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EXPONENTIAL BOUNDS FOR RANDOM WALKS ON HYPERBOLIC

SPACES WITHOUT MOMENT CONDITIONS

SÉBASTIEN GOUËZEL

Abstract. We consider nonelementary random walks on general hyperbolic spaces. With-
out any moment condition on the walk, we show that it escapes linearly to infinity, with
exponential error bounds. We even get such exponential bounds up to the rate of escape
of the walk. Our proof relies on an inductive decomposition of the walk, recording times
at which it could go to infinity in several independent directions, and using these times to
control further backtracking.

1. Introduction

Let X be a Gromov-hyperbolic space, with a fixed basepoint o. Fix a discrete probability
measure µ on the space of isometries of X. We assume that µ is non-elementary : in the
semigroup generated by the support of µ, there are two loxodromic elements with disjoint
fixed points. Let g0, g1, . . . be independent isometries of X distributed according to µ. One
can then define a random walk on X given by Zn · o, where Zn = g0 · · · gn−1.

In general, results in the literature fall into two classes, qualitative and quantitative,
where the second class requires more stringent assumptions on the walk.

Without any moment assumption, it is known that Zn · o converges almost surely to a
point on the boundary ∂X, thanks to a beautiful non-constructive argument originally due
to Furstenberg [Fur63] in a matrix setting but that works in our setting when X is proper,
and extended to the general situation above by Maher and Tiozzo [MT18]. The idea is to use
a stationary measure on the boundary of X and the martingale convergence theorem there
to obtain the convergence of the random walk. When X is not proper, the boundary is not
compact, and showing the existence of a stationary measure on the boundary is a difficult
part of [MT18]. In this article, the authors also show linear progress, in the following sense:
there exists κ > 0 such that, almost surely, lim inf d(o, Zn · o)/n > κ.

Assuming additional moments conditions, one gets stronger results. [MT18] shows that, if
µ has finite support, then P(d(o, Zn ·o) 6 κn) is exponentially small, for some κ > 0 (we say
that the walk makes linear progress with exponential decay). The finite support assumption
has been weakened to an exponential moment condition in [Sun20]. More recently, still under
an exponential moment condition, [BMSS20] shows (among many other results) that the
exponential bound holds for any κ strictly smaller than the escape rate ℓ = limE(d(o, Zn ·
o))/n.

When X is a hyperbolic group, one has in fact linear progress with exponential decay
without any moment assumption: this follows from nonamenability of the group, and the
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RANDOM WALKS WITHOUT MOMENT CONDITION 2

fact that the cardinality of balls is at most exponential. This arguments breaks down when
the space is non-proper, though, as in many interesting examples such as the curve complex.

Our goal in this paper is to show that, to have linear progress with exponential decay
(even in its strongest versions), there is no need for any moment condition. Define the
escape rate of the walk ℓ(µ) = limE(d(o, Zn · o))/n if µ has a moment of order 1, i.e.,
∑

µ(g)d(o, g · o) < ∞, and ℓ(µ) = ∞ otherwise.
Our first result is that the escape rate is positive, with an exponential error term.

Theorem 1.1. Consider a discrete non-elementary measure on the space of isometries of
a Gromov-hyperbolic space X with a basepoint o. Then there exists κ > 0 such that, for all
n,

P(d(o, Zn · o) 6 κn) 6 e−κn.

One recovers in particular that ℓ(µ) > 0, a fact already proved in [MT18]. The control
in the previous theorem can in fact be established up to the escape rate:

Theorem 1.2. Under the assumptions of Theorem 1.1, consider r < ℓ(µ). Then there
exists κ > 0 such that, for all n,

P(d(o, Zn · o) 6 rn) 6 e−κn.

In particular, when µ has no moment of order 1, this implies that d(o, Zn · o)/n → +∞
almost surely.

We also get the corresponding statement concerning directional convergence to infinity.
For ξ ∈ ∂X and x, y ∈ X, denote the corresponding Gromov product by

(1.1) (x, ξ)y = inf
zn→ξ

lim inf
n

(x, zn)y,

where (x, zn)y = (d(y, x) + d(y, zn) − d(x, zn))/2 is the usual Gromov product inside the
space (see Section 3 for more background on Gromov-hyperbolic spaces). The limit only
depends on the choice of the sequence zn up to 2δ. Intuitively, (x, ξ)y is the distance from
y to a geodesic between x and ξ. It is also the amount that x has moved in the direction of
ξ compared to y. A sequence xn converges to ξ if and only if (xn, ξ)o → ∞.

Theorem 1.3. Under the assumptions of Theorem 1.2, Zn · o converges almost surely to a
point Z∞ ∈ ∂X. Moreover, for any r < ℓ(µ), there exists κ > 0 such that, for all n,

P((Zn · o, Z∞)o 6 rn) 6 e−κn.

Theorem 1.3 readily implies Theorem 1.2 as (Zn · o, Z∞)o 6 d(o, Zn · o), which follows
directly from the definition.

The convergence statement in Theorem 1.3 is due to [MT18]. The novelty is the quanti-
tative exponential bound, without any moment assumption. Note that, in both theorems,
when µ has no moment of order 1, one may take any r > 0, so the conclusion is superlinear
growth with exponential decay.

It follows from subadditivity that, for any r 6 ℓ, the sequence − log(P(d(o, Zn ·o) 6 rn))/n
converges to a limit I(r). This is a rate function in the classical sense of large deviations
in probability theory. Theorem 1.2 shows that the rate function is strictly positive for
r < ℓ, recovering part of [BMSS20, Theorem 1.2] while removing their exponential moment
assumption. Note that [BMSS20] also obtains exponential estimates for upper deviation
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inequalities P(d(o, Zn ·o) > rn) for r > ℓ. These estimates can not hold without exponential
moments, since exponential controls for lower and upper deviation probabilities imply an
exponential moment for the measure, see [BMSS20, Subsection 3.1].

Remark 1.4. The fact that we use discrete measures in the above theorems is for con-
venience only, to avoid discussing measurability issues and conditioning on zero measure
sets. Suitable versions removing discreteness, but adding measurability and separability
conditions, hold with the same proofs.

Our approach is elementary, in the spirit of [MS20] and [BMSS20] (the latter article is
a strong inspiration for our work), and does not rely on any boundary theory. The main
intuition is the following. In the hyperbolic plane, we define a path as follows: walk straight
on during a distance d1, then turn by an angle θ1 6 θ̄ < π, then walk straight on during a
distance d2, then turn by an angle θ2 6 θ̄, and so on. If all the lengths di are larger than a
constant D = D(θ̄), then this path is essentially going straight to infinity, and at time n it
is roughly at distance d1 + · · ·+ dn of the origin. The problem when doing a random walk
is that the analogues of the angles θi could be equal to π, i.e., the walker could come back
exactly along its footsteps. But this should not happen often. Our main input is a technical
way to justify that indeed it does not happen often, in a precise quantitative version: we will
keep track of some times (called pivotal times below) at which the random walk can choose
some direction, with most choices leading to progress towards infinity (this is implemented
through the notion of Schottky set coming from [BMSS20]), and at which we will keep some
degree of freedom in an inductive construction. Of course, backtracking can happen later
on, and we will spend the degree of freedom we had kept to still control the behavior after
backtracking.

We could give directly the proof of Theorem 1.3, but it would be very hard to follow.
Instead, we will start with proofs of easier statements, and add new ingredients in increas-
ingly complicated proofs. Section 2 is devoted to the simplest instance of our proof, in the
free group, where everything is as transparent as possible. Then, Section 3 introduces some
tools of Gromov-hyperbolic geometry (notably chains, shadows and Schottky sets) that will
be used to extend the previous proof to a non-tree setting. Section 4 uses these tools in a
crude way to prove Theorem 1.1, i.e., linear escape with exponential decay, and also con-
vergence at infinity with exponential bounds. Section 5 follows the same strategy but in a
more refined way, to get Theorems 1.2 and 1.3.

2. Linear escape with exponential decay on free groups

The goal of this section is to illustrate the concept of pivotal times in the simplest possible
setting. We show that, for a class of measures without moments on the free group, there is
linear escape with exponential decay. Of course, this follows from non-amenability. Instead
of the result, what matters here is the proof: the rest of the paper is an extension of the same
idea to technically more involved contexts (general measures, Gromov-hyperbolic spaces),
but the main insight can be explained much more transparently in a tree setting.

Theorem 2.1. Let d > 3. Let µ be a probability measure on Fd that can be written as
µS ∗ ν, where µS is the uniform probability measure on the canonical generators of Fd, and
ν is a probability measure with ν(e) = 0. Let Zn = g1 · · · gn, where the gi are independent
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and distributed according to µ. There exists κ > 0 (independent of ν and of d) such that,
for all n,

P(|Zn| 6 κn) 6 e−κn.

Remark 2.2. The fact that κ can be chosen independently of ν and of d does not follow
from non-amenability, and is really a byproduct of our proof technique.

Remark 2.3. The restrictions d > 3 and ν(e) = 0 are simplifying assumptions to have
a proof that is as streamlined as possible. In the next sections, we will prove analogous
theorems but for general measures, on general hyperbolic spaces.

The key point in the proof of Theorem 2.1 is the next lemma.

Lemma 2.4. There exists κ > 0 satisfying the following. Consider d > 3 and n > 0. Fix
w1, . . . , wn nontrivial words in Fd, and let Zn = s1w1 · · · snwn, where the si are generators
of Fd, chosen uniformly and independently. Then P(|Zn| 6 κn) 6 e−κn.

This lemma directly implies Theorem 2.1, by conditioning with respect to the realizations
of ν and just keeping the randomness coming from the factor µS in µ = µS ∗ ν.

To prove the lemma, one wants to argue that the walk does not backtrack too much. Of
course, the walk can backtrack completely: as the size of the wi is not controlled, it may
happen that wn is exactly inverse to s1w1 · · · sn and therefore that Zn = e. However, this
is unlikely to happen for most choices of s1, . . . , sn.

A difficulty is that the distance to the origin is not well-behaved under the walk. For
instance, assume that Zn−2 = e, that wn−1 is very long (of length 2n, say) and that for
some generators s and t, one has twn = (swn−1)

−1. Then Zn−1 is far away from the origin,
and in particular it satisfies the inequality |Zn−1| > n. However, Zn is equal to the origin
if sn−1 = s and sn = t, which happens with probability 1/(2d)2. This is not exponentially
small, even though the distance control at time n− 1 is good.

For this reason, we will not try to control inductively the distribution of the distance to
the origin. Instead, we will control a number of branching points of the random walk up
to time n, that we call pivotal points. In the general case of random walks in hyperbolic
spaces, the definition will be quite involved, but for trees one can give a direct definition as
follows. Denote by γn the path in the Cayley graph of Fd corresponding to the walk up to
Zn, i.e., the concatenation of the geodesics from e to s1 then to s1w1 then to s1w1s2 and so
on until s1w1s2w2 · · · snwn = Zn.

Definition 2.5. A time k ∈ [1, n] is a pivotal time (with respect to n) if sk is the inverse
neither of the last letter of Zk−1, nor of the first letter (wk)0 of wk (so that the path γn is
locally geodesic of length 3 around Zk−1) and moreover the path γn does not come back to
Zk−1sk afterwards.

We will denote by Pn the set of pivotal times with respect to n.

In other words, k is pivotal if the walk at time k goes away from the origin during two
steps (sk and then (wk)0) and then remains stuck in the subtree based at Zk−1sk(wk)0.

