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Structured Prediction with Partial Labelling through the Infimum Loss

Vivien Cabannes 1 Alessandro Rudi 1 Francis Bach 1

Abstract

Annotating datasets is one of the main costs in
nowadays supervised learning. The goal of weak
supervision is to enable models to learn using only
forms of labelling which are cheaper to collect,
as partial labelling. This is a type of incomplete
annotation where, for each datapoint, supervision
is cast as a set of labels containing the real one.
The problem of supervised learning with partial
labelling has been studied for specific instances
such as classification, multi-label, ranking or seg-
mentation, but a general framework is still miss-
ing. This paper provides a unified framework
based on structured prediction and on the concept
of infimum loss to deal with partial labelling over
a wide family of learning problems and loss func-
tions. The framework leads naturally to explicit
algorithms that can be easily implemented and
for which proved statistical consistency and learn-
ing rates. Experiments confirm the superiority
of the proposed approach over commonly used
baselines.

1. Introduction
Fully supervised learning demands tight supervision of large
amounts of data, a supervision that can be quite costly to
acquire and constrains the scope of applications. To over-
come this bottleneck, the machine learning community is
seeking to incorporate weaker sources of information in
the learning framework. In this paper, we address those
limitations through partial labelling: e.g., giving only par-
tial ordering when learning user preferences over items, or
providing the label “flower" for a picture of Arum Lilies1,
instead of spending a consequent amount of time to find the
exact taxonomy.

1INRIA - Département d’Informatique de l’École Normale
Supérieure - PSL Research University, Paris, France. Correspon-
dence to: Vivien Cabannes <vivien.cabannes@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1https://en.wikipedia.org/wiki/Arum

Partial labelling has been studied in the context of classifi-
cation (Cour et al., 2011; Nguyen & Caruana, 2008), multil-
abelling (Yu et al., 2014), ranking (Hüllermeier et al., 2008;
Korba et al., 2018), as well as segmentation (Verbeek &
Triggs, 2008; Papandreou et al., 2015), or natural language
processing tasks (Fernandes & Brefeld, 2011; Mayhew et al.,
2019), however a generic framework is still missing. Such
a framework is a crucial step towards understanding how
to learn from weaker sources of information, and widening
the spectrum of machine learning beyond rigid applications
of supervised learning. Some interesting directions are pro-
vided by Cid-Sueiro et al. (2014); van Rooyen & Williamson
(2017), to recover the information lost in a corrupt acquisi-
tion of labels. Yet, they assume that the corruption process
is known, which is a strong requirement that we want to
relax.

In this paper, we make the following contributions:

– We provide a principled framework to solve the prob-
lem of learning with partial labelling, via structured
prediction. This approach naturally leads to a varia-
tional framework built on the infimum loss.

– We prove that the proposed framework is able to re-
cover the original solution of the supervised learning
problem under identifiability assumptions on the la-
belling process.

– We derive an explicit algorithm which is easy to train
and with strong theoretical guarantees. In particular,
we prove that it is consistent and we provide general-
ization error rates.

– Finally, we test our method against some simple base-
lines, on synthetic and real examples. We show that for
certain partial labelling scenarios with symmetries, our
infimum loss performs similarly to a simple baseline.
However in scenarios where the acquisition process of
the labels is more adversarial in nature, the proposed
algorithm performs consistently better.

2. Partial labelling with infimum loss
In this section, we introduce a statistical framework for par-
tial labelling, and we show that it is characterized naturally
in terms of risk minimization with the infimum loss. First,
let’s recall some elements of fully supervised and weakly
supervised learning.

https://en.wikipedia.org/wiki/Arum
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Fully supervised learning consists in learning a func-
tion f ∈ YX between a input space X and a output space Y ,
given a joint distribution ρ ∈ ∆X×Y on X × Y , and a loss
function ` ∈ RY×Y , that minimizes the risk

R(f ; ρ) = E(X,Y )∼ρ [`(f(X), Y )] , (1)

given observations (xi, yi)i≤n ∼ ρ⊗n. We will assume that
the loss ` is proper, i.e. it is continuous non-negative and
is zero on, and only on, the diagonal of Y × Y , and strictly
positive outside. We will also assume that Y is compact.

In weakly supervised learning, given (xi)i≤n, one does not
have direct observations of (yi)i≤n but weaker informa-
tion. The goal is still to recover the solution f ∈ YX of the
fully supervised problem Eq. (1). In partial labelling, also
known as superset learning or as learning with ambiguous
labels, which is an instance of weak supervision, informa-
tion is cast as closed sets (Si)i≤n in S, where S ⊂ 2Y is
the space of closed subsets of Y , containing the true labels
(yi ∈ Si). In this paper, we model this scenario by con-
sidering a data distribution τ ∈ ∆X×S , that generates the
samples (xi, Si). We will denote τ as weak distribution
to distinguish it from ρ. Capturing the dependence on the
original problem, τ must be compatible with ρ, a matching
property that we formalize with the concept of eligibility.
Definition 1 (Eligibility). Given a probability measure τ
on X × S, a probability measure ρ on X × Y is said to be
eligible for τ (denoted by ρ ` τ ), if there exists a probability
measure π over X × Y × S such that ρ is the marginal of
π over X × Y , τ is the marginal of π over X × S , and, for
y ∈ Y and S ∈ S

y /∈ S ⇒ Pπ (S |Y = y) = 0.

We will alternatively say that τ is a weakening of ρ, or that
ρ and τ are compatible.

2.1. Disambiguation principle

According to the setting described above, the problem of
partial labelling is completely defined by a loss and a weak
distribution (`, τ). The goal is to recover the solution of the
original supervised learning problem in Eq. (1) assuming
that the original distribution verifies ρ ` τ . Since more than
one ρ may be eligible for τ , we would like to introduce a
guiding principle to identify a ρ? among them. With this
goal we define the concept of non-ambiguity for τ , a setting
in which a natural choice for ρ? appears.
Definition 2 (Non-ambiguity). For any x ∈ X , denote by
τ |x the conditional probability of τ given x, and define the
set Sx as

Sx =
⋂

S∈supp(τ |x)

S.

The weak distribution τ is said non-ambiguous if, for every
x ∈ X , Sx is a singleton. Moreover, we say that τ is

strictly non-ambiguous if it is non-ambiguous and there
exists η ∈ (0, 1) such that, for all x ∈ X and z /∈ Sx

PS∼τ |x(z ∈ S) ≤ 1− η.

This concept is similar to the one by Cour et al. (2011), but
more subtle because this quantity only depends on τ , and
makes no assumption on the original distribution ρ describ-
ing the fully supervised process that we can not access. In
this sense, it is also more general.

When τ is non-ambiguous, we can write Sx = {yx} for
any x, where yx is the only element of Sx. In this case it
is natural to identify ρ? as the one satisfying ρ?|x = δyx .
Actually, such a ρ? is characterized without Sx as the only
deterministic distribution that is eligible for τ . Because
deterministic distributions are characterized as minimizing
the minimum risk of Eq. (1), we introduce the following
minimum variability principle to disambiguate between all
eligible ρ’s, and identify ρ?,

ρ? ∈ arg min
ρ`τ

E(ρ), E(ρ) = inf
f :X→Y

R(f ; ρ). (2)

The quantity E can be identified as a variance, since if
fρ is the minimizer of R(f ; ρ), fρ(x) can be seen as the
mean of ρ|x and ` the natural distance in Y . Indeed, when
` = `2 is the mean square loss, this is exactly the case. The
principle above recovers exactly ρ?|x = δyx , when τ is non-
ambiguous, as stated by Prop. 1, proven in Appendix A.1.

Proposition 1 (Non-ambiguity determinism). When τ is
non-ambiguous, the solution ρ? of Eq. (2) exists and satisfies
that, for any x ∈ X , ρ?|x = δyx , where yx is the only
element of Sx.

Prop. 1 provides a justification for the usage of the min-
imum variability principle. Indeed, under non-ambiguity
assumption, following this principle will allow us to build
an algorithm that recover the original fully supervised dis-
tribution. Therefore, given samples (xi, Si), it is of interest
to test if τ is non-ambiguous. Such tests should leverage
other regularity hypothesis on τ , which we will not address
in this work.

Now, we characterize the minimum variability principle in
terms of a variational optimization problem that we can
tackle in Sec. 3 via empirical risk minimization.

2.2. Variational formulation via the infimum loss

Given a partial labelling problem (`, τ), define the solutions
based on the minimum variablity principle as the functions
minimizing the recovered risk

f∗ ∈ arg min
f :X→Y

R(f ; ρ?). (3)



Structured Prediction with Partial Labelling through the Infimum Loss

for ρ? a distribution solving Eq. (2). As shown in Thm. 1
below, proven in Appendix A.2, the proposed disambigua-
tion paradigm naturally leads to a variational framework
involving the infimum loss.
Theorem 1 (Infimum loss (IL)). The functions f∗ defined
in Eq. (3) are characterized as

f∗ ∈ arg min
f :X→Y

RS(f),

where the riskRS is defined as

RS(f) = E(X,S)∼τ [L(f(X), S)] , (4)

and L is the infimum loss

L(z, S) = inf
y∈S

`(z, y). (5)

The infimum loss, also known as the ambiguous loss (Luo
& Orabona, 2010; Cour et al., 2011), or as the optimistic
superset loss (Hüllermeier, 2014), captures the idea that,
when given a set S, this set contains the good label y but
also a lot of bad ones, that should not be taken into account
when retrieving f . In other terms, f should only match the
best guess in S. Indeed, if ` is seen as a distance, L is its
natural extension to sets.

2.3. Recovery of the fully supervised solutions

In this subsection, we investigate the setting where an origi-
nal fully supervised learning problem ρ0 has been weakened
due to incomplete labelling, leading to a weak distribution τ .
The goal here is to understand under which conditions on τ
and ` it is possible to recover the original fully supervised
solution based with the infimum loss framework. Denote
f0 the function minimizing R(f ; ρ0). The theorem below,
proven in Appendix A.3, shows that under non-ambiguity
and deterministic conditions, it is possible to fully recover
the function f0 also from τ .
Theorem 2 (Supervision recovery). For an instance
(`, ρ0, τ) of the weakened supervised problem, if we de-
note by f0 the minimizer of Eq. (1), we have the under the
conditions that (1) τ is not ambiguous (2) for all x ∈ X ,
Sx = {f0(x)}; the infimum loss recovers the original fully
supervised solution, i.e. the f∗ defined in Eq. (3) verifies
f∗ = f0.

Futhermore, when ρ0 is deterministic and τ not ambiguous,
the ρ? defined in Eq. (2) verifies ρ? = ρ0.

