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Abstract: In the search for improvement in the properties of gadolinium-based contrast agents,
cyclodextrins (CDs) are interesting hydrophilic scaffolds with high molecular weight. The impact of
the hydrophilicity of these systems on the MRI efficacy has been studied using five β-CDs substituted
with DOTA or TTHA ligands which, respectively, allow for one (q = 1) or no water molecule (q = 0)
in the inner coordination sphere of the Gd3+ ion. Original synthetic pathways were developed to
immobilize the ligands at C-6 position of various hydroxylated and permethylated β-CDs via an
amide bond. To describe the influence of alcohol and ether oxide functions of the CD macrocycle
on the relaxation properties of the Gd3+ complexes, 1H Nuclear Magnetic Relaxation Dispersion
(NMRD) profiles, and 17O transverse relaxation rates have been measured at various temperatures.
The differences observed between the hydroxylated and permethylated β-CDs bearing non-hydrated
GdTTHA complexes can be rationalized by a second sphere contribution to the relaxivity in the
case of the hydroxylated derivatives, induced by hydrogen-bound water molecules around the
hydroxyl groups. In contrast, for the DOTA analogs the exchange rate of the water molecule directly
coordinated to the Gd3+ is clearly influenced by the number of hydroxyl groups present on the
CD, which in turn influences the relaxivity and gives rise to a very complex behavior of these
hydrophilic systems.

Keywords: cyclodextrin; gadolinium; contrast agent; magnetic resonance imaging; second hydra-
tion sphere

1. Introduction

Magnetic resonance imaging (MRI) is currently used to diagnose diseases and to
monitor treatment progress in deep tissues. This noninvasive technique is based on the
measurement of nuclear spin relaxation times of water protons of the organism. MR im-
ages are obtained thanks to the variation of the longitudinal or the transverse relaxation
times (T1- or T2-weighted images, respectively) between different tissues [1–3]. In order
to improve the image contrast and reduce the examination time, contrast agents are com-
monly injected to patients. These compounds are stable gadolinium chelates formed with
polyamino-polycarboxylate ligands, such as the macrocyclic GdDOTA (H4DOTA = 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid). Via dipole–dipole interactions between
the water proton spins and the electron spin of Gd3+, such paramagnetic complexes induce
an acceleration of the proton spin relaxation. In the GdDOTA chelate, the metal ion is
nine-coordinated with one water molecule in the inner coordination sphere (IS), q = 1. The
presence of this water molecule, directly coordinated to Gd3+, is important for an efficient
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relaxation effect [4–6]. Indeed, its exchange with surrounding water molecules transmits
the paramagnetic effect of the Gd3+ to bulk water, which is then detectable on the MR
images. In the absence of inner sphere coordination water, a Gd3+ complex has a more
limited effect on the water proton relaxation times.

The efficiency of a T1 contrast agent is assessed by its longitudinal relaxivity, r1,
defined as the paramagnetic relaxation rate enhancement referred to 1 mM concentration
of the metal ion. A high r1 value translates to good contrast enhancing capability in MR
imaging. Relaxivity is influenced by different relaxation mechanisms [7]. Inner sphere
relaxivity arises from the interaction of the Gd3+ electron spin with the inner sphere water
protons and their exchange with bulk water. This mechanism is described by the theory of
Solomon, Bloembergen, and Morgan for paramagnetic nuclear relaxation, which relates the
relaxivity to microscopic parameters of the Gd3+ complex, such as the hydration number
q, the water exchange rate kex, and the rotational correlation time τr [8,9]. The outer
sphere (OS) relaxation mechanism originates from interactions of the Gd3+ electron spin
with water molecules randomly diffusing around the complex. Finally, a second sphere
(2S) mechanism might be also operating for systems containing water molecules strongly
hydrogen-bonded to the functional groups of the complex. This second sphere effect is
usually negligible, and it is difficult to describe when it exists. The contribution of each
mechanism to the relaxivity depends on the structure of the complex, especially the size, the
presence of hydrogen bonding acceptors, the charge, and the hydrophilicity. Commercial
contrast agents are small, monohydrated Gd3+ complexes of polyamino-polycarboxylate
ligands for which the IS and OS relaxivity contributions are similar. With an appropriate
chemical design, the inner and second sphere contributions can be substantially increased,
while the outer sphere relaxivity can practically not be modified.