The evolution of the set of pivotal times is not monotone: if the walk backtracks a lot,
then many times that were pivotal with respect to n will not be any more pivotal with
respect to n + 1, since the non-backtracking condition is not satisfied any more. On the
other hand, the only possible new pivotal point is the last one: Pn+1 ⊆ Pn ∪ {n+ 1}.
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We will say that a sequence (s′1, . . . , s
′
n) is pivoted from s̄ = (s1, . . . , sn) if they have the

same pivotal times and, additionally, s′k = sk for all k which is not a pivotal time. This
is an equivalence relation. Moreover, a sequence has many pivoted sequences: if k is a
pivotal time and one changes sk to s′k which still satisfies the local geodesic condition (i.e.,
s′k is different from the last letter of Zk−1 and from the first letter of wk), then we claim
that (s1, . . . , s

′
k, . . . , sn) is pivoted from (s1, . . . , sn). Indeed, the part of γn originating from

Zk−1sk(wk)0 never comes back on the edge from Zk−1 to Zk−1sk (not even on its endpoints),
so changing sk to s′k does not change this fact. Thus the behavior of γ′n after Zk−1 is exactly
the same as that of γn, but in a different subtree – one has pivoted the end of γn around
Zk−1sk, hence the name. In particular, subsequent pivotal times are the same. Moreover,
since the trajectory never comes back before Zk−1sk, pivotal times before k are not affected,
and are the same for γn and γ′n.

More generally, denoting the pivotal times by p1 < · · · < pq, then changing the spi to s′pi
still satisfying the local geodesic condition gives a pivoted sequence. Let En(s̄) be the set of
sequences which are pivoted from s̄. Conditionally on En(s̄), the previous discussion shows
that the random variables s′pi are independent (but not identically distributed as each of
them is drawn from some subset of the generators depending on i, of cardinality |S| − 1 or
|S| − 2).

Proposition 2.6. Let An = |Pn| be the number of pivotal times. Then, in distribution,
An+1 > An + U where U is a random variable independent from An and distributed as
follows:

P(U = −j) =
2d− 3

d(2d− 2)j
for j > 0,

P(U = 0) = 0,

P(U = 1) =
d− 1

d
.

In other words, P(An+1 > i) > P(An + U > i) for all i.

Proof. Let us fix a sequence s̄ = (s1, . . . , sn), and let q = |Pn| be its number of pivotal times.
We will prove the estimate by conditioning on En(s̄). Let s̄′ ∈ En(s̄).

First, assume there are no pivotal points, i.e., q = 0. Then for each s̄′ there are at least
2d−2 generators which are different from the last letter of Z ′

n and from the first letter of wn+1,
giving rise to one pivotal time in P ′

n+1 with probability at least (2d − 2)/(2d) = P(U = 1).
Otherwise, |P ′

n+1| = 0. Conditionally on En(s̄), it follows that the conclusion of the lemma
holds.

Assume now that there is at least one pivotal point. From the last pivotal time onward,
the behavior is the same over all the equivalence class En(s̄), so the last letter of Z ′

n does
not depend on s̄′. There are at least 2d − 2 generators of Fd which are different from
the last letter of Z ′

n and from the first letter of wn+1. If s′n+1 is such a generator, then
P ′
n+1 = P ′

n ∪ {n+ 1}. Therefore,

P(An+1 > q + 1 | En(s̄)) > (2d − 2)/(2d).

We have adjusted the definition of U so that the right hand side is P(U > 1).
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Fix now s′n+1 which is not such a nice generator. Then s′n+1wn+1 may backtrack, possibly
until the last pivotal point Z ′

pq , thereby decreasing the number of pivotal points with respect

to n+ 1. However, it may only backtrack further if the generator s′pq is exactly the inverse

of the corresponding letter in wn+1. This can happen for s′, but then it will not happen
for all the pivoted configurations of s′ obtained by changing s′pq to another generator still
satisfying the local geodesic condition. Therefore,

P(An+1 6 q − 2 | En(s̄)) 6
2

2d
×

1

2d− 2
,

where the first factor corresponds to the choice of a generator s′n+1 which does not satisfy
the local geodesic condition, and the second factor corresponds to the choice of the specific
generator for s′pq to make sure that one backtracks further.

More generally, to cross j pivotal times, there is one specific choice of generator at each
of these pivotal times, which can only happen with a probability at most 1/(2d− 2) at each
of these times. Therefore, for j > 1,

P(An+1 6 q − j | En(s̄)) 6
2

2d
·

1

(2d − 2)j−1
.

We have adjusted the distribution of U so that the right hand side is exactly P(U 6 −j).
Finally, we obtain the inequalities

P(An+1 6 q − j | En(s̄)) 6 P(U 6 −j) for j > 0,

P(An+1 > q + 1 | En(s̄)) > P(U > 1).

Taking the complement in the first inequality yields P(An+1 > q + k | En(s̄)) > P(U > k)
for all k ∈ Z. As An is constant equal to q on En(ḡ), the right hand side is P(An + U >

q + k | En(s̄)). Writing i = q + k, we have obtained for all i the inequality

P(An+1 > i | En(s̄)) > P(An + U > i | En(s̄)).

As this inequality is uniform over the conditioning, it gives the conclusion of the lemma. �

Proof of Lemma 2.4. Let U1, U2, . . . be a sequence of i.i.d. random variables distributed like
U in Proposition 2.6. Iterating the proposition, one gets P(An > k) > P(U1 + · · ·+Un > k).
The random variables Ui have an exponential moment. Moreover, their expectation is
positive when d > 3, as it is (2d − 5) · (d − 1)/((2d − 3) · d). Large deviations for sums of
i.i.d. real random variables with an exponential moment ensure the existence of κ > 0 such
that P(U1 + · · ·+Un 6 κn) 6 e−κn for all n. Then P(An 6 κn) 6 e−κn. As the distance to
the origin is bounded from below by the number of pivotal points, this proves Lemma 2.4,
except that the constant c depends on the number of generators d. However, the random
variables U = U(d) depending on d increase with d (in the sense that when d > d′ then
P(U(d) > k) > P(U(d′) > k) for all k). Therefore, one can use the random variables U(3)
to obtain a lower bound in all free groups Fd with d > 3. �

The rest of the paper is devoted to the extension of this argument to general measures and
general Gromov-hyperbolic spaces. While the intuition will remain the same, the definition
of pivotal times will need to be adjusted, as there is no well-defined concept of subtree:
instead, we will use a suitable notion of shadow, and require that the walk after the pivotal
time remains in the shadow. Also, to separate possible directions, we will rely on the notion
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of Schottky sets introduced by [BMSS20], instead of just using the generators as in the free
group. These notions are explained in the next section.

3. Prerequisites on Gromov-hyperbolic spaces

Let X be a metric space, and x, y, z ∈ X. Their Gromov product is defined by

(x, z)y =
1

2
(d(x, y) + d(y, z) − d(x, z)).

Let δ > 0. A metric space is δ-Gromov hyperbolic if, for all x, y, z, a,

(3.1) (x, z)a > min((x, y)a, (y, z)a)− δ.

When the space is geodesic, this is equivalent (up to changing δ) to the fact that geodesic
triangles are thin, i.e., each side is contained in the δ-neighborhood of the other two sides.

In the rest of the paper, X is a δ-hyperbolic metric space (without any geodesicity or
properness or separability condition). We also fix a basepoint o ∈ X.

3.1. Boundary at infinity. We recall a few basic facts on the boundary at infinity of a
Gromov-hyperbolic space that we will need later on.

A sequence (xn)n∈N is converging at infinity if (xn, xm)o tends to infinity when m,n → ∞.
Two sequences (xn) and (yn) which are converging at infinity are converging to the same
limit if (xn, yn)o → ∞. This is an equivalence relation, thanks to the hyperbolicity inequality.
Quotienting by this equivalence relation, one gets the boundary at infinity of the space X
denoted ∂X.

The C-shadow of a point x, seen from o, is the set of points y such that (y, o)x 6 C. We
denote it with So(y;C). Geometrically, this means that a geodesic from o to y goes within
distance C +O(δ) of x. Let us record a few classical properties of shadows.

Lemma 3.1. For y ∈ So(x;C), one has d(y, o) > d(x, o) − 2C.

Proof. We have

d(y, o) = d(y, x) + d(x, o)− 2(y, o)x > 0 + d(x, o) − 2C. �

Lemma 3.2. Let C > 0, and let xn ∈ X be such that d(o, xn) → ∞. Consider another
sequence yp such that, for all n, eventually yp ∈ So(xn;C). Then yp converges at infinity.

Proof. Fix n large. For large enough p, one has yp ∈ So(xn;C), i.e., (o, yp)xn 6 C. As
(o, yp)xn + (xn, yp)o = d(o, xn), this gives (xn, yp)o > d(o, xn)− C.

For large enough p, q, we get (using hyperbolicity for the first inequality)

(3.2) (yp, yq)o > min((yp, xn)o, (yq, xn)o)− δ > d(o, xn)− C − δ.

As d(o, xn) → ∞ by assumption, it follows that (yp, yq)o → ∞, as claimed. �

Lemma 3.3. Let C > 0 and x ∈ X. Consider y ∈ So(x;C), and a point ξ ∈ ∂X which is
a limit of points in So(x;C). Then

(y, ξ)o > d(o, x)− C − 3δ.

Proof. Let zn ∈ So(x;C) be a sequence converging to ξ. As the Gromov product at infinity
does not depend on the sequence up to 2δ, we have (y, ξ)o > lim inf(y, zn)o − 2δ. Moreover,
as both y and zn belong to So(x;C), the inequality (3.2) gives (y, zn)o > d(o, x) − C − δ.
The conclusion follows. �
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3.2. Chains and shadows. In a hyperbolic space, (x, z)y is roughly the distance from y
to a geodesic between x and z. In particular, if (x, z)y 6 C for some constant C, this means
that the points x, y, z are roughly aligned in this order, up to an error C. We will say that
the points are C-aligned.

In a hyperbolic space, if in a sequence of points all consecutive points are C-aligned, and
the points are separated enough, then the sequence is progressing linearly, and all points
in the sequence are C +O(δ)-aligned (see for instance [GdlH90, Theorem 5.3.16]). We will
need variations around this classical idea.

We start with distance estimates for 3 points.

Lemma 3.4. . Consider x, y, z with (x, z)y 6 C. Then d(x, z) > d(x, y)−C and d(x, z) >
d(y, z) − C.

Proof. By symmetry, it suffices to prove the first inequality. We claim that d(x, z) > d(x, y)−
(x, z)y , which implies the result. Expanding the definition of the Gromov product, this
inequality holds if and only if

d(y, x) + d(y, z)− d(x, z)

2
+ d(x, z) > d(x, y).

This reduces to d(y, z) + d(x, z) > d(x, y), which is just the triangular inequality. �

The next lemma gives estimates for 4 points, from which results for more points will
follow by induction.

Lemma 3.5. Consider w, x, y, z ∈ X, and C > 0. Assume (w, y)x 6 C and (x, z)y 6 C+ δ
and d(x, y) > 2C + 2δ + 1. Then (w, z)x 6 C + δ.

Proof. By definition of the Gromov product, (x, z)y + (y, z)x = d(x, y). As (x, z)y 6 C + δ,
we get (y, z)x > d(x, y) − C − δ. As d(x, y) > 2C + 2δ + 1, this gives (y, z)x > C + δ + 1.
Writing down the first condition and the hyperbolicity condition, we get

C > (w, y)x > min((w, z)x, (z, y)x)− δ.

If the minimum were realized by (z, y)x, we would get C > (C + δ+1)− δ, a contradiction.
Therefore, the minimum is realized by (w, z)x, which gives (w, z)x 6 C + δ. �

Definition 3.6. For C,D > 0, a sequence of points x0, . . . , xn is a (C,D)-chain if one has
(xi−1, xi+1)xi

6 C for all 0 < i < n, and d(xi, xi+1) > D for all 0 6 i < n.

Lemma 3.7. Let x0, . . . , xn be a (C,D) chain with D > 2C+2δ+1. Then (x0, xn)x1 6 C+δ,
and

(3.3) d(x0, xn) >

n−1
∑

i=0

(d(xi, xi+1)− (2C + 2δ)) > n.