At a comprehensive levels, this theorem states that under
non-ambiguity of the partial labelling process, if the labels
are a deterministic function of the inputs, the infimum loss
framework make it possible to recover the solution of the
original fully supervised problem while only accessing weak
labels. In the next subsection, we will investigate which is
the relation between the two problems when dealing with
an estimator f of f∗.

2.4. Comparison inequality

In the following, we want to characterize the error performed
byR(f ; ρ?) with respect to the error performed byRS(f).
This will be useful since, in the next section, we will provide
an estimator for f∗ based on structured prediction, that
minimize the risk RS . First, we introduce a measure of
discrepancy for the loss function.

Definition 3 (Discrepancy of the loss `). Given a loss func-
tion `, the discrepancy degree ν of ` is defined as

ν = log sup
y,z′ 6=z

`(z, y)

`(z, z′)
.

Y will be said discrete for ` when ν < +∞, which is always
the case when Y is finite.

Now we are ready to state the comparison inequality that
generalizes to arbitrary losses and output spaces a result on
0− 1 loss on classification from Cour et al. (2011).

Proposition 2 (Comparison inequality). When Y is discrete
and τ is strictly non-ambiguous for a given η ∈ (0, 1), then
the following holds

R(f ; ρ?)−R(f∗; ρ?) ≤ C(RS(f)−RS(f∗)), (6)

for any measurable function f ∈ YX , where C does not
depend on τ, f , and is defined as follows and always finite

C = η−1eν .

When ρ0 is deterministic, since we know from Thm. 2 that
ρ? = ρ0, this theorem allows to bound the error made on the
original fully supervised problem with the error measured
with the infimum loss on the weakly supervised one.

Note that the constant presented above is the product of
two independent terms, the first measuring the ambiguity of
the weak distribution τ , and the second measuring a form
of discrepancy for the loss. In the appendix, we provide a
more refined bound for C, that is C = C(`, τ), that shows
a more elaborated interaction between ` and τ . This may be
interesting in situations where it is possible to control the
labelling process and may suggest strategies to active partial
labelling, with the goal of minimizing the costs of labelling
while preserving the properties presented in this section
and reducing the impact of the constant C in the learning
process. An example is provided in the Appendix A.5.

3. Consistent algorithm for partial labelling
In this section, we provide an algorithmic approach based on
structured prediction to solve the weak supervised learning
problem expressed in terms of infimum loss from Thm. 1.
From this viewpoint, we could consider different structured
prediction frameworks as structured SVM (Tsochantaridis
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et al., 2005), conditional random fields (Lafferty et al., 2001)
or surrogate mean estimation (Ciliberto et al., 2016). For
example, Luo & Orabona (2010) used a margin maximiza-
tion formulation in a structured SVM fashion, Hüllermeier
& Cheng (2015) went for nearest neighbors, and Cour et al.
(2011) design a surrogate method specific to the 0-1 loss, for
which they show consistency based on Bartlett et al. (2006).

In the following, we will use the structured prediction
method of Ciliberto et al. (2016); Nowak-Vila et al. (2019),
which allows us to derive an explicit estimator, easy to train
and with strong theoretical properties, in particular, consis-
tency and finite sample bounds for the generalization error.
The estimator is based on the pointwise characterization of
f∗ as

f∗(x) ∈ arg min
z∈Y

ES∼τ |x

[
inf
y∈S

`(z, y)

]
,

and weights αi(x) that are trained on the dataset such that
τ̂|x =

∑n
i=1 αi(x)δSi is a good approximation of τ |x. Plug-

ging this approximation in the precedent equation leads to
our estimator, that is defined explicity as follows

fn(x) ∈ arg min
z∈Y

inf
yi∈Si

n∑
i=1

αi(x)`(z, yi). (7)

Among possible choices for α, we will consider the fol-
lowing kernel ridge regression estimator to be learned at
training time

α(x) = (K + nλ)−1v(x),

with λ > 0 a regularizer parameter and K =
(k(xi, xj))i,j ∈ Rn×n, v(x) = (k(x, xi))i ∈ Rn where
k ∈ X × X → R is a positive-definite kernel (Scholkopf
& Smola, 2001) that defines a similarity function between
input points (e.g., if X = Rd for some d ∈ N a commonly
used kernel is the Gaussian kernel k(x, x′) = e−‖x−x

′‖2).
Other choices can be done to learn α, beyond kernel meth-
ods, a particularly appealing one is harmonic functions,
incorporating a prior on low density separation to boost
learning (Zhu et al., 2003; Zhou et al., 2003; Bengio et al.,
2006). Here we use the kernel estimator since it allows to
derive strong theoretical results, based on kernel conditional
mean estimation (Muandet et al., 2017).

3.1. Theoretical guarantees

In this following, we want to prove that fn converges to
f∗ as n goes to infinity and we want to quantify it with
finite sample bounds. The intuition behind this result is
that as the number of data points tends toward infinity, τ̂
concentrates towards τ , making our algorithm in Eq. (7)
converging to a minimizer of Eq. (4) as explained more in
detail in Appendix A.6.

Theorem 3 (Consistency). Let Y be finite and τ be a non-
ambiguous probability. Let k be a bounded continuous
universal kernel, e.g. the Gaussian kernel (see Micchelli
et al., 2006, for details), and fn the estimator in Eq. (7)
trained on n ∈ N examples and with λ = n−1/2. Then,
holds with probability 1

lim
n→∞

R(fn; ρ?) = R(f∗; ρ?).

In the next theorem, instead we want to quantify how fast
fn converges to f∗ depending on the number of examples.
To obtain this result, we need a finer characterization of the
infimum loss L as:

L(z, S) = 〈ψ(z), ϕ(S)〉 ,

where H is a Hilbert space and ψ : Y → H, ϕ : 2Y → H
are suitable maps. Such a decomposition always exists
in finite case (as for the infimum loss over Y finite) and
many explicit examples for losses of interest are presented
by Nowak-Vila et al. (2019). We now introduce the condi-
tional expectation of ϕ(S) given x, defined as

g : X → H
x → Eτ [ϕ(S) |X = x] .

The idea behind the proof is that the distance between fn
and f is bounded by the distance of gn an estimator of
g that is implicitly computed via α. If g has some form
of regularity, e.g. g ∈ G, with G the space of functions
representable by the chosen kernel (see Scholkopf & Smola,
2001), then it is possible to derive explicit rates, as stated in
the following theorem.

Theorem 4 (Convergence rates). In the setting of Thm. 3,
if τ is η-strictly non ambiguous for η ∈ (0, 1), and if g ∈ G,
then there exists a C̃, such that, for any δ ∈ (0, 1) and
n ∈ N, holds with probability at least 1− δ,

R(fn; ρ?)−R(f∗; ρ?) ≤ C̃ log

(
8

δ

)2

n−1/4. (8)

Those last two theorem are proven in Appendix A.6 and
combines the consistency and learning results for kernel
ridge regression (Caponnetto & De Vito, 2006; Smale &
Zhou, 2007), with a comparison inequality of Ciliberto et al.
(2016) which relates the excess risk of the structured predic-
tion problem with the one of the surrogate lossRS , together
with our Prop. 2, which relates the errorR toRS .

Thoses results make our algorithm the first algorithm for par-
tial labelling, that to our knowledge is applicable to a generic
loss ` and has strong theoretical guarantees as consistency
and learning rates. In the next section we will compare with
the state of the art and other variational principles.
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4. Previous works and baselines
Partial labelling was first approached through discriminative
models, proposing to learn (Y |X) among a family of pa-
rameterized distributions by maximizing the log likelihood
based on expectation-maximization scheme (Jin & Ghahra-
mani, 2002), eventually integrating knowledge on the par-
tial labelling process (Grandvalet, 2002; Papandreou et al.,
2015). In the meanwhile, some applications of clustering
methods have involved special instances of partial labelling,
like segmentation approached with spectral method (Weiss,
1999), semi-supervision approached with max-margin (Xu
et al., 2004). Also initially geared towards clustering, Bach
& Harchaoui (2007) consider the infimum principle on the
mean square loss, and this was generalized to weakly super-
vised problems (Joulin et al., 2010). The infimum loss as
an objective to minimize when learning from partial labels
was introduced by Cour et al. (2011) for the classification
instance and used by Luo & Orabona (2010); Hüllermeier
(2014) in generic cases. Comparing to those last two, we
provide a framework that derives the use of infimum loss
from first principles and from which we derive an explicit
and easy to train algorithm with strong statistical guaran-
tees, which were missing in previous work. In the rest of
the section, we will compare the infimum loss with other
variational principles that have been considered in the lit-
erature, in particular the supremum loss (Guillaume et al.,
2017) and the average loss (Denoeux, 2013).

Average loss (AC). A simple loss to deal with uncertainty
is to average over all potential candidates, assuming S dis-
crete,

Lac(z, S) =
1

|S|
∑
y∈S

`(z, y).

It is equivalent to a fully supervised distribution ρac by
sampling Y uniformly at random among S

ρac(y) =

∫
S

1

|S|
1y∈S dτ(S).

This directly follows from the definition of Lac and of the
risk R(z; ρac). However, as soon as the loss ` has discrep-
ancy, i.e. ν > 0, the average loss will implicitly advantage
some labels, which can lead to inconsistency, even in the
deterministic not ambiguous setting of Prop. 2 (see Ap-
pendix A.7 for more details).

Supremum loss (SP). Another loss that have been consid-
ered is the supremum loss (Wald, 1945; Madry et al., 2018),
bounding from above the fully supervised risk in Eq. (1).
It is widely used in the context of robust risk minimization
and reads

Rsp(f) = sup
ρ`τ

E(X,Y )∼ρ [`(f(x), S)] .

Similarly to the infimum loss in Thm. 1, this risk can be
written from the loss function

Lsp(z, S) = sup
y∈S

`(z, y).

Yet, this adversarial approach is not consistent for partial
labelling, even in the deterministic non ambiguous setting
of Prop. 2, since it finds the solution that best agrees with
all the elements in S and not only the true one (see Ap-
pendix A.7 for more details).

4.1. Instance showcasing superiority of our method

In the rest of this section, we consider a pointwise exam-
ple to showcase the underlying dynamics of the different
methods. It is illustrated in Fig. 1. Consider Y = {a, b, c}
and a proper symmetric loss function such that `(a, b) =
`(a, c) = 1, `(b, c) = 2. The simplex ∆Y is naturally split
into decision regions, for e ∈ Y ,

Re =

{
ρ ∈ ∆Y

∣∣∣∣ e ∈ arg min
z∈Y

Eρ[`(z, Y )]

}
.

