The HCQM is then used as input to a Deep Convolutional Neural Net-
work which architecture is similar to that of (Bittner et al., 2017) except that
the last layer and the loss are configured to perform single-label classification as
proposed by (Schreiber & Müller, 2018). We consider each tempo between 30
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and 285 BPM as a class. The same network is also used for rhythm pattern/genre
classification setting the classes as genres to predict.

In this paper we present several extensions to this Deep Rhythm systems
which allow to better represent the rhythm content (use of complex values in
part 2.1), the fact that tempo, rhythm pattern and genre are strongly correlated
(multitask learning in part 2.2 and multi-input system in part 2.3).

2 Deep Rhythm extensions

2.1 Complex Deep Rhythm

As mentioned above, in the original Deep Rhythm network, the modulations φ
of each frequency bands b are modeled independently through convolutional lay-
ers, i.e. the network does not consider the inter-relationship between the various
frequency bands b. For example, the network will not be able to distinguish be-
tween a rhythm having a kick and a snare alternating over time and one having
both simultaneously. This is due to the fact that the modulation is represented
taking only the modulus of the CQT of the onset-strength-function at frequency
bands b. In the case of the scale-transform combined with a modulation spec-
trum, (Marchand & Peeters, 2016b) showed that using the correlation between
frequency bands allows a better estimation of the rhythm pattern and so of
tempo. Because, the modulus does not preserve the time-information (which is
contained in the phase of the CQT) we propose to replace it by the use of the
complex CQT represented as Real and Imaginary part. The complex HCQM H
then has a Real and an Imaginary part (it can also be presented by doubling the
dimensions: (τ ′ × Φ× b× 2h)). To deal with this complex input, the network is
then adapted to process complex values using complex convolutions and batch
normalizations as proposed by (Trabelsi et al., 2017).

Complex Convolution. The complex input to the layers is denoted by H =
H< + iH= (with H< and H= its real and imaginary parts). The complex kernel
matrix of the layer (which is the trainable parameter) is denoted by K = K< +
iK= (with K< and K= its real and imaginary parts). The complex convolution
is then expressed as K ∗H = (K< ∗H< −K= ∗H=) + i(K= ∗H< +K< ∗H=).
The output of each complex convolution layer is itself complex and is then used
as input to the next complex convolution layer. All convolution layers of the
original Deep Rhythm network are therefore replaced by complex convolution
layers. Also, each complex convolution layers is followed by a complex batch
normalization (as described in (Trabelsi et al., 2017)). After the last complex
convolution, the resulting feature maps are flattened, hence by concatenating
the real and imaginary output.

We illustrate this in Figure 1 where we only detail the complex convolution
for the first convolution layer (the one applied to the input complex HCQM H).

2.2 Multitask learning: joint tempo and genre estimation

In (Foroughmand & Peeters, 2019), it is shown that the same network architec-
ture, but with two different trainings and hence set of parameters, can be used to
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Fig. 1. Complex Convolution applied to Complex HCQM.

achieve two different tasks: tempo estimation and genre classification3. We want
here to exploit this multitasking aspect through the implementation of a sin-
gle network which jointly estimates the tempo and the genre class. Some recent
works have shown the effectiveness of this type of joint learning for fundamental
frequency estimation of multiple instrument (Bittner, McFee, & Bello, 2018) or
joint beat tracking and tempo estimation (Böck, Davies, & Knees, 2019).

Architecture. We illustrate the architecture of our multitask network on
the right part of Figure 2. The architecture is the same as the original Deep
Rhythm network (Foroughmand & Peeters, 2019) but extended. The extension
starts from the flatten layer that follows the last convolutional layer. This vector
then feed two independent branches, each with 2 fully connected layers ending
with a softmax. One branch is dedicated to genre classification, the other to
tempo estimation. The output of the first (of the second) has the same size as
the number of genre to be detected (as the number of tempo classes).

Losses. To train the system we then simultaneously minimize two categorical
cross-entropy losses: one for the genre classes Lgenre and one for the tempo classes
Ltempo. Both are applied to the output of the networks (the softmax). We then
minimize L = Lgenre + Ltempo (i.e. both losses are equally weighted).

