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“… such abundant literature and insightful studies may be little more than a mirage” 

J. Lobón-Cerviá (2018) 

 

 

The mirage surrounding one extensively studied species 

Because of its socio-economic importance in fisheries or as highly-prized sport species, the 

brown trout, Salmo trutta (Linnaeus, 1758) has acquired one iconic status. A statement 

commonly done about this umbrella species affected by habitat degradation is that trout is 

a highly polytypic Pan-European species and/or species complex naturally distributed over 

>1 million km2, actually ranging from northern continental Europe and Iceland to North 

Africa, and extending eastward perhaps to northern foothills of Himalaya in Kyrgyzstan and 

Tajikistan (e.g. Lobón-Cerviá, 2018). The diversity of phenotypes and life histories has 

motivated the description of numerous taxonomic units, often ranked as species and 

subspecies. The number of trout within the S. trutta complex varies considerably among 

authors. It spans from 23 (International Union for Conservation of Nature [IUCN], 2020) to 

generally 30-35 (Kottelat & Freyhof, 2007; Sanz, 2018), and to more than 50 or 60 (Behnke, 

1986; Froese & Pauly, 2019; Jonsson & Jonsson, 2011). The delimitation of trout taxa by 

ichthyologists was certainly first impacted by poor awareness of phenotypic plasticity and 

speciation as a process, then based on species concepts based on diagnosability, while 

these taxa are not reproductively isolated and contradict Mayr’s (1942) biological species 

concept. Reliance in “non-adaptive taxonomic types” (Savvaitova, 1995) and in supremacy 

of one or other species concept could have participated to the belief that one or a huge 

number of taxa are existing, while obscuring the very information that provide insight in the 

diversification process (e.g., Willis, 2017). Trout may also have suffered taxonomic inflation 

(i.e., the recognition of unnecessary taxa; Isaac et al., 2004) in order to support 

management and conservation decisions. 

Authors interested in trout however agree on a point: the complex is complex and 

the rise of molecular phylogeny during the 80’s tried to address this issue to gain 



 
 

understanding in both the phylogeny of the Salmo genus and the phylogeny of the brown 

trout, thus in their origin, diversification and other aspects of their evolutionary history. The 

brown trout complex received an interest not found in any other (Pan-)European fish 

‘species’ so far. Indeed, outside population genetics issues that target one single ‘species’ 

or – generally speaking – a single operational taxonomic unit (OTU), a literature review 

estimated the number of original phylogeographic and phylogenetic studies considering at 

least two OTUs – clades, lineages or (sub)species – to approx. 130 (Fig. 1). Such interest 

should have led to significant improvements of knowledge, including taxonomic progress.  

While a review of knowledge based also on over 100 studies has been already 

provided by Sanz (2018), we however believe we are facing a mirage of extensive 

knowledge in trout. If we do not oppose to contents of her work, a difference between Sanz’s 

(2018) review and this opinion piece could be framed in the well-known ‘splitter-lumper’ 

dichotomy. Hereby, our goal is to be ‘splitters’ in order to stress that the genealogical 

relationships resulting from speciation within the brown trout complex remains unfortunately 

neglected. Otherwise, works as summarized by Sanz (2018) rather depict ‘lumping’ in which 

most molecular data produced to help for the delimitation of trout species or another 

taxonomic entity are aggregated to one existing reference, S. trutta sensu stricto (hereafter, 

StSS) whose origin is offered below. This opinion piece hence suggests to reconsider the 

outcomes and to come back on some issues that initially motivated trout molecular studies, 

i.e. providing a sound phylogenetic frame and the evolutionary history of described taxa, 

before to establish, redefine or improve – or not - operational criteria necessary to species 

delimitation. 

 

Thirty years of research in few lines: what is really known? 