Both IL and AC solutions can be understood geometrically
by looking at where ρ? and ρac fall in the partition of the
simplex (Re)e∈Y . Consider a fully supervised problem
with distribution δc, and a weakening τ of ρ defined by
τ({a, b, c}) = 5

8 and τ({c}) = τ({a, c}) = τ({b, c}) =
1
8 . This distribution can be represented on the simplex
in terms of the region Rτ = {ρ ∈ ∆Y | ρ ` τ}. Finding
ρ? correspond to minimizing the piecewise linear function
E(ρ) (Eq. (2)) inside Rτ . On this example, it is minimized
for ρ? = δc, which we know from Prop. 2. Now note that
if we use the average loss, it disambiguates ρ as

ρac(c) =
11

24
=

1

3

5

8
+

1

8
+2 · 1

2

1

8
, ρac(b) = ρac(a) =

13

48
.

This distribution falls in the decision region of a, which
is inconsistent with the real label y = c. For the supre-
mum loss, one can show, based on Rsp(a) = `(a, c) = 1,
Rsp(b) = `(b, c) = 2 andRsp(c) = 3/2, that the supremum
loss is minimized for z = a, which is also inconsistent. In-
stead, by using the infimum loss, we have f∗ = f0 = c, and
moreover that ρ? = ρ0 that is the optimal one.

4.2. Algorithmic considerations for AC, SP

The averaging candidates principle, approached with the
framework of quadratic surrogates (Ciliberto et al., 2016),
leads to the following algorithm

fac(x) ∈ arg min
z∈Y

n∑
i=1

αi(x)
1

|Si|
∑
y∈Si

`(z, y)

= arg min
z∈Y

∑
y∈Y

(
n∑
i=1

1y∈Si

αi(x)

|Si|

)
`(z, y).
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Figure 1. Simplex ∆Y . (Left) Decision frontiers. (Middle left) Full
and weak distributions. (Middle right) Level curves of the piece-
wise linear objective E (Eq. (2)), to optimize when disambiguating
τ into ρ?. (Right) Disambiguation of AC and IL.

This estimator is computationally attractive because the
inference complexity is the same as the inference complexity
of the original problem when approached with the same
structured prediction estimator. Therefore, one can directly
reuse algorithms developed to solve the original inference
problem (Nowak-Vila et al., 2019). Finally, with a similar
approach to the one in Sec. 3, we can derive the following
algorithm for the supremum loss

fsp(x) ∈ arg min
z∈Y

sup
yi∈Si

n∑
i=1

αi(x)`(z, yi).

In the next section, we will use the average candidates as
baseline to compare with the algorithm proposed in this
paper, as the supremum loss consistently performs worth,
as it is not fitted for partial labelling.

5. Applications and experiments
In this section, we will apply Eq. (7) to some synthetic
and real datasets from different prediction problems and
compared with the average estimator presented in the section
above, used as a baseline. Code is available online.2

5.1. Classification

Classification consists in recognizing the most relevant item
among m items. The output space is isomorphic to the set
of indices Y = J1,mK, and the usual loss function is the 0-1
loss

`(z, y) = 1y 6=z.

2https://github.com/VivienCabannes/
partial_labelling

It has already been widely studied with several approaches
that are calibrated in non ambiguous deterministic setting,
notably by Cour et al. (2011). The infimum loss reads
L(z, S) = 1z/∈S , and its risk in Eq. (4) is minimized for

f(x) ∈ arg max
z∈Y

P (z ∈ S |X = x) .

Based on data (xi, Si)i≤n, our estimator Eq. (7) reads

fn(x) = arg max
z∈Y

∑
i;z∈Si

αi(x).

For this instance, the supremum loss is really conserva-
tive, only learning from set that are singletons Lsp(z, S) =
1S 6={z}, while the average loss is similar to the infimum
one, adding an evidence weight depending on the size of S,
Lac(z, S) ' 1z/∈S/ |S|.

0 20 40 60 80
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0.4

L
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s

dna

IL AC

0 20 40 60 80
Corruption (in %)
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L
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s

svmguide2

IL AC

Figure 2. Classification. Testing risks (from Eq. (1)) achieved by
AC and IL on the “dna” and “svmguide2” datasets from LIBSVM
as a function of corruption parameter c, when the corruption is as
follows: for y being the most present labels of the dataset, and
z′ 6= z, P (z′ ∈ S |Y = z) = c · 1z=y . Plotted intervals show
the standard deviation on eight-fold cross-validation. Experiments
were done with the Gaussian kernel. See all experimental details
in Appendix B.

Real data experiment. To compare IL and AC, we used
LIBSVM datasets (Chang & Lin, 2011) on which we cor-
rupted labels to simulate partial labelling. When the cor-
ruption is uniform, the two methods perform the same.

https://github.com/VivienCabannes/partial_labelling
https://github.com/VivienCabannes/partial_labelling
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Yet, when labels are unbalanced, such as in the “dna” and
“svmguide2” datasets, and we only corrupt the most fre-
quent label y ∈ Y , the infimum loss performs better as
shown in Fig. 2.

5.2. Ranking

Ranking consists in ordering m items based on an input x
that is often the conjunction of a user u and a query q,
(x = (u, q)). An ordering can be thought as a permuta-
tion, that is, Y = Sm. While designing a loss for ranking
is intrinsincally linked to a voting system (Arrow, 1950),
making it a fundamentally hard problem; Kemeny (1959)
suggested to approach it through pairwise disagreement,
which is current machine learning standard (Duchi et al.,
2010), leading to the Kendall embedding

ϕ(y) = (sign (yi − yj))i<j≤m ,

and the Kendall loss (Kendall, 1938), withC = m(m−1)/2

`(y, z) = C − ϕ(y)Tϕ(z).

Supervision often comes as partial order on items, e.g.,

S = {y ∈ Sm | yi > yj > yk, yl > ym} .

It corresponds to fixing some coordinates in the Kendall em-
bedding. In this setting, AC and SP are not consistent, as one
can recreate a similar situation to the one in Sec. 4, consid-
ering m = 3, a = (1, 2, 3), b = (2, 1, 3) and c = (1, 3, 2)
(permutations being represented with (σ−1(i))i≤m), and
supervision being most often S = (1 > 3) = {a, b, c} and
sometimes S = (1 > 3 > 2) = {c}.

Minimum feedback arc set. Dealing with Kendall’s loss
requires to solve problem of the form,

arg min
y∈S

〈c, ϕ(y)〉 ,

for c ∈ Rm2

, and constraints due to partial ordering encoded
in S ⊂ Y . This problem is an instance of the constrained
minimum feedback arc set problem.We provide a simple
heuristic to solve it in Appendix B.5, which consists of
approaching it as an integer linear program. Such heuristics
are analyzed and refined for analysis purposes by Ailon et al.
(2005); van Zuylen et al. (2007).

Algorithm specification. At inference, the infimum loss
requires to solve:

fn(x) = arg max
z∈Y

sup
(yi)∈Si

n∑
i=1

αi(x) 〈ϕ(z), ϕ(yi)〉 . (7)

It can be approached with alternate minimization, initializ-
ing ϕ(yi) ∈ Conv(ϕ(Si)), by putting 0 on unseen observed

pairwise comparisons, then, iteratively, solving a minimum
feedback arc set problem in z, then solving several mini-
mum feedback arc set problems with the same objective, but
different constraints in (yi). This is done efficiently using
warmstart on the dual simplex algorithm.
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Figure 3. Ranking, experimental setting. Colors represent four
different items to rank. Each item is associate to a utility function
of x shown on the left figure. From those scores, is retrieved an
ordering y of the items as represented on the right.
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Figure 4. Ranking, results. Testing risks (from Eq. (1)) achieved
by AC and IL as a function of corruption parameter c. When
c = 1, both risks are similar at 0.5. The simulation setting is the
same as in Fig. 2. The error bars are defined as for Fig. 2, after
cross-validation over eight folds. IL clearly outperforms AC.

Synthetic experiments. Let us consider X = [0, 1] em-
bodying some input features. Let {1, . . . ,m}, m ∈ N be
abstract items to order, each item being linked to a util-
ity function vi ∈ RX , that characterizes the value of i
for x as vi(x). Labels y(x) ∈ Y are retrieved by sorting
(vi(x))i≤m. To simulate a problem instance, we set vi as
vi(x) = ai ·x+bi, where ai and bi follow a standard normal
distribution. Such a setting is illustrated in Fig. 3.

After sampling x uniformly on [0, 1] and retrieving the or-
dering y based on scores, we simulate partial labelling by
randomly loosing pairwise comparisons. The comparisons
are formally defined as coordinates of the Kendall’s embed-
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Figure 5. Partial regression on R. In this setting we aim at recovering a signal y(x) given upper and lower bounds on it amplitude, and in
thirty percent of case, information on its phase, or equivalently in R, its sign. IL clearly outperforms the baseline. Indeed AC is a particular
ill-fitted method on such a problem, since it regresses on the barycenters of the resulting sets.

ding (ϕ(y)jk)jk≤m. To create non symmetric perturbations
we corrupt more often items whose scores differ a lot. In
other words, we suppose that the partial labelling focuses
on pairs that are hard to discriminate. The corruption is
set upon a parameter c ∈ [0, 1]. In fact, for m = 10, until
c = 0.5, our corruption is fruitless since it can most often be
inverted based on transitivity constraint in ordering, while
the problem becomes non-trivial with c ≥ 0.5. In the latter
setting, IL clearly outperforms AC on Fig. 4.

5.3. Partial regression

Partial regression is an example of non discrete partial la-
belling problem, where Y = Rm and the usual loss is the
Euclidean distance

`(y, z) = ‖y − z‖2 .

This partial labelling problem consists of regression where
observation are sets S ⊂ Rm that contains the true output
y instead that y. Among others, it arises for example in
economical models, where bounds are preferred over ap-
proximation when acquiring training labels (Tobin, 1958).
As an example, we will illustrate how partial regression
could appear for some phase problems arising with phys-
ical measurements. Suppose a physicist want to measure
the law between a vectorial quantity Y and some input pa-
rameters X . Suppose that, while she can record the input
parameters x, her sensors do not exactly measure y but ren-
der an interval in which the amplitude ‖y‖ lays and only
occasionally render its phase y/ ‖y‖, in a fashion that leads
to a set of candidates S for y. The geometry over `2 makes
it a perfect example to showcase superiority of the infimum
loss as illustrated in Fig. 5.

