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Abstract In this paper we address the stable numerical solution of nonlinear ill-posed systems
by a trust-region method. We show that an appropriate choice of the trust-region radius gives
rise to a procedure that has the potential to approach a solution of the unperturbed system. This
regularizing property is shown theoretically and validated numerically.
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1 Introduction

Nonlinear systems modeling inverse problems are typically ill-posed, in the sense that their solu-
tions do not depend continuously on the data and their data are affected by noise [6,16,26]. In
this work we focus on the stable approximation of a solution of these problems. Procedures in the
classes of Levenberg-Marquardt and trust-region methods are discussed, and a suitable version of
trust-region algorithm is shown to have regularizing properties both theoretically and numerically.
The underlying motivation for our study is twofold: most of the practical methods in the literature
have been designed for well-posed systems, see e.g., [5,23], and thus are unsuited in the context of
inverse problems; adaptation of existing procedures for handling ill-posed problems, carried out
in the seminal papers [10,12,13,15,25,27], deserves further theoretical and numerical insights.

Let

F (x) = y, (1.1)

with F : Rn → Rn continuously differentiable, be obtained from the discretization of a problem
modeling an inverse problem. It is realistic to have noisy data yδ at disposal, satisfying

||y − yδ||2 ≤ δ, (1.2)

for some positive δ. Thus, in practice it is necessary to solve a problem of the form

F (x) = yδ, (1.3)
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and, due to ill-posedeness, possible solutions may be arbitrarily far from those of the original
problem. To approximate solutions of the unperturbed problem (1.1), iterative regularizing meth-
ods can be applied where both the construction of the iterates xδk and the stopping criterion act
as a regularization, see e.g., [16]. Such methods are expected to have the following properties: if
iterations are stopped at index k∗(δ), then

– xδk∗(δ) is an approximation to a solution of (1.1);

– xδk∗(δ) converges to a solution of (1.1) as δ tends to zero;

– in the noise-free case, convergence to a solution of (1.1) occurs.

These properties are supposed to hold even if there are no finite bounds on the inverse of the
Jacobian of F around a solution of (1.1).

In [12,13], Hanke supposed that an initial guess, close enough to some solution x† of (1.1),
is available. Then, he proposed a regularizing Levenberg-Marquardt procedure which is able to
compute a stable approximation xδk∗(δ) to x† or to some other solution of the unperturbed problem

(1.1) close to x†. This task is achieved through an implicit stepsize control in the Levenberg-
Marquardt procedure and the discrepancy principle as the stopping criterion, so that the iterative
process is stopped at the iteration k∗(δ) satisfying

‖yδ − F (xδk∗(δ))‖2 ≤ τδ < ‖y
δ − F (xδk)‖2, 0 ≤ k < k∗(δ), (1.4)

with τ > 1 appropriately chosen [22]. Remarkably the procedure satisfies the regularizing proper-
ties listed above and local convergence properties are established under conditions weaker than the
so-called local error-bound condition used in the literature when the Jacobian J of F is singular
at the solution approached, see e.g. [1,3,17].

Further regularizing iterative methods have been proposed, including first-order methods and
Newton-type methods. Analogously to the Levenberg-Marquardt procedure proposed by Hanke,
instead of promoting convergence to a solution of (1.3), they form approximations of increasing
accuracy to some solution of the unperturbed problem (1.1) until the discrepancy principle (1.4)
is met. We refer to [6,16] for the description and analysis of such methods.

The above mentioned regularizing Levenberg-Marquardt method belongs to the unifying frame-
work of nonlinear stepsize control algorithms for unconstrained optimization developed by Toint
[24] and including trust-region methods [5]. Therefore, elaborating on original ideas by Hanke, we
introduce and analyze a regularizing variant of the trust-region method based on a specific rule
for selecting the trust-region radius. The resulting method shares the same regularizing properties
as the method by Hanke and, as for standard trust-region procedures, it enforces a monotonic
decrease of the value of the function

Φ(x) =
1

2
‖yδ − F (x)‖22, (1.5)

at the iterates xδk. Convergence properties are enhanced with respect to the regularizing Levenberg-
Marquardt procedure in the following respects. With exact data, if there exists an accumulation
point of the iterates which solves (1.1), then any accumulation point of the sequence solves (1.1).
With noisy data, the method has the potential to satisfy the discrepancy principle (1.4). As for
standard trust-region methods, these properties can be enhanced independently of the closeness
of the initial guess to a solution of (1.1).