Proof. Let us show by decreasing induction on i that (xi−1, xn)xi
6 C + δ, the result being

true for i = n−1 by assumption. Assume it holds for i+1. Then the points xi−1, xi, xi+1, xn
satisfy the assumptions of Lemma 3.5, which gives (xi−1, xn)xi

6 C + δ as desired.

Let us now show that d(xj , xn) >
∑n−1

i=j (d(xi, xi+1)− (2C +2δ)) by decreasing induction

on j, the case j = n being trivial and the case j = 0 being (3.3). We have

d(xj , xn) = d(xj , xj+1)+ d(xj+1, xn)− 2(xj , xn)xj+1 > d(xj , xj+1)+ d(xj+1, xn)− (2C +2δ),
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which concludes the induction. �

Lemma 3.8. Let x0, . . . , xn be a (C,D) chain with D > 2C + 4δ + 1. Then for all i one
has (x0, xn)xi

6 C + 2δ.

Proof. Lemma 3.7 applied to the (C,D)-chain xi, xi+1, . . . , xn gives (xi, xn)xi+1 6 C + δ.
The same lemma applied to the (C,D)-chain xi+1, xi, . . . , x0 gives (xi+1, x0)xi

6 C + δ.
Therefore, the points x0, xi, xi+1, xn are (C + δ)-aligned. Let us apply Lemma 3.5 to these
points, with C + δ instead of C. It gives (x0, xn)xi

6 C + 2δ, as claimed. �

We will need to say that a point z belongs to a half-space based at a point y and directed
towards a point y+. The usual definition for this is the shadow of y+ seen from y, defined
as the set Sy(y

+;C) of points z with (y, z)y+ 6 C for some suitable C. Unfortunately,
this definition is not robust enough for our purposes as we will need to say that being in
a half-space and walking again from y one stays in the half-space, which is not satisfied by
this definition due to the loss of δ when one applies the hyperbolicity inequality.

A more robust definition can be given in terms of chains. If we have a chain (which goes
roughly in a straight direction by the previous lemma) and if we prescribe the direction of its
first jump, then we are essentially prescribing the direction of the whole chain. This makes
it possible to define another notion that we call chain-shadow, as follows. The choice of the
minimal distance 2C + 2δ + 1 between points in the chain in this definition is somewhat
arbitrary, it should just be large enough that lemmas on the linear progress of chains apply.

Definition 3.9. Let C > 0 and y, y+, z ∈ X. We say that z belongs to the C-chain-shadow
of y+ seen from y if there exists a (C, 2C + 2δ + 1)-chain x0 = y, x1, . . . , xn = z satisfying
additionally (x0, x1)y+ 6 C. We denote the chain-shadow with CSy(y

+;C).

The next lemma shows that this definition of shadow is roughly equivalent to the usual
definition in terms of the Gromov product (y, z)y+ .

Lemma 3.10. If z ∈ CSy(y
+;C), then (y, z)y+ 6 2C + δ and d(y, z) > d(y, y+)− 2C − δ.

Proof. Let x0 = y, x1, . . . , xn = z be a (C, 2C + 2δ + 1)-chain as in the definition of chain-
shadows. We have

d(y, z) = d(y, x1)+d(x1, z)−2(y, z)x1 = d(y, y+)+d(y+, x1)−2(y, x1)y++d(x1, z)−2(y, z)x1 .

Let us bound (y, x1)y+ with C (by the definition of chain-shadows) and (y, z)x1 by C + δ
(thanks to Lemma 3.7 applied to the chain x0, . . . , xn). Let us also bound from below
d(y+, x1) + d(x1, z) with d(y+, z). We get

d(y, z) > d(y, y+) + d(y+, z)− 4C − 2δ.

Expanding the definition of the Gromov product, this gives (y, z)y+ 6 2C + δ. Then we get

d(y, z) > d(y, y+)− 2C − δ by applying Lemma 3.4 to y, y+, z. �

3.3. Schottky sets. To be able to prescribe enough directions at pivotal points, we will
use a variation around the notion of Schottky set in [BMSS20]. This is essentially a finite
set of isometries such that, for all x and y, most of these isometries put x and sy in general
position with respect to o, i.e., such that x, o, sy are C-aligned for some given C.

Definition 3.11. Let η,C,D > 0. A finite set S of isometries of X is (η,C,D)-Schottky if
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• For all x, y ∈ X, we have |{s ∈ S, (x, sy)o 6 C}| > (1− η)|S|.
• For all x, y ∈ X, we have |{s ∈ S, (x, s−1y)o 6 C}| > (1− η)|S|.
• For all s ∈ S, we have d(o, so) > D.

We could define analogously a notion of an (η,C,D)-probability measure, where the
previous definition would be this property for the uniform measure on S.

The next proposition shows that one can find Schottky sets by using powers of two
loxodromic isometries.

Proposition 3.12. Fix two loxodromic isometries u and v of X, with disjoint sets of fixed
points at infinity. For all η > 0, there exists C > 0 such that, for all D > 0, there exist
n ∈ N and an (η,C,D)-Schottky set in {w1 · · ·wn : wi ∈ {u, v}}.

Proof. This is essentially a classical application of the ping-pong method. [BMSS20, Propo-
sition A.2] contains a slightly less precise statement, but their proof also gives our stronger
version, as we explain now. Let Sn = {w1 · · ·wn : wi ∈ {u, v}}.

The ping-pong argument at infinity shows that one can choose n large enough so that,
for all m the elements w1 · · ·wm for wi ∈ {un, vn} are all different, loxodromic, with disjoint
sets of fixed points at infinity. Let us fix such an n, and then such an m with 2−m < η/2,
and denote these 2m isometries with g1, . . . , g2m . They all belong to Snm. Let g+i and g−i
be their attractive and repulsive fixed points.

Let K be large enough. Define a neighborhood V (g+i ) = {x ∈ X : (x, g+i )o > K} and

a smaller neighborhood V ′(g+i ) = {x ∈ X : (x, g+i )o > K + δ}. In the same way, define

V (g−i ) and V ′(g−i ). If K is large enough, then the 2m+1 sets (V (g±i ))i=1,...,2m are disjoint as
the fixed points at infinity of the gi are all different. Moreover, for large enough p, then gpi
maps the complement of V (g−i ) to V ′(g+i ), and the complement of V (g+i ) to V ′(g−i ).

We claim that, for all D, if p is large enough, then S = {gp1 , . . . , g
p
2m} is an (η,K + δ,D)-

Schottky set. As all these elements belong to Snmp, this will prove the theorem. First, the
condition d(o, so) > D for s = gpi is true if p is large enough, as gi is loxodromic. Let us
show that |{s ∈ S, (x, sy)o 6 K + δ}| > (1 − η)|S| for all x, y (the corresponding inequality
with s−1 is similar). There is at most one s = gi for which y ∈ V (g−i ), as all these sets are

disjoint. There is also at most one s = gj for which x ∈ V (g+j ), again by disjointness. If

s = gk is not one of these two, we claim that (x, sy)o 6 K + δ. This will prove the result,
since this implies

|{s ∈ S, (x, sy)o 6 K + δ}| > |S| − 2 = 2m − 2 = |S|(1− 2 · 2−m) > (1− η)|S|.

As x /∈ V (g+k ), we have (x, g+k )o < K. As y /∈ V (g−k ), we have sy = gky ∈ V ′(g+k ), i.e.,

(sy, g+k )o > K + δ. By hyperbolicity, we obtain

K > (x, g+k )o > min((x, sy)o, (sy, g
+
k )o)− δ.

(Note that the hyperbolicity inequality (3.1), initially stated inside the space, remains true
for the Gromov product at infinity as we have used an inf in its definition (1.1)). If the
minimum were realized by (sy, g+k )o > K+δ, we would get K > (K+δ)−δ, a contradiction.
Therefore, the minimum is realized by (x, sy)o, yielding K > (x, sy)o − δ as claimed. �
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Corollary 3.13. Let µ be a non-elementary discrete measure on the set of isometries of
X. For all η > 0, there exists C > 0 such that, for all D > 0, there exist M > 0 and an
(η,C,D)-Schottky set in the support of µM .

Proof. By definition of a non-elementary measure, one can find loxodromic elements u0
and v0 with disjoint fixed points in the support of µa and µb for some a, b > 0. Then
u = ub0 and v = va0 belong to the support of µab and have disjoint fixed points. Applying
Proposition 3.12, we obtain an (η,C,D)-Schottky set in the support of µabn as desired. �

4. Linear escape

In this section, we prove Theorem 1.1, i.e., the random walk on X driven by a non-
elementary measure escapes linearly towards infinity, with exponential bounds. We copy
the proof of Section 2, replacing subtrees with chain-shadows in the definition of pivotal
times, and generators with elements of a Schottky set. The reader who would prefer to
use shadows instead of chain-shadows may do so for intuition, but should be warned that
the argument will then barely fail (at a single place, the backtracking step in the proof of
Lemma 4.8).

Like in Section 2, the main technical part is to understand what happens for walks of
the form w0s1w1 · · ·wn−1snwn, where the wi are fixed, while the si are random, and drawn
from a Schottky set. This will be done in Subsection 4.1, while the application to prove
Theorem 1.1 is done in Subsection 4.2

4.1. A simple model. In this section, we fix isometries w0, w1, · · · of X, a constant C0 > 0,
and S a (1/100, C0,D)-Schottky set of isometries of X. We will assume that D is large
enough compared to C0 (for definiteness D > 20C0 + 100δ + 1 will do). Let µS be the
uniform measure on S. Let si be i.i.d. random variables distributed like µ2

S.
We form a random process on X by composing the wi and si and applying them to the

basepoint o. Our goal is to understand the behavior of y−n+1 = w0s1w1 · · · snwn · o when n
tends to infinity. The main result of this subsection is the following proposition.

Proposition 4.1. There exists a universal constant κ > 0 (independent of everything) such
that, for all n,

P(d(o, y−n+1) 6 κn) 6 e−κn.

Write si = aibi with ai, bi ∈ S. We define

y−i = w0s1w1 · · · si−1wi−1 · o, yi = w0s1w1 · · ·wi−1ai · o, y+i = w0s1w1 · · ·wi−1aibi · o,

the three points visited during the transition around i. We have d(y−i , yi) = d(o, ai ·o) > D as
ai belongs to the (1/100, C0,D)-Schottky set S. In the same way, d(yi, y

+
i ) > D. A difficulty

that we will need to handle is that d(y+i , y
−
i+1) may be short, as there is no lower bound on

wi, while we need long jumps everywhere to apply the results on chains of Subsection 3.2.
We will define a sequence of pivotal times Pn ⊆ {1, . . . , n}, evolving with time: when going

from n to n+1, we will either add a pivotal time at time n+1 (so that Pn+1 = Pn∪{n+1},
if the walk is going more towards infinity), or we will remove a few pivotal times at the end
because the walk has backtracked (in this case, Pn+1 = Pn ∩ {1, . . . ,m} for some m).

Let us define inductively the pivotal times, starting from P0 = ∅. Assume that Pn−1

is defined, and let us define Pn. Let k = k(n) be the last pivotal time before n, i.e.,
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k = max(Pn−1). (If Pn−1 = ∅, take k = 0 and let yk = o – we will essentially ignore the
minor adjustments to be made in this special case in the forthcoming discussion). Let us
say that the local geodesic condition is satisfied at time n if

(4.1) (yk, yn)y−n 6 C0, (y−n , y
+
n )yn 6 C0, (yn, y

−
n+1)y+n 6 C0.

In other words, the points yk, y
−
n , yn, y

+
n , y

−
n+1 follow each other successively, with a C0-

alignment condition. As the points are well separated by the definition of Schottky sets,
this will guarantee that we have a chain, progressing in a definite direction.