In this figure, we consider Y = R and suppose that Y
is a deterministic function of X as shown by the dotted
blue line signal. If, for a given xi, measurements only
provides that |yi| ∈ [1, 2] without the sign of yi, a situation
where the phase is lost, this correspond to the set Si =

[−2,−1] ∪ [1, 2], explaining the shape of observed sets that
are symmetric around the origin. Whenever the acquired
data has no phase, which happen seventy percent of the time
in our simulation, AC will target the set centers, explaining
the green curve. On the other hand, IL is aiming at passing
by each set, which explains the orange curve, crossing all
blue bars.

6. Conclusions
In this paper, we deal with the problem of weakly supervised
learning, beyond standard regression and classification, fo-
cusing on the more general case of arbitrary loss functions
and structured prediction. We provide a principled frame-
work to solve the problem of learning with partial labelling,
from which a natural variational approach based on the
infimum loss is derived. We prove that under some identifi-
ability assumptions on the labelling process the framework
is able to recover the solution of the original supervised
learning problem. The resulting algorithm is easy to train
and with strong theoretical guarantees. In particular we
prove that it is consistent and we provide generalization
error rates. Finally the algorithm is tested on simulated and
real datasets, showing that when the acquisition process
of the labels is more adversarial in nature, the proposed
algorithm performs consistently better than baselines. This
paper focuses on the problem of partial labelling, however
the resulting mathematical framework is quite flexible in
nature and it is interesting to explore the possibility to ex-
tend it to tackle also other weakly supervised problems, as
imprecise labels from non-experts (Dawid & Skene, 1979),
more general constraints over the set (yi)i≤n (Quadrianto
et al., 2009) or semi-supervision (Chapelle et al., 2006).
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A. Proofs
In the paper, we have implicitely considered X ,Y separable and completely metrizable topological spaces, i.e. Polish
spaces, allowing to consider probabilities. Moreover, we assumed that Y is compact, to have minimizer well defined. The
observation space was considered to be the set of closed subsets of Y endowed with the Hausdorff distance, S = Cl(Y), dH .
As such, S is also a Polish metric space, inheriting this property from Y (Beer, 1993). In the following, we will show that
the closeness of sets is important in order to switch from the minimum variability principle to the infimum loss.

In term of notations, we use the simplex notation ∆A to denote the space of Borel probability measures over the space A. In
particular, ∆X×Y , ∆X×S and ∆X×Y×S are endowed with the weak-* topology and are Polish, inheriting the properties
from original spaces (Aliprantis & Kim, 2006). The fact that such spaces are Polish allows to define the conditional
probabilities given x ∈ X . We will denote this conditional probability ρ|x when, for example, ρ ∈ ∆X×Y . Finally, we will
denote by ρX the marginal of ρ over X .

Before diving into proofs, we would like to point out that many of our results are pointwise results. At an intuitive level, we
only leverage the structure of the loss on the output space and aggregate those results over X .
Remark (Going pointwise). The learning frameworks in Eqs. (1), (2) and (4) are pointwise separable as their solutions
can be written as aggregation of pointwise solutions (Devroye et al., 1996). More exactly, the partial labelling risk (and
similarly the fully supervised one) can be expressed as

RS(f) = EX [RS,X(f(X))] ,

where the conditional risk reads,
RS,x(z) = ES∼τ |x [L(z, S)] ,

with τ |x the conditional distribution of (S |X = x). Thus, minimizingRS globally for f ∈ YX is equivalent to minimizing
locallyRS,x for f(x) for almost all x. Similarly, for Eq. (2),

E(ρ) = inf
f :X→Y

Eρ [`(f(X), Y )] = EX
[

inf
z∈Y

EY∼ρ|x [`(z, Y ) |X = x]

]
.

Therefore studies on risk can be done pointwise on instances (`, ρ|x, τ |x), before integrating along X . Actually, Props. 1
and 2 and Thms. 1 and 2 are pointwise results.

A.1. Proof of Prop. 1

Here we want to prove that when τ is non-ambigouous, then it is possible to define an optimal ρ? that is deterministic on Y ,
and that this ρ? is characterized by solving Eq. (2).
Lemma 1. When τ is non ambiguous, and there is one, and only one, deterministic distribution eligible for τ . More
exactly, if we write, for any x ∈ X in the support of τX , based on Def. 2, Sx = {yx}, then this deterministic distribution is
characterized as ρ|x = δyx almost everywhere.

Proof. Let us consider a probability measure τ ∈ ∆X×S . We begin by working on the concept of eligibility. Consider
ρ ∈ ∆X×Y eligible for τ and a suitable π as defined in Def. 1. First of all, the condition that, for y ∈ S, Pπ (S |Y = y) = 0,
can be stated formally in term of measure as

π({(x, y, S) ∈ X × Y × S | y /∈ S}) = 0,

from which we deduced that, for y ∈ Y and x ∈ X ,

ρ|x(y) = π|x({y} × S) = π|x({y} × {S ∈ S | y ∈ S})
≤ π|x(Y × {S ∈ S | y ∈ S}) = τ |x({S ∈ S | y ∈ S}).

It follows that when ρ is deterministic, if we write ρ|x = δyx , then we have τ |x({S ∈ S | yx ∈ S}) = 1, which means that
yx is in all sets that are in the support of τ |x, or that, using notations of Def. 2, yx ∈ Sx. So far, we have proved that if there
exists a deterministic distribution, ρ|x = δyx , that is eligible for τ |x, we have yx ∈ Sx. Reciprocally, one can do the reverse
derivations, to show that if ρ|x = δyx , with yx ∈ Sx, for all x ∈ X , then ρ is elgible for τ When τ is non-ambiguous, Sx
is a singleton and therefore, there could be only one deterministic eligible distribution for τ , that is characterized in the
lemma.
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Now we use the characterization of deterministic distribution through the minimization of the risk Eq. (1).

Lemma 2 (Deterministic characterization). When Y is compact and ` proper, deterministic distribution are exactly
characterized by minimum variability Eq. (2) as

E(ρ) = inf
f :X→Y

Eρ [`(f(X), Y )] = 0.

Proof. Let’s consider ρ ∈ ∆X×Y , because Y is compact and ` continuous, we can consider fρ a minimizer of R(f ; ρ).
Let’s now suppose thatR(fρ; ρ) = 0, since ` is non-negative, it means that almost everywhere

EY∼ρ|x [`(fρ(x), Y )] = 0.

Suppose that ρ|x is not deterministic, then there is at least two points y and z in Y in its support, than, because ` is proper,
we come to the absurd conclusion that

EY∼ρ|x [`(fρ(x), Y )] ≥ ρ|x(y)`(fρ(x), y) + ρ|x(z)`(fρ(x), z) > 0.

So R(fρ; ρ) = 0 implies that ρ is deterministic. Reciprocally, when ρ is deterministic it is easy to show that the risk is
minimized at zero.

A.2. Proof of Thm. 1

At a comprehensive level, the Thm. 1 is composed of two parts:

– A double minimum switch, to take the minimum over ρ before the minimum over f , and for which we need some
compactness assumption to consider the joint minimum.

– A minimum-expectation switch, to take the minimum over ρ ` τ as a minimum y ∈ S before the expectation to
compute the risk, and for which we need some measure properties.

We begin with the minimum-expectation switch. To proceed with derivations, we need first to reformulate the concept of
eligibility in Def. 1 in term of measures.

Lemma 3 (Measure eligibility). Given a probability τ over X × S , the space of probabilities over X × Y satisfying ρ ` τ
is characterized by all probability measures of the form

ρ(C) =

∫
X×Y×S

1C(x, y) dπ|x,S(y) dτ(x, S),

for any C a closed subset of X × Y , and where π is a probability measure over X × Y × S that satisfies πX×S = τ and
π|x,S(S) = 1 for any (x, S) in the support of τ .

Proof. For any ρ that is eligible for τ there exists a suitable π on X × Y × S as specified by Def. 1. Actually, the set of π
leading to an eligible ρ := πX×Y is characterized by satisfying πX×S = τ and

π({(x, y, S) ∈ X × Y × S | y /∈ S}) = 0.

This last property can be reformulated with the complementary space as

π({(x, y, S) ∈ X × Y × S | y ∈ S}) = 1,

which equivalently reads, that for any (x, S) in the support of τ , we have

π|x,S(S) = π|x,S({y ∈ Y | y ∈ S}) = 1.

Finally, using the conditional decomposition we have that, for C a closed subset of X × Y

ρ(C) = πX×Y(C) =

∫
X×Y×S

1C(x, y) dπ(x, y, S) =

∫
X×Y×S

1C(x, y) dπ|x,S(y) dπX×S(x, S),

which ends the proof since τ = πX×S .
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We are now ready to state the minimum-expectation switch.

Lemma 4 (Minimum-Expectation switch). For a probability measure τ ∈ ∆X×S , and measurable functions ` ∈ RY×Y
and f ∈ YX , the infimum of eligible expectations of ` is the expectation of the infimum of f over S where S is distributed
according to τ . Formally

inf
ρ`τ

E(X,Y )∼ρ [`(f(X), Y )] = E(X,S)∼τ

[
inf
y∈S

`(f(X), y)

]
.

Proof. Before all, note that (x, S)→ infy∈S `(f(x), y) inherit measurability from f allowing to consider such an expecta-
tion (see Theorem 18.19 of Aliprantis & Kim, 2006, and references therein for details). Moreover, let us use Lem. 3 to
reformulation the right handside problem as

inf
ρ`τ

E(X,Y )∼ρ [`(f(X), Y )] = inf
π∈M

∫
X×Y×S

`(f(x), y) dπx,S(y) dτ(x, S).

Where we denote byM⊂ ∆X×Y×S the space of probability measures π that satify the assumption of Lem. 3. We will now
prove the equality by showing that both quantity bound the other one.

(≥). To proceed with the first bound, notice that for x ∈ X and S ∈ S, when π|x,S ∈ ∆Y only charge S, i.e. if π ∈M,
then ∫

Y
`(f(x), y) dπx,S(y) ≥ inf

y∈S
`(f(x), y).

The first bound is then obtained by taking the expectation over τ of this poinwise property.

(≤). For the second bound, we consider the function Y ∈ YX×S define as

Y (x, S) = arg min
y∈S

`(f(x), y).

Such a function is well defined since S is compact due to the fact that Y is compact and S is the set of closed set. However,
in more general cases, one can consider a sequence that minimize `(f(x), y) rather than the argmin to show the same as
what we are going to show. Now, if we define π(f) with π(f)

X×S := τ and π(f)|x,S := δY (x,S), because Y (x, S) is in S, we
have that π(f) is inM, so, for x ∈ X and S ∈ S

inf
π∈M

∫
Y
`(f(x), y) dπx,S(y) ≤

∫
Y
`(f(x), y) dπ

(f)
x,S(y) = `(f(x), Y (x, S)) = inf

y∈S
`(f(x), y).