If former allozyme studies anticipated the rise of (mt)DNA studies in trout and identified 

phylogenetic/phylogeographic signals (reviews in Ferguson, 1989; Guyomard, 1989; 

García-Marín et al., 1999), works by Bernatchez et al. (1992), Bernatchez and Osinov 

(1995), and Bernatchez (2001) represent the main first attempts to investigate trout diversity 



 
 

using sequencing molecular tools in a Pan-European perspective. Since these works, main 

observations might be briefly summarized: 

(1) The five original mtDNA StSS lineages reported in Bernatchez et al. (1992) and 

Bernatchez (2001) – namely Atlantic, Danubian, Mediterranean, Adriatic and 

marmoratus (Fig. 2) – still anchored most studies in the field, but, their respective 

distribution area became more complex, resulting in the co-occurrence of mtDNA 

clades in some areas (e.g., Italy, Corsica, Balkans) rather than their allopatric 

distribution, as initially described (Sanz, 2018 for review);  

(2) Few other StSS lineages have been added to the original ones in Spain (Duero: 

Suárez et al., 2001), Turkey (Tigris: Bardakci et al., 2006; Sušnik et al., 2005), Morocco 

(Dades; Snoj et al., 2011) and Northern Africa (Tougard et al., 2018) (Fig. 2). Sub-

lineages related to the Atlantic lineage have been reported in Central Europe (e.g. 

Cortey et al., 2009); 

(3) Some species within the complex have lost their initial status and now related to one 

of the original StSS clade (Kalayci et al., 2018; McKeown et al., 2010; Sanz, 2018; Snoj 

et al., 2010; Sušnik et al., 2007a; Tougard et al., 2018). High rate of invalid taxa is not 

surprising in trout (Jonsson & Jonsson, 2011), and in salmonids in general (e.g. Adams 

& Maitland, 2007). However, the problem goes beyond taxon names and affects the 

understanding of evolutionary history. For example, Lobón-Cerviá (2018) reports a 

possible synonymy between S. macrostigma and S. cettii, when Tougard et al. (2018) 

questioned the reality of S. macrostigma. Authors proposed S. cettii as belonging to the 

Adriatic StSS (e.g., Gratton et al., 2014), while Tougard et al. (2018) linked S. 

macrostigma to the North African StSS (Fig. 2). One or two species? One or two 

evolutionary histories? What is/are the realised distribution(s)? Confusion reigns. 

Furthermore, some OTUs should be hybrids (Razpet et al., 2007; McKeown et al., 

2010; Gratton et al., 2014). Otherwise, mtDNA data confirmed the classification of 

some species outside StSS: S. obtusirostris restricted to the western Balkans (Snoj et 

al., 2002) and S. ohridanus endemic to Lake Ohrid (Phillips et al., 2000; Sušnik et al., 



 
 

2006), with additional support coming from nuclear data (e.g. Pustovrh et al., 2014; 

Lecaudey et al., 2018). A proposal to erect the marmoratus lineage as a species outside 

StSS has been made by Pustovrh et al. (2014) based on nuclear data, but not 

thoroughly validated so far. 

(4) One origin in the Middle East or/and Mesopotamia is postulated with a probable 

colonization of northern Europe by the Caspian and the Black Sea, and a colonization 

of Southern Europe following a Mediterranean route, southern of the Anatolian plateau 

(Bardakci et al., 2006 and references therein). This point is probable and evidence also 

comes from comparisons with other species groups (e.g. Squalius and Chondrostoma; 

Durand et al., 2002, 2003). The phylogeny presented in Fig. 2 based on StSS mtDNA 

haplotypes captured little of such information, placing in this case all the western 

European lineages (Duero, Atlantic and North African) at the root of the mtDNA brown 

trout phylogeny. It thus emphasizes one Atlantic refuge/Western European for 

European fish (e.g. Bryja et al., 2010; Culling et al., 2006; Durand et al., 1999) that has 

been discussed in trout (e.g. Sanz 2018) and Atlantic salmon (S. salar; e.g., Finnegan 

et al., 2013). A refuge is however not an origin. MtDNA taxonomic frames provide 

interesting but incomplete versions of evolutionary histories (Dellicour & Flot, 2018; 

Toews & Brelsford, 2012), and no Pan-European nuclear-DNA study is available in 

trout so far. Sanz (2018) reviewed and proposed mtDNA estimates for divergence time 

among S. ohridanus-S. obtusirostris and S. trutta that rarely exceed 2 Myr (i.e. Early 

Pleistocene, concordant with the oldest fossil attributed to S. trutta; Vladimirov, 1946). 

However, recent fossil-calibrated, nuclear estimates provided divergence times around 

4-6 Myr between brown trout and S. ohridanus-S. obtusirostris, and divergence with 

Atlantic salmon dating back from the Middle Miocene (15-10 Myr) (Crête-Lafrenière et 

al., 2012; Lecaudey et al., 2018). Unfortunately, for both mtDNA and nuclear estimates, 

this did not extend to other OTUs than those reported in Fig. 2. 