If the local geodesic condition is satisfied at time n, then we say that n is a pivotal time,
and we set Pn = Pn−1 ∪ {n}. Otherwise, we backtrack to the largest pivotal time m ∈ Pn−1

for which y−n+1 belongs to the (C0 + δ)-chain-shadow of y+m seen from ym. In this case, we
erase all later pivotal times, i.e., we set Pn = Pn−1 ∩ {1, . . . ,m}. If there is no such pivotal
time m, we set Pn = ∅.

Lemma 4.2. Assume that Pn is nonempty. Let m be its maximum. Then y−n+1 belongs to

the (C0 + δ)-chain-shadow of y+m seen from ym.

Proof. If Pn has been defined from Pn−1 by backtracking, then the conclusion of the lemma
is a direct consequence of the definition. Otherwise, the last pivotal time is n. In this
case, let us show that y−n+1 belongs to the (C0 + δ)-chain-shadow of y+n seen from yn, by

considering the chain yn, y
−
n+1. By definition of the chain-shadow, we should check that

(yn, y
−
n+1)y+n 6 C0 + δ and d(yn, y

−
n+1) > 2C0 + 4δ + 1. The first inequality is obvious

as (yn, y
−
n+1)y+n 6 C0 6 C0 + δ by the local geodesic condition (4.1). Moreover, since

(yn, y
−
n+1)y+n 6 C0 by (4.1), Lemma 3.4 gives d(yn, y

−
n+1) > d(yn, y

+
n )− C0 > D − C0, which

is > 2C0 + 4δ + 1 if D is large enough. �

Lemma 4.3. Let Pn = {k1 < · · · < kp}. Then the sequence y−k1 , yk1 , y
−
k2
, yk2 , . . . , ykp , y

−
n+1

is a (2C0 + 3δ,D − 2C0 − 3δ)-chain.

Proof. Let us first check the condition on Gromov products. We have to show that (yki−1
, yki)y−

ki

6

2C0+3δ and (y−ki , y
−
ki+1

)yki 6 2C0+3δ. The first inequality is obvious, as it follows from the

first property in the local geodesic condition when introducing the pivotal time ki. Let us
show the second one. Lemma 4.2 applied to the time ki+1−1 shows that y−ki+1

belongs to the

(C0+δ) chain-shadow of y+ki seen from yki. Lemma 3.10 thus yields (yki+1
, yki)y+

ki

6 2C0+3δ.

Moreover, (y+ki , y
−
ki
)yki 6 C0 by the local geodesic condition when introducing the pivotal

time ki. We apply Lemma 3.5 with the points y−ki , yki , y
+
ki
, y−ki+1

, with C = 2C0 + 2δ. As

d(yki , y
+
ki
) > D is large enough, this lemma applies and gives (y−ki , y

−
ki+1

)yki 6 2C0+3δ. This

is the desired inequality.
Let us check the condition on distances. We have to show that d(y−ki , yki) > D−2C0−3δ

and d(yki , y
−
ki+1

) > D − 2C0 − 3δ. The first condition is obvious as d(y−ki , yki) > D. For the

second, Lemma 3.10 gives d(yki , y
−
ki+1

) > d(yki , y
+
ki
)− 2C0 − 3δ > D − 2C0 − 3δ. �

The first point in the previous chain can be replaced with o:
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Lemma 4.4. Let Pn = {k1 < · · · < kp}. Then the sequence o, yk1 , y
−
k2
, yk2 , . . . , ykp , y

−
n+1 is

a (2C0 + 4δ,D − 2C0 − 3δ)-chain.

Proof. We have to control d(o, yk1) and (o, y−k2)yk1 as the other quantities are controlled

by Lemma 4.3. For this, we will apply Lemma 3.5 to the points y−k2 , yk1 , y
−
k1
, o with C =

2C0 + 3δ. We have (y−k2 , y
−
k1
)yk1 6 2C0 + 3δ by Lemma 4.3, and (yk1 , o)y−

k1

6 C0 (this is the

first property in the local geodesic condition when introducing the pivotal time k1), and
d(yk1 , y

−
k1
) > D > 2C + δ+1. Therefore, Lemma 3.5 gives (y−k2 , o)yk1 6 2C0 +4δ. Moreover,

Lemma 3.4 gives

d(yk1 , o) > d(yk1 , y
−
k1
)− (yk1 , o)y−

k1

> D − C0 > D − 2C0 − 3δ. �

Proposition 4.5. We have d(o, y−n+1) > |Pn|.

Proof. This follows from Lemma 4.4, saying that we have a chain of length at least |Pn|
between o and y−n+1, and from Lemma 3.7, saying that the distance grows linearly along a
chain. �

This proposition shows that, to obtain the linear escape rate with exponential decay, it
suffices to show that there are linearly many pivotal times.

Lemma 4.6. Fix s1, . . . , sn, and draw sn+1 according to µ2
S. The probability that |Pn+1| =

|Pn|+ 1 (i.e., that n+ 1 gets added as a pivotal time) is at least 9/10.

Proof. In the local geodesic condition (4.1), the last property reads (g ·o, gbnwn ·o)gbn·o 6 C0

for g = w0s1 · · ·wn−1an. Composing with b−1
n g−1, it becomes (b−1

n · o,wn · o)o 6 C0. By the
definition of a Schottky set, this inequality is satisfied with probability at least 1−η = 99/100
when choosing bn. Once bn is fixed, the other two properties in the geodesic condition only
depend on an, and each of them is satisfied with probability at least 99/100, again by the
Schottky property. They are satisfied simultaneously with probability at least 98/100. As
(99/100) · (98/100) > 9/10, this concludes the proof. �

The key point is to control the backtracking length. For this, we will see that for one
configuration that backtracks a lot, there are many configurations that do not. Given
s̄ = (s1, . . . , sn), let us say that another sequence s̄′ = (s′1, . . . , s

′
n) is pivoted from s̄ if they

have the same pivotal times, b′k = bk for all k, and a′k = ak when k is not a pivotal time.

Lemma 4.7. Let i be a pivotal time of s̄ = (s1, . . . , sn). Replace si = aibi with s′i =
a′ibi which still satisfies the local geodesic condition (4.1) (with n replaced by i). Then
(s1, . . . , s

′
i, . . . , sn) is pivoted from s̄.

Proof. We should show that the pivotal times of s̄′ are the same as those of s̄. Until time
i, the sequences are the same, hence they have the same pivotal times: Pi−1(s̄) = Pi−1(s̄

′).
Then i is added as a pivotal time for both s̄ and s̄′ by assumption, therefore Pi(s̄) = Pi(s̄

′).
Then the remaining part of the trajectory for s̄ never backtracks beyond i, as i remains a
pivotal time. This backtracking property is defined in terms of the relative position of the
trajectory compared to yi and y+i , and therefore it depends on bi but not on the beginning
of the trajectory (and in particular it does not depend on ai). Hence, replacing ai with a′i
does not change the backtrackings, which are the same for s̄ and s̄′ until time n. �
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Lemma 4.7 shows that, if a trajectory has p pivotal times, then it has a lot of pivoted
trajectories (exponentially many in p) as one can change ai to a′i at each pivotal time.
Denote by En(s̄) the set of trajectories which are pivoted from s̄. Conditionally on En(s̄),
the random variables a′i for i a pivotal time are independent (but not identically distributed,
as they are each drawn from a subset of S depending on i, of large cardinality.

Lemma 4.8. Let s̄ = (s1, . . . , sn) be a trajectory with q pivotal times. We condition on
En(s̄), and we draw sn+1 according to µ2

S. Then, for all j > 0,

P(|Pn+1| < q − j | En(s̄)) 6 1/10j+1.

Proof. If q = 0, then the result follows readily from Lemma 4.6. Assume q > 0.
First, the probability that sn+1 creates a new pivotal time is at least 9/10, by Lemma 4.6

(and the elements sn+1 that create a new pivotal time are the same over the whole equiva-
lence class En(s̄) as q > 0). Let us now fix a bad sn+1, giving rise to backtracking.

Let us show the lemma for j = 1. Let m < k be the last two pivotal times. We have to
show that

(4.2) P(|Pn+1| < q − 1 | En(s̄), sn+1) 6 1/10,

i.e., most trajectories do not backtrack beyond k: for many choices of ak, then y−n+1 should

belong to the (C0 + δ)-chain-shadow of y+m seen from ym. By Lemma 4.2 applied at time
k − 1, we already know that y−k belongs to this set. Therefore, there exists a chain x0 =

ym, x1, . . . , xi = y−k pointing in the chain-shadow. With a good choice of ak, we will increase

the chain by adding y−n+1 at its end.

Let us consider a′k so that the points xi−1, y
−
k , yk, y

−
n+1 are C0-aligned, i.e., such that

(xi−1, yk)y−
k

6 C0 and (y−k , y
−
n+1)yk 6 C0. By the Schottky property, there are at least

(98/100)|S| such a′k. Let us show that, with this choice, y−n+1 belongs to the chain-shadow

of y+m seen from ym (and therefore backtracking stops here). For this, it is enough to see that
x0, . . . , xi−1, y

−
k , y

−
n+1 is a (C0 + δ, 2C0 + 4δ + 1)-chain. We have to see that d(y−k , y

−
n+1) >

2C0 + 4δ + 1 and (xi−1, y
−
n+1)y−

k
6 C0 + δ. For this, apply Lemma 3.5 to the points

xi−1, y
−
k , yk, y

−
n+1, which are C0-aligned. As d(y−k , yk) > D is large enough, this lemma gives

(xi−1, y
−
n+1)y−

k
6 C0+δ. Moreover, Lemma 3.4 gives d(y−k , y

−
n+1) > d(y−k , yk)−(y−k , y

−
n+1)yk >

D − C0 > 2C0 + 4δ + 1, as claimed.
In the equivalence class, the number of possible choices for a′k when introducing the

pivotal time k is at least (98/100)|S|, since most choices satisfy the local geodesic condition
(see the proof of Lemma 4.6). The number of choices of a′k that ensure there is no further
backtracking is also bounded below by (98/100)|S|, by the previous discussion, so that the
number of bad choices is at most (1 − (98/100))|S|. Finally, the proportion of bad choices
that lead to further backtracking is at most

(1− (98/100))|S|

(98/100)|S|
<

1

10
.

This proves (4.2) for j = 1.
To prove the lemma for j = 2, let us fix sn+1 as well as a bad choice of a′k that gives rise

to backtracking beyond k (this happens with probability at most 1/10). We have to see
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that, once these quantities are fixed, the probability to backtrack past the previous pivotal
time is at most 1/10. This is the same argument as above. The case of general j is proved
analogously by induction. �

Lemma 4.9. Let An = |Pn| be the number of pivotal times. Then, in distribution, An+1 >

An + U where U is a random variable independent from An and distributed as follows:

P(U = −j) =
9

10j+1
for j > 0,

P(U = 0) = 0,

P(U = 1) =
9

10
.

In other words, P(An+1 > i) > P(An + U > i) for all i.

Proof. Conditionally on En(s̄), this follows from Lemma 4.8, just like in the proof of Propo-
sition 2.6: one shows that

P(An+1 > i | En(s̄)) > P(An + U > i | En(s̄)).

As the inequality is uniform over the conditioning, the unconditioned version follows. �

Proposition 4.10. There exists a universal constant κ > 0 such that, for all n,

P(|Pn| 6 κn) 6 e−κn.

Proof. Let U1, U2, . . . be a sequence of independent copies of the variable U from Lemma 4.9.
Iterating this lemma gives

P(|Pn| > i) > P(U1 + · · ·+ Un > i)

for all i. In particular, P(|Pn| 6 κn) 6 P(U1 + · · · + Un 6 κn). As the Ui are real random
variables with an exponential moment and positive expectation, P(U1 + · · · + Un 6 κn) is
exponentially small if κ is small enough. �

Proof of Proposition 4.1. The linear escape with exponential error term follows from Propo-
sition 4.5 giving d(o, y−n+1) > |Pn|, and from Proposition 4.10 ensuring that |Pn| grows
linearly outside of a set of exponentially small probability. �

4.2. Proof of linear escape and convergence at infinity. Let µ be a non-elementary
measure on the set of isometries of the space X. In this subsection, we prove Theorem 1.1:
the µ-random walk goes to infinity linearly, with an exponential error term. The techniques
we develop along the way will also prove convergence of the walk at infinity.