Our contribution covers theoretical and practical aspects of the method proposed. From a
theoretical point of view, we propose the use of a trust-region radius converging to zero as δ
tends to zero. Trust-region methods with this distinguishing feature have been proposed in several
papers, see [7–9,29], but none of such works was either devised for ill-posed problems or applied
to them; thus, our study offers new insights on the potential of this choice for the trust-region
radius. Moreover, we have made an attempt toward globally convergent methods for ill-posed
problems; to our knowledge, this topic has been considered only in a multilevel approach proposed
by Kaltenbacher [15]. Finally, local convergence analysis has been carried out without making
two common assumptions in the literature: neither the invertibility of the Jacobian J of F and
boundness of the inverse, nor the fulfillment of the local error-bound condition (see e.g., [7–
9,19,29]) have been used. In fact, such conditions may not be satisfied in the presence of ill-
posedeness. Therefore, our results may represent a progress in the theoretical investigation of
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convergence. Concerning numerical aspects, we discuss an implementation of the regularizing
trust-region method, and test its ability to approximate a solution of (1.1) in the presence of
noise. Comparison with a standard trust-region scheme highlights the impact of the proposed
trust-region radius choice on regularization.

The paper is organized as follows. In §2 we describe the main features of the regularizing
Levenberg-Marquardt method proposed by Hanke. In §3 we introduce our regularizing version of
trust-region methods and in §4 we study the local convergence properties. A comparative numerical
analysis of all the procedures studied is done in §5.

Notations. We indicate the iterates of the procedures analyzed as xδk; if the data are exact, xk
may be used as an alternative to xδk. By xδ0 = x0 we denote an initial guess which may incorporate
a-priori knowledge of an exact solution. The symbol ‖ · ‖ indicates the Euclidean norm. A closed
ball of radius ρ around a vector x is denoted as Bρ(x). The Jacobian matrix of F is denoted as J .

2 Regularizing Levenberg-Marquardt method for ill-posed problems

We describe the regularizing version of the Levenberg-Marquardt method proposed in [12] for
solving (1.3), and analyze some issues for its practical implementation.

At k-th iteration of the Levenberg-Marquardt, given xδk ∈ Rn and λk > 0, let

mLM
k (p) =

1

2
‖F (xδk)− yδ + J(xδk)p‖2 +

1

2
λk‖p‖2, (2.6)

be a quadratic model around xδk for the function Φ in (1.5), see [18,20]. The step pk taken minimizes
mLM
k , and xδk+1 = xδk + pk. We observe that, if p(λ) is the solution of

(Bk + λI)p(λ) = −gk, (2.7)

with Bk = J(xδk)TJ(xδk) and gk = J(xδk)T (F (xδk)− yδ), then

pk = p(λk) = −(J(xδk)TJ(xδk) + λkI)−1(J(xδk)T (F (xδk)− yδ)). (2.8)

If problem (1.3) is ill-posed, and the scalars λk are limited to promote convergence of the
procedure, see [20], then the solution of (1.1) may be significantly misinterpreted [11,16,26]. The
regularizing Levenberg-Marquardt method [12] attempts to approximate solutions of (1.1) by
choosing λk as the solution λqk of the nonlinear scalar equation

‖F (xδk)− yδ + J(xδk)p(λ)‖ = q‖F (xδk)− yδ‖, (2.9)

for some fixed q ∈ (0, 1). Under suitable assumptions discussed below, λqk is uniquely determined
from (2.9).

To analyze (2.9), it is useful to establish relations between λ, ‖p(λ)‖ and ‖F (xδk) − yδ +
J(xδk)p(λ)‖.

Lemma 1 [2, Lemma 4.2] Suppose ‖gk‖ 6= 0 and let p(λ) be the minimum norm solution of (2.7)
with λ ≥ 0. Suppose furthermore that J(xδk) is of rank ` and its singular-value decomposition is
given by UkΣkV

T
k where Σk is the diagonal matrix with entries ς1, . . . , ςn on the diagonal. Then,

denoting r = (r1, r2, . . . , rn)T = UTk (F (xδk)− yδ), we have that

‖p(λ)‖2 =
∑̀
i=1

ς2i r
2
i

(ς2i + λ)2
, (2.10)

‖F (xδk)− yδ + J(xδk)p(λ)‖2 =
∑̀
i=1

λ2r2
i

(ς2i + λ)2
+

n∑
i=`+1

r2
i . (2.11)

Using this result, the solution of (2.9) is characterized as follows.

