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Abstract

We present a general finite deformation higher-order gradient elasticity theory. The govern-

ing equations of the higher-order gradient solid along with boundary conditions of various

orders are derived from a variational principle using integration by parts on the surface. The

objectivity of the energy functional is achieved by carefully selecting the invariants under

rigid-body transformation. The third-order gradient solid theory includes more than 10.000

material parameters. However, under certain simplifications, the material parameters can be

greatly reduced; down to 3. With this simplified formulation, we develop a nonlocal operator

method and apply it to several numerical examples. The numerical analysis shows that the

high gradient solid theory exhibits a stiffer response compared to a ’conventional’ hypere-

lastic solid. The numerical tests also demonstrate the capability of the nonlocal operator

method in solving higher-order physical problems.
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1. Introduction

Gradient theories have attracted increasing interest due to their capability of describing

phenomena such as size effects, edge and skin effects as well as nonlocal effects in mate-

rials, which cannot be tackled by conventional continuum mechanics. Gradient elasticity

theory introduces an internal length scale and higher-order gradients of the displacement

field to account for size effects at the micro- or nano-scale. Gradient theories emerge from

considerations of the microstructure in the material at micro-scale, where a mass point after

homogenization is not the center of a micro-volume and the rotation of the micro-volume

depends on the moment stress/couple stress as well as the Cauchy stress. The starting

point of gradient elasticity theory can be traced back to Cosserat theory in 1909 [1]. A

variety of gradient elasticity theories have been proposed which include Mindlin solid theory

[2, 3], nonlocal elasticity [4], couple stress theory [5, 6, 7], modified couple stress [8, 9] and

second-grade materials [10].

Gradient elasticity as a generalization of classical elasticity includes the contribution of

strain gradients in the strain energy. Different from classical elasticity theory, such consid-

eration enables gradient elasticity to model some interesting phenomena (such as size effect,

the stress and strain effects on surface physics, nonlocal effect at micrometer/nanometer

scale). Muller and Saul [11] reviewed the importance of surface and interface stress effects

on thin films and nano-scaled structures, including the self-organization and elastic driven

instabilities of nano-structures. Fischer etal. [12] studied the role of the surface energy and

surface stress in phase-transforming nano-particles. Davydov etal. [13] showed that a con-

tinuum based on gradient elasticity with surface energy contributions can capture size effects

that are observed in atomistic simulations. In Refs [14, 15, 16] , it is shown that gradient

elasticity theory can circumvent stress singularities in local elasticity. Gradient elasticity is

closely linked to flexoelectricity, where the strain gradient causes an electromechanical effect

[17, 18, 19]. Due to the regularity property of continuum mechanics, gradient elasticity

has been applied to problems with strain localization [20, 21, 22]. The micro-structure in

continua also plays a crucial role in metamaterials [23]. Besides strain gradients, velocity
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gradients enable a more realistic description of dispersive characteristics of the wave propaga-

tion in a nonhomogeneous medium such as polymer foams, porous materials, high-toughness

ceramics [3, 24] and carbon nanotubes [25].

Second-gradient elasticity, taking into account the Hessian of the strain tensor, can be

viewed as a generalization of gradient elasticity. This theory has been firstly proposed by

Mindlin in 1965 [26] in order to account for cohesive force and surface-tension in solids.

Beside the second-gradient term in the displacement field, Polizzotto [27, 28] studied the

static/dynamic behavior of linear second-gradient elasticity with second velocity gradient

inertia. Askes etal. [29, 25] showed higher order inertia models are able to realistically

describe wave dispersion phenomena in a nonhomogeneous medium. Javili etal. [30] derived

the governing equations and boundary conditions for third-gradient elasticity with geomet-

rical nonlinearities from variational principles. In the derivation, the bulk and boundary

(surface and curve) energies are considered as independent energy forms and three balance

laws are established in their respective domains. Reiher etal. [31, 32] developed a finite

third-strain gradient elasticity/elastoplasticity theory.

The higher order continuity in gradient elasticity theory imposes challenges on many

numerical methods. In order to satisfy the C1 or C2 continuity, a variety of numerical

methods have been developed, see for instance the mixed finite element method proposed

in [33, 34, 35, 16], boundary element method [36], meshless methods [37, 38], isogeometric

analysis (IGA) formulations [39, 40, 41, 42, 43, 44] and nonlocal operator method (NOM) [45,

46, 47]. NOM is proposed as a generalization of dual-horizon peridynamics [48, 49, 50, 51]. It

uses an integral form (i.e.nonlocal operators) to replace the local partial differential operators

of various orders. The nonlocal operators can be viewed as an alternative to the partial

derivatives of shape functions in FEM. Combined with a variational principle or weighted

residual method, NOM obtains the residual vector and tangent stiffness matrix in the same

way as in FEM. There are three versions of NOM, first-order particle-based NOM [47, 52],

higher order particle-based NOM [46] and higher order NOM based on numerical integration

[45]. The particle-based version can be viewed as a special case of NOM with numerical

integration when nodal integration is employed. NOM has been applied to the solution of
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the Poisson equations in high dimensional space, von-Karman thin plate equations, fracture

problems based on phase fields [46], waveguide problem in electromagnetic field [52] and

gradient solid problems [45]. NOM is suitable for problems requiring higher order continuity

though its application to higher order gradient elasticity has not been explored yet.

Current higher order gradient solid theory is limited to third order. Javili etal. [30]

implemented the variational derivation of the third-gradient elasticity without considering

the specific forms of energy. The derivation follows the setting of first Piola-Kirchhoff stress.

The concrete form of third-strain gradient theory with finite deformation is proposed in [31],

where the objectivity of the energy form is emphasized. However, an associated implemen-

tation is missing to our best knowledge. In this paper, we propose a different strain energy

density with objectivity. The energy form is based on the second Piola-Kirchhoff stress and

is invariant under rigid body transformation. The number of gradient order is extended to 5

in 2D and 3 in 3D. For the first time, the geometrical nonlinear fifth-order gradient elasticity

in 2D and third-order gradient elasticity in 3D are studied by numerical experiments based

on nonlocal operator method.

The content of the paper is outlined as follows. The general strain energy density for

large deformations is proposed for the fourth-order gradient elasticity in section 2. In Section

3, we derive the governing equations and the associated boundary conditions for the third-

order gradient elasticity by using variational principles and exploiting integration by parts

on surfaces. In section 4, the framework of the particle-based nonlocal operator method is

briefly summarized and its implementation for solving higher order gradient solids presented.

In section 5, several representative numerical tests, including a point displacement load,

point force load and the influence of the length scale in linear/nonlinear gradient elasticity,

are presented to study the physical response of higher order gradient elasticity. Finally, we

conclude our manuscript in section 6.

2. Higher order gradient solid with finite deformation

Let us denote the material coordinates (in the initial configuration Ω) by X, the spatial

coordinates (in the current configuration Ωt) by x and the displacement field by u := x−X.
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The deformation gradient F , right Cauchy Green tensorC and Green-Lagrange strain tensor

E are written as

F =
∂x

∂X
= ∇x = ∇u+ I (1)

C = F T · F ,E =
1

2
(C − I) (2)

where I is the identity matrix and∇� = ∂�
∂X

. The principle of frame indifference requires the

quantity remain invariant under rigid body transformation x′ = Q(t)x+c(t) where c(t) is the

rigid translation vector, Q(t) the (orthogonal) rotation matrix satisfying QQT = QTQ = I.

Vectors and second-order tensors are objective if they are related by the rotation tensor as

u′ = Q · u (3)

T ′ = Q · T ·QT (4)

The deformation gradient under rigid body transformation is related by

F ′ =
∂x′

∂X
=
∂x′

∂x
· ∂x
∂X

= Q · F (5)

Quantities are invariant if they remain unchanged by the rigid body transformation. Ap-

parently, the right Cauchy tensor is invariant as C ′ = F ′TF ′ = F TQTQF = F TF = C.