The inner sphere relaxivity term is linearly proportional to the hydration number.
Therefore, increasing q is a straightforward way to improve relaxivity. However, the pres-
ence of two or more inner sphere water molecules in the complex can seriously compromise
its stability, thereby increasing the potential risk of releasing free and toxic Gd3+ [10–12].
Relaxivity can be also increased by optimizing the water exchange rate and the rotational
motion time of the complex. The rate of water exchange is correlated with the exchange
mechanism. The majority of the polyamino-polycarboxylate complexes of Gd3+ undergo a
dissociative exchange, i.e., the leaving of the bound water molecule precedes the entering
of the incoming water molecule. In this case, the steric hindrance around the water bind-
ing site and the global charge of the complex are important parameters to determine the
exchange rate, and water exchange can be accelerated by increasing the steric hindrance
around the water binding site. The most common way to reach higher relaxivity, with major
improvements at medium frequencies (20–60 MHz), has been to increase the rotational
correlation time, τr, by increasing the molecular weight of the complex. Indeed, for low
molecular weight complexes, fast rotation limits the relaxation efficiency. Thus, a large
number of bulkier ligands coordinating the Gd3+ ion was developed to create more efficient
MRI contrast agents. Gd3+ complexes were therefore incorporated into macromolecular sys-
tems such as proteins [12–15], dendrimers [16], cyclodextrins [17], polyrotaxanes [18–20],
etc. However, the relaxivity enhancements has been often less than those expected, due to
the flexibility of the macromolecule which implies faster local motion for Gd3+ than the
overall slow motion of the entire macromolecule.

We have focused our study on cyclodextrins (CDs) as interesting and versatile scaffolds
to design potential MRI contrast agents. CDs are natural cyclic oligosaccharides with 6,
7, or 8 glucose units, issued from starch degradation by glucosyltransferase (CGTase)
and so-called α-, β-, and γ-CD, respectively [21]. Cyclodextrins have primary (C-6) and
secondary hydroxyl groups (C-2, C-3) forming the smaller and larger crowns of the cone,
respectively. For β-CD, this cone shape is especially reinforced by hydrogen bonding
between two adjacent units (C-2-OH and C-3-OH). The 21 alcohol functions also favor
interactions with water molecules and improve the solubility in aqueous medium. The
internal cavity (host), composed of glycosidic oxygen and C-H groups, is less hydrophilic
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and makes possible intermolecular interactions with organic molecules (guests). Host–
guest inclusion complexes improve the water solubility and the stability of the guests, such
as small bioactive molecules. In the context of MRI contrast agents, cyclodextrins have been
mainly explored in three distinct approaches in the objective of modulating the rotational
motion, thus improving relaxivity: (i) as host to form inclusion complexes with contrast
agents functionalized by lipophilic groups [22–24], (ii) as high molecular weight scaffolds
by covalently immobilizing one or more Gd3+ complexes [25,26], and (iii) as a platform for
Ln3+ complexation [27,28].

In the first two approaches, dimers, trimers [23], polymers [29], and polyrotaxanes [18–20]
of CDs were developed in order to maximize the number of Gd3+ complexes per molecule.
For the development of platform for Ln3+ complexation, CDs were modified, for instance,
into per-3,6-anhydro derivatives, which affected their structure leading to a hydrophilic
cavity capable of metal binding. The replacement of the hydroxyl groups by carboxylate
functions gives a ligand, which can complex hard Ln3+ ions to form mono- and bimetallic
species [27]. The relaxivity of the monometallic Gd3+ has been investigated in details using
a rigorous approach, where a maximum of the microscopic parameters was determined
independently. It has been demonstrated that the high relaxivity obtained was due to the
high hydration number of the complex and a relatively long rotational correlation time
explained by the hydrophilic character of the complex [28].

6-O-Peracetylated-β-CDs were also synthesized to coordinate Gd3+ in the axis of the
macrocycle [30–32]. In particular, the effect of the second hydration sphere has been studied
using the native and permethylated CDs. It has been proved that this functionalization
had an impact on the relaxivity. Indeed, a 40% relaxivity enhancement was observed
with perhydroxylated β-CDs (4.6 mM−1 s−1 and 6.5 mM−1 s−1, respectively). As these
complexes had similar structure and identical hydration number (q = 2), the relaxivity
difference was attributed to the presence of hydrogen-bound water molecules around the
hydroxyl groups inducing an important second-sphere (2S) contribution to relaxivity.