Lemma 2 Suppose ‖gk‖ 6= 0. Let p(λ) be the minimum norm solution of (2.7) with λ ≥ 0,
R(J(xδk))⊥ be the orthogonal complement of the range R(J(xδk)) of J(xδk), and P δk be the orthogonal
projector onto R(J(xδk))⊥. Then
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(i) Equation (2.9) is not solvable if ‖P δk (F (xδk)− yδ)‖ > q‖F (xδk)− yδ‖.
(ii) If

‖F (xδk)− yδ + J(xδk)(x† − xδk)‖ ≤ q

θk
‖F (xδk)− yδ‖, (2.12)

for some θk > 1, and x† is a solution of (1.1), then equation (2.9) has a unique solution λqk
such that

λqk ∈
(

0,
q

1− q
‖Bk‖

]
. (2.13)

Proof (i) Equation (2.11) implies

limλ→0 ‖F (xδk)− yδ + J(xδk)p(λ)‖ = ‖P δk (F (xδk)− yδ)‖,
limλ→∞ ‖F (xδk)− yδ + J(xδk)p(λ)‖ = ‖F (xδk)− yδ‖.

Thus, since ‖F (xδk)− yδ + J(xδk)p(λ)‖ is monotonically increasing as a function of λ, we conclude
that (2.9) does not admit solution if ‖P δk (F (xδk)− yδ)‖ > q‖F (xδk)− yδ‖.

(ii) Trivially ‖P δk (F (xδk) − yδ)‖ ≤ ‖F (xδk) − yδ + J(xδk)(x − xδk)‖, for any x. Hence, for the
monotonicity of ‖F (xδk)− yδ + J(xδk)p(λ)‖, if (2.12) holds, then equation (2.9) admits a solution
which is positive and unique. Finally, observing that for a positive λ it holds (J(xδk)TJ(xδk) +
λI)−1J(xδk)T = J(xδk)T (J(xδk)J(xδk)T + λI)−1, equation (2.8) can be written as

pk = p(λk) = −J(xδk)T (J(xδk)J(xδk)T + λkI)−1(F (xδk)− yδ), (2.14)

and consequently

F (xδk)− yδ + J(xδk)p(λk) = (I − J(xδk)J(xδk)T (J(xδk)J(xδk)T + λkI)−1)(F (xδk)− yδ)
= λk(J(xδk)J(xδk)T + λkI)−1(F (xδk)− yδ). (2.15)

Then (2.9) gives

q‖F (xδk)− yδ‖ = λqk‖(J(xδk)J(xδk)T + λqkI)−1(F (xδk)− yδ)‖

≥
λqk

‖Bk‖+ λqk
‖F (xδk)− yδ‖,

which yields (2.13).

In [12], the analysis of the regularizing properties of the Levenberg-Marquardt method was
made under the subsequent assumptions on the solvability of problem (1.1), the Taylor remainder
of F , and the vicinity of the initial guess x0 to some solution x† of (1.1).

Assumption 21 Given an initial guess x0, there exist positive ρ and c such that system (1.1) is
solvable in Bρ(x0), and

‖F (x)− F (x̃)− J(x)(x− x̃)‖ ≤ c‖x− x̃‖ ‖F (x)− F (x̃)‖, x, x̃ ∈ B2ρ(x0). (2.16)

Assumption 22 Let x0, c and ρ as in Assumption 21, x† be a solution of (1.1) and x0 satisfy

‖x0 − x†‖ < min
{q
c
, ρ
}
, if δ = 0, (2.17)

‖x0 − x†‖ < min

{
qτ − 1

c(1 + τ)
, ρ

}
, if δ > 0, (2.18)

where τ > 1/q.

Note that, whenever xδk belongs to B2ρ(x0) and ‖xδk − x†‖ < ‖x0 − x†‖, Assumption 21 implies
that inequality (2.12) is satisfied for some θk > 1, and consequently there exists a solution to (2.9).

Under Assumptions 21 and 22, the Levenberg-Marquardt method generates an approximation
xδk∗(δ) satisfying (1.4) and the sequence {xδk∗(δ)} converges to a solution of (1.1) as δ tends to zero.
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Theorem 1 Let Assumptions 21 and 22 hold and xδk be the Levenberg-Marquardt iterates deter-
mined by using (2.9). For noisy data, suppose k < k∗(δ) where k∗(δ) is defined in (1.4). Then, any
iterate xδk belongs to B2ρ(x0). With exact data, the sequence {xk} converges to a solution of (1.1).
With noisy data, the stopping criterion (1.4) is satisfied after a finite number k∗(δ) of iterations
and {xδk∗(δ)} converges to a solution of (1.1) as δ tends to zero.

Proof See [12], Theorem 2.2 and Theorem 2.3.