Let F,i := ∂F
∂Xi

denote the partial derivative of F with respect to Xi. The derivative of F ′

and Q can be written as

F ′,i = Q,iF +QF,i (6)

QT
,iQ+QTQ,i = 0 (7)

The gradient of C ′ can be derived as

C ′,i = (F ′TF ′),i = F ′
T
,iF
′ + F ′

T
F ′,i

= (F TQT
,i + F T

,i Q
T )QF + F TQT (Q,iF +QF,i)

= F TQT
,iQF + F T

,i Q
TQF + F TQTQ,iF + F TQTQF,i

= −F TQTQ,iF + F TQTQ,iF + F TF,i + F T
,i F

= (F TF ),i = C,i. (8)
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Therefore ∇C is invariant. Note that ∇F is neither objective nor invariant since

F ′,i = (QF ),i = Q,iF +QF,i 6= F,i (9)

∇F :̇∇F =
∑
i

F,i : F,i 6=
∑
i

F ′,i : F ′,i. (10)

Hence ∇F cannot be used directly to define the energy density. However, the invariant

property makes ∇C a good choice. Different orders of strain gradient can be written as

H =
∂E

∂X
= ∇E =

1

2
(F T∇F +∇F TF ) (11)

for the first gradient strain tensor,

G =
∂H

∂X
=
∂2E

∂X2
= ∇2E (12)

for the second-gradient strain tensor, and

L =
∂G

∂X
=
∂3E

∂X3
= ∇3E (13)

for the third-gradient strain tensor and with ∇n = ∇⊗ ...⊗∇︸ ︷︷ ︸
n times

. Most ’computational’

contributions focus on applications with small strain gradients. In this case, strain gradi-

ents of different orders are decoupled. Note that the expression in L contains derivatives

ranging from ∇u to ∇4u, which is due to geometric nonlinearities arising from finite de-

formation. The exact forms of L,G can be derived with Mathematica. It can be verified

that C,E,H ,G,L are invariants under rigid body translations and rotations. Thus, these

quantities can be used to define the stresses and generalized stresses

Sij = DijklEkl with Dijkl =
∂Sij
∂Ekl

(14a)

Rijk = EijklmnHlmn with Eijklmn =
∂Rijk

∂Hlmn

(14b)

Qijkl = FijklmnstGmnst with Fijklmnst =
∂Qijkl

∂Gmnst

(14c)

Pijklm = GijklmαβγηδLαβγηδ with Gijklmαβγηδ =
∂Pijklm
∂Lαβγηδ

(14d)
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Eq.14a has the exact form of the Saint Venant–Kirchhoff model. Rijk, Qijkl and Pijklm are

defined as the generalization of the Saint Venant-Kirchhoff model.

The strain energy density in the initial configuration can be assumed as

φ =
1

2
(SijEij +RijkHijk +QijklGijkl + PijklmLijklm) (15)

=
1

2
(EijDijklEkl +HijkEijklmnHlmn +GijklFijklmnstGmnst + LijklmGijklmαβγηδLαβγηδ) (16)

where D is a 4th-order tensor, E a 6th-order tensor, F an 8th-order tensor and G a 10th-order

tensor. The second Piola-Kirchhoff stress is work conjugate to the Green-Lagrange strain

[53, 54]. Therefore, the generalized second Piola-Kirchhoff stresses define the strain energy

density in the initial configuration and are objective under any rigid body transformations.

The strain energy density, given by Eq.16, is among the most simplified quadratic energy

functionals. This energy functional is required to be positive, which can be satisfied provided

that the material tensors D,E,F and G are positive definite. For an n dimensional space,

a kth-order tensor has nk entries, for example G has 210 = 1 024 elements in 2D and 310 =

59 049 elements in 3D. However, when symmetry conditions are exploited, the number of

elements can be greatly reduced. We discussed the symmetry of a 6th-order tensor in

Appendix A and in Voigt notation in Appendix B. For a third-order gradient solid, there

are thousands of material parameters to be determined, which are complicated to resolve

experimentally. For simplicity, we introduce only three material length scales.

φ(E,∇E,∇2E,∇3E) =
1

2

(
S : E + l21∇S :̇∇E + l42∇2S ·(4) ∇2E + l63∇3S ·(5) ∇3E

)
(17)

where ·(k) is the generalization of the inner product, for example, ·(1) = ·, ·(2) =:, ·(3) = :̇, and

the stresses can be written as

S = D : E (18a)

R = ∇S (18b)

Q = ∇2S (18c)

P = ∇3S. (18d)
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The total internal strain energy in the domain can be expressed as

Fint =

∫
Ω

φ(E,∇E,∇2E,∇3E) (19)

We recall that Ω is the initial configuration. Here we used
∫

Ω
{·} :=

∫
Ω
{·} dV . When small

deformations are assumed, the Green-Lagrange strain and second Piola-Kirchhoff stress

degenerate to the linear strain and Cauchy stress tensor:

E → ε =
1

2

(
(∇u)T +∇u

)
(20)

S → σ = D : ε (21)

Then Eq.17 can be written as

φ(ε,∇ε,∇2ε,∇3ε) =
1

2
(σ : ε+ l21∇σ:̇∇ε+ l42∇2σ ·(4) ∇2ε+ l63∇3σ ·(5) ∇3ε) (22)

Based on the simplified higher gradient elasticity in Eq.17, the general nth-gradient

elasticity can be written as

φ(E,∇E,∇2E, ...,∇nE) =
1

2

(
S : E +

n∑
k=1

(lk)
2k∇kS ·(k+2) ∇kE

)
(23)

where lk is the internal length scale of kth-order. We employ En elasticity (n = 0, 1, 2, 3, 4, 5)

to abbreviate the nth-gradient hyperelasticity theory wherein ∇nE is used to define the

energy density functional. Accordingly, the conventional hyperelasticity is denoted by E0

elasticity, gradient elasticity is abbreviated by E1 elasticity and the second-gradient elasticity

by E2 elasticity. The highest order of the energy form of En-elasticity is (n+ 1), while that

of the strong form is 2(n + 1). The highest order of gradient elasticity we implemented is

the E5 elasticity in 2D. For E5 elasticity, the governing equations are a set of 12th-order

nonlinear partial differential equations (PDEs).

3. Governing equations of second-gradient solid

3.1. Integration by parts on close surface

Before delving into the variational derivation of second-gradient solids, we briefly re-

view the integration by parts in domains and on surfaces using the following abbreviations
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∂Ωi

∂2Ωij

Ω

n

m

γ

Figure 1: Domain with piecewise smooth surfaces; n is the outward unit normal direction of surface boundary

∂Ω, γ is the tangent direction of line boundary ∂2Ωij , m = γ ×n is the outward normal unit vector of line

boundary.

∫
Ω
{·} :=

∫
Ω
{·} dV and

∫
∂Ω
{·} :=

∫
∂Ω
{·} dΓ. The integration by parts for tensor fields in Ω

is ∫
Ω

S : ∇u =

∫
∂Ω

n · S · u−
∫

Ω

∇ · S · u (24)

where S is the second-order tensor field and u is the vector field.