We end the proof by integrating this over τ .

Now, we will move on to the minimum switch. First, we make sure that the infimum loss minimizer is well defined.

Lemma 5 (Infimum loss minimizer). When Y is compact and the observed set are closed, there exists a measurable function
fS ∈ YX that minimize the infimum loss risk

RS(fS) = inf
f :X→Y

RS(f), where RS(f) =

∫
min
y∈S

`(f(x), y) dτ(x, S).

The infimum on the right handside being a minimum because S is a closed subset of Y compact, and therefore, is compact.

Proof. First note that d(y, y′) = supz∈Y |`(z, y)− `(z, y′)| is a metric on Y when ` is a proper loss. Indeed, triangular
inequality holds trivially, moreover when y = y′ then d(y, y′) = 0, when y 6= y′, by properness we have `(y, y) = 0 and
d(y, y′) ≥ `(y, y′) > 0. Moreover note that L(z, S) = miny∈S `(z, y) is continuous and 1-Lipschitz with respect to the
topology induced by the Hausdorff distance dH based on d, indeed given two sets S, S′ ∈ S

|L(z, S)− L(z, S′)| ≤ max

{
max
y∈S

min
y′∈S′

|`(z, y)− `(z, y′)| , max
y′∈S′

min
y∈S
|`(z, y)− `(z, y′)|

}
≤ max

{
max
y∈S

min
y′∈S′

d(y, y′), max
y′∈S′

min
y∈S

d(y, y′)

}
= dH(S, S′).
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The result of existence of a measurable fS minimizingRS(f) =
∫
L(f(x), S)dτ(x, S) follows by the compactness of Y ,

the continuity of L(z, S) in the first variable with respect to the topology induced by d, in the second with respect to the
topology induced by dH and measurability of τ |x in x, via Berge maximum theorem (see Thm. 18.19 of Aliprantis & Kim,
2006, and references therein).

We can state the minimum switch now.
Lemma 6 (Minimum switch). When Y is compact, and observed sets are closed, solving the partial labelling through the
minimum variability principle

f∗ ∈ arg min
f∈YX

Eρ? [`(f(X), Y )] , with ρ? ∈ arg min
ρ`τ

inf
f∈YX

Eρ [`(f(X), Y )] .

can be done jointly in f and ρ, and rewritten as

f∗ ∈ arg min
f∈YX

inf
ρ`τ

Eρ [`(f(X), Y )] .

Proof. When (ρ?, f∗) is a minimizer of the top problem, it also minimizes the joint problem (ρ, f)→ R(f ; ρ), and we can
switch the infimum order. The hard part is to show that when fS minimize the bottom risk, the infimum over ρ is indeed a
minimum. Indeed, we know from Lem. 4 that fS is characterized as a minimizer of the infimum riskRS , those are well
defined as shown in precedent lemma. To fS , we can associate ρS := π(f) as defined in the proof of Lem. 4, which is due to
the closeness of sets in S and the compactness of Y . Indeed, (fS , ρS) minimize jointly the objectiveR(f, ρ), so we have
that

ρS ∈ arg min
ρ`τ

inf
f :X→Y

R(f ; ρ), and fS ∈ arg min
f :X→Y

R(f ; ρS).

From which we deduced that ρS can be written as a ρ? and fS as a f∗.

Remark (A counter example when sets are not closed.). The minimum switch relies on compactness assumption, that can
be violated when the observed sets in S are not closed. Let us consider the case where Y = R, ` = `2 is the mean square
loss. Consider the pointwise weak supervision

τ =
1

2
δQ +

1

2
δ√2Q,

In this case, we have ρ? = δ0. Yet, for any z, we do have RS,x(z) = 0 for any z ∈ R. For example, if z =
√

2, one can
consider

ρn =
1

2
δ√2 +

1

2
δ b10n√2c

10n

,

to show that z ∈ arg minz∈Y infρ`τ R(z, ρ). As one can see this is counter example is based on the fact that {ρ | ρ ` τ} is
not complete, so that there exists infimum ofRx(z, ρ) that are not minimum such asRx(

√
2, δ√2).

A.3. Proof of Thm. 2

If τ is not ambiguous, then, almost surely for x ∈ X , if yx is the only element in Sx of Def. 2, we know that ρ?|x = δyx ,
and consequently we derive f∗(x) = yx, so for it to be consistent with f0, we need that f0(x) = yx.

Moreover, because τ is a weaking of ρ0, ρ0 is eligible for τ . When ρ0 is deterministic, we know from considerations in the
proof of Lem. 1, that it is ρ?, the only deterministic distribution eligible for τ . Thus, in fact, the condition Sx = {f0(x)} is
implied by ρ0 deterministic.

A.4. Proof of Prop. 2

When τ is not ambiguous, we know from Prop. 1, that ρ? is deterministic. Let us write ρ?|x = δyx , we have f∗(x) = yx,
and Rx(f∗) = 0, moreover, because yx is in every S in the support of τ |S , then RS,x(f∗) = 0. Similarly to the bound
given by Cour et al. (2011) for the 0-1 loss, we have

RS,x(z) = ES∼τ |x [ inf
z′∈S

`(z, z′)] =
∑
S;z/∈S

inf
z′ /∈S

`(z, z′)PS∼τ |x(S)

≥ inf
z′ 6=z

`(z, z′)PS∼τ |x(z /∈ S) ≥ inf
z′ 6=z

`(z, z′)η,
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whileRx(z) = `(z, y), so we deduce locally

Rx(z; ρ?|x)−Rx(f∗(x); ρ?|x) ≤ `(z, y)

infz′ 6=z `(z, z′)
η−1 (RS,x(z)−RS,x(f∗(x)))

≤ eνη−1 (RS,x(z)−RS,x(f∗(x))) .

Integrating over x this last equation gives us the bound in Prop. 2.

A.5. Refined bound analysis of Prop. 2

The constant C that appears in Prop. 2 is the result of controlling separately the corruption process and the discrepancy of
the loss. Indeed, they can be controlled together, leading to a better constant. To relates the two risk R and RS , we will
consider the pointwise setting τ ∈ ∆2Y and ρ0 ∈ ∆Y that satisfies ρ0 ` τ , we will also consider a prediction z ∈ Y .

Proposition 3 (Bound refinement). When Y is discrete and τ not ambiguous, the best C that verifies Eq. (6) in the pointwise
setting τ ∈ ∆2Y is maximum of λ−1, for λ ∈ [0, 1] such that there exists a point z 6= y and signed measured σ that verify
R(z;σ) = 0 and such that σ + λδy + (1− λ)δz is a probabily measure that is eligible for τ .

Proof. First, let’s extend our study to the spaceMY of signed measure over Y . We extend the risk definition in Eq. (1) to
any signed measure µ ∈MY , with

Rx(z;µ) =

∫
Y
`(z, y) dµ(y).

Note that the risk is a linear function of the distribution µ. Two spaces are going to be of particular interest, the one of
measure of mass oneMY,1, and the one of measure of mass nullMY,0, where

MY,p = {µ ∈M|µ(Y) = p} .

Let’s now relates for a ρ0, τ and z, the riskRx(z; ρ0) andRS,x(z). To do so, we introduce the space of signed measures of
null mass, that could be said orthonal to (`(z, y))y∈Y , formally

Dz = {µ ∈MY,0 |Rx(z;µ) = 0} .

There is two alternatives: (1) either Rx(z; ρ0) = 0, and so RS,x(z) = 0 too, and we have relates the two risk; (2) either
Rx(z, ρ0) 6= 0, and the spaceMY,1 can be decomposed as

MY,1 = Dz + {λρ0 + (1− λ)δz |λ ∈ R} .

To prove it take µ ∈MY,1, and use linearity of the risk after writing

µ = λρ0 + (1− λ)δz + (µ− (λρ0 + (1− λ)δz)) , with λ =
Rx(z, µ)

Rx(z, ρ0)
.

For such a µ, using the linearity of the risk, and the properness of the loss, if we denote by dz the part in Dz of the last
decomposition, we have

Rx(z;µ) = λRx(z; ρ0) + (1− λ)Rx(z; δz) +Rx(z; dz) = λRx(z; ρ0)

If we denote by Rτ = {ρ ∈ ∆Y | ρ ` τ}, we can conclude that

RS,x(z)

Rx(z; ρ0)
= inf {λ | (λρ0 + (1− λ)δz) ∈ Rτ +Dz} .

Finally, when τ is not ambiguous, we know that ρ? is deterministic, and if ρ0 is deterministic then ρ0 = ρ?. In this case,
there exists a y such that ρ0 = δy, and we can suppose this y different of z otherwiseRx(z; ρ0) = 0. In this case, we also
haveRx(z∗) = RS,x(z∗) = 0 with z∗ = y, and thus the excess of risk to relates in Eq. (6) is indeed the relation between
the two risks.



Structured Prediction with Partial Labelling through the Infimum Loss

a

b

c

Rτ
δb +Db

1
4 d(b, c) ∝ RS(b) = R(b; 1

4δc + 3
4δb)

d(b, c) ∝ R(b; δc)

Figure 6. Geometrical understanding of Prop. 3, showing the link between the infimum and the fully supervised risk. The drawing is set in
the affine span of the simplexMY,1, where we identify a with δa. The underlying instance (`, τ) is taken from Sec. 4, and can be linked
to the setting of Prop. 3 with z = b, y = c. Are represented in the simplex the level curves of the function ρ→R(z; ρ). Based on this
drawing, one can recoverRS(b) = R(b)/4, which is better than the bound given in Prop. 2.

Remark (Prop. 3 as a variant of Thales theorem). Prop. 3 can be seen as a variant of the Thales theorem. Indeed, with the
geometrical embedding π of the simplex in RY , π(ρ) = (ρ(y))y∈Y , one can have, with d the Euclidean distance

RS,x(z)

Rx(z; ρ0)
=
d(π(δz +Dz), π(Rτ ))

d(π(δz +Dz), π(ρ0))
.

And conclude by using the following variant of Thales theorem, that can be derived from Fig. 7: For x, y, z ∈ Rd, and
S ⊂ Rd, with d the Euclidean distance, if y ∈ S, d(z + x⊥, S) = γd(z + x⊥, y), where

γ = min
{
|λ|
∣∣λ ∈ R, (λy + (1− λ)z + x⊥) ∩ S 6= ∅

}
.