(5) Finally, if we emphasize the lack of updated molecular phylogeny encompassing 

most proposed trout taxa in this piece, no complete morphology-based phylogeny has 



 
 

been proposed either. Only partial attempts including few taxa have been produced 

(e.g., Salmanov & Dorofeyeva, 2001). Correlations between molecular and 

morphological observations supporting taxonomy resulted in mixed results (see Sanz, 

2018; Delling et al., 2020). Further investigations are requested to understand the 

molecular underpinnings of observed phenotypic and life-history differences that led to 

trout biocomplexity. To date, only Jacobs et al. (2018) really addressed this issue at a 

genomic scale for the S. trutta/S. ferox ‘species’ pair. 

The initial frame that focused on StSS is thus valid, now better evaluated, and it has 

been enriched by additional lineages and better delineation of relationships to few other 

taxa. It however remains mostly dependent on uniparentally inherited mtDNA data (Fig. 1). 

Overall, the number of supported taxa and more importantly their relationships, their rate 

and patterns of diversification, their colonization histories, and their links to phenotypic 

diversification that support taxonomic descriptions remain obscure. Deep knowledge is a 

mirage and we may question if scientists built a complex to not face their icon. 

 

Two more frames 

If a coherent phylogenetic frame is still missing, two other frames strongly cohabit in trout 

molecular studies: one concerns species definition, taxonomy and their associated revisions 

(supra and Fig. 2), while a second is sounded in conservation issues – often crucial in trout 

- and should be ‘taxonomy independent’ (Splendiani et al., 2019; see also Stanton et al., 

2019). These two frames are generally considered fundamental to design efficient 

biodiversity conservation priorities and management strategies (Allendorf, 2012; Eizaguirre 

& Baltazar-Soares, 2014), but their uncoupling has been promoted by some agencies (e.g. 

Haig et al., 2006). Briefly said, operational criteria to species delimitation should not be 

confused with operational criteria for conservation (e.g. Raposo et al., 2020). In trout, the 

inappropriateness of considering the “old” zoogeographic frame for conservation and the 

preservation of its evolutionary diversity has been already discussed (Antunes et al., 2001; 

Apostolidis et al., 2011; McKeown et al., 2010; Schenekar et al., 2014). Its use remains 



 
 

unfortunately pregnant while focus on local (meta)populations could be advertised to 

prioritize issues that are prompted to more efficient management and deal with biological 

characteristics, ecological and/or evolutionary potentials (Antunes et al., 2001; Splendiani 

et al., 2019). However, because species is the only recognized unit to frame conservation 

policies and because rare and endemic species rather than widely distributed ones are 

favoured, the two frames remain unfortunately lumped in trout by putting the species status 

or the lineage at the conservation forefront. Numerous trout studies thus focused on events 

occurring at temporal and/or spatial scales that are poorly relevant to conservation 

management and quite descriptive at the level of OTUs (e.g. updated distribution of 

haplotypes pointing new records or levels of diversity that are not related to life history or 

ecological data).  

Other approaches that consider “the best of all worlds” might be substituted (e.g., 

Mee et al., 2015). Pillars of sands should be avoided, and, by abusively mixing the two 

frames, the goal to address the big phylogenetic picture, to reduce taxonomic uncertainty 

and to better understand the processes that shaped the brown trout complex has been 

progressively lost. This big picture has perhaps become still more difficult to address as 

new putative trout species have been described over the last fifteen years, notably in 

Morocco (Delling & Doadrio, 2005; Doadrio et al., 2015) and the Anatolian and Taurus 

regions, including Tigris and Euphrates drainages (e.g., Turan et al., 2011, 2014, 2017, 

2020). These are areas where novel StSS lineages were described (Dades, Tigris, see 

above), and perhaps close to the putative centre of origin of brown trout for Anatolian trout. 

We thus do not currently know how these taxa are related, if they clustered within or outside 

StSS (could be considered as valid taxa or not, sensu Galtier, 2019), and which portion of 

trout evolutionary history they may allow to better understand.  