According to Refs [55, 56], the integration by parts under the assumption of smooth

surfaces can be expressed as∫
∂Ω

S : ∇u =

∫
∂Ω

S : ∇nu+

∫
∂Ω

S : ∇tu =

∫
∂Ω

(
S : ∇nu+ (gn · S −∇t · S) · u

)
(25)

where g = ∇t ·n is the Gauss curvature, ∇t and ∇n are the tangential and normal gradient

∇t = (1− nnT ) · ∇, ∇n = nnT · ∇ (26)

In the above derivation, ∇u needs to be divided into the tangential and normal parts with

respect to the surface, i.e.∇u = ∇tu + ∇nu. For the case of piecewise smooth surfaces

shown in Fig.1, the boundary term should be considered explicitly,∫
∂Ω

S : ∇u =

∫
∂Ω

(
S : ∇nu+ (gn · S −∇t · S) · u

)
+

∫
∂2Ω

m · S · u (27)

where m is the outward normal direction of ∂Ω in the tangent plane defined by n. If both S

and ∇u are defined based on the tangent space of the surface, i.e. n ·S = 0 and ∇nu = 0,

the integration by parts on surface is the same as Eq.24.
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3.2. Variational derivation of second-gradient solid

In this paper, we only consider the higher order bulk energy. For the boundary (surface

and curve) energies, the reader is referred to [30] for more details. The second-gradient

solid for linear elasticity with second velocity gradient inertia can be found in [27, 28]. Let

φ := φ(u,∇u,∇2u,∇3u) denote the internal energy density of a second-gradient solid (E2

elasticity). The variation of the internal energy in Ω is then given by

δFint =

∫
Ω

∂φ

∂u︸︷︷︸
b

·δu+
∂φ

∂∇u︸ ︷︷ ︸
S1

: ∇δu+
∂φ

∂∇2u︸ ︷︷ ︸
S2

:̇∇2δu+
∂φ

∂∇3u︸ ︷︷ ︸
S3

:: ∇3δu

=

∫
Ω

b · δu︸ ︷︷ ︸
p1

+S1 : ∇δu︸ ︷︷ ︸
p2

+S2 :̇∇2δu︸ ︷︷ ︸
p3

+S3 :: ∇3δu︸ ︷︷ ︸
p4

(28)

where b can be viewed as the body force density, Si denotes the work conjugate to ∇iu, (i =

1, 2, 3) and Si the general stress defined in the initial configuration:

S3 =
∂φ

∂∇3u
=

∂φ

∂∇2E
::
∂∇2E

∂∇3u
(29a)

S2 =
∂φ

∂∇2u
=

∂φ

∂∇E
:̇
∂∇E
∂∇2u

+
∂φ

∂∇2E
::
∂∇2E

∂∇2u
(29b)

S1 =
∂φ

∂∇u
=

∂φ

∂E
:
∂E

∂∇u
+

∂φ

∂∇E
:̇
∂∇E
∂∇u

+
∂φ

∂∇2E
::
∂∇2E

∂∇u
(29c)

where E,∇E,∇2E have the forms

E =
1

2

(
∇uT +∇u+∇uT∇u

)
(30a)

∇E =
1

2

(
∇(∇u)T +∇2u+∇(∇u)T∇u+∇uT∇2u

)
(30b)

∇2E =
1

2

(
∇2(∇u)T +∇3u+∇2(∇u)T∇u+

∇(∇u)T∇2u+∇(∇u)T∇2u+ (∇u)T∇3u
)

(30c)

Obviously, higher order strain gradients contain a low order gradient due to the existence

of a geometric nonlinearity. The explicit form of S1,S2,S3 can be derived by mathematical

software such as Mathematica. Since the order of the derivatives is reduced by one each time

when applying integration by parts, we integrate the terms from high order to low order so

that the derived low order term with the existing low order term can be handled together.
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In other words, the term with the third-order gradient is firstly integrated by parts, then

the second-order gradient term and the accumulated gradient terms at last.

The p4 part in Eq.28 via Eq.24 can be written as∫
Ω

S3 :: ∇3δu =

∫
∂Ω

n · S3 :̇∇2δu+

∫
Ω

−∇ · S3 :̇∇2δu

=

∫
∂Ω

n · S3 :̇∇t(∇δu)︸ ︷︷ ︸
p7

+

∫
∂Ω

n · S3 :̇∇n(∇δu)︸ ︷︷ ︸
p8

+

∫
Ω

−∇ · S3 :̇∇2δu︸ ︷︷ ︸
p6

(31)

The p7 part in Eq.31 is obtained via integration by parts on surface∫
∂Ω

n · S3 :̇∇t(∇δu) =

∫
∂Ω

(
gn · (n · S3)−∇t · (n · S3)

)
︸ ︷︷ ︸

V1

: ∇δu

=

∫
∂Ω

V1 : ∇δu︸ ︷︷ ︸
p9

(32)

In above derivation, we abbreviate the long expression as V1. Based on Eq.25, the p9 part

reads ∫
∂Ω

V1 : ∇δu =

∫
∂Ω

V1 : ∇nδu+ (gn · V1 −∇t · V1) · δu (33)

Hence, p4 has the form∫
Ω

S3 :: ∇3δu =

∫
∂Ω

V1 : ∇δu+

∫
∂Ω

n · S3 :̇∇n(∇δu)︸ ︷︷ ︸
p8

+

∫
Ω

−∇ · S3 :̇∇2δu︸ ︷︷ ︸
p6

(34)

The p6 term has the same form as part p3 in Eq.28 and it can be estimated that a new
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surface term similar to p9 part will arise. The summation of p3, p6, p9 can be written as∫
Ω

S2 :̇∇2δu−∇ · S3 :̇∇2δu+

∫
∂Ω

V1 : ∇δu =

∫
Ω

(S2 −∇ · S3):̇∇2δu︸ ︷︷ ︸
by Eq.24

+

∫
∂Ω

V1 : ∇δu

=

∫
∂Ω

n · (S2 −∇ · S3) : ∇δu+

∫
∂Ω

V1 : ∇δu︸ ︷︷ ︸
by Eq.25

−
∫

Ω

∇ · (S2 −∇ · S3) : ∇δu

=

∫
∂Ω

(gn · V1 −∇t · V1 + gn · (n · (S2 −∇ · S3))−∇t · (n · (S2 −∇ · S3)))︸ ︷︷ ︸
V2

·δu

+

∫
∂Ω

(V1 + n · (S2 −∇ · S3)) : ∇nδu+

∫
Ω

−∇ · (S2 −∇ · S3) : ∇δu︸ ︷︷ ︸
p10

=

∫
∂Ω

V2 · δu+

∫
∂Ω

(V1 + n · (S2 −∇ · S3)) : ∇nδu+

∫
Ω

−∇ · (S2 −∇ · S3) : ∇δu (35a)

In the above derivation, the long expression in the second line is abbreviated as V2. Both

integration by parts in the domain and integration by parts on the surface are used in the

derivation.

The gradient order of p10 is identical to that in the p2 part. For simplicity, the integration

by parts of p10 + p2 is∫
Ω

(S1 −∇ · (S2 −∇ · S3))︸ ︷︷ ︸
S4

: ∇δu =

∫
∂Ω

n · S4 · δu−
∫

Ω

∇ · S4 · δu (36)

By using integration by parts in Eq.24 and Eq.25 several times, the variation of the

internal energy can be finally written as

δFint =

∫
Ω

(b−∇ · S4) · δu+

∫
∂Ω

(V1 + n · (S2 −∇ · S3)) : ∇nδu

+

∫
∂Ω

V2 · δu+

∫
∂Ω

n · S4 · δu+

∫
∂Ω

n · S3 :̇∇n(∇δu) (37)

=

∫
Ω

(b−∇ · S4) · δu+

∫
∂Ω

(V2 + n · S4) · δu

+

∫
∂Ω

(V1 + n · (S2 −∇ · S3)) : ∇nδu+

∫
∂Ω

n · S3 :̇∇n(∇δu) (38)
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where

S4 = S1 −∇ · (S2 −∇ · S3) (39a)

V1 = gn · (n · S3)−∇t · (n · S3) (39b)

V2 = gn · V1 −∇t · V1 + gn · (n · (S2 −∇ · S3))−∇t · (n · (S2 −∇ · S3)) (39c)

In Eq.38, we used ∂Ω to denote the boundaries, which should be tailored based on the actual

boundary conditions. The variation of the internal energy yields the work-conjugate pairs

on the boundaries. The expression for V2 describes the contribution from the curvature

related terms (e.g. curvature and curvature gradient on surface) as well as the generalized

stresses of different orders. The contribution from the surface curvature indicates that the

gradient effect or nonlocal effect of the solid may be significant at the ’micro’-scale, where

the surface-to-volume ratio is much larger compared to the macro scale and the surface

curvature for small-scale objects is huge. This relation is consistent with the fact that the

strength of a material at micro-scale is much larger than that at macro-scale.