Let us focus on a specific issue concerning the implementation of the method which, to our
knowledge, has not been addressed either in [12] or in related papers. The numerical solution of
(2.9) requires the application of a root-finder method and Newton’s method is the most efficient
procedure, though in general it requires the knowledge of an accurate approximation to the so-
lution. On the other hand, nonlinear equations which are monotone and convex (or concave) on
some interval containing the root are particularly suited to an application of Newton’s method,
see e.g. [14, Theorem 4.8]. Equation (2.9) does not have such properties but it can be replaced by
an equivalent equation with strictly decreasing and concave function in [λqk,∞); thus, Newton’s
method applied to the reformulated equation converges globally to λqk whenever the initial guess
overestimates such a root.

Lemma 3 Suppose ‖F (xδk)− yδ‖ 6= 0, and that (2.9) has positive solution λqk. Let

ψ(λ) =
λ

‖F (xδk)− yδ + J(xδk)p(λ)‖
− λ

q‖F (xδk)− yδ‖
= 0. (2.19)

Then, Newton’s method applied to (2.19) converges monotonically and globally to the root λqk of
(2.9) for any initial guess in the interval [λqk,∞).

Proof Trivially, solving (2.9) is equivalent to finding the positive root of equation (2.19). We now
show that ψ(λ) is strictly decreasing in [λqk,∞) and concave on (0,∞). By (2.11),

λ

‖F (xδk)− yδ + J(xδk)p(λ)‖
=


√√√√ l∑

i=1

(
ri

ζ2
i + λ

)2

+

n∑
i=l+1

(ri
λ

)2

−1

, (2.20)

and this function is concave on (0,∞), cfr. [4, Lemma 2.1]. Thus, ψ is concave on (0,∞) and
trivially ψ′(λ) is strictly decreasing.

Now we show that ψ′(λqk) is negative; thus, using the monotonicity of ψ′(λ), we get that ψ(λ)
is strictly decreasing in [λqk,∞). Differentiation of ψ(λ) and (2.9) give

ψ′(λqk) =
(λqk)3

‖F (xδk)− yδ + J(xδk)p(λqk)‖3

(
l∑
i=1

r2
i

(ζ2
i + λqk)3

+

n∑
i=l+1

r2
i

(λqk)3

)
− 1

q‖F (xδk)− yδ‖

=
(λqk)2

‖F (xδk)− yδ + J(xδk)p(λqk)‖3

(
l∑
i=1

r2
i λ

q
k

(ζ2
i + λqk)3

+

n∑
i=l+1

(
ri
λqk

)2

−
‖F (xδk)− yδ + J(xδk)p(λqk)‖2

(λqk)2

)
.

Moreover, using (2.20), it holds

ψ′(λqk) =
(λqk)2

‖F (xδk)− yδ + J(xδk)p(λqk)‖3

(
l∑
i=1

r2
i λ

q
k

(ζ2
i + λqk)3

−
l∑
i=1

(
ri

ζ2
i + λqk

)2
)

= −
(λqk)2

‖F (xδk)− yδ + J(xδk)p(λqk)‖3
l∑
i=1

r2
i ζ

2
i

(ζ2
i + λqk)3

,

i.e. ψ′(λqk) is negative.
The claimed convergence of Newton’s method follows from results on univariate concave func-

tions given in [14, Theorem 4.8].
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For the practical evaluation of ψ(λ) and ψ′(λ) we refer to [5,21].
In [12, Remark p. 6] Hanke observed that (2.9) may be replaced with

‖F (xδk)− yδ + J(xδk)pk‖ ≥ q‖F (xδk)− yδ‖, (2.21)

later denoted as the q-condition, but this criterion was not analyzed or employed in numerical
computation. Since (2.9) may not have a solution and our aim is to tune λk in view of global
convergence, while preserving regularizing properties, in the next section we allow more flexibility
in its selection and design a trust-region method based on condition (2.21).

3 A regularizing trust-region method

Trust-region methods are globally convergent approaches where the stepsize between two succes-
sive iterates is determined via a nonlinear stepsize control mechanism [5]. At a generic iteration k
of a trust-region method, the step pk solves

min
p
mTR
k (p) =

1

2
‖F (xδk)− yδ + J(xδk)p‖2,

s.t. ‖p‖ ≤ ∆k,
(3.22)

where ∆k is a given positive trust-region radius. If ‖gk‖ 6= 0 then pk solves (3.22) if and only if it
satisfies (2.7) for some nonnegative λk such that

λk(‖pk‖ −∆k) = 0. (3.23)

Therefore, whenever the minimum norm solution p+ of

Bkp = −gk,

satisfies ‖p+‖ ≤ ∆k, the scalar λk is null and pk = p(0) solves (3.22). Otherwise, the step pk takes
the form (2.8), and therefore it is a Levenberg-Marquardt step. If ‖pk‖ = ∆k, then the trust-region
is said to be active.