 

The future 

The next step in trout study is to handle the full complexity of phylogenetic relationships to 

learn how trout diversity arises and changes. Picking up only previously described ‘species’ 



 
 

one by one for further molecular comparison with StSS has become a dead-end. After 

decades of studies using maternally inherited mtDNA markers or - more generally - reduced 

marker sets, “going large” with next generation sequencing (NGS) technologies that provide 

access to thousands of nuclear loci (e.g. single nucleotide polymorphisms [SNPs]) and 

genomic features (e.g., Wellenreuther et al., 2019) to delineate the underlying genealogy is 

undoubtedly the key in trout. Panels of genome-wide distributed SNP markers have proved 

suitable for phylogenomic analysis (Leaché & Oaks, 2017) and updated the understanding 

about the patterns and the mechanisms of lineage diversification, together with species 

delimitation (e.g., Chan et al., 2020; Díaz-Arce et al., 2016; Hughes et al., 2020; Leaché et 

al., 2014; Song et al., 2017). This includes fish species complex in sticklebacks (Guo et al., 

2019), roaches (Baumsteiger et al., 2017), cichlids (e.g. Willis, 2017); suckers (Bangs et al., 

2020), topminnows (Duvernell et al., 2019), and coregonids (Coregonus ardeti species 

flock; Ackiss et al., 2020). Based on several thousands of polymorphisms, Copus et al. 

(2018) proposed to reduce the Gila robusta complex to a single species. NGS data also 

provided with better assessment of origin, colonization routes, demographic histories 

including admixture and introgression, and/or identification of stage of divergence during 

the speciation process in diverse fish species (e.g., Jeffries et al., 2016; Fang et al., 2018; 

Lucek et al., 2018; Ravinet et al., 2018; Rougemont & Bernatchez, 2018). For example, the 

pattern of reticulate evolution between S. obtusirostris and the Adriatic clade of S. trutta 

described by Sušnik et al. (2007b) should receive in depth evaluation. Trout, however, 

covers perhaps more putative OTUs than any other examples, and OTU-rich taxa appeared 

yet especially challenging to investigate these issues (e.g. Dincă et al., 2019; Chambers & 

Hillis, 2020). Actually, it is recognized that a limited number of sampled genomes per OTU 

may provide access to substantial information, including “evolutionary process connectivity” 

(i.e. how contemporary observed connectivity and diversity reflect long term 

selective/adaptive and demographic history, including patterns of genetic admixture and 

speciation; Gagnaire, 2020). The ever-decreasing cost to access genome data would 

probably no longer constrains this issue. 



 
 

The release of important genomic resources such as the Atlantic salmon (Lien et al., 

2016; GenBank: GCA_000233375.4) and brown trout (GenBank: GCA_901001165.1) 

genomes provide substrates to progress in trout phylogeny. SNPs are accessible in S. 

trutta, but mostly used however in a population genomics framework (e.g., Andersson et 

al., 2017; Drywa et al., 2013; Leitwein et al., 2016; Saint-Pé et al., 2019). Jacobs et al. 

(2018) used SNPs to document the divergence in the S.trutta/S. ferox ‘species’ pair 

occurring in Loch Maree catchment (Scotland), but this did not represent a phylogenetic 

study. Only Lecaudey et al. (2018) used SNPs in a phylogenetic context, but they were 

interested in higher phylogenetic relationships than the ones sustaining the brown trout 

complex. 

The production of a more complete phylogeny including many taxa seem possible, 

but challenges have to be overcome. This includes the relatively young history of 

divergence for some OTUs, taxon sampling, choosing marker types, or identification of 

orthologous/paralogous genes (single-copy vs gene duplicates) in trout. As paralogs 

impede investigations in salmonids (Lecaudey et al., 2018), databases (Pasquier et al., 

2016; Samy et al., 2017) and tools providing guidelines for de novo or graph-based 

inference methods for orthologous gene identification have been developed (Kapli et al., 

2020; Smith & Hahn, 2020). Many of them seem however already identified owing to 

transcriptome assembly in the brown trout (Carruthers et al., 2018) and consolidate 

resources to address this challenging key task. While the number of markers cannot be 

considered sufficient to accurate phylogeny estimation (Pyron, 2015) and their nature may 

lead to conflicting results (e.g. Reddy et al., 2017), results by Collins and Hrbek (2018) 

suggested good performance of SNP data coming from restriction-site-associated DNA 