2.3 Multi-input Network

The Deep Rhythm network was designed to represent the rhythm content of an
audio track. As showed in (Gouyon et al., 2006), the tempo range and possible
rhythm patterns are strongly correlated to the music genre of the track. The Deep
Rhythm network however was designed to represent only the aspects related to
rhythm, not to timbre. We therefore test an extension of the Deep-Rhythm by
joining it with a second input dedicated to the representation of timbre.

The second input is a network now-commonly-used for audio tagging, the so-
called Choi network (Choi, Fazekas, Sandler, & Cho, 2017). This network uses

3 In some of the datasets used for evaluation, genres are considered as rhythmic
styles/patterns. To simplify the taxonomy, we refer to this task as genre classifi-
cation.



Extending Deep Rhythm for Tempo and Genre Estimation 5

Fig. 2. Architecture for [left] multi-input, [right] multitask.

mel-spectrograms as input to a VGG-like network with five convolutional layers
of (3 × 3) kernels each connected to a max pooling layer (2 × 4), (2 × 4), (2 ×
4), (3× 5), (4× 4) in order to reduce the size without losing information during
training. In the original network, the last layer then predicts the tags. We skip
this last layer here.

We denote by multi-input network a network with two input branches: one
is Deep Rhythm, the second is Choi network. This multi-input network is then
supposed to represent both the rhythm content and the timbre. the outputs
of the two are then flattened and concatenated. The resulting vector is then
processed by a dense layer of size 256. This is illustrated in Figure 2.

The multi-input network can be then be used with the multitask (as described
above) or without the multitask. In the latter case, there is only one output
dedicated to genre classification and the last layer is a dense layer of size C (the
number of genre classes). The activation is a softmax activation and we train by
minimizing the categorical cross-entropy loss.

3 Evaluation

3.1 Time-varying tempo

Within the datasets we considered, some of the tracks have time-varying tempo.
However only a single global ground-truth annotated tempo T is provided for
each track, implying that this tempo is the ground-truth for all the temporal-
segments of the track. The original Deep Rhythm network process each audio
frame τ ′ independently. We denote by xτ the segment of the audio signal centered
on time τ and of 8 s duration. During training, each xτ is considered as an
instance of the single global ground-truth tempo T and the network trained
accordingly. For testing, the output of the network (the softmax output) provides
for each xτ a tempo likelihood vector p(T |xτ ′) which represents the likelihood of
each tempo T . The average over frame τ ′ of this vector is then computed, p(T ) =∫
τ ′
p(T |xτ ′)dτ ′, and used to estimate the global tempo: T̂ = arg maxT p(T ).
Oracle frame predictor. We would like to know what would be the upper

bound achievable by Deep Rhythm to predict T from the succession of p(T |xτ ′).
We define an Oracle Frame Predictor which knows which is the best frame τ ′
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to be used to predict T denoted by τ ′∗. The oracle defines the best frame as
τ ′∗ = arg minτ ′(T − arg maxT p(T |xτ ′)2. The final prediction of the oracle still
uses the tempo likelihood vector to estimate the tempo (but only using the best
frame): T̂ ∗ = arg maxT p(T |xτ ′∗). Typically, if the track only contains a single
frame corresponding to T and if the network is performing well, the Oracle
should be able to find τ ′∗ and the corresponding T̂ ∗ would be a good estimation.
In the opposite the average value p(T ) will be blurred and T̂ = arg maxT p(T )
would provide a wrong prediction. Hence T̂ ∗ is an upper bound.

3.2 Tempo-only estimation

Protocol. To evaluate the performances on tempo estimation, we follow the
same protocol as described in (Foroughmand & Peeters, 2019), i.e. we train the
network on 3 datasets and evaluate the performances on 7 independent datasets.
We also summarized the overall performances by indicating the results on the
Combined dataset (the union of the 7 datasets). We indicate the results in terms
of Accuracy (Acc) which is the exact estimation of tempo, Accuracy1 (Acc1)
which is the estimation within a 4% window and Accuracy2 (Acc2) which is the
estimation taking into account the predicted tempo at the 2nd and the third
octave above and below within a 4% window.