For the gradient elasticity, the boundary conditions may contain essential boundary

conditions such as translation, the gradient of the translation and force boundary conditions

like stress and couple stress. The gradient of the translation is similar to the prescribed

rotation on the boundary in plate/shell theory, while the couple stress is the work conjugate

to the gradient of the translation.

Based on the boundary work-conjugate pairs in the variation of the internal energy, the

external energy can be constructed as

Fext =

∫
∂Ω0

D

P · (u− ū) +

∫
∂Ω0

N

P̄ · u

+

∫
∂Ω1

D

Q : (∇nu−∇nu) +

∫
∂Ω1

N

Q̄ : ∇nu

+

∫
∂Ω2

D

R:̇(∇n∇u−∇n∇u) +

∫
∂Ω2

N

R̄:̇∇n∇u (40)

where P = (V2 + n · S4),Q = (V1 + n · (S2 −∇ · S3)),R = n · S3, ∂Ωi
D, ∂Ωi

N , (i = 0, 1, 2)

refer to the Dirichlet and Neumann boundary conditions for u of different partial derivative
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orders; ∂Ω0
D designates the constraints of the displacement, ∂Ω1

D denotes the constraints of

the displacement gradient (e.g. fixed rotation state) and ∂Ω1
D describes the displacement

second-gradient; P̄ is the traction load, Q̄ refers to the couple stress load and R̄ is the

higher order couple stress load.

Gradient elasticity deals not only with the gradient of the deformation but also the

gradient of inertia terms [3, 25, 27, 28]. The kinetic energy with velocity gradient can be

written as [28]

K =

∫ t1

t0

∫
Ω

1

2
ρu̇ · u̇+

1

2
ρl2d∇u̇ : ∇u̇ (41)

The variation of the kinetic energy can be written as

δK =

∫ t1

t0

∫
Ω

ρu̇ · δu̇+ ρl2d∇u̇ : ∇δu̇

=

∫ t1

t0

∫
Ω

−ρü · δu− ρl2d∇ü : ∇δu

=

∫ t1

t0

∫
Ω

−ρü · δu+ ρl2d∇ · ∇ü · δu (42)

For any δu, δ∇nu, δ∇n∇u, the Hamilton principle

δK −
∫ t1

t0

δFint +

∫ t1

t0

δFext = 0 (43)

leads to

ρü− l2d∇ · ∇ü = −b+∇ · (S1 −∇ · (S2 −∇ · S3)) in Ω (44a)

u = ū on ∂Ω0
D (44b)

P = P̄ on ∂Ω0
N (44c)

∇nu = ∇nu on ∂Ω1
D (44d)

Q = Q̄ on ∂Ω1
N (44e)

∇n∇u = ∇n∇u on ∂Ω2
D (44f)

R = R̄ on ∂Ω2
N (44g)

The derivation of energies based on variational principle leads very naturally to the governing

equations and various boundary conditions. The maximal order of derivatives in Eq.44a and

14



V2 is 6, 5, respectively. Similarly, the variation of the strain energy density of strain gradient

elasticity (E1 elasticity) can be derived. By setting S3 = 0 in Eq.44 , we obtain the governing

equations and boundary conditions of gradient elasticity

ρü− l2d∇ · ∇ü = −b+∇ · (S1 −∇ · S2) in Ω (45a)

u = ū on ∂Ω0
D (45b)

P = P̄ on ∂Ω0
N (45c)

∇nu = ∇nu on ∂Ω1
D (45d)

Q = Q̄ on ∂Ω1
N (45e)

where Q = n ·S2,P = (gn · (n ·S2)−∇t · (n ·S2) +n · (S1−∇ ·S2)), ∂Ωi
D, ∂Ωi

N , (i = 0, 1)

indicate the Dirichlet and Neumann boundary conditions for u of different partial derivative

orders.

4. Numerical implementation

4.1. Review of Nonlocal Operator Method

NOM uses the integral form to replace the partial differential derivatives of different

orders. We adopted a Total Lagrangian description of motion for the higher order gradient

elasticity NOM. Consider a domain as shown in Fig.2(a), let Xi be spatial coordinates in

the domain Ω; r := Xj −Xi is a spatial vector ranging from Xi to Xj; vi := v(Xi, t) and

vj := v(Xj, t) are the field values for Xi and Xj, respectively; vij := vj − vi is the relative

field vector for spatial vector r.

Support Si of point Xi is the neighborhood of point Xi. A point Xj in support Si
forms the spatial vector r(= Xj−Xi). The support in the NOM can be a spherical domain,

a cube, semi-spherical domain and so on.

Dual-support is defined as a union of points whose supports include X, denoted by

S ′i = {Xj|Xi ∈ Sj}. (46)
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x
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(b)

Figure 2: (a) Domain and notation. (b) Schematic diagram for support and dual-support, all shapes above

are supports, SX = {X1,X2,X4}, S ′X = {X1,X2,X3}.

Point Xj forms the dual-vector r′(= Xi −Xj = −r) in S ′i. On the other hand, r′ is the

spatial vector formed in Sj. One example to illustrate the support and dual-support is shown

in Fig.2(b).

The first-order nonlocal operator method uses the basic nonlocal operators to replace the

local operator in calculus such as the gradient, divergence and curl operators. The functional

formulated by the local differential operator can be used to construct the residual or tangent

stiffness matrix by replacing the local operator with the corresponding nonlocal operator.

The nonlocal gradient of a vector field v for point Xi in support Si is defined as

∇̃vi :=

∫
Si
w(r)vij ⊗ r dVj ·

(∫
Si
w(r)r ⊗ r dVj

)−1

. (47)

The nonlocal gradient operator and its variation in discrete form are given by

∇̃vi =
∑
j∈Si

w(r)vij ⊗ r∆Vj ·
(∑
j∈Si

w(r)r ⊗ r∆Vj

)−1

, (48)

∇̃δvi =
∑
j∈Si

w(r)δvij ⊗ r∆Vj ·
(∑
j∈Si

w(r)r ⊗ r∆Vj

)−1

. (49)
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The operator energy functional for a vector field at point xi is

Fhgi = phg
∫
Si
w(r)(∇̃vi · r − vij) · (∇̃vi · r − vij) dVj (50)

where phg is a penalty coefficient. The residual and tangent stiffness matrix of Fhgi can

be obtained with ease, see [47] for more details. For problems that require higher order

continuity, the higher order NOM is needed. According to Ref [46], a scalar field uj at a

point j ∈ Si can be obtained by a Taylor series expansion at ui in d dimensions with maximal

derivative order not higher than n,

uj = ui +
∑

(n1,...,nd)∈αnd

rn1
1 ...rndd
n1!...nd!

ui,n1...nd +O(r|α|+1) (51)

with

r = (r1, ..., rd) = (Xj1 −Xi1, ..., Xjd −Xid) (52a)

ui,n1...nd =
∂n1+...+ndui
∂Xn1

i1 ...∂X
nd
id

(52b)

|α| = max (n1 + ...+ nd) (52c)

αnd being the list of multi-indexes, given by

αnd = {(n1, ..., nd)|1 ≤
d∑
i=1

ni ≤ n, ni ∈ N0, 1 ≤ i ≤ d} (53)

and N0 = {0, 1, 2, 3, ...}. The number of multi-indices in αnd is (n + d)!/(n!d!) − 1 and all

elements in αnd of Eq.53 can be obtained easily by Mathematica [46]. For any multi-index

(n1, ..., nd) ∈ αnd , the partial derivative and the polynomial are

ui,n1...nd ,
rn1

1 ...rndd
n1!...nd!