(RAD) analysis to address relatively recent and shallow phylogenies. However, relevance 

of models behind RAD-based and other SNP analysis remains to be considered further 

(Bravo et al., 2019). Among methods, the multispecies coalescent (MSC) emerged to tackle 

complex phylogenies in the age of increasing access to genomic data (e.g., Rannala & 

Yang, 2017). MSC is a statistical framework based on coalescent theory that explicitly 



 
 

accounts for gene tree discordance due to incomplete lineage sorting and was initially 

devoted to identify ‘species’ as entities between which genetic exchanges have been 

negligible. It may now address more complex demographic modelling during speciation 

(e.g., Hey et al., 2018; Long & Kubatko, 2018), have been extended to phylogenetic network 

as the multispecies network coalescent (e.g., Wen et al., 2016; Zhang et al., 2018), and 

recognized as “broadly” efficient (Hillis, 2019; Kapli et al., 2020; Rannala & Yang, 2017). 

Guidelines and tools regarding coalescent-based species delimitations and further testing 

procedures are regularly enriched (e.g., Hey and Pinho, 2012; Carstens et al., 2013; Flouri 

et al., 2020; Jones, 2017; Kapli et al., 2020; Liu et al., 2019; Luo et al., 2018). In fish, 

ancestral geographic distribution or estimation of divergence times among closely related 

lineages benefited of such new statistical modelling approaches in sticklebacks (Fang et 

al., 2020). In cichlids, Olave and Meyer (2020) illustrated capacities to deal with recent 

radiation events that might also be present in some lacustrine trout (e.g., S. ischchan in 

Lake Sevan, Armenia, in which four sympatric morphs were recorded; Dadikyan, 1986). 

Despite access to statistical procedures and genomic resources, species are 

hypotheses and not inherently subjectives, because of artificial cut-offs in the process of 

divergence (e.g. Hey, 2001; De Queiroz, 2007; Pante et al., 2015). MSC – or any other 

method (e.g. approximate Bayesian computations) - is then not a magic bullet and 

improving trout phylogeny that describe a speciation process by analyzing genome-wide 

data sets is not sufficient to establish criteria for taxon delimitation (e.g. Chambers & Hillis, 

2020; Stanton et al., 2019; Sukumaran & Knowles, 2017; Willis, 2017). Result accuracy and 

criteria for taxon delimitation have to be considered in light of complementary knowledge 

coming from different perspectives, including phenotypic and ecological information (Barley 

et al., 2018; Campillo et al., 2020; Hillis, 2019; Solís-Lemus et al., 2015; Sukumaran & 

Knowles, 2017), as well as geographical/distributional consideration (e.g., De Queiroz, 

2007; Hillis, 2019, 2020). In the roundtail chub (G. robusta) complex, Copus et al. (2018) 

showed that morphological variation reflected phenotypic plasticity and that only molecular 

variation could offer consistent material for taxa delimitation. Willis (2017) also discussed 



 
 

the real necessity of species delimitation in peacock cichlids (Cichla pinima species 

complex), because their evolutionary history could not be unambiguously rendered as 

discrete units. Concurrently, Kautt et al. (2018) showed that Midas cichlid species complex 

from Nicaraguan crater’s lakes can be described as independent evolutionary lineages that 

established differences in morphology, ecological settings and distribution, suggesting the 

likely existence of criteria for taxa/species delimitation in less than 2000 generations. 

‘Going large’ offers to explore many facets of trout speciation, strengthen the 

interplay between systematics, phylogeography and speciation genomics (Galtier, 2019), 

and operate to renew links with conservation issues (Coates et al., 2018; Stanton et al., 

2019; Raposo et al., 2020). It may allow for the definition of shared operational criteria for 

trout (sub-)species delimitations and to set aside a current situation where many trout taxa 

– while reproductively non-isolated - have been described as tips of one unknown 

phylogeny. Carstens et al. (2013) and others proposed to be conservative when delimiting 

species and the current situation militates for recognizing only few trout species. Actually 

only S. ohridanus and S. obtusirostris seem to have receive (relatively) sufficient molecular 

support as independent taxa. Much work has still to be done and trout from the Anatolian 

and Taurus regions are certainly the most interesting taxa that might contribute to elucidate 

the trout phylogenetic puzzle. 