Starting from an arbitrary initial guess, trust-region methods generate a sequence of iterates
such that the value of Φ in (1.5) is monotonically decreasing and this feature is enforced by an
adaptive choice of the radius ∆k. Specifically, let pk be the trust-region step and

πk(pk) =
ared(pk)

pred(pk)
, (3.24)

be the ratio between the achieved ared(pk) and predicted pred(pk) reductions given by

ared(pk) = Φ(xδk)− Φ(xδk + pk), (3.25)

pred(pk) = Φ(xδk)−mTR
k (pk). (3.26)

Then, the trust region radius is reduced if πk(pk) is below some small positive threshold; otherwise
it is left unchanged or enlarged [5].

Since trust-region steps and Levenberg-Marquardt steps have the same form (2.7), trust-region
and Levenberg-Marquardt methods fall into a single unifying framework which can be used for their
description and theoretical analysis [4,21,24]. Due to such a strict connection, we elaborate on the
regularizing Levenberg-Marquardt described in the previous section, and introduce a regularizing
variant of trust-region methods for solving ill-posed problems.

The standard trust-region strategy is modified so that the nonlinear stepsize control enforces
both the monotonic reduction of Φ and the q-condition (2.21). To this end, we first characterize
the parameters λ such that p(λ) satisfies (2.21).

Lemma 4 Assume ‖gk‖ 6= 0. Let p(λ) be the minimum norm solution of (2.7) with λ ≥ 0 and
P δk be the orthogonal projector onto R(J(xδk))⊥. Then, equation (2.21) is satisfied for any λ ≥ 0
whenever

‖P δk (F (xδk)− yδ)‖ ≥ q‖F (xδk)− yδ‖. (3.27)

Otherwise, it is satisfied for any λ ≥ λqk where λqk satisfies (2.13).
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Proof The claims easily follow from Lemma 2.

Now we are ready to characterize the size of the trust-region radius guaranteeing (2.21).

Lemma 5 Let pk solve the trust-region problem (3.22). If

∆k ≤
1− q
‖Bk‖

‖gk‖, (3.28)

then pk satisfies the q-condition (2.21).

Proof By Lemma 4 we know that the q-condition is satisfied either for λ ≥ 0, or for any λ ≥ λqk.
In the former case, the claim trivially holds. In the latter case, by (2.7) it follows

‖p(λqk)‖ ≥ ‖gk‖
‖Bk + λqkI‖

,

and by (2.13) it holds

‖Bk + λqkI‖ ≤
‖Bk‖
1− q

.

By construction ‖pk‖ ≤ ∆k, and if (3.28) holds then we obtain

‖pk‖ = ‖p(λk)‖ ≤ 1− q
‖Bk‖

‖gk‖ ≤
‖gk‖

‖Bk + λqkI‖
≤ ‖p(λqk)‖.

Since ‖p(λ)‖ is monotonically decreasing, it follows λk ≥ λqk and condition (2.21) is satisfied.

We stress that the bound (3.28) provides a practical rule for choosing the trust-region radius and
enforcing the q-condition (2.21). Conversely, in papers [27] and [29], where trust-region methods
for ill-posed problems are studied, such a condition is respectively assumed to be satisfied, and
explicitly enforced rejecting the step whenever it does not hold.

The result in Lemma 5 suggests the trust-region iteration described in Algorithm 3.1. We
distinguish between the parameters needed in the case of exact data and the parameters required
with noisy data.

Algorithm 3.1: k-th iteration of the regularizing Trust-Region method for problem (1.3)

Given xδk, η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: given y, q ∈ (0, 1).

Noisy data: given yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδk)T J(xδk) and gk = J(xδk)T (F (xδk)− yδ).

2. Choose ∆k ∈
[
Cmin‖gk‖, min

{
Cmax,

1− q
‖Bk‖

}
‖gk‖

]
.

3. Repeat
3.1 Compute the solution pk of the trust-region problem (3.22).
3.2 Compute πk(pk) given in (3.24)–(3.26).
3.3 If πk(pk) < η, then set ∆k = γ∆k.

Until πk(pk) ≥ η.
4. Set xδk+1 = xδk + pk.

Algorithm 3.1 is well-defined, provided that the following assumption is met.