Datasets. For Training: Extended Ballroom (Marchand & Peeters, 2016a)
(3826 tracks), MTG tempo (Schreiber & Müller, 2018) (1159 tracks), LMD
tempo(Raffel, 2016; Schreiber & Müller, 2018) (3611 tracks). For Testing:
ACM (Peeters & Flocon-Cholet, 2012) (1410 tracks), ISMIR04 (Gouyon et al.,
2006) (464 tracks), Ballroom (Gouyon et al., 2006) (698 tracks), Hainsworth
(Hainsworth, 2004) (222 tracks), GTZAN (Marchand, Fresnel, & Peeters, 2015)
(1000 tracks), SMC (Holzapfel, Davies, Zapata, Oliveira, & Gouyon, 2012) (217
tracks), Giantsteps (Knees et al., 2015) (664 tracks).

Considered systems. The results are indicated in Table 1. (DR): original
Deep Rhythm network; (Oracle-DR): (DR) using the Oracle Frame Prediction;
(Cplx-DR): complex version of (DR) (part 2.1); (Oracle-Cplx-DR): Oracle Frame
Prediction of (Cplx-DR).

Results. First, we see that (Oracle-DR) performs actually much better than
(DR), in other words if we know at which frame to look at we would have much
better results. Then comparing (DR) with (Cplx-DR), we see that in terms of
Acc, (Cplx-DR) is more efficient for 4/7 datasets. In terms of Acc1 and Acc2,
(Cplx-DR) is more efficient for 3/7 datasets and performs same or slightly better
on overall (Combined dataset). Finnaly we see that the results are better with
(Orcale-Cplx-DR) than (Oracle-DR) for a majority of the test datasets in terms
of Acc and Acc1 and for all of them in terms of Acc2. This shows the advantages
of the (Cplx-DR) method over (DR).

3.3 Joint tempo-genre, genre-only estimation

Protocol. It is not possible to perform a cross-dataset validation since genre
classes are specific to each dataset. We only consider the datasets which are
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Table 1. Tempo-only estimation results (large-scale cross-dataset validation).
ACM ISMIR04 Ballroom Hainsworth GTZAN SMC Giantsteps Combined

Acc

DR 38.1 24.7 73.1 40.1 37.7 6.0 26.5 38.9
Cplx-DR 40.2 28.0 70.2 38.7 42.0 6.9 26.1 40.2
Oracle-DR 50.7 34.2 80.9 56.8 49.2 10.1 35.09 49.5
Oracle-Cplx-DR 55.7 38.7 79.5 51.4 47.8 10.1 51.7 53.0

Acc1

DR 75.0 52.7 90.4 73.0 70.2 21.7 84.0 72.8
Cplx-DR 74.7 55.9 88.1 69.8 71.2 20.3 84.2 72.7
Oracle-DR 81.6 58.9 94.3 82.0 76.0 34.1 92.8 79.4
Oracle-Cplx-DR 86.5 65.2 92.8 85.6 80.3 37.8 97.7 83.3

Acc2

DR 96.2 88.0 97.1 83.3 88.8 35.0 98.0 90.8
Cplx-DR 96.5 87.3 97.7 82.4 90.7 31.8 97.9 91.0
Oracle-DR 98.5 89.5 98.3 88.7 92.6 55.3 98.9 93.9
Oracle-Cplx-DR 99.0 90.3 98.9 92.8 93.9 58.1 99.4 95.9

both annotated into tempo and into genre and perform for each a ten-fold cross
validation (splitting each dataset into ten folds). For the tempo estimation, we
indicate the same metric Acc1 as above. For the genre classification, we indicate
the mean over class Recall since it is independent of class distribution.

Datasets. For the experiments, we used the following datasets each in a 10-
fold cross-validation scenario: Extended Ballroom (Marchand & Peeters, 2016a)
(3992 tracks and 9 genres), Ballroom (Gouyon et al., 2006) (698 tracks and 8
genres), MTG (Knees et al., 2015) (1823 tracks and 23 electronic genres; GTZAN
(Marchand et al., 2015) (1000 tracks and 10 genres), Greek Dance (Holzapfel &
Stylianou, 2011) (180 tracks and 6 greek music genres not annotated in tempo).