In order to improve the thermodynamic stability of the Gd3+ chelate and further study
the influence of the hydrogen-bonding network provided by the hydrophilic cyclodex-
trins on the relaxivity, several functionalized cyclodextrins were synthesized and studied.
Modified DOTA and TTHA (3,6,9,12-tetrakis(carboxymethyl)-3,6,9,12-tetraazatetradecane-
1,14-dioic acid) ligands were conjugated at one of the C-6 position of various β-CDs by
replacing a carboxylate function by an amide (1–5, Figure 1).

The DOTA monoamide (DOTAMA) ligand is known to form thermodynamically sta-
ble and kinetically inert complexes with Ln3+. The GdDOTAMA complex was introduced
at one of the O-6-position on the small rim of the native (hydroxylated) β-CD (1), of the 6-
O-permethylated β-CD (2), and of the 2,3,6-O-permethylated β-CD (3). With contrast agent
2, the hydroxyl groups are in the vicinity of the GdDOTAMA complex, while the methoxy
groups are located on the opposite side on the larger rim of the CD. In order to better
decipher the relaxation behavior of those compounds, TTHA monoamide (TTHAMA) was
also introduced on the native (5) and 2,3,6-O-permethylated β-CD (4) (Figure 1). TTHA is
a commercially available linear ligand with six carboxylic acid and four amine functions
which can chelate the Gd3+ ion. This full coordination by the ligand prevents inner sphere
(IS) binding of any water molecule. Indeed, the Gd3+ complex of TTHAMA has no inner
sphere hydration water molecule (q = 0), which means that the relaxivity will be governed
by outer sphere, and possibly second sphere mechanisms [33].
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Figure 1. Structure of new contrast agents based on β-CDs-DOTAMA (1–3) and β-CDs-TTHAMA (4 and 5) ligands.

2. Results and Discussion
2.1. Synthesis of CDs Functionalized with DOTA Ligand

The monofunctionalization of native β-CD 6 was based on the difference of reactivity
between the hydroxyl groups (Scheme 1). Indeed, the secondary alcohols are more acidic:
the position 3 less accessible. We substituted the more nucleophile primary alcohol at
6 position to keep the larger cavity available to form inclusion complex. We reported herein
the introduction of DOTA and TTHA ligands on native and methylated-β-CDs.

All synthesis used the same precursor mono(6-amino-6-deoxy)-β-CD 7 obtained after
monotosylation of primary face of β-CD 6 and substitution reaction by sodium azide
(Scheme 1) [34]. The CD 7 was permethylated after deprotonation and treatment with
methyl iodide (Supplementary Materials). The synthesis of the mono(6-azido-6-deoxy)-
6-O-permethylated-β-CD 9 required two additional steps, the protection of secondary
alcohol functions by tert-butyldimethylsilyl groups and the deprotection using ammonium
fluoride reagent (Supplementary Materials).