Assumption 31 There exists a positive constant κJ such that

‖J(x)‖ ≤ κJ ,

for any x belonging to the level set L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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First, Step 2 is well defined for suitable choices of Cmin; in fact, as long as Cmin <
1− q
κ2
J

, it holds

Cmin <
1− q
‖Bk‖

for all k. Second, due to well-known properties of trust-region methods, Assumption

31 guarantees that the step pk is found within a finite number of attempts, whenever ‖gk‖ 6= 0 [5].
Global convergence of the trust-region method is stated in the following theorem; we refer to

[23, Theorem 11.9] for the proof.

Theorem 2 Suppose that Assumption 31 holds and J is Lipschitz continuous on Rn. Then, the
sequence {xδk} generated by Algorithm 3.1 satisfies

lim
k→∞

∇Φ(xδk) = lim
k→∞

‖J(xδk)T (F (xδk)− yδ)‖ = 0. (3.29)

We observe that assumption on Lipschitz continuity of J is made in [15], too.
By construction, the sequence {‖F (xδk)−yδ‖} is monotonically decreasing and bounded below

by zero; hence it is convergent. Equation (3.29) implies that any accumulation point of the sequence
{xδk} is a stationary point of Φ. As for exact data, we conclude that if there exists an accumulation
point of {xk} solving (1.1), then any accumulation point of the sequence solves (1.1). In the case
of noisy data, if the value of Φ at some accumulation point of {xδk} is below the scalar τδ, then
there exists an iterate xδk∗(δ) such that the discrepancy principle is met.

It remains to show the behaviour of the iterates generated by Algorithm 3.1 when, for some k,
xδk is sufficiently close to a solution x† of (1.1). For instance, this occurs with exact data when the
accumulation points of {xk} solve (1.1) and k is sufficiently large. In the next section we show that
the trust-region method described in Algorithm 3.1 shares the same local regularizing properties
as the regularizing Levenberg-Marquardt method.

4 Local behaviour of the trust-region method

We analyze the local properties of the trust-region method under the same assumptions made for
the Levenberg-Marquardt method. Hence, we suppose that there exists an iteration index k̄ such
that the iterate xδ

k̄
satisfies the following assumptions that are the counterpart of Assumptions 21

and 22 for the Levenberg-Marquardt method.

Assumption 41 Suppose that for some iteration index k̄ there exist positive ρ and c such that
system (1.1) is solvable in Bρ(x

δ
k̄
), and

‖F (x)− F (x̃)− J(x)(x− x̃)‖ ≤ c‖x− x̃‖ ‖F (x)− F (x̃)‖, x, x̃ ∈ B2ρ(x
δ
k̄), (4.30)

with k̄ < k∗(δ) if the data are noisy, where k∗(δ) is defined in (1.4). Moreover, letting x† be a
solution of (1.1), suppose that xδ

k̄
satisfies

‖xk̄ − x†‖ < min
{q
c
, ρ
}
, if δ = 0, (4.31)

‖xδk̄ − x
†‖ < min

{
qτ − 1

c(1 + τ)
, ρ

}
, if δ > 0. (4.32)

where τ > 1/q.

Typically in the literature assumptions stronger than (4.30) have been made. To our knowledge,
except for papers [7–9,27,29], local convergence properties of trust-region strategies have been
analyzed under assumptions which involve the inverse of J and its upper bound in a neighbourhood
of a solution. In papers [7–9] the convergence analysis is carried out assuming a local error-bound
condition and a Lipschitz condition on the Jacobian in a neighbourhood of x†.

The following theorems show the local behaviour of the regularizing trust-region method. We
prove that locally the trust-region is active, the iterates xδk with k > k̄ remain into the ball Bρ(x

†)
and the resulting algorithm is regularizing. We remark that in standard trust-region methods,
the trust-region becomes eventually inactive. On the other hand, regularization requires strictly
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positive scalars λk, and consequently an active trust-region in all iterations. First, we give a
technical result that will be useful in the subsequent analysis. Then, we focus on the noise-free
case and we show that the error ‖xk − x†‖ decreases in a monotonic way for k ≥ k̄, and the
sequence {xk} converges to a solution of (1.1).

Lemma 6 Assume that equation (2.12) is fulfilled for some θk > 1 and x† being a solution of
(1.1). Let xk+1 = xk + pk with pk = p(λk) satisfying (2.7) and (2.21). Then it holds

‖xδk − x†‖2 − ‖xδk+1 − x†‖2 >
2(θk − 1)

θkλk
‖F (xδk)− yδ + J(xδk)pk‖2. (4.33)

Proof The proof parallels that of [16, Proposition 4.1], in which it is shown that

||xδk+1 − x†||2 − ||xδk − x†||2 <
2

λk
||F (xδk)− yδ + J(xδk)pk‖(‖F (xδk)− yδ + J(xδk)(x† − xδk)‖ − ‖F (xδk)− yδ + J(xδk)pk‖).