We apply Corollary 3.13 with η = 1/100. Let C = C0 be given by this corollary. Choose
D = D(C0, δ) large enough so that the result of the previous Subsection apply (D =
20C0 + 100δ + 1 suffices). The corollary gives an (η,C0,D) Schottky set S included in
the support of µM for some M . For α > 0 small enough and N = 2M , we may write
µN = αµ2

S + (1− α)ν for some probability measure ν, where µS is the uniform measure on
S.

As in [BMSS20, Section 6], let us reconstruct in a slightly indirect way the random walk,
as follows, on a space Ω containing Bernoulli random variables εi (satisfying P(εi = 1) = α
and P(εi = 0) = 1 − α) and variables hi distributed according to ν and variables si = aibi
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distributed according to µ2
S, all independent. Define γi = si if εi = 1, and γi = hi if εi = 0.

Then γ0 · · · γn−1 is distributed like ZNn. With a standard coupling argument, extending Ω if
necessary, we can also construct on Ω a sequence of independent random variables g0, g1, . . .
with distribution µ such that γi = giN · · · giN+N−1.

Let t1 < t2 < · · · be the times where εi = 1. Fix n ∈ N. We let τ = τ(n) be the last index
j such that N(tj+1) 6 n, so that the interval [Ntj , N(tj+1)) is contained in [0, n). We will
decompose the product g0 · · · gn−1 as a product of the elements s′j = stj (the product of all

gi for i ∈ [Ntj, N(tj + 1))) interspersed with other words that we will consider as fixed, to
be in the framework of Subsection 4.1. Let wj = gN(tj+1) · · · gNtj+1−1 (where by convention

t0 = 0), and let w′ = w′(n) = gN(tτ(n)+1) · · · gn−1 be the last missing word (it really depends

on n, contrary to the previous words that just fill the gaps between blocks corresponding to
εj = 1). By construction,

Zn · o = w0s
′
1w1 · · ·wτ−1s

′
τw

′(n) · o.

We can associate to this decomposition a sequence of pivotal times P
(n)
1 , . . . , P

(n)
τ , where

the exponent (n) is here to emphasize that the intermediate words we use depend on n. In
fact, the only word that really depends on n is the last word w′ = w′(n), as the other ones
are wj = g(N+1)tj · · · gNtj+1−1 so they only depend on tj. Hence, the sequence of pivotal
times is rather

(4.3) P1, P2, . . . , Pτ−1, P
(n)
τ .

The main quantity we will control is

un :=
∣

∣

∣
P

(n)
τ(n)

∣

∣

∣
,

the final number of pivotal times after n steps of the initial random walk.

Proposition 4.11. There exists κ > 0 such that P(un 6 κn) 6 e−κn.

Proof. The sequence tj+1 − tj is a sequence of independent random variables with an expo-
nential tail. Therefore, there exist C > 0 and κ > 0 such that

P(tj > Cj) = P

(

j−1
∑

i=0

(ti+1 − ti) > Cj

)

6 e−κj .

Hence, if β > 0 is small enough, we have N(t⌊βn⌋+1) 6 n outside of a set with exponentially
small probability. This gives

P(τ(n) > βn) 6 e−κn

for some κ > 0. For any c > 0, we get

P(un 6 cn) 6 e−κn + P(un 6 cn, τ > βn).

Let us concentrate on the second set. We condition with respect to the εi (which fixes the
ti, and τ) and with respect to the gi outside of the intervals [Ntj , N(tj + 1)) (which fixes
the wj and w′). Once these are fixed, we are in the framework of Subsection 4.1. We may
therefore apply Proposition 4.10 and deduce that, conditionally on these quantities, we have
P(un 6 cτ) 6 e−cτ , for some c > 0. As τ > βn, this gives conditionally P(un 6 cβn) 6 e−cβn.
As this is uniform on the conditioning, this implies the conclusion. �
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Proof of Theorem 1.1. Outside of a set with exponentially small probability, the number
of pivotal times at the n-th step of the random walk is at least κn for some κ > 0, by
Proposition 4.11. As the distance to the origin is bounded below by the number of pivotal
times, by Proposition 4.5, this concludes the proof. �

This argument enables us to recover a theorem of [MT18], the convergence of the walk
at infinity. We even get exponential error terms in the speed of convergence. We start with
a lemma ensuring that positions of the random walk stay in a shadow.

Lemma 4.12. Let n ∈ N and C > 0. Assume that, for all k > n, one has uk > C. Let x

be the position of the walk at the C-th pivotal time in P
(n)
τ(n). Then, for all k > n, the point

Zk · o belongs to the (2C0 + 6δ)-shadow of x seen from o.

Proof. For k > n, the set P
(k)
τ(k) has strictly more than C points by assumption. In particular,

the C-th pivotal time is not introduced at the last step, and the last step does not backtrack
beyond this point. The set of pivotal times before the last index does not depend on k, as

explained before (4.3). It follows that the C-th pivotal time in P
(k)
τ(k) is independent of k > n.

In particular, x is the position of the walk at a pivotal time in P
(k)
τ(k), for any k > n.

For k > n, Lemma 4.4 shows that there is a (2C0+4δ,D−2C0−3δ)-chain from o to Zk ·o
going through x. By Lemma 3.8, we deduce that (o, Zk · o)x 6 2C0 +6δ. In other words, all
the points Zk · o remain in the (2C0 + 6δ)-shadow of x seen from o, as claimed. �

Proposition 4.13. Almost surely, there is a point Z∞ ∈ ∂X such that Zn · o converges to
Z∞. Moreover, there exists κ > 0 such that

(4.4) P((Zn · o, Z∞)o 6 κn) 6 e−κn.

Proof. Fix c > 0 such that P(un 6 cn) 6 e−cn, by Lemma 4.11. Since P(un 6 cn) is
exponentially small, Borel-Cantelli ensures that almost surely one has eventually un > cn.
Lemma 4.12 then applies, with C = ⌊cn⌋− 1. Let xn denote the position of the walk at the
(⌊cn⌋ − 1)-th pivotal time for large n. By Proposition 4.5, it satisfies

(4.5) d(o, xn) > ⌊cn⌋ − 1.

The sequence Zk · o is eventually trapped in the shadow of xn seen from o by Lemma 4.12.
This implies the convergence at infinity of Zk · o, by Lemma 3.2.

Finally, let us show the quantitative estimate (4.4). Assume that for all k > n, one has
uk > ck (this happens with probability at least 1−Ce−cn). In this case, all the points Zk ·o
for k > n belong to the (2C0 + 6δ)-shadow of xn. Therefore, Lemma 3.3 applies and gives

(4.6) (Zn · o, Z∞)o > d(o, xn)− (2C0 + 6δ) − 3δ.

Together with (4.5), this gives a linear lower bound for the Gromov product, that holds
outside of an exponentially small set. �

We will also need the following lemma, that follows from the same techniques.
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Lemma 4.14. Let µ be a non-elementary discrete measure on the set of isometries of a
Gromov-hyperbolic space X with basepoint o. Let Zn = g0 · · · gn−1 where the gi are i.i.d.
with distribution µ. Let ε > 0. There exists C > 0 such that, for any isometry g,

P(∀n, d(o, gZn · o) > d(o, g · o)− C) > 1− ε.

The point of the lemma is that the possible loss C is uniform in g. Without moment
assumptions on µ, it is not possible to get a better bound, contrary to the case of walks
with an exponential moment (compare [BMSS20, Theorem 2.12]).

Proof. We follow the same construction as at the beginning of this subsection to reconstruct
the random walk, but adding the isometry g before the first step of the random walk. Since
the estimates of Subsection 4.1 are uniform in w0, replacing w0 with gw0 does not change

them. Therefore, the number un :=
∣

∣

∣
P

(n)
τ(n)

∣

∣

∣
of pivotal times for the random walk at time n

still satisfies the estimate of Proposition 4.11: there exists κ > 0 (independent of g) such
that P(un 6 κn) 6 e−κn.

Let us fix n such that
∑

i>n e
−κi < ε/2. On a set Ag of probability at least 1−ε/2 (which

may depend on g), one has for all i > n the inequality ui > κi > κn. As in the proof of
Proposition 4.13, one can then find a point xn such that, for all i > n, the points gZi · o
belong to the (2C0 + 6δ)-shadow of xn seen from o. In particular, by Lemma 3.1,

d(gZi · o, o) > d(o, xn)− 4C0 − 12δ.

Moreover, xn is of the form gZk · o for some k 6 n.
By measurability, we can find a set A (independent of g) of measure at least 1− ε/2 and

a constant C such that, for all ω ∈ A and all k 6 n, holds d(o, Zk · o) 6 C.
Consider ω ∈ Ag ∩A (this set has measure at least 1− ε). Then

d(o, xn) = d(o, gZk ·o) > d(o, g ·o)−d(g ·o, gZk ·o) = d(o, g ·o)−d(o, Zk ·o) > d(o, g ·o)−C.

For all i > n, we get d(gZi · o, o) > d(o, g · o)−C − 4C0 − 12δ. For i < n, this estimate also
holds as d(o, Zi · o) 6 C. This proves the lemma, for the constant C + 4C0 + 12δ which is
independent of g. �

5. Precise estimates

5.1. A more complicated model. To obtain precise estimates on the rate of convergence
to infinity, we will need to compare the distance to the origin with the sum of independent
real valued random variables corresponding to the size of jumps of the random walk. This
is done in the next proposition.

Proposition 5.1. For η ∈ (0, 1/100], there exists κ = κ(η) > 0 with the following property.
Let S be an (η,C0,D)-Schottky set of isometries of a δ-hyperbolic space X with basepoint

o, where D is large enough compared to C0 (for definiteness D > 20C0+100δ+1 is enough).
Let ρ1, ρ2, . . . be probability measures on the isometry set of X. Let R be a nonnegative real
random variable such that for all i and all M > 0 one has

Pρi(d(o, g · o) > M) > P(R > M),

i.e., the distance with respect to the origin for ρi dominates stochastically R, for all i.
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Let w0, w1, . . . be fixed isometries of X. Let s1, s2, . . . be independent random variables,
where si is sampled according to µ2

S ∗ ρi ∗ µ
2
S. Define y−n+1 = w0s1w1 · · · snwn · o. Then for

all M > 0,

P(d(o, y−n+1) 6 M) 6 P(R1 + · · · +R⌊(1−21η)n⌋ 6 M) + e−κn,

where R1, R2, . . . are independent copies of R.

When all the ρi are the Dirac mass at the origin, then the setting of the proposition is
essentially the same as the simple model of Subsection 4.1, except that we are sampling the
si according to µ4

S instead of µ2
S (which does not really make a difference). The conclusion

in the general setting of Proposition 5.1 is that the growth rate of the distance to the origin
is at least the growth rate of sums of i.i.d. random variables distributed like the ρi, up to a
minor loss (that tends to 0 when the proportion η of bad elements in the Schottky set tends
to 0) and an exponentially small error term. This model will be precise enough to capture
the right growth rate of a general random walk, to prove Theorems 1.2 and 1.3 in the next
paragraphs, in the same way that we have deduced linear escape with exponential estimates
from the results on the simple model of Subsection 4.1. The possibility to have different
measures ρi at the different jumps will be important in the application of this proposition
in Subsection 5.3, but for the proof the reader may pretend for simplicity that they are all
equal to a fixed measure ρ (and then one can take R to be the distribution of d(o, g ·o) with
respect to ρ).