The azide reduction using Staudinger reaction led to mono(6-amino-6-deoxy)-β-
cyclodextrins precursors 10–12 with yields between 40–52%, which was confirmed by
the disappearance of the signal in IR spectroscopy of azide function at 2199 cm−1 and
appearance of amine function at 2920 cm−1. A shift of 10 ppm corresponding to the
methylene carbon bearing the amine function was observed by 13C DEPT confirming the
reduction step (Supplementary Materials). A peptide coupling was then applied with
DOTA structure 13 protected by three tert-butyl groups (Scheme 1) [35]. The activation
of the free acid function in presence of DCC and HOBt led to the three precursors 14–16
in 21%, 12%, and 70% yields, respectively. In order to improve the yields, uronium salt
HATU was tested but it did not improve the reactivity [36]. Consequently, another strategy
has been developed using the activation of the primary amine function by chloroacetyl
chloride reagent (Scheme 2). However, only the permethylated β-CD 12 was substituted
in this case in 82% yield. In the case of mono(6-amino-6-deoxy)-perhydroxylated β-CD
10 and mono(6-amino-6-deoxy)-2,3-O-permethylated-β-CD 11, the reactions led to many
secondary products due to polysubstitution reactions of the alcohol functions. In order
to control the monosubstitution reaction, other precursors 17 and 18 have to be used
(Scheme 2).
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Thus, the mono(6-amino-6-deoxy)-β-CD 7 was quantitatively peracetylated using
anhydride acetic in pyridine and the azido function was then reduced by catalytic hydro-
genation in 50% yield (see Scheme 1 in experimental section) (Supplementary Materials).
From the same precursor 7, the mono(6-amino-6-deoxy)-2,3-permethyl-β-CD protected
with silyl groups at 6 positions 18 was obtained in three steps by silylation of the residual
primary alcohols of the intermediate mono(6-azido-6-deoxy)-β-CD 7 (Scheme 1), followed
by a permethylation of the secondary face and after Staudinger reduction of azido group
in 51% over yield (see Scheme 2 in experimental section) (Supplementary Materials). The
two mono(6-amino-6-deoxy)-CDs 17 and 18 were substituted with chloromethylacetyl
group in 89% and 77% yields, respectively (Supplementary Materials). From precursor
18, an additional deprotection step of the TBS group was required using ammonium
fluoride, providing quantitatively compound 20 (see Scheme 3 in experimental section)
(Supplementary Materials). The coupling was carried out from the free secondary amine
of the commercially available DO3A derivative 22 bearing three tert-butylester groups. The
DOTAMA ligand was introduced with yields varying between 59% and 88% leading the
compounds 23, 15, and 16, thereby improving the initial yields obtained with the direct
strategy (21% and 12% yields for 14 and 15, respectively) (Schemes 1 and 2).
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peracetylated-6-O-mono-DOTAMA-β-CD 23, an additional step using sodium methanoate
in methanol was necessary to obtain the hydroxylated CD 24 after a treatment on proton
exchange anion resin. The mass spectrometry analyses and the disappearance of tert-
butyl and acetyl protecting groups on 13C NMR spectrum confirmed the structures 24–26
(Supplementary Materials).

Finally, Gd3+ complexes of ligands 24–26 were prepared in the presence of one equiv-
alent of gadolinium chloride hexahydrate in aqueous medium at pH 5.4 (Scheme 3).
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2.2. Synthesis of CDs Functionalized with TTHA Ligand

In order to immobilize TTHA on CD 12, one carboxylic acid function was activated
using one equivalent of HBTU reagent in presence of triethylamine (Scheme 4). The
corresponding compound 27 was obtained in 65% yield.
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As the direct substitution of the perhydroxylated 6-O-monoamino-β-CD 10 did not oc-
cur (Scheme 1), the peracetylated derivated 17 having a higher solubility in organic solvents
was tested. The introduction of the ligand was then possible with 46% yield. This result
was confirmed by 13C NMR spectrometry thanks to the characteristic signals of carbonyl
function at 171 ppm and the methylene groups of the TTHAMA ligand (57.5–52.5 ppm)
(Supplementary Materials). The mass spectrometry analysis was in accordance with the
structure 28 (Supplementary Materials). The perhydroxylated compound 29 was obtained
quantitatively by basic treatment and purification on Dowex column. The disappearance
of the acetyl signals at 21.6 ppm was observed by 13C NMR and the molecular peak at
m/z = 1610.6 [M + H]+ confirmed the structure (Supplementary Materials).

Finally, CD-GdTTHAMA 4 and CD(OH)-GdTTHAMA 5 were obtained by addition of
gadolinium chloride hexahydrate under controlled pH (Scheme 5).
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2.3. Relaxometric Analysis of the TTHA-Derived Complexes 4 and 5

Nuclear Magnetic Relaxation Dispersion (NMRD) profiles describe the efficacy of the
complex in terms of relaxivity as a function of the magnetic field, and they are helpful to
characterize the parameters governing proton relaxivity [37,38]. Typically, the analysis
of NMRD curves allows for estimating some of the physicochemical parameters that
determine relaxivity, in particular the rotational correlation time (τR), the water exchange
rate (kex), the number of water molecules directly coordinated to Gd3+ (q), and the electronic
relaxation rates. However, it is important to determine a maximum of these parameters
independently for the reliability of the results.

In the case of TTHA complexes, as there is no water molecule directly coordinated to
Gd3+, the relaxivity is a sum of outer sphere and, if present, second sphere contributions [33].
The NMRD profiles of 4 and 5 were measured between 10 kHz and 400 MHz and are pre-
sented in Figure 2 and in supporting information (Figure S6 in Supplementary Materials).

Processes 2021, 9, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 2. 1H NMRD profiles of 4 () and 5 () at 25 °C and pH = 7.0. 