From (2.12) and (2.21) it follows that

‖F (xδk)− yδ + J(xδk)(x† − xδk)‖ ≤ 1

θk
‖F (xδk)− yδ + J(xδk)pk‖,

which yields the thesis.

Lemma 7 Suppose that Assumptions 31 and 41 hold and δ = 0. Then, Algorithm 3.1 generates
a sequence {xk} such that, for k ≥ k̄,

(i) the trust-region is active, i.e. λk > 0, and xk belongs to B2ρ(xk̄) and to Bρ(x
†);

(ii) ‖xk+1 − x†‖ < ‖xk − x†‖;
(iii) there exists a constant λ̄ > 0 such that λk ≤ λ̄.

Proof (i)-(ii) From the choice of ∆k at Step 2 of Algorithm 3.1 and Lemma 5 it follows that the
step pk computed at Step 3 satisfies condition (2.21). Moreover, from Assumption 41, it follows

that condition (2.12) is satisfied at k = k̄ with θk̄ =
q

c‖xk̄ − x†‖
> 1. Consequently, Lemma 2 gives

that λq
k̄

is strictly positive, while Lemma 4 yields that the trust-region is active as λk̄ ≥ λ
q

k̄
. Since

Lemma 6 holds for k = k̄, (4.33) implies ‖xk̄+1 − x†‖ < ‖xk̄ − x†‖ and, as a consequence, xk̄+1

belongs to B2ρ(xk̄) and to Bρ(x
†). Repeating the above arguments, by induction we can prove

that condition (2.12) holds for k > k̄, with

θk =
q

c‖x† − xk‖
> 1, (4.34)

and this implies that λk is strictly positive. Thus, Lemma 6 holds for all k ≥ k̄ and by induction,
the sequence {‖xk − x†‖}∞

k=k̄
is monotonic decreasing and the sequence {θk}∞k=k̄

is monotonic
increasing.

(iii) Since the trust-region is active, by (2.7)

∆k = ‖pk‖ = ‖(Bk + λkI)−1gk‖ ≤
‖gk‖
λk

. (4.35)

Thus our claim follows if ∆k/‖gk‖ is larger than a suitable threshold, independent from k. Let us
provide such a bound by estimating the value of ∆k which guarantees condition πk(pk) ≥ η. If this
condition is fulfilled for the value of ∆k fixed in Step 2 of Algorithm 3.1, then ∆k/‖gk‖ ≥ Cmin;
otherwise, the trust-region radius is progressively reduced, and we provide a bound for the value
of ∆k at termination of Step 3 of Algorithm 3.1 in the case where Φ(xk + pk) > mTR

k (pk). This
occurrence represents the most adverse case; in fact if Φ(xk + pk) ≤ mTR

k (pk) then πk(pk) ≥ 1 > η
and the repeat loop terminates for a trust-region radius greater than or equal to the one estimated
below. Trivially,

1− πk(pk) =
Φ(xk + pk)−mTR

k (pk)

Φ(xk)−mTR
k (pk)

, (4.36)
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and

Φ(xk + pk)−mTR
k (pk) ≤ 1

2
‖F (xk + pk)− F (xk)− J(xk)pk‖2

+‖F (xk + pk)− F (xk)− J(xk)pk‖
‖F (xk)− y + J(xk)pk‖ (4.37)

By (4.30) and the mean value Theorem [23, Theorem 11.1], it holds

‖F (xk + pk)− F (xk)− J(xk)pk‖ ≤ c‖pk‖‖F (xk + pk)− F (xk)‖ ≤ cκJ‖pk‖2. (4.38)

Consequently, as ∆k ≤ Cmax‖gk‖,

Φ(xk + pk)−mTR
k (pk) ≤ 1

2
cκJ∆

2
k‖F (x0)− y‖(cκ3

JC
2
max‖F (x0)− y‖+ 2).

Theorem 6.3.1 in [5] shows that

Φ(xk)−mTR
k (pk) ≥ 1

2
‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
.

Then,

Φ(xk)−mTR
k (pk) ≥ 1

2
∆k‖gk‖, (4.39)

whenever ∆k ≤
‖gk‖
κ2
J

and this implies

1− πk(pk) ≤ cκJ∆k‖F (x0)− y‖(cκ3
JC

2
max‖F (x0)− y‖+ 2)

‖gk‖
.