More over, notice that if S is contains in the half space that contains y regarding the cut with the hyperplane z + x⊥, λ can
be restricted to be in [0, 1].

z + x⊥

λy + (1− λ)z + x⊥

y + x⊥ y

z
λd(z + x⊥, y)

S

Figure 7. A variant of Thales theorem.

Remark (Active labelling). When annotating data, as a partial labeller, you could ask yourself how to optimize your
labelling. For example, suppose that you want to poll a population to retrieved preferences among a set of presidential
candidates. Suppose that for a given polled person, you can only ask her to compare between four candidates. Which
candidates would you ask her to compare? According to the questions you are asking, you will end up with different sets of
potential weak distribution τ . If aware of the problem ` that your dataset is intended to tackle, and aware of a constant
C = C(`, τ) that verify Eq. (6), you might want to design your questions in order to maximize on average over potential τ ,
the quantity C(`, τ). An example where τ is not well designed according to ` is given in Fig. 8.

A.6. Proof of Thms. 3 and 4

Firt note that, sinceRS(f) is characterized byRS(f) = E(x,S)∼τ minu∈S `(f(x), u), then the problem

f∗ = arg min
f :X→Y

RS(f) = arg min
f :X→Y

E(x,S)∼τ

[
min
y∈S

`(f(x), y)

]
.

can be considered as an instance of structured prediction with loss L(z, S) = miny∈S `(f(x), y). The framework for
structured prediction presented in Ciliberto et al. (2016), and extended in Ciliberto et al. (2020), provides consistency and
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a

b

c

Rτ

`⊥b

Figure 8. Example of a bad link between τ and `. Same representation as Fig. 6 with a different instance where τ = 1
2
δ{a,c} + 1

2
δ{b,c}

and `(b, a) = 0, `(b, c) = 1. In this example C`(τ) = +∞, and the infimum loss is 0 on Y and therefore not consistent. Given the loss
structure, partial labelling acquisition should focus on specifying sets that does not intersect {a, b}. Note that this instance violate the
proper loss assumption, explaining its inconsistency.

learning rates in terms of the excess riskRS(fn)−RS(f∗) when f∗ is estimated via fn defined as in Eq. (7) and when the
structured loss L admits the decomposition

L(z, S) = 〈ψ(z), ϕ(S)〉H,

for a separable Hilbert spaceH and two maps ψ : Y → H and ϕ : S → H. Note that since Y is finite L always admits the
decomposition, indeed the cardinality of Y is finite, i.e., |Y| < ∞ and |S| = 2|Y|. Choose an ordering for the elements
in Y and in S and denote them respectively oY : N → Y and oS : N → S. Let nY : Y → N the inverse of oY , i.e.
oY(nY(y)) = y and nY(oY(i)) = i for y ∈ Y and i ∈ 1, . . . , |Y|, define analogously nS . Now letH = R|Y| and define the
matrix B ∈ R|Y|×2|Y| with element Bi,j = L(oY(i), oS(j)) for i = 1, . . . , |Y| and j = 1, . . . , 2|Y|, then define

ψ(z) = e
|Y|
nY(z)

, ϕ(S) = Be2
|Y|

nS(S)
,

where eki is the i-th element of the canonical basis of Rk. We have that

〈ψ(z), ϕ(S)〉H = 〈e|Y|nY(z), Be
2|Y|

nS(S)
〉R|Y| = BnY(z),nS(S) = L(iY(nY(z)), iS(nS(S))) = L(z, S),

for any z ∈ Y, S ∈ S. So we can apply Theorem 4 and 5 of (Ciliberto et al., 2016) (see also their extended forms in
Theorem 4 and 5 of Ciliberto et al., 2020). The last step is to connect the excess risk onRS with the excess risk onR(f, ρ?),
which is done by our comparison inequality in Prop. 2.

Remark (Illustrating the consistency in a discrete setting). Suppose that τ|x has been approximate, as a signed measure
τ̂|x =

∑n
i=1 αi(x)δSi . After renormalization, one can represent it with as a region Rτ̂|x in the affine span of ∆Y . Retaking

the settings of Sec. 4, suppose that

τ̂({a, b}) =
1

2
, τ̂({c}) =

1

2
, τ̂({a, c}) =

1

4
, τ̂({a, b, c}) = −1

4
.

This corresponds to the region Rτ̂ represented in Fig. 9. It leads to a disambiguation ρ̂ that minimizes E , Eq. (2), inside this
space as

ρ̂(a) =
1

2
, ρ̂(b) = −1

4
, ρ̂(c) =

3

4
,

and to the right prediction ẑ = c, since ρ̂ felt in the decision region Rc. As the number of data augments, Rρ̂ converges
towards Rτ , so does ρ̂ toward ρ? and the riskR(f̂) towards its minimum.

A.7. Understanding of the average and the supremum loss

For the average loss, if there is discrepancy in the loss ν > 0, then there exists a, b, c such that `(b, c) = (1 + ε)`(a, b), for
some ε > 0. In this case, one can recreate the example of Sec. 4 by considering ρ0 = ρ? = δc and

τ = λδ{c} + (1− λ)δ{a,b,c}, with λ =
1

2

ε

3`(a, b) + ε
,
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a

b

c

Rτ

Rτ̂ ρ?

ρ̂

Figure 9. Understanding convergence of the algorithm in Eq. (7). Our method is approximating τ as a signed measured τ̂ , which leads to
Rτ̂ in dark gray compared to the ground truth Rτ in light gray. The disambiguation of ρ̂ and ρ? is done on those two domains with the
same objective E , Eq. (2), which level curves are represented with light lines.

to show the inconsistency of the average loss. Similarly supposing, without loss of generality that `(a, c) ∈ [`(a, b), `(b, c)],
the case where ρ0 = ρ? = δb and

τ = λδ{b} + (1− λ)δ{a,b,c}, with λ =
1

2
min

(
ε

1 + ε
,

1 + ε− x
2 + ε− x

)
, x =

`(a, c)

`(a, b)
,

will fail the supremum loss, which will recover z∗ = a, instead of z∗ = b.

B. Experiments
B.1. Classification

Let consider the classification setting of Sec. 5.1. The infimum loss reads L(z, S) = 1z/∈S . Given a weak distribution τ , the
infimum loss is therefore solving for

f(x) ∈ arg min
z∈Y

ES∼τ |x [L(z, S)] = arg min
z∈Y

ES∼τ |x [1z/∈S ] = arg min
z∈Y

PS∼τ |x(z /∈ S) = arg max
z∈Y

PS∼τ |x(z ∈ S).

Given data, (zi, Si) our estimator consists in approximating the conditional distributions τ |x as

τ̂ |x =

n∑
i=1

αi(x)δSi
,

from which we deduce the inference formula, that we could also derived from Eq. (7),

f̂(x) ∈ arg max
z∈Y

n∑
i=1

αi(x)1z∈Si
= arg max

z∈Y

∑
i;z∈Si

αi(x).

B.1.1. COMPLEXITY ANALYSIS

The complexity of our algorithm Eq. (7) can be split in two parts:

– a training part, where given (xi, Si) we precompute quantities that will be useful at inference.
– an inference part, where given a new x, we compute the corresponding prediction f̂(x).

In the following, we will review the time and space complexity of both parts. We give this complexity in term of n the
number of data and m the number of items in Y . Results are summed up in Tab. 1.

Training. Let us suppose that computing L(y, S) = 1y/∈S can be done in a constant cost that does not depend on m. We
first compute the following matrices in O(nm) and O(n2) in time and space.

L = (L(y, Si))i≤n,y∈Y ∈ Rn×m, Kλ = (k(xi, xj) + nλδi=j)ij ∈ Rn×n.
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Table 1. Complexity of our algorithm for classification.

COMPLEXITY TIME SPACE

TRAINING O(n2(n+m)) O(n(n+m))
INFERENCE O(nm) O(n+m)

We then solve the following, based on the _gesv routine of Lapack, in O(n3 + n2m) in time and O(n(n+m)) in space
(see Golub & Loan, 1996, for details)

β = K−1λ L ∈ Rn×m.

Inference. At inference, we first compute in O(n) in both time and space

v(x) = (k(x, xi))i≤n ∈ Rn.

Then we do the following multiplication in O(nm) in time and O(m) in space,

RS,x = v(x)Tβ ∈ Rm.

Finally we take the minimum ofRS,x(z) over z in O(m) in time and O(1) in space.

B.1.2. BASELINES

The average loss is really similar to the infimum loss, it reads

Lac(z, S) =
1

|S|
∑
y∈S

`(z, y) = 1− 1z∈S
|S|

' 1

|S|
· 1z/∈S =

1

|S|
L(z, S).

Following similar derivations to the one for the infimum loss, given a distribution τ , one can show that the average loss is
solving for

fac(x) ∈ arg max
z∈Y

∑
S;z∈S

1

|S|
τ |x(S),

which is consistent when τ is not ambiguous. The difference with the infimum loss is due to the term in |S|. It can be
understood as an evidence weight, giving less importance to big sets that do not allow to discriminate efficiently between
candidates. Given data (xi, Si), it leads to the estimator

f̂ac(x) ∈ arg min
z∈Y

∑
i;z∈Si

αi(x)

|Si|
.

The supremum loss is really conservative since

Lsp(z, S) = sup
y∈S

`(y, z) = sup
y∈S

1y 6=z = 1S 6={z}.

It is solving for
f(x) ∈ arg max

z∈Y
τ |x({z}),

which empirically correspond to discarding all the set with more than one element

f̂sp(x) ∈ arg min
z∈Y

∑
i;Si={z}

αi(x).

Note that τ could be not ambiguous while charging no singleton, in this case, the supremum loss is not informative, as its
risk is the same for any prediction.
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B.1.3. CORRUPTIONS ON THE LIBSVM DATASETS

To illustrate the dynamic of our method versus the average baseline, we used LIBSVM datasets (Chang & Lin, 2011), that
we corrupted by artificially adding false class candidates to transform fully supervised pairs (x, y) into weakly supervised
ones (x, S). We experiment with two types of corruption process.

– A uniform one, reading, with the µ of Def. 1, for z 6= y,

P(Y,S)∼µ|Y×2Y
(z ∈ S |Y = y) = c.

with c a corruption parameter that we vary between zero and one. In this case, the average loss and the infimum one
works the same as shown on Fig. 10.

– A skewed one, where we only corrupt pair (x, y) when y is the most present class in the dataset. More exactly, if y is
the most present class in the dataset, for z ∈ Y , and z′ 6= z, our corruption process reads

P(Y,S)∼µ|Y×2Y
(z′ ∈ S |Y = z) = c · 1z=y.