, ∀(n1, ..., nd) ∈ αnd . (54)

When the length scale of support Si at ui is taken into account, the Taylor series expan-

sion in Eq.51 can be written as

uj = ui +
∑

(n1,...,nd)∈αnd

rn1
1 ...rndd

hn1+...+nd
i

(hn1+...+nd
i

n1!...nd!
ui,n1...nd

)
+O(rn+1)

= ui +
∑

(n1,...,nd)∈αnd

rn1
1 ...rndd

hn1+...+nd
i

uhi,n1...nd
+O(rn+1) (55)
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where hi is the characteristic length of Si, and

uhi,n1...nd
=
hn1+...+nd
i

n1!...nd!
ui,n1...nd (56)

Let phj , ∂
h
αui and ∂αui denote the list of the polynomials, scaled partial derivatives, partial

derivatives, respectively, based on multi-index notation αnd in Eq.53,

phj = (
rd
h
, ...,

rn1
1 ...rndd

hn1+...+nd
, ...,

rn1
hn

)T (57a)

∂hαui = (uhi,0...1, ..., u
h
i,n1...nd

, ..., uhi,n...0)T (57b)

∂αui = (ui,0...1, ..., ui,n1...nd , ..., ui,n...0)T . (57c)

∂hαui and ∂αui are related by

∂αui = H−1
i ∂hαui, with Hi = diag

[
hi, ...,

hn1+...+nd
i

n1!...nd!
, ...,

hni
n!

]
(58)

where diag[a1, ..., an] denotes a diagonal matrix whose diagonal entries starting in the upper

left corner are a1, ..., an. Therefore, the Taylor series expansion with ui being moved to the

left side of the equation can be written as

uij = (∂hαui)
Tphj ,∀j ∈ Si (59)

where uij = uj − ui. Integrating uij with weighted coefficient w(r)(phj )
T in support Si, we

obtain ∫
Si
w(r)uij(p

h
j )
T dVj = (∂hαui)

T

∫
Si
w(r)phj ⊗ (phj )

T dVj

= (∂αui)
T Hi

∫
Si
w(r)phj ⊗ (phj )

T dVj (60)

where w(r) is the weight function. Thus, the nonlocal operator ∂̃αui can be obtained as

∂̃αui := H−1
i

(∫
Si
w(r)phj ⊗ (phj )

T dVj

)−1
∫
Si
w(r)uijp

h
j dVj = Ki ·

∫
Si
w(r)phjuij dVj

(61)

with

Ki := H−1
i

(∫
Si
w(r)phj ⊗ (phj )

T dVj

)−1

. (62)
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The variation of ∂̃αui is

∂̃αδui := Ki ·
∫
Si
w(r)phj (δuj − δui) dVj (63)

In the continuous form, the number of dimensions of ∂δui is infinite and a discretization is

required. After discretization of the domain by particles, the whole domain is represented

by

Ω =
N∑
i=1

∆Vi (64)

where i is the global index of volume ∆Vi and N is the number of particles in Ω. Particles

in Si are represented by

Si = {j1, ..., jk, ..., jni} (65)

where j1, ..., jk, ..., jni are the global indices of neighboring particle i and ni is the number

of neighbors of i in Si. The discrete form of Eq.61 and its variation are

∂̃αui = Ki ·
∑
j∈Si

uijw(rj)p
h
j∆Vj = Kip

h
wi∆ui (66a)

∂̃αδui = Ki ·
∑
j∈Si

δuijw(rj)p
h
j∆Vj = Kip

h
wiδ∆ui (66b)

with

Ki = H−1
i

(∑
j∈Si

w(r)phj ⊗ (phj )
T∆Vj

)−1

, (67a)

phwi =
(
w(rj1)p

h
j1

∆Vj1 , ..., w(rjni )p
h
jni

∆Vjni

)
(67b)

∆ui = (uij1 , ..., uijk , ..., uijni )
T (67c)

The nonlocal operator provides all partial derivatives with maximal order for a single index

up to n. The set of derivatives in PDEs of real application is a subset of the nonlocal

operator. Together with the weak formulation (weighted residual method or variational

principles (i.e.[47])), Eq.66a can be employed to solve many linear (nonlinear) PDEs. Eq.66a

can be written more concisely as

∂̃αui = Kip
h
wi∆ui = Bαiui (68)
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with Bαi being the operator matrix for point i based on multi-index αnd

Bαi =

−(1, · · · , 1)npKip
h
wi

Kip
h
wi

 (69)

ui = (ui, uj1 , uj2 , · · · , ujni )
T (70)

where (1, · · · , 1)npKip
h
wi is the column sum of Kip

h
wi, np is the length of αnd . The operator

matrix obtains all partial derivatives of maximal order less than |α|+ 1 by the nodal values

in the support. For real applications, one can select the specific rows in the operator matrix

based on the partial derivatives contained in the specific PDEs. For example, if the order of

derivatives in the given PDEs are ∂̃ui = (ui,Y , ui,Y Y , ui,XY )T ⊂ ∂̃αui, one can select the blue

lines in Eq.71 to form the actually operator matrix given by Bi in Eq.72.



ui,Y

ui,X

ui,Y Y

ui,XY

ui,XX
...


︸ ︷︷ ︸

∂̃αui

=



b11 b12 · · · b1(n+1)

b21 b22 · · · b2(n+1)

b31 b32 · · · b3(n+1)

b41 b42 · · · b4(n+1)

...
...

. . .
...

bm1 bm2 · · · bm(n+1)


︸ ︷︷ ︸

Bαi


ui

uj1
...

ujn


︸ ︷︷ ︸

ui

(71)


ui,Y

ui,Y Y

ui,XY


︸ ︷︷ ︸

∂̃ui

=


b11 b12 · · · b1(n+1)

b31 b32 · · · b3(n+1)

b41 b42 · · · b4(n+1)


︸ ︷︷ ︸

Bi


ui

uj1
...

ujn


︸ ︷︷ ︸

ui

(72)

For a given maximal differential order and number of space dimensions, NOM offers the

derivatives of all orders in discrete form ’automatically’. These nonlocal derivatives are

similar to the derivatives of the shape functions in IGA. When the selected derivatives are
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inserted into the equivalent functional of the physical problem in discrete form, the residual

and tangent stiffness matrix of the functional can be derived.

Besides considering the functional for the physical problem, the functional for the nonlo-

cal operators should be considered explicitly. The energy functional for all nonlocal operators

is defined as [46]

Fi(u) =
∑
j∈Si

w(r)
(
uij − (phj )

T ∂̃hαui
)2

∆Vj (73)

Based on Eq.66a, Fi(u) can be simplified as

Fi(u) =
∑
j∈Si

w(r)u2
ij∆Vj −∆uTi (phwi)

T
(∑
j∈Si

w(r)phj (p
h
j )
T∆Vj

)−1

phwi∆ui

=∆uTi

(
diag

[
w(rj1)∆Vj1 , ..., w(rjni )∆Vjni

]
− (phwi)

T
(∑
j∈Si

w(r)phj (p
h
j )
T∆Vj

)−1

phwi

)
∆ui

=∆uTi Mi∆ui (74)

with

Mi = diag
[
w(rj1)∆Vj1 , ..., w(rjni )∆Vjni

]
− (phwi)

T
(∑
j∈Si

w(r)phj (p
h
j )
T∆Vj

)−1

phwi (75)

Apparently, Mi is a symmetric matrix. The expression of Fi(u) is quadratic, and its Hessian

matrix can be extracted as

Khg
i =

phg
mi

∑vi −vTi
−vi Mi

 (76)

where vi(j) =
∑ni

k=1Mi(j, k) is the sum of the row of Mi; the first row (column) denotes

the entries for point i, while the neighbors start from the second row (column), phg is a

penalty coefficient and mi the normalization coefficient given by mi =
∑

j∈Si w(r)r · r∆Vj.