The low relaxivities observed are in accordance with the absence of inner sphere 
water molecules in the complexes. At 20 MHz, 25 °C, the relaxivities are 2.99 and 3.75 
mM−1 s−1 for 4 and 5, respectively; therefore, an increase of 25% is observed when replacing 
OMe by OH groups on the CDs. As the two complexes are supposed to have similar size, 
thus rotational dynamics, the higher relaxivity for 5 can be ascribed to the presence of 
second sphere water molecules contributing to the overall relaxivity, which is consistent 
with the presence of an H-bonding network in the case of the TTHA-substituted native 
CD 5. It should be noted that rough simulations of a purely outer sphere mechanism give 
a relaxivity of 2.3 mM−1 s−1 at 20 MHz and 25 °C, in the same order of magnitude as that 
measured for 4. This is also the value reported for GdTTHA in the same conditions [33]. 

2.4. Relaxometric Analysis of DOTA-Derived Complexes 1–3 
The NMRD profiles of 1–3 were also recorded between 10 kHz and 400 MHz, at 25 

°C, 37 °C, and 50 °C (see Figure 3 and Figures S3–S5 in Supplementary Materials). It 
should be noted that the relaxivity profile of 3 was already partially measured and 
analyzed by Botta et al. [25], but for the sake of direct comparison, it was re-measured in 
identical conditions as those of 1 and 2. The relaxivity values of 3 were similar (within 5–
10%) to those previously reported. 

The relaxivities determined at 20 MHz and 25 °C were 9.67, 10.50, and 9.64 mM−1 s−1 
for 1, 2, and 3, respectively. These values are ~2.5 times higher than the relaxivity of 
clinically used contrast agents like GdDOTA (3.5 mM−1 s−1). In the NMRD profiles, we note 
however the absence of a relaxivity “hump” at intermediate fields, which is characteristic 
of slowly rotating macromolecular Gd3+ complexes. This is also in accordance with 
previous data from Botta et al. [25] and us [18], and indicates that the CD-based systems 
are not characterized by very slow motion as they are relatively flexible, and do not 
aggregate in aqueous solution. The relaxivity (measured at 25 °C and 20 MHz) was found 
independent of the concentration (between 0.5 and 5 mM), evidencing again the absence 
of intermolecular interactions in this concentration range. 

The relaxivity of the native CD 1 and permethylated one 3 were similar, in contrast 
to what had been observed previously in the case of CD substituted by TTHA derivatives 
4 and 5. A modest increase of relaxivity of ~9% was observed for the partially methylated 
CD 2. On the simple assumption that a higher hydrogen bonding network would result 
in a higher number of second sphere water molecules contributing to relaxivity, we would 
have expected a relaxivity increase in the following order: 3 < 2 < 1. 

0.0

2.0

4.0

6.0

0.01 0.1 1 10 100 1000

r 1
/ m

M
-1

.s
-1

ν (1H) / MHz

Figure 2. 1H NMRD profiles of 4 (�) and 5 (�) at 25 ◦C and pH = 7.0.

The low relaxivities observed are in accordance with the absence of inner sphere water
molecules in the complexes. At 20 MHz, 25 ◦C, the relaxivities are 2.99 and 3.75 mM−1 s−1

for 4 and 5, respectively; therefore, an increase of 25% is observed when replacing OMe
by OH groups on the CDs. As the two complexes are supposed to have similar size, thus
rotational dynamics, the higher relaxivity for 5 can be ascribed to the presence of second
sphere water molecules contributing to the overall relaxivity, which is consistent with
the presence of an H-bonding network in the case of the TTHA-substituted native CD
5. It should be noted that rough simulations of a purely outer sphere mechanism give a
relaxivity of 2.3 mM−1 s−1 at 20 MHz and 25 ◦C, in the same order of magnitude as that
measured for 4. This is also the value reported for GdTTHA in the same conditions [33].

2.4. Relaxometric Analysis of DOTA-Derived Complexes 1–3

The NMRD profiles of 1–3 were also recorded between 10 kHz and 400 MHz, at 25 ◦C,
37 ◦C, and 50 ◦C (see Figure 3 and Figures S3–S5 in Supplementary Materials). It should
be noted that the relaxivity profile of 3 was already partially measured and analyzed by
Botta et al. [25], but for the sake of direct comparison, it was re-measured in identical
conditions as those of 1 and 2. The relaxivity values of 3 were similar (within 5–10%) to
those previously reported.
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Figure 3. 1H NMRD profiles of 1 (�) 2 (•), and 3 (�) at 25 ◦C and pH = 7.0.