In unbalanced dataset, such as the “dna” and “svmguide2” datasets, where the most present class represent more than
fifty percent of the labels as shown Tab. 2, this allows to fool the average loss as shown Fig. 2. Indeed, this corruption
was designed to fool the average loss since we knew of the evidence weight 1

|S| appearing in its solution.
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Figure 10. Classification. Testing risks (from Eq. (1)) achieved by AC and IL on the “segment” and “vowel” datasets from LIBSVM as a
function of corruption parameter c, when the corruption is uniform, as described in Appendix B.1.3.

Table 2. LIBSVM datasets characteristics, showing the number of data, of classes, of input features, and the proportion of the most present
class when labels are unbalanced.

DATASET DATA (n) CLASSES (m) FEATURES (d) BALANCED MOST PRESENT

DNA 2000 3 180 × 52.6%
SVMGUIDE2 391 3 20 × 56.5%
SEGMENT 2310 7 19 X -
VOWEL 528 11 10 X -

B.1.4. REPRODUCIBILITY SPECIFICATIONS

All experiments were run with Python, based on NumPy library. Randomness was controlled by instanciating the random
seed of NumPy to 0 before doing any computations. Results of Figs. 2 and 10 were computed by using eight folds, and
trying out several hyperparameters, before keeping the set of hyperparameters that hold the lowest mean error over the
eight folds. Because we used a Gaussian kernel, there was two hyperparameters, the Gaussian kernel parameter σ, and the
regularization parameter λ. We search for the best hyperparameters based on the heuristic

σ = cσd, λ = cλn
−1/2,
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where d is the dimension of the input X (or the number of features), and where the Gaussian kernel reads

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
.

We tried cσ ∈ {10, 5, 1, .5, .1, .01} and cλ ∈
{

10i
∣∣ i ∈ J3,−3K

}
.

B.2. Ranking

Consider the ranking setting of Sec. 5.2, where Y = Sm, ϕ is the Kendall’s embedding and the loss is equivalent to
`(z, y) = −ϕ(y)Tϕ(z).

B.2.1. COMPLEXITY ANALYSIS

Given data (xi, Si), our algorithm is solving at inference for

f(x) ∈ arg min
z∈Y

inf
yi∈Si

−
n∑
i=1

αi(x)ϕ(z)Tϕ(yi) = arg max
z∈Y

sup
yi∈Si

n∑
i=1

αi(x)ϕ(z)Tϕ(yi)

We solved it through alternate minimization, by iteratively solving in z for

ϕ(z)(t+1) = arg max
ξ∈ϕ(Y)

〈
ξ,

n∑
i=1

αi(x)ϕ(yi)
(t)

〉
,

and solving for each yi for
ϕ(yi)

(t+1) = arg max
ξ∈ϕ(Si)

αi(x) 〈ξ, ϕ(z)〉 .

We initialize the problem with the coordinates of ϕ(yi) put to 0 when not specified by the constraint yi ∈ Si.3 Those
two problems are minimum feedback arc set problems, that are NP-hard in m, meaning that one has to check for all
potential solutions, and there is m! of them, which is the cardinal of Sm. We suggest to solve them using an integer linear
programming (ILP) formulation that we relax into linear programming as explained in Appendix B.5. All the problem in yi
share the same objective, up to a change in sign, but different constraint ξ ∈ ϕ(Si), such a setting is particularily suited for
warmstart on the dual simplex algorithm to solve efficiently one after the other the linear programs associated to each yi.

To give numbers, at training time, we compute the inverse K−1λ in O(n3) in time and O(n2) in space, and at inference
we compute α(x)K−1λ v(x) in O(n2) in time and O(n) in space, before solving iteratively n NP-hard problem in m of
complexity nNP(m), that cost nm2 in space to represent using Cplex (IBM, 2017), if we allows our self e iterations, the
inference complexity is O(n2 + e nNP(m)) in time and O(nm2) in space.

B.2.2. BASELINES

The supremum loss is really similar to the infimum loss, only changing an infimum by a supremum. However, algorithmically,
this change leads to solving for a local sadle point rather than solving for a local minimum. While the latter are always
defined, there might be instances where no sadle point exists. In this case, the supremum optimization might stall without
getting to any stable solution, and the user might consider stopping the optimization after a certain number of iteration and
outputting the current state as a solution.

The average loss, despite its simple formulation does not lead to an easy implementation either. Indeed, when given a set S,
the average loss is implicitely computing the center of this set c(S), and replacing Lac(z, S) by `(z, c(S)), more exactly

Lac(z, S) ' − 1

|S|
∑
y∈S

ϕ(z)Tϕ(y) = −ϕ(y)T

 1

|S|
∑
y∈S

ϕ(y)

 .

3Coordinates of the Kendall’s embedding correspond to pairwise comparison between two items j and k, so we put to 0 the coordinates
for which we can not infer preferrences from S between items j and k.
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To compute the center
(

1
|S|
∑
y∈S ϕ(y)

)
, we sample ck ∼ N (0, Im2), solve the resulting minimum feedback arc set

problem, with the constraint y ∈ S, and end up with solutions ϕ(yk). After removing duplicates, we estimate the average
with the empirical one. Note that this work is done at training, leading the average loss to have a quite good inference
complexity in O(nm+ NP(m)) in time.

B.2.3. SYNTHETIC EXAMPLE: ORDERING LINES

In the following, we explain our synthetic example of Sec. 5.2. It correspond of choosing X = [0, 1], choose m a number
of items, simulate a, b ∼ N (0, Im), compute scores vi(x) = ax+ b, and order items according to their scores as shown
on Fig. 3. For Fig. 4, we chose m = 10, as this is the biggest m for which can rely on our minimum feedback arc set
heuristic to recover the real minimum feedback arc set solution and there not to play a role in what our algorithm will output.
The corruption process was defined as loosing coordinates in the Kendall’s embedding, more exactly given a point x ∈ X ,
we have score (vi(x))i≤m and an ordering y ∈ Y . To create a skewed corruption, we first compute the normalized distance
between scores as

dij =
|vi − vj |

maxk,l |vk − vl|
∈ [0, 1]

and remove the pairwise comparison for which dij > c, where c is a corruption parameter between 0 and 1, formally

S = {z ∈ Y | ∀ (j, k) ∈ I, ϕ(z)jk = ϕ(y)jk} , where I =
{

(j, k)
∣∣ d(j,k) < c

}
,

Because of transitivity constraint, when c is small the comparison that we lost can be found back using transitivity between
comparisons.

Reconstruction IL Reconstruction AC Reconstruction SP

Figure 11. Reconstruction of the problem of Fig. 3, given n = 50 random points (xi, yi)i≤n, after loosing at random fifty percent of the
coordinates (ϕ(yi))i≤n, leading to sets (Si)i≤n of potential candidates. Hyperparameter were choosen as σ = 1 for the Gaussian kernel
and λ = 10−3n−1/2 for the regularization parameter. The percentage of error in the reconstructed Kendall’s embedding is 3% for IL, 4%
for AC and 13% for SP. As for classification, with such a random corruption process, AC and IL shows similar behaviors.

B.2.4. REPRODUCIBILITY SPECIFICATION

To get Fig. 4, we generates eight problems that corresponds to ordering m = 10 lines, that correspond to eight folds. We
only cross validated results with the same heuristics as in Appendix B.1, yet, because computations were expensive we
only tried cσ ∈ {1, .5}, and cλ ∈

{
103, 1, 10−3

}
. Again, randomness was controlled by instanciating random seeds to 0.

Solving the linear program behind our minimum feedback arc set was done using Cplex (IBM, 2017), which is the fastest
linear program solver we are aware of.

B.3. Multilabel

Multilabel is another application of partial labelling that we did not mention in our experiment section in the core paper. This
omission was motivated by the fact that, under natural weak supervision, the three losses (infimum, average and supremum)
are basically the same. However, we will provide, now, an explanation of this problem and our algorithm to solve it.
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Multilabel prediction consists in finding which are the relevant tags (possibly more than one) among m potential tags. In
this case, one can represent Y = {−1, 1}m, with yi = 1 (resp. yi = −1), meaning that tag i is relevant (resp. not relevant).
The classical loss is the Hamming loss, which is the decoupled sum of errors for each label:

`(y, z) =

m∑
i=1

1yi 6=zi .

Natural weak supervision consists in mentioning only a small number of relevant or irrelevant tags. This is the setting of Yu
et al. (2014). This leads to sets S that are built from a set P of relevant items, and a set N of irrelevant items.

S = {y ∈ Y | ∀ i ∈ P, yi = 1,∀ i ∈ N, yi = −1} .

In this case, the infimum loss reads,
L(z, S) =

∑
i∈P

1zi=−1 +
∑
i∈N

1zi=1.

For such supervision, the infimum, the average and the supremum loss are intrinsically the same, they only differs by
constants, due to the fact that for each unseen labels, the infimum loss pays 0, the average loss 1/2 and the supremum loss 1.

When considering data (xi, Si)i≤n, where (Si) is built from (Ni, Pi), our algorithm in Eq. (7) reads f̂(x) =

(sign(f̂j(x)))j≤m, based on the scores

f̂j(x) =
∑
i;j∈Pi

αi(x)−
∑
i;j∈Ni

αi(x).

B.3.1. TACKLING POSITIVE BIAS.

In the precedent development, we implicitly assumed that the ratio between positive and negative labels given by the weak
supervision reflects the one of the full distribution. An assumptions that is often violated in practice. It is common that
partial labelling only mention subset of the revelant tags (i.e., N = ∅). This case is ill-conditioned as always outputting all
tags (y = 1) will minimize the infimum loss. To solve this problem, we can constrained the prediction space to the top-k
space Yk =

{
y ∈ Y

∣∣∑m
i=1 1yj=1 = k

}
, which will lead to taking the top-k over the score (f̂j)j≤m. We can also break the

loss symmetry and add a penalization with ε > 0,

`ε(z, y) = `(z, y) + ε

m∑
i=1

1zi=1.

In this case, the inference algorithm will threshold scores at ε rather than 0.

f(x) =

sign

 ∑
i;j∈Pi

αi(x)−
∑
i;j∈Ni

αi(x)


j≤m

.

B.3.2. COMPLEXITY ANALYSIS

The complexity analysis is similar to the one for classification. At training, we compute L = (1j∈Pi − 1j∈Ni) and we
solve for β = K−1λ L in Rn×m. At testing, we compute v(x) and βT v(x) in Rm, before thresholding it or taking the top-k
in either O(m) or O(m log(m)). As such, complexity reads similarly as for the classification case. Yet notice that, for
multilabelling, the dimension of Y is not m but 2m, meaning we do not scale with #Y but with the intrisic dimension.