The reader is referred to [46] for more details of the NOM.

4.2. Newton-Raphson method

The governing equations and boundary conditions in Eq.44 are quite complicated. The

highest continuity in Q is C4 and the gradient and Hessian matrix of the functional on
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boundary ∂Ω1
D are cumbersome. Note that NOM does not satisfy the Kronecker-Delta

property, and the order of NOM should be at least C5 in order to satisfy the Dirichlet

boundary conditions on ∂Ω0
D, where the continuity order in P is C5. Therefore, we employ

the penalty method to enforce both Dirichlet boundary conditions and the normal Dirichlet

boundary conditions. The equivalent energy functional of second-gradient elasticity then

becomes

F =

∫
Ω

φ(u,∇u,∇2u,∇3u) dV +

∫
∂Ω0

D

α1(u− ū) · (u− ū) dS −
∫
∂Ω0

N

P̄ · u dS

+

∫
∂Ω1

D

α2(∇nu−∇nu) : (∇nu−∇nu) dS −
∫
∂Ω1

N

Q̄ : ∇nu dS (77)

where α1, α2 are penalty parameters. One advantage of the penalty method is that the

highest order of partial derivatives is 4 for third-gradient elasticity, while the formulation

based on the modified variational principle requires C7 continuity. We neglect the terms on

∂Ω2
D and ∂Ω2

N for simplicity.

After discretization, the discrete form of the functional in Eq.77 becomes

F =
∑

∆Vi∈Ω

φ(ui,∇ui,∇2ui,∇3ui)∆Vi

+
∑

∆Si∈∂Ω0
D

α1(ui − ūi) · (ui − ūi)∆Si −
∑

∆Si∈∂Ω0
N

P̄i · ui∆Si

+
∑

∆Si∈∂Ω1
D

α2(∇nui −∇nui) : (∇nui −∇nui)∆Si −
∑

∆Si∈∂Ω1
N

Q̄i : ∇nui∆Si (78)

The differential derivatives in φ of E3 elasticity with unknowns u = (u, v)T in material

coordinates X = (X, Y ) are

∂U2d =
(
u,Y , v,Y , u,X , v,X , u,Y Y , v,Y Y , u,XY , v,XY , u,XX , v,XX , u,Y Y Y , v,Y Y Y ,

u,XY Y , v,XY Y , u,XXY , v,XXY , u,XXX , v,XXX , u,Y Y Y Y , v,Y Y Y Y , u,XY Y Y ,

v,XY Y Y , u,XXY Y , v,XXY Y , u,XXXY , v,XXXY , u,XXXX , v,XXXX

)T
(79)

The differential derivatives in F of E3 elasticity with unknowns u = (u, v, w)T in material
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coordinates X = (X, Y, Z) are

∂U3d =
(
u,Z , v,Z , w,Z , ..., v,XY , ..., u,XY Z , ..., w,XXXX︸ ︷︷ ︸

102 terms

)T
(80)

In NOM, the differential derivatives can be written as ∂Us = BsU , s ∈ {2d, 3d}, where

Bs is the operator matrix constructed with steps similar to that in Eq.71 and U is the

vector form of all unknowns in one support. In other words, for a given equivalent energy

functional, the independent derivatives of various orders can be extracted, which form a

subset of the list of nonlocal derivatives provided by NOM. The operator matrix Bs is

formed by selecting a row with the same index of derivative in ∂̃αui. The residual vector

and tangent stiffness matrix for one particle can be obtained as

Ri =
∂φi
∂U

=
∂(∂U)

∂U

∂φi
∂(∂U)

= BT ∂φi
∂(∂U)

(81)

Ki =
∂Ri

∂U
= BT ∂2φi

∂(∂U)2
B (82)

The explicit forms of ∂φ
∂(∂U)

and ∂2φ
∂(∂U)2

can be obtained by softwares such as Mathematica [57]

allowing symbolic operations. For simplicity, we omit these lengthy expressions in the paper.

However, the code will be made available. One can see that the construction of the residual

vector and tangent stiffness matrix for each particle is a series of matrix multiplications.

The global tangent stiffness matrix for the functional in domain Ω can be expressed as

RΩ =
∑

∆Vi∈Ω

Ri∆Vi, KΩ =
∑

∆Vi∈Ω

Ki∆Vi (83)

The assembly of Ri,Ki is based on the global indices of all unknowns in one support. The

global tangent stiffness matrices (e.g. K∂Ω0
D
,K∂Ω1

D
) and residuals (e.g. R∂Ω0

D
,R∂Ω1

D
) for

functionals on boundaries ∂Ω0
D, ∂Ω1

D can be obtained in the same manner. The Neumann

boundary condition on ∂Ω0
N can be applied directly on the particles. The moment boundary

condition on ∂Ω1
N can be enforced by calculating the residual

R∂Ω1
N

=
∑

∆Si∈∂Ω1
N

∂φN
∂(∂UN)

∂(∂UN)

∂U
∆Si =

∑
∆Si∈∂Ω1

N

BT
N

∂φN
∂(∂U)

∆Si (84)
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where φN = Q̄ : ∇nu and ∂UN = ∇⊗u = BNU ; BN are constructed by selecting the first

2 rows or 3 rows of B in 2D or 3D, respectively; ∂φN
∂(∂UN )

can be obtained by Mathematica

[57]. Then, the global tangent stiffness matrix and residual are

R = RΩ +R∂Ω0
D

+R∂Ω1
D

+R∂Ω1
N

(85)

K = KΩ +K∂Ω0
D

+K∂Ω1
D

(86)

With the global residual and tangent stiffness available, a standard Newton Raphson

method can be used to find the solution.

5. Numerical examples

In this section, we present several representative numerical examples to study the prop-

erty of the En elasticity theory. The setup of the 2D/3D examples and the associated

boundary conditions are outlined in Fig.3. The domain is discretized with a Cartesian grid.

The particles in the void domain are removed to form holes. Each particle has the same

number of neighbouring particles in the support, and the support size is selected as the

distance between the furthest neighbour particle and the master particle in the support.

So the central particles have a smaller support size compared to the particles close to the

boundary. The number of neighbours in support is selected as 1/2(n2 + 33n + 32) in 2D,

where n is the order of gradient elasticity. The material parameters and length scales will

be given in the subsections.

5.1. Convergence of strain energy in E3 elasticity

The first example tests the strain energy distribution of E3 elasticity for different dis-

cretizations. The material parameters are elastic modulus E = 30 GPa and Poisson’s

ratio ν = 0.3. Plane stress conditions are assumed. The internal length scales are set to

l1 = l2 = l3 = 0.05. The geometry and boundary conditions are depicted in Fig.3(a). The

left side of the plate is fixed in all directions and a uniform tension load of p = 1 GPa·m

is applied on the right side, which results in a moderate deformation. Different discretiza-

tions such as 402, 602, 802, 962, 1202, 1602, 2002 particles are used to study the distribution
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Figure 3: The setup of the 2D plate and 3D plate and boundary conditions.
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of the strain energy of different orders. The engineering strain is approximately 0.0288 as

depicted in Fig.4(a). The distribution of total strain energy density on each particle is

given in Fig.4(b). The maximal strain energy density occurs around the corners. The total

strain energies on different strain gradient orders can be found in Fig.5. With increasing the

number of particles, the energies of different levels converge. The strain energy is dominant

while the higher order energies tend to decrease with increasing gradient orders. Indeed, the

deformation under pure tension load is ”uniform” for this numerical example.
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Figure 4: (a) Deformation with unit of meters in x-direction, scaled by 10 times and (b) the distribution of

total strain energy density with units of Joule per unit volume for discretization of 1202 particles.