Finally, because of the availability of OTUs present only as museum specimens (e.g. 

S. pallaryi), the study of ancient or degraded DNA has also to be more deeply considered 

in trout. Few studies considered museum specimens, only using mtDNA (Splendiani et al. 

2016, 2017; Levin et al., 2018; Tougard et al., 2018). Study of nuclear ancient DNA is 

challenging, but may improve knowledge (Chassaing et al., 2016; Lopez et al., 2020). 

 

In the meantime 

If the bar is too high before to gather extensive genome-wide data, a pragmatic approach 

remains the study of complete mitogenomes. Trout mitogenomes are recent and now 

retrieved from both contemporary and archived samples (e.g., Nedoluzhko et al. 2018; 



 
 

Sahoo et al., 2016; Tougard et al., 2018; first S. salar mitogenome by Hurst et al., 1999). 

While mtDNA is uniparentally inherited, produces over-pronounced geographic structuring 

and is a notable source of mito-nuclear discordance (i.e. produces very partial pictures of 

connectivity and gene flow among OTUs; Petit & Excoffier, 2009; Toews & Brelsford, 2012), 

phylogenies using complete mitogenome remain largely indicative of the speciation process 

and paleogeographic events (Ben Chehida et al., 2020; Jacobsen et al., 2012; Wang et al., 

2019; see also Collins & Hrbek, 2018)). Mitogenomes enabled support to complex situations 

in which specific status was not previously assessed and/or ambiguous (e.g. Beheregaray 

et al., 2017; Buckley et al., 2018), providing also support for a more integrative and 

corroborative taxonomy in which morphology and molecular species delineation have been 

shown to match (Pedraza-Marrón et al., 2019) or not (Vernygora et al., 2018). 

In the meantime, we may also ask ourselves if progress in molecular trout studies 

do not also depend on a large cooperative research network that may gather samples from 

many OTUs, from many selected locations (and museums) and further ecological 

information to push trout research to new areas. If local research groups exist (e.g., Balkan 

Trout Restoration Group: http://www.balkan-trout.com/research.htm), transnational studies 

remain few, mostly binational, and large-scale international programs regarding trout date 

back to two decades ago (TroutConcert; Laikre, 1999). New collaborations are certainly 

necessary to reach novel achievements and make the mirage of trout molecular studies 

disappear to both splitters and lumpers. 
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Captions of the Figures 

 

 

Fig. 1: Evolution of the number of publications over the 1989-2020 period dealing with trout 

systematics found in public reference databases (Web of Sciences, Google Scholar, 

PubMed) in June 2020 using “Salmo”, “phylogeny”, or “systematics” as queries, then curated 

(e.g. reviews reporting data from former studies were discarded to avoid to count a study 

twice). A reference was considered relevant when, at least, two Salmo taxonomic species 

or S. trutta evolutionary lineages were included in the studied dataset, and phylogenetic 

relationships were represented by a tree or a network. The full list of references (N = 128) 

used in this study is available upon request to the contact author. MtDNA: PCR-based 

sequence of mitochondrial DNA genes; nucDNA: PCR-based sequence of nuclear genes 

and microsatellites; NGS: data obtained through next-generation sequencing technologies, 

including nuclear SNPs and mitogenomes. Studies strictly based on allozymic data were not 

considered. 

 

Fig. 2: Simplified Bayesian phylogenetic tree reconstructed from a concatenated dataset 

including the complete mitochondrial control region (1019 base pairs) and cytochrome b 

(1140 base pairs) genes. Numbers at nodes are for posterior probabilities (≥0.80) and 

bootstrap percentages (≥50%), while “-” are for nodes weakly supported in either the 

Bayesian or maximum likelihood analyses. Lineage and species names are indicated on the 

right. Outside the Atlantic salmon taken as outgroup, note that only four taxa are considered 

in this tree (S. trutta, S. ohridanus, S. obtisrostris and S. marmoratus as the marble trout 

lineage is often considered a separate OTU [e.g., Pustovrh et al., 2014]), meaning this 

phylogeny includes only 17.4% (4 out of 23) species recognized by IUCN. The horizontal bar 

under the phylogenetic tree indicates the number of nucleotide substitutions per site. For 

details about sampling and phylogenetic analyses, see Tougard et al. (2018). 
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