To prove Proposition 5.1, let us introduce a refined notion of pivotal times, in which
we will keep the randomness coming from the ρi. Write si = aibiricidi, where ai, bi, ci, di
are distributed according to µS while ri is distributed according to ρi. This gives rise to 6
successive points at the i-th transition:

y−i = y
(0)
i = w0s1 · · · si−1wi−1 · o, y

(1)
i = w0s1 · · · si−1wi−1ai · o,

y
(2)
i = w0s1 · · · si−1wi−1aibi · o, y

(3)
i = w0s1 · · · si−1wi−1aibiri · o,

yi = y
(4)
i = w0s1 · · · si−1wi−1aibirici · o, y+i = y

(5)
i = w0s1 · · · si−1wi−1aibiricidi · o.

The distances between two successive points in this list is at least D as it comes from the

application of an element of the Schottky set S, except for the distance between y
(2)
i and

y
(3)
i for which we have no lower bound as ri is drawn according to ρi.
Let us define inductively a set of refined pivotal times, that we will denote by P̄n to

differentiate it from the previous unrefined notion. We copy the definition of Subsection 4.1.
We start from P̄0 = ∅. Assume that P̄n−1 is defined, and let us define P̄n. Let k =
k(n) be the last pivotal time before n, i.e., k = max(P̄n−1). (If P̄n−1 = ∅, take k = 0
and let yk = o). Let us say that the local geodesic condition is satisfied at time n if in

the sequence yk, y
(0)
n , y

(1)
n , y

(2)
n , y

(3)
n , y

(4)
n , y

(5)
n , y−n+1, all successive points are C0-aligned, and

moreover y
(1)
n , y

(3)
n , y

(4)
n are C0-aligned (the latter condition is useful to compensate the fact

that the jump from y
(2)
n to y

(3)
n may be small, preventing us to apply the results on chains of

Subsection 3.2). If the local geodesic condition is satisfied at time n, then we say that n is
a refined pivotal time, and we set P̄n = P̄n−1 ∪ {n}. Otherwise, we backtrack to the largest
refined pivotal time m ∈ P̄n−1 for which y−n+1 belongs to the (C0+δ) chain-shadow of y+m seen
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from ym. In this case, we erase all later pivotal times, i.e., we set P̄n = P̄n−1 ∩ {1, . . . ,m}.
If there is no such pivotal time m, we set P̄n = ∅.

For the refined notion, we can prove the analogues of the lemmas of Subsection 4.1.

Lemma 5.2. Assume that P̄n is nonempty. Let m be its maximum. Then y−n+1 belongs to

the (C0 + δ) chain-shadow of y+m seen from ym.

Proof. The proof is exactly the same as for Lemma 4.2: when there is backtracking, this
follows from the definition, and when there is no backtracking (i.e., the last pivotal time
is n), then the chain yn, y

−
n+1 satisfies all the properties to show that y−n+1 is in the chain-

shadow. �

Lemma 5.3. Let P̄n = {k1 < · · · < kp}. Then the sequence y−k1 , yk1 , y
−
k2
, yk2 , . . . , ykp , y

−
n+1

is a (2C0 + 3δ,D − 2C0 − 3δ)-chain. Moreover, d(y−ki , yki) > d(o, rki · o) +D for all i.

Proof. This differs a little bit from the proof of Lemma 4.3 as there are more points involved
at each pivotal time. It is still basic chain manipulations, with the only difficulty that the
jumps corresponding to ri and wi may be short (but since they are surrounded by big jumps
with controlled alignment conditions this can be circumvented easily).

By definition, the points yki−1
, y−ki , y

(1)
ki

, y
(2)
ki

, y
(3)
ki

, y
(4)
ki

, y
(5)
ki

are C0-aligned. However, the

distances between yki−1
and y−ki on the one hand, and between y

(2)
ki

and y
(3)
ki

on the other

hand, are not obviously bounded below (contrary to the other distances, which are > D),
so one can not apply the results on chains to these points. However, we can fix this by
removing one point: we claim that

(5.1) yki−1
, y−ki , y

(1)
ki

, y
(3)
ki

, y
(4)
ki

(= yki), y
(5)
ki

form a (C0 + δ,D − 2C0 − 3δ) chain.

Let us prove this claim. We may apply Lemma 3.5 to the points y−ki , y
(1)
ki

, y
(2)
ki

, y
(3)
ki

, with

C = C0, to deduce that (y−ki , y
(3)
ki

)
y
(1)
ki

6 C0 + δ. Moreover, Lemma 3.4 gives d(y
(1)
ki

, y
(3)
ki

) >

d(y
(1)
ki

, y
(2)
ki

)−(y
(1)
ki

, y
(3)
ki

)
y
(2)
ki

> D−C0. Moreover, d(yki−1
, y−ki) > D−2C0−3δ by Lemma 3.10,

as y−ki is in the (C0 + δ) chain shadow of y+ki−1
seen from yki−1

, by Lemma 5.2. Finally, note

that (y
(1)
ki

, y
(4)
ki

)
y
(3)
ki

6 C0 by the last assumption in the local geodesic condition. We have

checked all the nontrivial properties in (5.1), completing its proof.
We have in particular d(yki−1

, y−ki) > D − 2C0 − 3δ, and also by (3.3)

(5.2) d(y−ki , yki) = d(y−ki , y
(4)
ki

) > d(y−ki , y
(1)
ki

) + d(y
(1)
ki

, y
(3)
ki

) + d(y
(3)
ki

, y
(4)
ki

)− 3(C0 + δ).

By Lemma 3.4 applied to y
(1)
ki

, y
(2)
ki

, y
(3)
ki

,

d(y
(1)
ki

, y
(3)
ki

) > d(y
(2)
ki

, y
(3)
ki

)− (y
(1)
ki

, y
(3)
ki

)
y
(2)
ki

> d(o, ri · o)− C0.

The two other distances in (5.2) are bounded below by D. Using D > 3(C0 + δ) + C0, we
obtain

d(y−ki , yki) > D + d(o, ri · o).

This proves all the distance conditions in the claim of the lemma.
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Let us now check the Gromov product estimates. Applying Lemma 3.7 to the chain (5.1),
we get (yki−1

, yki)y−
ki

6 C0 + 2δ 6 2C0 + 3δ, proving one of the desired estimates. The

other one is (y−ki , y
−
ki+1

)yki 6 2C0 + 3δ. To prove it, let us apply Lemma 3.5 to the points

y−ki , yki , y
+
ki
, y−ki+1

. The Gromov product of the last three is at most 2C0+3δ by Lemmas 5.2

and 3.10, and the Gromov product of the first three is at most C0+2δ by applying Lemma 3.7
to the reverse of the chain (5.1). Moreover, the distance d(yki , y

+
ki
) is at least D, large enough.

Therefore, Lemma 3.5 indeed applies with C = 2C0+2δ, and gives (y−ki , y
−
ki+1

)yki 6 2C0+3δ

as claimed. �

The first point in the previous chain can be replaced with o:

Lemma 5.4. Let P̄n = {k1 < · · · < kp}. Then the sequence o, yk1 , y
−
k2
, yk2 , . . . , ykp , y

−
n+1 is

a (2C0 + 4δ,D − 2C0 − 3δ)-chain. Moreover, d(o, yk1) > d(o, rk1 · o) +D − C0 − 3δ.

Proof. The only difference compared to the proof of Lemma 4.4 is that we do not have the
inequality (yk1 , o)y−

k1

6 C0 due to the more complicated definition of refined pivotal times.

If we can prove that (yk1 , o)y−
k1

6 C0 + 3δ, the proof of Lemma 4.4 goes through. Let us

check this inequality.

As in (5.1), the points y−k1 , y
(1)
k1

, y
(3)
k1

, y
(4)
k1

(= yk1), y
(5)
k1

form a (C0 + δ,D − 4C0 − 6δ) chain.

Therefore, (y−k1 , yk1)y(1)
k1

6 C0 + 2δ by Lemma 3.7. Moreover, (o, y
(1)
k1

)y−
k1

6 C0 by the

definition of pivotal times. As d(y
(1)
k1

, y−k1) > D is large, it follows that Lemma 3.5 applies

to the points o, y−k1 , y
(1)
k1

, yk1 with C = C0+2δ. It gives (yk1 , o)y−
k1

6 C0+3δ, concluding the

proof that we have a chain.
Moreover, Lemma 3.4 together with Lemma 5.3 give

d(o, yk1) > d(y−k1 , yk1)− (o, yk1)y−
k1

> (d(o, rk1 · o) +D)− (C0 + 3δ),

proving the last claim. �

Proposition 5.5. Let P̄n = {k1 < · · · < kp}. We have d(o, y−n+1) >
∑

i d(o, rki · o).

Proof. This follows from Lemmas 5.3 and 5.4, saying that we have a chain between o and
y−n+1 with jumps of size at least d(o, rki · o)+D−C0 − 3δ, and from Lemma 3.7 saying that
the distance grows at least as the size of the jumps along a chain. �

To prove Proposition 5.1, it follows that we should show that there are many refined
pivotal times. For this, we follow the same strategy as in Subsection 4.1.

Lemma 5.6. Fix s1, . . . , sn, and draw sn+1 according to µ2
S ∗ ρn+1 ∗ µ2

S. The probability
that |P̄n+1| = |P̄n|+1 (i.e., that n+1 gets added as a refined pivotal time) is at least 1− 7η.

Proof. In the local geodesic condition, there are 7 alignment conditions to be satisfied. When
drawing sn+1 according to µ2

S ∗ ρn+1 ∗ µ
2
S , each of them is satisfied with probability at least

1− η (for each of them, this can be seen by fixing all variables but one and using that the
last one is picked from a Schottky set). Therefore, they are simultaneously satisfied with
probability at least 1− 7η. �
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To control the backtracking, we defined pivoted sequences. Given s̄ = (s1, . . . , sn), let us
say that another sequence s̄′ = (s′1, . . . , s

′
n) is pivoted from s̄ if they have the same refined

pivotal times, and d′k = dk at all times, and a′k = ak, b′k = bk, r′k = rk, c′k = ck at times
which are not a refined pivotal time. In other words, we freeze the last jump dk, but we
keep the freedom in the other parts of sk at refined pivotal times only.

The next lemma is proved exactly like Lemma 4.7.

Lemma 5.7. Let i be a refined pivotal time of s̄ = (s1, . . . , sn). Replace si = aibiricidi with
s′i = a′ib

′
ir

′
ic

′
idi which still satisfies the local geodesic condition (with n replaced by i). Then

(s1, . . . , s
′
i, . . . , sn) is pivoted from s̄.

Denote by Ēn(s̄) the sequences which are pivoted from s̄. Conditionally on Ēn(s̄), the
variables s′i over pivotal times i are independent, but drawn from distributions that depends
on i.

Lemma 5.8. Let s̄ = (s1, . . . , sn) be a trajectory with q refined pivotal times. We condition
on Ēn(s̄), and we draw sn+1 according to µ2

S ∗ ρn+1 ∗ µ
2
S. Then, for all j > 0,

P(|P̄n+1| < q − j | Ēn(s̄)) 6 (7η)j+1.

Proof. The proof is essentially the same as for Lemma 4.8. Assume that sn+1 is fixed
and gives rise to some backtracking. Let us show that further backtracking happens with
probability at most 7η, from which the estimate follows inductively. Let m < k be the last
two refined pivotal times, and let xi−1 be the last point in a chain from ym to y−k witnessing

that y−k ∈ CSym(y
+
m;C0 + δ) as guaranteed by Lemma 5.2.