5.2. 2D plate with uniform deformation

The second example tests the influence of En gradient elasticity subjected to a uniform

load; E0, E1, E2 elasticity theories are implemented. The geometry and boundary conditions

are illustrated in Fig.3(a). A plate with dimensions of 1×1m2 is discretized into 812 particles.

The material parameters are elastic modulus E = 30 GPa and Poisson’s ratio ν = 0.3. The

internal length scales are l1 = l2 = 0.05. The left side of the plate is fixed in all directions

and the right side is subjected to a uniform tension load of p = 1 MPa/m. Fig.6(a) shows

that the displacement based on higher order elasticity theory is identical to conventional
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elasticity for uniform deformations since the higher order strain components are quite small

such that their contribution to the energy density can be neglected. However, the higher

order terms make the deformation smoother as shown in Fig.6(b). This indicates that the

higher order gradient elasticity should be tested with in-homogeneous deformations.
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Figure 6: (a) Displacement in x-direction and (b) strain in x-direction for particles on middle horizontal

line (Blue line in Fig.3(a)).

5.3. 2D plate subjected to point force

Let us test the capability of gradient theory for point loads. We adopt the dimensions of

the plate and its material parameters from the previous subsections. However, one particle

in the middle of the right side boundary of the plate is subjected to a point force of 1000

N. The geometry and boundary conditions are depicted in Fig.3(b). The plate is discretized

into 81x81 particles. E1 − E4 elasticity theories are considered. The deformations of the

plate for E1, E2, E3, E4 elasticity can be found in Fig.7. Obviously, gradient elasticity can

’withstand’ point loads. The higher order gradient elasticity has a smoother displacement

field compared with gradient elasticity. This observation is consistent with the numerical

analysis by FEM [16] and by IGA [58]. Comparisons of the displacement in x-direction

of particles on the right side boundary (i.e.the red line in Fig.3(b)) are plotted in Fig.8.

The first-order and second-order derivatives of the displacement in x-direction of particles

are shown in Fig.9. The derivative of the displacement in E1 elasticity changes sharply,
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in contrast to the smooth transition of the displacement gradient in higher order gradient

elasticity.
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Figure 7: Displacement with unit of meters in x-direction of the plate with deformation scaled by 107 times

for (a) E1 elasticity, (b) E2 elasticity, (c) E3 elasticity and (d) E4 elasticity.

5.4. Plate with a hole: influence of length scales

This example deals with a plate with a hole of radius 0.2 m located at the center. The

geometry and boundary conditions are depicted in Fig.3(c). The same material parameters

as before are used. The plate is discretized into 81x81 particles and then the particles falling

inside the circle are removed. With different length scales, the displacement in x-direction

of all particles on the right boundary of the plate based on (a) E1 elasticity and (b) E2

elasticity are shown in Fig.10. Higher length scale parameters can significantly reduce the

stress concentration induced by the hole. The gradient of the displacement in x-direction of

E1 elasticity is shown in Fig.11, which means that a larger l1 smoothes the strain field. The
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Figure 8: The deformation of all particles on the red line in Fig.3(b).
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Figure 9: The first-order and second-order derivative of deformation of all particles on the red line in

Fig.3(b).
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displacement gradient in x-direction of E2 elasticity can be found in Fig.12. The larger li,

the smaller the strain field.
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Figure 10: The displacement in x-direction of particles on right side boundary of the plate based on (a) E1

elasticity and (b) E2 elasticity.
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Figure 11: ∂u
∂X distribution based on E1 elasticity for (a) l1 = 0.05, (b) l1 = 0.1, (c) l1 = 0.15, (d) l1 = 0.25,

(e) l1 = 0.5, (f) l1 = 2.5.

5.5. Large deformation of 2D plate with a hole

Again, we adopt the material parameters and plate dimensions from the previous ex-

ample and study the deformation of a 2D plate with a hole based on En elasticity, with
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Figure 12: ∂u
∂X distribution based on E2 elasticity for (a) l1 = l2 = 0.05, (b) l1 = l2 = 0.1, (c) l1 = l2 = 0.025.

n=(0,1,2,3,4,5). The geometry and boundary conditions are illustrated in Fig.3(c). The

plate is discretized into 81x81 particles and the particles in the hole are removed. A

shear load p = T GPa·m, where T ∈ [0, 3] is the time step, is applied on the right side

boundary of the plate. The length scales are selected as l1 = l2 = 0.05 for E2 elasticity,

l1 = l2 = l3 = l4 = 0.05 for E4 elasticity and l1 = l2 = l3 = l4 = l5 = 0.05 for E5 elasticity.

The displacements at step T = 1 are plotted in Fig.13, where E0 elasticity has the largest

deformation and the deformations by E2, E3, E4, E5 elasticity are similar.
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Figure 13: The deformations of the plate at T = 1 for (a) E0 elasticity,(b) E1 elasticity,(c) E2 elasticity,(d)

E3 elasticity,(e) E4 elasticity and (f) E5 elasticity, respectively. Unit:meters.

Fig.14 shows that the displacement in y-direction of particle on the bottom line (e.g.

the blue line in Fig.3(c)). It can be seen that the higher order gradient theory has smaller

deformation. The difference becomes smaller when the order of gradient elasticity increases.
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Figure 14: The displacement in y-direction of all particles on the right side boundary of the plate with load

level T = 1, where the lines in (b) are magnified from (a).

Contour plots of displacement gradients for E0, ..., E5 elasticity are plotted in Fig.15 and

Fig.16. Higher order elasticity exhibits a very smooth displacement gradient. The gradient

of the displacement field for hyperelasticity (E0 elasticity) is not smooth around the internal

line. This is due to the fact that the first order NOM is used, which is continuous in the

displacement but discontinuous in its derivative.
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Figure 15: ∂u
∂Y at T = 1 for E0, ..., E5 elasticity.

Although the deformations for different elasticity theories at T = 1 are similar, the final
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Figure 16: ∂v
∂Y at T = 1 for E0, ..., E5 elasticity.

converged deformations are different. The final load level of the plate occurs approximately

at T0 = 0.96875, T1 = 2.0, T2 = 2.25, T3 = 2.5, T4 = 2.5, T5 = 2.5 for E0, E1, ..., E5 elasticity,

respectively. The final configurations of the plate can be found in Fig.17. The displacement

in y-direction for particles on the right side of the plate is depicted in Fig.18

5.6. Large deformation of 3D plate subjected to line load

Finally, we present a large deformation example in 3D, i.e. a 3D thick plate based on E3

elasticity. The geometry and boundary conditions are depicted in Fig.3(d). The particles in

the red segment are fixed in all directions. A line force density of p = 108 N/m is applied

on the particles located on the line. The load level T increases from 0 to 3. The differential

operators in 3D E3 elasticity are given in Eq.80. The plate with dimensions of 1×1×0.2m3

is discretized into 41×41×9 = 15129 particles. The support of each particle consists of 124

nearest neighbors. The material parameters from the previous examples are adopted. The

length scale parameters are selected as l1 = l2 = l3 = 0.05. The final deformation is plotted

in Fig.19 with the displacement fields shown in each sub-figure. The displacement gradient

fields are plotted in Fig.20. The displacement second-gradient fields are plotted in Fig.21.
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Figure 17: The converged final deformations of plate for (a) E0 elasticity,(b) E1 elasticity,(c) E2 elasticity,(d)

E3 elasticity,(e) E4 elasticity and (f) E5 elasticity, respectively.
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Figure 18: The displacement in y-direction for particles on the right side of the plate (i.e.red line in Fig.3(c)).
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Figure 19: The displacement field of (x, y, z) directions in deformed configuration. Unit:meters.
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∂X , (g) ∂w
∂Z , (h)

∂w
∂Y , (i) ∂w

∂X .
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Figure 21: The second-order derivatives of displacement field (a) ∂2u
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6. Conclusions