B.3.3. CORRUPTIONS ON THE MULAN DATASETS

When set comes with tag of few positive and negative tags, all losses are the same. Yet, under other type of supervision,
such as when the sets comes as Hamming balls, defined by

B(z, r) = {y ∈ Y | `(z, y) ≤ r} ,
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Table 3. Complexity of our algorithm for multilabels.

COMPLEXITY TIME SPACE

TRAINING O(n2(n+m)) O(n(n+m))
INFERENCE O(nm) O(n+m)
INFERENCE TOP-k O(nm+m log(m)) O(n+m)

the methods will not behave the same. We experiment on MULAN datasets provided by Tsoumakas et al. (2011). Because
supervision with Hamming balls does not lead to efficient implementation, we went for extensive grid search for the best
solution, which reduce our hability to consider large m. Among MULAN datasets, we went for the “scene” one, with
m = 6 tags, and n = 2407 data. When given a pair (x, y), we add corruption on y, by first sampling a radius parameter
r ∼ U (() [0, c ∗ (m+ 1)]), with c a corruption parameter. We then sample, with replacement, brc coordinates to modify to
pass from y to a center c. We then consider the supervision S = B(c, r). For such random, somehow uniform, corruption
the infimum loss works slightly better than the average loss that both outperform the supremum loss as shown on Fig. 12.

0 2 4 6 8 10
Corruption (p.d.u.)

0.85

0.86

L
os

s

scene

IL AC SP

Figure 12. Multilabelling. Testing risks (from Eq. (1)) achieved by AC and IL on the “scene” dataset from MULAN as a function of
corruption parameter c, shown in procedure defined unit, when the supervision is given as Hamming balls, as described in Appendix B.3.3.

B.3.4. REPRODUCIBILITY SPECIFICATION

To get Fig. 12, we follow the same cross-validation scheme as for classification and ranking. More exactly, we cross-
validated over eight folds with the same heuristics for σ, the Gaussian kernel parameter, and λ, the regularization one, with
cσ ∈ {10, 5, 1, .5, .1, .01}, and cλ ∈

{
10i
∣∣ i ∈ J−3, 3K

}
.

B.4. Partial regression

Partial regression is the regression instance of partial labelling. When supervision comes as interval, it is known as interval
regression, and known as censored regression, when sets come as half-lines. Note that for censored regression, nor the
average, nor the supremum loss can be properly defined.

B.4.1. BASELINES

Given a bounded set S, learning with the average loss correspond to considering the center of this set, since, for z ∈ Y , with
λ the Lebesgue measure

Lac(z, S) =
1

λ(S)

∫
S

‖z − y‖2 λ(dy) = ‖z‖2 − 2

〈
z,

1

λ(S)

∫
S

yλ(dy)

〉
+

1

λ(S)

∫
S

‖y‖2 λ(dy)

=

∥∥∥∥z − 1

λ(S)

∫
S

yλ(dy)

∥∥∥∥2 +
1

λ(S)

∫
S

‖y‖2 λ(dy)−
∥∥∥∥ 1

λ(S)

∫
S

yλ(dy)

∥∥∥∥2 = ‖z − c(S)‖2 + CS ,

where c(S) = 1
λ(S)

∫
S
yλ(dy) is the center of S. As such, the average loss is always convex. As the supremum of convex

function, the supremum loss is also convex.
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B.4.2. REPRODUCIBILITY SPECIFICATION

To compute Fig. 5, for both AC and IL, we consider σ, the Gaussian kernel parameter, and λ, the regularization parameter,
achieving the best risk when measure with the fully supervised distribution, Eq. (1). We tried over σ ∈ {1, .5, .1, .05, .01}
and λ ∈

{
103, 1, 10−3

}
. Randomness was controlled by instanciating random seeds.

B.5. Beyond

Beyond the examples showcased precedently, advances in dealing with weak supervision could be beneficial for several
problems. Supervision on image segmentation problems usually comes as partial pixel annotation. This problem is often
tackled through conditional random fields (Verbeek & Triggs, 2008), making it a perfect mix between partial labelling and
structured prediction. Action retrieval on instructional video, where partial supervision is retrieved from the audio track is
an other interesting application (Alayrac, 2018).

Minimum feedback arc set

B.6. Formulation

Consider a directed weighted graph with vertex J1,mK and edges {i→ j} with weights (wij)i,j≤m ∈ Rm2

+ . The goal is to
find directed acyclic graph G = (V,E) that maximize the weights on remaining edges

arg max
E

∑
i→j∈E

wij .

This directed acyclic graph can be seen as a preference graph, item j being preferred over item i. Since wij are non-negative,
the underlying ordering in G is necessarily total, and therefore can be written based on a score function, that can be
embedded in the permutation of J1,mK, σ ∈ Sm, with σ(j) > σ(i) meaning that j is preferred over i. Thus the problem
reads equivalently

arg max
σ∈Sm

∑
i,j≤m

wij1σ(j)>σ(i) = arg max
σ∈Sm

∑
i<j≤m

cij1σ(j)>σ(i) = arg max
σ∈Sm

∑
i<j≤m

cij sign (σ(j)− σ(i))

= arg min
σ∈Sm

∑
i<j≤m

cij sign (σ(i)− σ(j)) = arg min
σ∈Sm

∑
i<j≤m

cij1σ(i)>σ(j)

with cij = wij − wji. This last formulation is the one usually encounter for ranking algorithms in machine learning (Duchi
et al., 2010).

We are going to study in depth this problem under the formulation

arg min
σ∈Sm

∑
i<j≤m

cij sign (σ(i)− σ(j)) (9)

B.7. Integer linear programming

Definition 4 (Kendall’s embedding). For σ ∈ Sm, define Kendall’s embedding, with me = m(m− 1)/2,

ϕ(σ) = sign (σ(i)− σ(j))i<j≤m ∈ {−1, 1}me .

Let’s associate to it Kendall’s polytope of order m, Conv (ϕ(Sm)).

The Kendall’s embedding Def. 4 cast the minimum feedback arcset problem Eq. (9) as a linear program

minimize 〈c, x〉
subject to x ∈ Conv (ϕ(Sm)) .

Since the objective is linear, the solution is known to lie on a vertex of the constraint polytope, which is the set of Kendall’s
embeddings of permutations. Yet, how to describe Kendall’s polytope?
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Definition 5 (Transitivity polytope). The transitivity polytope of order m is defined in Rme as

M = {x ∈ Rme | ∀ i < k < j;−1 ≤ xij + xjk − xik ≤ 1}

This polytope encodes the transitivity constraints of Kendall’s embeddings Def. 4.

The transitivity polytope Def. 6 will be used to approximate Kendall’s polytope based on the following property.

Proposition 4 (Relaxed polytope). The intersection between the transitivity polytope and the vertex of the hypercube is
exactly the set of Kendall’s embeddings of permutations. Mathematically

ϕ(Sm) =M∩ {−1, 1}me .

Proof. First of all it is easy to show that ϕ(Sm) ⊂ {−1, 1}me , and that, ϕ(Sm) ⊂M.

Let’s now consider x ∈M∩ {−1, 1}me . Let’s associate to x the symmetric embedding

x̃ij =

 xij if i < j
0 if i = j
−xji if j < i

Let’s consider the permutation σ resulting from the ordering of
∑
k x̃ik

σ−1(1) = arg min
i∈J1,mK

m∑
k=1

x̃ik and σ−1(i) = arg min
i∈J1,mK\σ−1(J1,i−1K)

m∑
k=1

x̃ik.

Let’s now show that ϕ(σ) = x, or equivalently that ϕ̃(σ) = (sign(σ(i) − σ(j)))i,j≤m = x̃. First, one can show that x̃
verify the transitivity constraints

∀ i, j, k ≤ m, −1 ≤ x̃ij + x̃jk − x̃ik ≤ 1.

This can be proven for any ordering of i, j, k based on the fact that x ∈M. For example, if i < k < j, we have

[−1, 1] 3 xik + xkj − xij = x̃ik − x̃jk − x̃ij .

which leads to
x̃ij + x̃jk − x̃ik ∈ − [−1, 1] = [−1, 1] .

Now suppose, without loss of generality, that x̃ij = 1 (if x̃ij = −1, just consider x̃ji = 1). The transitivity constraints tells
us that x̃ik ≥ x̃jk for all k, therefore

∑
k 6∈{i,j}

x̃ik ≥
∑

k 6∈{i,j}

x̃jk, ⇒
m∑
k=1

x̃ik >

m∑
k=1

x̃jk. ⇒ σ(i) > σ(j).

This shows that ˜ϕ(σ)ij = 1 = x̃ij . Thus we have shown that x ∈ ϕ(Sm), which concludes the proof.

Definition 6 (ILP relaxation). Based on Prop. 4, we define the canonical polytope C = M∩ [−1, 1]
me , and relax the

problem Eq. (9) into
minimize 〈c, x〉

subject to x ∈ C

As soon as the solution x is in {−1, 1}me , Prop. 4 tells us that x recover the exact minimum feedback arc set solution Eq. (9).

In small dimension, the canonical polytope C is the same as the Kendall’s one, and the ILP relaxation gives the right solution.
Yet, as shown Fig. 13, as soon as m > 5, there exists vertex in C that does not correspond to a permutation embedding.
For small dimensions, proving that C is exactly the Kendall’s polytope is done with a simple drawing for m = 3, using
unimodularity of the transitivity constraint matrix is enough for m = 4 (Hoffman & Kruskal, 2010). The case m = 5 is also
provable, based on several twicks that we will not discuss here.

Remark (Low noise consistency). Remark that the low-noise setting considered by Duchi et al. (2010) correspond to
having sign(c) = −ϕ(y) for a y ∈ Y , in this case our algorithm is consistent and does recover the best solution z = y.
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Figure 13. Evaluating the percentage of exact solutions of the ILP relaxation as m grows large. Evaluation is done by choosing a objective
c ∼ N (0, Ime), solving the ILP relaxation Def. 6, and evaluating if the solution is in {−1, 1}me . The experience is repeated several time
to estimate how often, on average, the original solution of Eq. (9) is returned by the ILP.

B.8. Sorting heuristics

When formatting and solving the integer linear program takes too much time, one can go for simple sorting heuristic, mainly
based on a heuristic to compare items two by two and using quick sorting. A review of some heuristic with guarantees is
provide by Ailon et al. (2005), Similar study when in presence of constraint on the resulting total order can be found in van
Zuylen et al. (2007).
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