In s′k, let us condition also with respect to b′k, r
′
k, c

′
k compatible with the local geodesic

condition. Then the total number of possible values for a′k that give rise to s′k satisfying the
local geodesic condition is at least (1 − η)|S|, as one should ensure the condition ((a′k)

−1 ·
o, b′k · o)o 6 C0 and S is a Schottky set. Among these, the values of a′k that may give

rise to further backtracking are those for which the points xi−1, y
−
k , y

(1)
k , y−n+1 are not C0-

aligned, because this alignment would imply y−n+1 ∈ CSym(y
+
m;C0 + δ) (as in the proof of

Lemma 4.8) and would block the backtracking. By the Schottky condition applied twice,
there are at most 2η|S| such a′k. Therefore, the probability of further backtracking is at
most 2η/(1 − η) 6 7η. �

Lemma 5.9. Let An = |P̄n| be the number of pivotal times. Then, in distribution, An+1 >

An + U where U is a random variable independent from An and distributed as follows:

P(U = −j) = (1− 7η)(7η)j for j > 0,

P(U = 0) = 0,

P(U = 1) = 1− 7η.

In other words, P(An+1 > i) > P(An + U > i) for all i.

Proof. This is proved exactly like Lemma 4.9 using Lemma 5.8. �

Proposition 5.10. There exists κ > 0 only depending on η such that for all n,

P(|P̄n| 6 (1− 14η)n) 6 e−κn.
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Proof. Let U1, U2, . . . be a sequence of independent copies of the variable U from Lemma 5.9.
Iterating this lemma gives

P(|P̄n| > i) > P(U1 + · · ·+ Un > i)

for all i. In particular, P(|P̄n| 6 (1−14η)n) 6 P(U1+ · · ·+Un 6 (1−14η)n). The Ui are real
random variables with an exponential moment, and expectation (1−14η)/(1−7η) > 1−14η.
Large deviations for sums of i.i.d. real random variables ensure that P(U1 + · · · + Un 6

(1− 14η)n) is exponentially small. �

Proof of Proposition 5.1. We want to bound P(d(o, y−n+1) 6 M). By Proposition 5.10, we
have

(5.3) P(d(o, y−n+1) 6 M) 6 P(d(o, y−n+1) 6 M, |P̄n| > (1− 14η)n) + e−κn.

Therefore, we may focus on trajectories with |P̄n| > (1−14η)n. Let s̄ = (s1, . . . , sn) be such
a trajectory, and Ēn(s̄) its equivalence class under the pivotal relation. We will estimate
P(d(o, y−n+1) 6 M | Ēn(s̄)).

Along Ēn(s̄), we have d(o, y−n+1) >
∑p

i=1 d(o, rki ·o) where the pivotal times are k1 < . . . <
kp, by Proposition 5.5. As p > (1− 14η)n, we obtain in particular

(5.4) d(o, y−n+1) >

⌊(1−14η)n⌋
∑

i=1

d(o, rki · o).

Along Ēn(s̄), the random variables rki are independent (as what happens at different pivotal
times is independent by construction), but they are not distributed like ρki a priori, since
the local geodesic condition may twist its distribution. Denoting by Lki the set of (a, b, r, c)
that satisfy the local geodesic condition, then the distribution of (a, b, r, c) is (µ2

S ∗ ρki ∗
µS)1Lki

/(µ2
S ∗ ρki ∗ µS)(Lki). In particular, the probability that rki equals a given r is

ρki(r)µ
3
S{(a, b, c) such that (a, b, r, c) ∈ Lki}/(µ

2
S ∗ ρki ∗ µS)(Lki)

> ρki(r)µ
3
S{(a, b, c) such that (a, b, r, c) ∈ Lki}.

Once r is fixed, there are 6 alignment relations to be satisfied for a, b, c to make sure that
(a, b, r, c) satisfies the local geodesic condition. Each of them is satisfied with probability at
least 1− η, so we get µ3

S{(a, b, c) such that (a, b, r, c) ∈ Lki} > 1− 6η. Finally,

P(rki = r | Ēn(s̄)) > (1− 6η)ρki(r).

As the distance d(o, r · o) for r drawn according to ρki dominates the random variable R in
the assumptions of the lemma, it follows that the conditional distribution in Ēn(s̄) dominates
BR, where B is a Bernoulli random variable, equal to 1 with probability 1 − 6η and to 0
with probability 6η. Conditionally on Ēn(s̄), it follows from (5.4) that d(o, y−n+1) dominates
∑⌊(1−14η)n⌋

i=1 BiRi. As this estimate is uniform over the equivalence classes, we get from (5.3)
the inequality

P(d(o, y−n+1) 6 M) 6 P





⌊(1−14η)n⌋
∑

i=1

BiRi 6 M



+ e−κn.
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Since the Bi have expectation 1− 6η, the probability P(
∑n

i=1Bi 6 (1− 7η)n) is exponen-
tially small. We get

P(d(o, y−n+1) 6 M) 6 P





⌊(1−14η)n⌋
∑

i=1

BiRi 6 M,
n
∑

i=1

Bi > (1− 7η)n



+ e−κ′n.

To estimate the probability on the right, let us condition with respect to the Bi. There
are at most 7ηn of them that vanish. Therefore,

∑

BiRi is a sum of at least (1 − 21η)n
independent copies of R, and the probability that the sum is at most M is bounded by

P(
∑⌊(1−21η)n⌋

i=1 Ri 6 M). As this estimate is uniform over the choice of the Bis, this concludes
the proof. �

5.2. Precise estimates for walks without first moment. In this paragraph, we consider
a discrete probability measure µ on the set of isometries of X which has no first moment:
E(d(o, g · o)) = ∞ when g is drawn according to µ. We will prove Theorems 1.2 and 1.3
under this assumption. It suffices to prove the latter, as the former follows readily.

Let r > 0 be arbitrary. We have to show the existence of κ > 0 such that

P((Zn · o, Z∞)o 6 rn) 6 e−κn.

Let η = 1/100. Let S be an (η,C0,D)-Schottky set in the support of µM for some M >
0, where D is large enough compared to C0, as given by Corollary 3.13. We follow the
construction in Paragraph 4.2 to reconstruct the µ-random walk, except that instead of
sampling the specific jumps from µ2

S , we will sample them from µ2
S ∗µ∗µ

2
S: for N = 4M +1

and some α > 0, we may write µN = αµ2
S ∗ µ ∗ µ2

S + (1− α)ν for some probability measure
ν, where µS is the uniform measure on S.

The random walk is reconstructed by starting from Bernoulli random variables εi (satis-
fying P(εi = 1) = α and P(εi = 0) = 1 − α), and sampling from µ2

S ∗ µ ∗ µ2
S when εi = 1

and from ν when εi = 0. Conditioning on (εi) and on the jumps when εi = 0, we are left
with a walk as in Proposition 5.1. For this walk, we define a sequence of refined pivotal
times as in Subsection 5.1. Let τ = τ(n) be the last index j such that N(tj + 1) 6 n, so
that the interval [Ntj, N(tj +1)) is contained in [0, n). Then the sequence of refined pivotal

times associated to the walk until time n has the form P̄1, P̄2, . . . , P̄τ−1, P̄
(n)
τ . Moreover,

un := |P̄
(n)
τ(n)| satisfies

(5.5) P(un 6 κn) 6 e−κn,

for some κ > 0: this is proved as Proposition 4.11, just using Proposition 5.10 instead of
Proposition 4.10 inside the proof.

Assume now that the walk converges at infinity (this is true almost everywhere) and
that uk > κk for all k > n (this is true outside of a set of exponentially small measure, by
summing the estimates in (5.5)). Let x = xn be the position of the walk at the (⌊κn⌋−1)-th

refined pivotal time in P̄
(n)
τ(n)

. Then for all k > n, the point Zk · o belongs to the (2C0 +6δ)-

shadow of x seen from o (this is proved just like Lemma 4.12, using Lemma 5.4). As in (4.6),
this implies the inequality

(Zn · o, Z∞)o > d(o, xn)− (2C0 + 9δ).
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Finally, we have

P((Zn · o, Z∞)o 6 rn) 6 e−κn + P(un > κn, d(o, xn) 6 rn+ (2C0 + 9δ)).

Let us estimate the rightmost probability. We condition on the (εi) (which fixes τ) and
on the jumps when εi = 0, to be in the setting of Subsection 5.1. As x is one of the points
y−k+1 for (κ/2)n 6 k 6 n, we can sum the estimates of Proposition 5.1 (applied to k instead
of n), to get a bound of the form

nP(R1 + · · ·+R⌊(1−21η)(κ/2)n⌋ 6 (r + 1)n),

where the Ri are independent random variables distributed like d(o, g · o) where g is drawn
according to µ. Letting β = (1− 21η)(κ/2) > 0, we get

P((Zn · o, Z∞)o 6 rn) 6 e−κn + nP(R1 + · · ·+R⌊βn⌋ 6 (r + 1)n).

Since we are assuming that µ has no first moment, the nonnegative random variables Ri

are not integrable. Applying the usual large deviations estimate to a truncated version of R,
we deduce that for any A > 0 there exists c(A) such that P(R1 + · · ·+Rk 6 Ak) 6 e−c(A)k.
Together with the previous equation, this gives an exponential bound on P((Zn · o, Z∞)o 6
rn). This concludes the proof of Theorem 1.3 (and therefore also of Theorem 1.2) when
there is no first moment. �

5.3. Precise estimates for walks with a first moment. Assume now that µ is a measure
with a first moment. Then Eµn(d(o, g · o))/n converges by subadditivity to a limit ℓ, the
escape rate of the walk. Let r < ℓ. Our goal in this paragraph is to prove Theorem 1.3 (and
therefore also Theorem 1.2) in this setting: we will show that, for some κ > 0, we have

P((Zn · o, Z∞)o 6 rn) 6 e−κn.

To prove this estimate, we will again use the refined model of Subsection 5.1, but we will
have to do so in a careful enough way.

Fix η > 0 small enough depending only on r and ℓ (how small will be prescribed at the
very end of the proof). By Corollary 3.13, there exists an (η,C0,D)-Schottky set S in the
support of µM for some M > 0, where D is large enough compared to C0. For N = 2M ,
we may write µN = αµ2

S + (1− α)ν for some probability measure ν. Replacing α with α/2
if necessary, we can also assume that ν is non-elementary.

Let us now fix A > 0 very large (how large will be described in the course of the proof,
depending on η, α and ν). Let εi be a sequence of Bernoulli random variables, equal to 1
with probability α and to 0 with probability 1− α. Define inductively a sequence of times
t1, t

′
1, t2, t

′
2, . . . as follows. First, t1 is the first time with εt1 = 1. Then t′1 is the smallest

time > t1 + A with εt′1 = 1. Then t2 is the smallest time > t′1 with εt2 = 1. And so on,

picking the first times where εi = 1 but keeping a gap at least A between ti and t′i. Then,
pick γn distributed according to the following measure: if n is of the form ti or t′i, use µ2

S .
If n is in [ti + 1, ti +A], use µN . Otherwise, use ν.

Claim 5.11. With this construction, γ0 · · · γn−1 is distributed like ZNn.

Proof. Conditionally on the ε0, . . . , εn−1 and on γ0, . . . , γn−1, we will show that γn is dis-
tributed according to µN , from which the result follows. Consider the maximal tj or t′j
before n. If it is a tj and n 6 tj + A, then γn is picked according to µN by definition, and
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there is nothing left to prove. Otherwise, the choice of the measure for γn depends on εn:
we use µ2

S if εn = 1 (with probability α) or ν if εn = 0 (with probability 1−α). Altogether,
γn is drawn according to αµ2

S + (1− α)ν = µN , proving the claim. �

With a standard coupling argument, extending Ω if necessary, we can also construct
on Ω a sequence of independent random variables g0, g1, . . . with distribution µ such that
γi = giN · · · giN+N−1.

The intuition behind the use of this decomposition is the following. Since α is possibly
small, the times with εi = 1, which have frequency 1/α, may be sparse. However, if A is
much larger than 1/α, the waiting time between ti +A and t′i, or between t′i and ti+1, will
be comparatively much shorter. Therefore, the walk will be essentially a concatenation of
jumps corresponding to µNA. These jumps essentially go in independent directions (this
is formalized precisely by Proposition 5.1), so the size of the walk at time NAk will be
bounded below by the sum of (1 − 21η)k independent random variables distributed like
jumps of µNA, which are of order NAℓ. Altogether, the probability to have size smaller
than (1−21η)NAkℓ at time roughly NAk will be exponentially small, proving Theorem 1.2
in this setting.