We have proposed an objective energy functional for finite deformation higher order gra-

dient elasticity. The energy functional is based on the setting of the second Piola-Kirchhoff

stress which is invariant under rigid body transformations. More specifically, the geometric

nonlinear higher order gradient elasticity theory is formulated on the gradients of the right

Cauchy Green tensor. The general form of higher order gradient elasticity may contain

thousands of material parameters and we proposed a simplified version of gradient elastic-

ity. Such simplification reduces the number of material parameters from 10 thousands to

less than 10. A small number of material parameters can greatly simplify the experiment

measurement and numerical implementation. The framework of gradient elasticity also al-

lows for other forms of simplification of material parameters. We employed the nonlocal

local operator method and Newton Raphson iteration method to find the numerical solution

of higher gradient elasticity. The properties of gradient elasticity are studied by a series

of numerical experiments. The numerical tests show that gradient elasticity can sustain

point/line load without stress singularity. The mechanical response greatly depends on the

internal length scales of gradient elasticity. Larger internal length scale induces a smaller

and smoother deformation. Higher order gradient elasticity is numerically more stable and

allows for larger ultimate load for the same structure. In the next stage, more physics-related

research including the calibration of material parameters by experiments and numerical sim-

ulation, and the size effect, surface effect in metamaterials and gradient elasticity will be

pursued. Some outlooks based on current research include, for example,

1. The higher order gradient elastoplasticity theory [32] and its numerical implementation.

Current research is restricted to elasticity with finite deformation and it cannot be applied

to a dissipated system involving permanent deformation or irreversible process. The exten-

sion of higher order elasticity to higher order plasticity can broaden the range of plasticity

theory.

2. More clear relationship between metamaterial and gradient elasticity is expected [59, 60].

One salient feature of gradient elasticity is the micro-structure, which is essential to the
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theory of metamaterials as well. Direct simulation of micro-structure requires tremendous

computer power. Gradient elasticity circumvents these difficulties by introducing certain

internal length scales, which however require more sophisticated measurement.

3. The wave propagation analysis of gradient elasticity. Gradient elasticity has the capa-

bility to account for interesting phenomena such as size effect, surface effect and nonlocal

effect. These features may give rise to some abnormal physical phenomenon, which can be

exploited to design some smart devices.

Appendix A. Symmetry of higher order tensor

For the 4th-order elasticity tensor, the symmetry can significantly reduce the number

of material parameters. The symmetry of the Cauchy stress tensor (σij = σji and the

generalized Hooke’s laws (σij = Cijklεkl) implies that Cijkl = Cjikl. Similarly, the symmetry

of the infinitesimal strain tensor implies that Cijkl = Cijlk. These symmetries are called the

minor symmetries

If in addition, since the displacement gradient and the Cauchy stress are work conjugate,

the stress–strain relation can be derived from a strain energy density functional (U), then

σij =
∂U

∂εij
=⇒ Cijkl =

∂2U

∂εij∂εkl
. (A.1)

The arbitrariness of the order of differentiation implies that Cijkl = Cklij.

The stiffness matrix C satisfies a given symmetry condition if it does not change when

subjected to the corresponding orthogonal transformation, which may represent symmetry

with respect to a point, an axis, or a plane.

According to [61, 62], the orthogonal transformation of a tensor of any order can be

written as

T (M ) := (Q ?M )...ijk... = · · ·QipQjqQkr · · ·M...pqr... (A.2)

where Q is an orthogonal matrix given by

O(n,R) =
{
Q ∈ GL(n,R)|QTQ = QQT = I

}
, (A.3)
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with GL(n,R) being the set of all real n× n matrices and I the identity matrix.

The symmetry of certain orthogonal transformation of a tensor requires

Q ?M = M , with Q ∈ O(n,R). (A.4)

The common orthogonal transformations in 3D include the reflection, rotation. The

transformation matrices for symmetry planes are

A1 =


−1 0 0

0 1 0

0 0 1

 ,A2 =


1 0 0

0 −1 0

0 0 1

 ,A3 =


1 0 0

0 1 0

0 0 −1

 (A.5)

Rotation matrix in 3D

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

, Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

, Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


(A.6)

The general rotation matrix R can be written as

R = Rz(α)Ry(β)Rx(γ)

The coordinate transform of a vector in matrix and tensor notation is

v′ = Q · v and v′i = λijvj (A.7)

The coordinate transform of a tensor in matrix and tensor notation is

σ′ = Q · σ ·QT and σ′mn = λmiλnjσij (A.8)

The coordinate transform of a 4th-order tensor is

C ′ = Q ·Q ·C ·QT ·QT , C ′ijkl = λimλjnλkoλlpCmnop (A.9)
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The coordinate transform of a 6th-order tensor is

H ′ = Q ·Q ·Q ·H ·QT ·QT ·QT , H ′ijklmn = λioλjpλkqλlrλmsλntHopqrst (A.10)

Solving Eqs .A.9,A.10 by Mathematica [57], we can obtain the independent variables in

high order tensor.

There are 36 = 729 terms in H . The Minor symmetry reduces H into 171 independent

terms.

The orthotropy requires H ′ = H ,C ′ = C for three reflection symmetries A1,A2,A3.

The case of orthotropy (the symmetry of a brick) has 51 independent elements.

The isotropy property requires H ′ = H ,C ′ = C for any rotation. This requirement

reduces the number of independent terms in H ′ from 171 to 5.

Appendix B. Matrix Form of strain gradient energy by Viogt notations

The tensor form of higher order tensor contains many repeated terms when symmetry

property is considered. In terms of numerical implementation, it is more convenient to use

the matrix form than to use tensor form. In conventional mechanics, the Voigt notation

is an efficient method to formulate the matrix form. Let us take the strain gradient linear

elasticity for an example. The other higher order tensor can be formulated in the same

manner. The material constitutive for couple-stresses can be written as

−→
∇σ = H

−→
∇ε, σijk = hijklmnεlmn (B.1)

The strain-gradient energy function is

F =
1

2
σijkεijk =

1

2
εijkhijklmnεlmn =

1

2

−→
∇εTH

−→
∇ε (B.2)

where εijk, σijk are defined as

εijk =
∂εjk
∂xi

, σijk =
∂σjk
∂xi

. (B.3)

The vectorial forms of couple stress and strain gradient can be written as

−−→
∇σ = (σ111, σ122, σ133, σ123, σ113, σ112, σ211, σ222, σ233,

σ223, σ213, σ212, σ311, σ322, σ333, σ323, σ313, σ312) (B.4)
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−→
∇ε = (ε111, ε122, ε133, 2ε123, 2ε113, 2ε112, ε211, ε222, ε233,

2ε223, 2ε213, 2ε212, ε311, ε322, ε333, 2ε323, 2ε313, 2ε312) (B.5)

Based on Voigt rotations

ij =

⇓

α =

11 22 33 23, 32 13, 31 12, 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

1 2 3 4 5 6

(B.6)

we write the couple stress and strain gradient as

εiα =
∂εα
∂xi

, σiα =
∂σα
∂xi

(B.7)

hijklmn → hiαlβ (B.8)

where α, β are the Voigt notations of jk and mn, respectively.

Then the vectorial forms of couple stress and strain gradient can be written as

−→
∇ε = (ε11, ε12, ε13, 2ε14, 2ε15, 2ε16, ε21, ε22, ε23, 2ε24, 2ε25, 2ε26, ε31, ε32, ε33, 2ε34, 2ε35, 2ε36)

(B.9)

−−→
∇σ = (σ11, σ12, σ13, σ14, σ15, σ16, σ21, σ22, σ23, σ24, σ25, σ26, σ31, σ32, σ33, σ34, σ35, σ36) (B.10)

Based on the symmetry calculation in Appendix A, the matrix form of isotropic gradient

elasticity can be derived accordingly.
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