The relaxivities determined at 20 MHz and 25 ◦C were 9.67, 10.50, and 9.64 mM−1 s−1

for 1, 2, and 3, respectively. These values are ~2.5 times higher than the relaxivity of
clinically used contrast agents like GdDOTA (3.5 mM−1 s−1). In the NMRD profiles,
we note however the absence of a relaxivity “hump” at intermediate fields, which is
characteristic of slowly rotating macromolecular Gd3+ complexes. This is also in accordance
with previous data from Botta et al. [25] and us [18], and indicates that the CD-based
systems are not characterized by very slow motion as they are relatively flexible, and do
not aggregate in aqueous solution. The relaxivity (measured at 25 ◦C and 20 MHz) was
found independent of the concentration (between 0.5 and 5 mM), evidencing again the
absence of intermolecular interactions in this concentration range.

The relaxivity of the native CD 1 and permethylated one 3 were similar, in contrast to
what had been observed previously in the case of CD substituted by TTHA derivatives 4
and 5. A modest increase of relaxivity of ~9% was observed for the partially methylated
CD 2. On the simple assumption that a higher hydrogen bonding network would result in
a higher number of second sphere water molecules contributing to relaxivity, we would
have expected a relaxivity increase in the following order: 3 < 2 < 1.

The temperature dependence of the relaxivities provides qualitative information on
the parameter that limits relaxivity for a given system. Indeed, upon temperature increase,
both the water exchange and the rotational dynamics become faster. If fast rotational
dynamics is a limiting factor, the relaxivity will decrease upon increasing the temperature.
Conversely, if relaxivity is limited by slow water exchange, increasing the temperature will
lead to the acceleration of the water exchange, thus an increase in relaxivity. If slow water
exchange and fast rotation are both limiting factors, as a result of an interplay between the
two, relaxivity can be relatively independent of temperature. The temperature dependence
of the different systems (1–3) showed similar relaxivities at 25 ◦C and 37 ◦C, whereas
r1 became lower at 50 ◦C (Supplementary Materials). This suggests that at the lower
temperatures slow water exchange starts to become the limiting parameter, rather than fast
rotational dynamics. In order to better decipher the relaxivity dependence, we performed
17O NMR measurements on the different 1–3 complexes.

2.5. 17O NMR Data of Complexes 1–3

Variable temperature 17O T2 measurements give access to the water exchange rate,
kex. The reduced 17O transverse relaxation rates for 1–3 are presented in Figure 4. The
behavior of 3 is classical with an increase of the reduced transverse relaxation rates (up to
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~55 ◦C), followed by a decrease with increasing temperature, indicating that the complex
is in the slow kinetic region below 55 ◦C. In this region, 1/T2r is directly determined by
the water exchange rate constant kex, allowing for a reliable determination of kex value.
The 17O data have been fitted to the Swift–Connick equations, where the number of water
molecules coordinated to Gd3+ was fixed to 1, and the scalar coupling constant, A/h̄, was
fixed to −3.6 × 106 rad s−1. The fit yielded a value of kex

298 = (1.49 ± 0.08) × 106 s−1, while
∆H 6= = (37 ± 3) kJ mol−1 was obtained for the activation enthalpy of the water exchange.
The kex

298 value is similar to what was previously estimated by Botta et al. from the fitting
of the NMRD profile (kex

298 = 1.7 × 106 s−1) [25], and in the same order of magnitude as
water exchange rate constants typical of monoamide DOTA complexes of Gd3+ [7]. It is
nearly three times lower than the water exchange rate of GdDOTA (kex

298 = 4.1 × 106), and
higher than that of GdDOTAM (see Table 1), which is consistent with previous observations
on analogous systems. Indeed, in the case of dissociative exchange for DOTA-derivatives
(which is expected here), it is generally observed that the replacement of one negatively
charged carboxylate in the complex with a neutral amide decreases the water exchange
rate of about one-third [7].
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Figure 4. Temperature dependence of the reduced 17O transverse relaxation rates of 1 (�, 10.04 mM)
2 (•, 3.2 mM), and 3 (�, 10.33 mM) at 9.4 T and pH = 7.0. The continuous curve represents the best fit
to the experimental data points of 3.

Table 1. Water exchange rates (kex
298) of various GdDOTA derivative complexes.