Considered systems. Since the metrics are different we indicate the re-
sults in two tables: Table 2b for tempo estimation and Table 2a for genre clas-
sification. (DR): Deep Rhythm network; (Cplx-DR): complex version of (DR);
(MTL): multitask learning (part 2.2);(Cplx-MTL): complex version of (MTL);
(MI): multi-input network(part 2.3); (Cplx-MI): complex version of (MI); (MI-
MTL): the multi-input multitask learning; (Cplx-MI-MTL): complex version of
(MI-MTL); For comparison purposes, we also provides the results with Choi
model using the same protocol.

Results. For genre classification (Table 2a), all the models outperform
(Choi) (except for the GTZAN dataset which is mainly defined by the timbre).
Since (DR) performs better than (Cplx-DR) it seems that the added phase infor-
mation of (Cplx-DR) prevents the training to generalize. Since (MTL) does not
outperform (DR) it seems that jointly training them does not bring any benefit.
The only benefit is in having only one model instead of two. In the opposite, the
Multi-Input system (MI, Cplx-MI and MI-MTL) outperforms all the other ones
for all datasets. Especially, its simpler form (MI) provides the best results for
4/5 datasets. Its complex version is the best method for the MTG dataset.

For tempo estimation (Table 2b), The (MI-MTL) method shows best re-
sults (for the ExtBallroom) while the (MI) method performs better for Ballroom
and GTZAN. The results of the (MTL) methods are directly linked to the results
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Table 2. Joint estimation results (10-fold Cross-Validation).
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Choi 72.1 60.1 38.1 21.7 74.2

DR 95.2 93.0 68.9 37.6 59.1

Cplx-DR 92.1 86.5 40.0 36.4 43.5

MTL 94.8 92.1 X 37.1 57.1

Cplx-MTL 92.4 86.1 X 39.8 44.0

MI 96.5 94.2 69.4 37.3 74.3

Cplx-MI 93.9 92.3 47.2 40.6 74.1

MI-MTL 96.2 93.0 X 39.6 67.2

Cplx-MI-MTL 94.6 91.9 X 40.3 66.0

(a) Genre results in terms of
mean-over-class recall.
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DR 95.4 92.8 91.3 72.4

Cplx-DR 95.6 88.2 90.4 68.9

MTL 95.6 92.0 91.1 73.2

Cplx-MTL 94.4 89.4 92.0 69.2

MI 95.6 94.1 90.8 73.2

Cplx-MI 94.6 92.7 90.1 69.5

MI-MTL 96.0 92.2 91.3 71.5

Cplx-MI-MTL 95.7 92.4 91.6 68.5

(b) Tempo results in terms of
Accuracy1.

of genre classification presented in table 2a since we perform a joint learning of
the two tasks. It is interesting to remark that for the MTG dataset, (Cplx-MTL)
has very good results both for tempo estimation and genre classification. Phase
information may be more important to respect the properties’ of electronic music
tempo and rhythm pattern.

4 Conclusion

In this paper we presented three main extensions of the Deep Rhythm network
for tempo estimation and genre classification. First, we proposed the use of a
complex-HCQM representation as input of a complex convolution neural net-
work. This allows an improvement in term of tempo Acc but surprisingly not in
terms of tempo Acc1 and Acc2 neither in terms of genre classification. Second,
in order to better take into account the interdependencies between tempo and
genre we proposed a multi-input network where a VGG-like network with mel-
spectrogram input is added to represent timbre information along Deep Rhythm.
We showed that this allows a improvement for both tasks. Third, we proposed
a multi-task output where both tempo and genre are estimated jointly. With
the Oracle frame prediction, we showed that their is still room for improve the
tempo estimation. One of the future works will be to apply an attention mech-
anism system on top of the Deep Rhythm network to select automatically the
temporal segment corresponding to the global tempo ground-truth annotation.
We showed encouraging results since the results, are good for both tempo and
genre estimation.
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