To make this precise, we will need to control quantitatively the waiting times. Also, the
distribution of the jumps between ti and t′i is not µNA, but µNA ∗ νt

′

i−(ti+A). We will have
to show that the jumps of this family of measures are uniformly controlled from below,
to be able to apply Proposition 5.1. Note that this application motivates why we had to
formulate this proposition using different measures ρi for the different jumps, instead of one
single measure ρ.

Let us start the proof, adapting the formalism of Subsection 4.2 to our current setting.
Fix n ∈ N. We let τ = τ(n) be the last index j such that N(t′j +1) 6 n, so that the interval

[Ntj , N(t′j+1)) is contained in [0, n). We will decompose the product g0 · · · gn−1 as a product

of the elements s′j (the product of all gi for i ∈ [Ntj , N(t′j + 1))) interspersed with other
words that we will consider as fixed, to be in the framework of Subsection 5.1. Let wj =
gN(t′j+1) · · · gNtj+1−1 (where by convention t′0 = 0), and let w′ = w′(n) = gN(t′

τ(n)
+1) · · · gn−1

be the last missing word (it really depends on n, contrary to the previous words that just
fill the gaps between blocks [tj , t

′
j ]). By construction,

Zn · o = w0s
′
1w1 · · ·wτ−1s

′
τw

′(n) · o.

We can associate to this decomposition a sequence of refined pivotal times P̄
(n)
1 , . . . , P̄

(n)
τ ,

where the exponent (n) is here to emphasize that the intermediate words we use depend
on n. In fact, the only word that really depends on n is the last word w′ = w′(n), as the
other ones are wj = g(N+1)tj · · · gNtj+1−1 so they only depend on tj. Hence, the sequence of
refined pivotal times is rather

P̄1, P̄2, . . . , P̄τ−1, P̄
(n)
τ .

If we condition on the εi (which fixes the ti and t′i), and on the gi for i not belonging to
⋃

[Ntj , N(t′j+1)) (which fixes the wi and w′(n)), then we are in the setting of Proposition 5.1,

with ρi = µNA ∗ νt
′

j−(tj+A). To apply this proposition, we need to check that jumps with
respect to such a measure are uniformly bounded below.
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Lemma 5.12. Assume that A is large enough. Let RNA be the distribution of the size of
jumps for µNA. Let B be a Bernoulli random variable, equal to 1 with probability 1− η and
to 0 with probability η, independent of RNA. Then, for any i > 0, for any M > 0,

PµNA∗νi(d(o, g · o) > M) > P(BRNA > M + ηNA).

In other words, the jumps for µNA ∗ νi dominate stochastically BRNA− ηNA, uniformly in
i.

Proof. We have

PµNA∗νi(d(o, g · o) > M) =
∑

h

µNA(h)Pνi(d(o, hg · o) > M).

By Lemma 4.14 applied to the nonelementary measure ν and to ε = η, there exists C > 0
such that, uniformly in h, with probability at least 1 − η with respect to νi for g one has
d(o, hg · o) > d(o, h · o)− C. This gives

Pνi(d(o, hg · o) > M) > (1− ε)1d(o,h·o)>M+C .

Therefore,

PµNA∗νi(d(o, g · o) > M) >
∑

d(o,h·o)>M+C

µNA(h)(1 − ε) = (1− ε)PµNA(d(o, h · o) > M + C)

= (1− ε)P(RNA > M + C) = P(BRNA > M + C).

Taking A large enough so that ηNA > C, this is bounded from below by P(BRNA >

M + ηNA). �

From now on, we will assume that A is large enough so that Lemma 5.12 holds.

Lemma 5.13. Assume that A is large enough. The sequence τ(n) grows like n/(NA) with
high probability. More precisely, there exists c > 0 such that

P(τ(n) 6 (1− η)n/(NA)) 6 e−cn.

Proof. We have

t′j = Aj +

j
∑

i=1

(t′i − (ti +A)) +

j
∑

i=1

(ti − t′i−1).

The random variables t′i − (ti + A) and ti − t′i−1 are independent and have an exponential
tail (just depending on α). Therefore, there exists C > 0 and c > 0 (not depending on A)
such that

P

(

j
∑

i=1

(t′i − (ti +A)) +

j
∑

i=1

(ti − t′i−1) > Cj

)

6 e−cj .

Outside of a set Oj with exponentially small probability, we obtain t′j 6 Aj+Cj. Therefore,

N(t′j + 1) 6 N(Aj + Cj + 1), which is bounded by NAj/(1 − η) if A is large enough

compared to C. Take j = j(n) = ⌊(1 − η)n/(NA)⌋. It satisfies NAj/(1 − η) 6 n. On the
complement of Oj, we have N(t′j + 1) 6 n, and therefore τ(n) > j. Hence, the inequality

τ(n) 6 (1 − η)n/(NA) can only hold on Oj , whose probability is exponentially small in
terms of n. �
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Let un := |P̄
(n)
τ | be the number of refined pivotal times up to time n.

Lemma 5.14. There exists c > 0 such that P(un 6 (1− 15η)n/(NA)) 6 e−cn.

Proof. By Lemma 5.13, we have

P(un 6 (1− 15η)n/(NA)) 6 e−cn + P(un 6 (1− 15η)n/(NA), τ(n) > (1 − η)n/(NA)).

Let us concentrate on the second set. We condition with respect to εi (which fixes the ti,
the t′i, and τ) and with respect to the gi outside of the intervals [Ntj , N(t′j+1)) (which fixes

the wj and w′). Once these are fixed, we are in the framework of Subsection 5.1. We may
therefore apply Proposition 5.10 and deduce that, conditionally on these quantities, we have
P(un 6 (1− 14η)τ) 6 e−cτ , for some c > 0. As τ > (1− η)n/(NA), this gives conditionally

P(un 6 (1 − η)(1 − 14η)n/(NA)) 6 e−c(1−η)n/(NA). As 1 − 15η 6 (1− η)(1 − 14η) and the
previous bound is uniform on the conditioning, this implies the conclusion. �

Assume now that Zk · o converges to a point Z∞ at infinity and moreover, for all k > n,
holds uk > (1−15η)k/(NA) (this happens outside of a set of exponentially small probability,

by Lemma 5.14). Let t̄ = t̄(n) = ⌊(1−16η)n/(NA)⌋ < |P
(n)
τ |, and let x = xn be the position

of the walk at the t̄-th refined pivotal time. An adaptation of Lemma 4.12 to this setting
(based on Lemma 5.4) shows that, for all k > n, the point Zk · o belongs to the (2C0 + 6δ)-
shadow of x seen from o. In turn, as in (4.6), this implies the inequality

(Zn · o, Z∞)o > d(o, xn)− (2C0 + 9δ).

Finally, we have

P((Zn · o, Z∞)o 6 rn) 6 e−cn + P(d(o, xn) 6 rn+ (2C0 + 9δ)).

For large enough n, we have rn+(2C0+9δ) 6 (r+ η)n. Together with Lemma 5.13, we get

P((Zn · o, Z∞)o 6 rn) 6 e−cn + P(d(o, xn) 6 (r + η)n, τ(n) > (1− 15η)n/(NA)).

for some c > 0.
To conclude, it suffices to show that the right-most probability is exponentially small.

Let us condition on the εi (which fixes the ti, the t′i and τ) and on the gi for i not belonging
to
⋃

[Ntj, N(t′j + 1)), to be again in the setting of Subsection 5.1. Note that t̄ is not fixed

by this conditioning. However, xn is one of the points y−m+1 = w0s
′
1 · · · s

′
kwm, for some

m > (1− 16η)n/(NA). We claim that it suffices to show that, for such an m, we have

(5.6) P(d(o, y−m+1) 6 (r + η)n) 6 e−cm.

Indeed, the right hand side is exponentially small in terms of n. Summing over m ∈
[(1 − 16η)n/(NA), n/(NA)], we get a bound at most ne−c′n, which is again exponentially
small as desired.

To prove the inequality (5.6), we apply Proposition 5.1, at the time m. Lemma 5.12
shows that the stochastic domination assumptions of this lemma are satisfied, for R =
BRNA −NAη where B is a (1− η)-Bernoulli random variable. This proposition gives

P(d(o, y−m+1) 6 (r + η)n) 6 P(R1 + · · ·+R⌊(1−21η)m⌋ 6 (r + η)n) + e−cm,
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where the Ri are independent copies of R. The last term is compatible with (5.6). For the
first term, we will apply large deviations for sums of i.i.d. real random variables. We have

E(Ri) = E(R) = (1− η)E(RNA)−NAη > (1− η)NAℓ− ηNA,

as E(RNA)/(NA) is the average drift at time NA, which converges to ℓ from above by
subadditivity. For z = (1 − η)NAℓ − 2ηNA < E(R), large deviations ensure that P(R1 +
· · · + Rk 6 zk) is exponentially small in terms of k. Therefore, it is enough to show that
(r + η)n 6 z(1 − 21η)m to conclude. As m > (1− 16η)n/(NA), we have

(r + η)n

z(1− 21η)m
6

(r + η)n

((1− η)NAℓ− 2ηNA)(1 − 21η)(1 − 16η)n/(NA)

=
r + η

((1− η)ℓ− 2η)(1 − 21η)(1 − 16η)
.

When η converges to 0, this converges to r/ℓ < 1. Therefore, for small enough η, it is 6 1
as desired. This concludes the proof of Theorem 1.3 when µ has a first moment. �

5.4. Continuity of the escape rate. As an illustration of the power of the tools we have
introduced above, we can recover the fact that the rate of escape ℓ(µ) depends continuously
on the measure µ, a fact that was originally proved in hyperbolic groups by Erschler and
Kaimanovich in [EK13] (and which, in the general setting of non-proper hyperbolic spaces,
follows from their proof together with the tools of [MT18]).

Proposition 5.15. Consider a discrete non-elementary measure µ on the space of isome-
tries of a Gromov-hyperbolic space X with a basepoint o. Let r < ℓ(µ). There exist ε > 0
and a finite subset K of the support of µ with the following property. Let µ′ be a probability
measure with µ′(g) > µ(g) − ε for all g ∈ K. Then ℓ(µ′) > r.

Even more, there exists κ > 0 such that, for any µ′ as above, the corresponding random
walk Z ′

n satisfies for any n ∈ N the inequality

(5.7) P(d(o, Z ′
n · o) 6 rn) 6 e−κn.

Indeed, all the constants in the proofs in Subsection 5.3 are completely explicit. Once K
is chosen large enough and ε small enough to ensure that µ′ gives a weight bounded from
below to all the elements in the Schottky set S chosen at the beginning of this subsection,
then all the estimates go through for µ′ just like for µ. In the end, this gives (5.7) with a
uniform κ. This exponential estimate implies ℓ(µ′) > r as d(o, Z ′

n · o)/n converges almost
surely to ℓ(µ′).

It follows from the proposition that, when µn converges simply to µ, then lim inf ℓ(µn) >
ℓ(µ). This is the nontrivial direction to prove that ℓ(µn) → ℓ(µ), as the other one follows
from subadditivity (as ℓ(µ′) = Infn(E(d(o, Z

′
n · o))/n), and each of these quantities when n

is fixed is continuous in µ′ for the L1 topology). We obtain the following corollary.

Corollary 5.16. Consider a discrete non-elementary measure µ on the space of isometries
of a Gromov-hyperbolic space X with a basepoint o, and a sequence of probability measures
µn converging to µ in the L1-sense, i.e.,

∑

g d(o, g · o)|µn(g)−µ(g)| → 0. Then ℓ(µn) tends

to ℓ(µ).
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