3 3 a GdDO3A-bz-NO2 Gd2-Wazaby6 GdDOTA GdDOTAM

Coordinating unit DOTA-monoamide DOTA-monoamide DOTA-monoamide + COO- DOTA-monoamide DOTA DOTA-tetramide
kex

298 (106 s−1) 1.49 ± 0.08 1.7 1.6 2.8 4.1 0.053
Reference This work [25] [39] [40] [38] [41]

a Obtained from fitting of NMRD data from ref. [25].

In contrast to 3, 1 and 2 have a very different behavior. Indeed, at low temperatures
the 17O ln(1/T2r) values are rather constant. This might be indicative of the presence of
more than one species (isomers) in solution with different water exchange properties. The
SAP (square antiprismatic) and TSAP (twisted square antiprismatic) isomers of macrocyclic
systems such as DOTA derivatives are known to have different water exchange rate and
their ratio can be very different depending on the systems [42,43]. In order to obtain
information on the potential coexistence of different species in solution, we recorded 1H
NMR spectra on the corresponding Eu3+ complexes obtained using similar protocol as for



Processes 2021, 9, 269 11 of 13

the Gd complexes (Figures S7 and S8 in the Supplementary Materials). Europium is the
neighboring element to Gd in the lanthanide series, so they are expected to have similar
coordination environment. Eu3+ is also paramagnetic; it causes large chemical shifts but
much less line-broadening than Gd3+. Unfortunately, the 1H NMR spectra of the Eu3+

analogs of 1 and 2, recorded at different temperatures, show broad resonances, combined
with the presence of many protons of the cyclodextrins in the diamagnetic window which
dominate the spectra. Overall, this prevents distinguishing different isomers. In the absence
of information about the presence of different species in solution and their ratio, the analysis
of the 17O transverse relaxation rates could not be realized for 1 and 2. Nevertheless, the
temperature dependence of the transverse 17O relaxation rates at low temperature clearly
showed a very different water exchange for 1–3. Although we can only speculate on the
origin of this difference, it is plausible to hypothesize that it could be related to the different
H-bonding network generated by the three different cyclodextrins scaffolds, which can
have an influence on the water exchange rate of the Gd3+ complexes.

In overall, the combined 17O NMR and NMRD data suggest that these highly hy-
drophilic systems have a complex behavior in which the hydrogen bonding network does
not only contribute to a second sphere proton relaxation mechanism, but it also affects the
exchange rate of the inner sphere water molecule of the Gd3+ complexes. The complexity
of the systems prevents any reliable fit of the NMRD data.

3. Conclusions

We described β-CDs bearing derivatives of DOTA and TTHA ligands for Gd3+ com-
plexation. The molecules have been obtained using novel synthetic routes. We studied
the influence of the numerous hydrophilic OH groups of the CD structure, which create
a strong hydrogen bonding network involving second sphere water molecules, on the
proton relaxivity and on the water exchange rate of the Gd3+ complexes. In the absence of
inner sphere water molecule in the Gd3+ complex (TTHA ligand), the relaxivity increases
with the increasing number of hydroxyl groups on the CD, confirming a strong second
sphere contribution to the relaxivity, induced by the hydrophilicity of the molecule. In the
case of DOTA derivatives, the situation is more complicated. Indeed, the variation of the
relaxivity between the systems containing a different number of OH groups on the CD
is not guided by the increase of hydroxyl functions. 17O NMR measurements revealed
different water exchange processes depending on the number of hydroxyls on the CD.
For the permethylated system 3, a classical water exchange rate is found, consistent with
typical GdDOTA-monoamide complexes. In contrast, when hydroxyls are present on the
CD 1 and 2, the water exchange process becomes clearly different, as evidenced by 17O T2
data. These different water exchange properties will very likely impact the relaxivity. In
overall, these highly hydrophilic systems have a hydrogen-bound network that induces a
second sphere relaxivity, but it also influences the water exchange process. Altogether this
leads to a complicated relaxation behavior.

Supplementary Materials: The materials, method, synthesis, and characterization details of products
7, 9, 12, 15–21, 23–29, 1–5, and europium complexes are available online at https://www.mdpi.com/
2227-9717/9/2/269/s1. 1H NMRD profiles of contrast agents 1–4 at 25 ◦C, 37 ◦C, and 1H NMR
spectra of europium complexes of 24 and 25 at 9.4 T and 5 ◦C, 25 ◦C, and 37 ◦C are also reported.
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