Namely, termination of the repeat loop occurs with

∆k ≤ ‖gk‖ω,

and

ω = min

{
1

κ2
J

,
1− η

cκJ‖F (x0)− y‖(cκ3
JC

2
max‖F (x0)− y‖+ 2)

}
. (4.40)

Taking into account Step 2 and the updating rule at Step 3.3, we can conclude that, at termination
of Step 3, the trust-region radius ∆k satisfies

∆k ≥ min {Cmin, γω} ‖gk‖.

Finally, by (4.35) λk ≤ λ̄ as

λk ≤
‖gk‖
∆k

≤ max

{
1

γω
,

1

Cmin

}
. (4.41)

Theorem 3 Suppose that Assumptions 31 and 41 hold and δ = 0. Then, the sequence {xk}
generated by Algorithm 3.1 converges to a solution x∗ of (1.1) such that ‖x∗ − x†‖ ≤ ρ.

Proof Let k̄ as in Assumption 41 and k ≥ k̄. In Lemma 7 we showed that (4.33) holds with θk
given in (4.34) and monotonically increasing. Then, an adaptation of the proof of Theorem 4.2 in
[16] gives that {xk} is convergent; the proof is repeated for sake of clarity. Set σ = c‖xk̄ − x†‖.
Clearly, from Lemma 7 we have σ ≥ c‖xi − x†‖ for all i ≥ k̄. Moreover, using (4.30) we obtain

‖J(xi)(xk − x†)‖ ≤ (1 + 5σ)‖F (xi)− y‖, (4.42)
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for all k ≥ i ≥ k̄. Letting ek = xk−x†, from (2.14), (2.15) and (4.42) we obtain that for k > j ≥ k̄:

| < ej − ek, ek > | =

∣∣∣∣∣∣
k−1∑
i=j

< (J(xi)J(xi)
T + λiI)−1)(y − F (xi)), J(xi)ek >

∣∣∣∣∣∣
≤

k−1∑
i=j

‖(J(xi)J(xi)
T + λiI)−1(y − F (xi))‖‖J(xi)ek‖

≤ (1 + 5σ)

k−1∑
i=j

1

λi
‖F (xi)− y + J(xi)(xi+1 − xi)‖‖F (xi)− y‖.

Thus, (2.21) and (4.33) yield

| < ej − ek, ek > | ≤ (1 + 5σ)

k−1∑
i=j

1

λi q
‖F (xi)− y + J(xi)(xi+1 − xi)‖2

≤ αk̄(‖ej‖2 − ‖ek‖2), (4.43)

where αk̄ =
(1 + 5σ)θk̄
2q(θk̄ − 1)

and we have used θk/(θk − 1) < θk̄/(θk̄ − 1) since the function θ/(θ − 1)

is monotonic decreasing. Then

‖xk − xj‖2 = 2 < ek − ej , ek > +‖ej‖2 − ‖ek‖2 ≤ (2αk̄ + 1)(‖ej‖2 − ‖ek‖2).

Since the sequence {‖ek‖} is bounded from below and monotonic decreasing, hence convergent,
it follows that {xk} is a Cauchy sequence, i.e. {xk} converges to a limit point x∗. By xk ∈ Bρ(x†)
for k ≥ k̄, it follows ‖x∗ − x†‖ ≤ ρ.

Finally, from Lemma 7 we know that λk ≤ λ̄ and (θk − 1)/θk ≥ (θk̄ − 1)/θk̄, for k ≥ k̄ since
the function (θ − 1)/θ is monotonic increasing. Then, by (4.33) and (2.21)

‖xk − x†‖2 − ‖xk+1 − x†‖2 ≥
2(θk̄ − 1)q2

θk̄λ̄
‖F (xk)− y‖2.

Thus we conclude that ‖F (xk)− y‖ tends to zero and the limit x∗ of xk solves (1.1).

A similar result can be given for the noisy case. In the following lemma we prove that for
k̄ ≤ k < k∗(δ), where k∗(δ) is defined in (1.4), the trust region is active and the scalars λk > 0 are
bounded above. Successively, we prove that the stopping criterion (1.4) is satisfied after a finite
number of iterations and the method is regularizing as the error decreases monotonically and the
sequence {xδk∗(δ)} converges to a solution of (1.1) as δ tends to zero.

Lemma 8 Suppose that δ > 0 and Assumptions 31 and 41 hold. Then, Algorithm 3.1 generates
a sequence xδk such that, for k̄ ≤ k < k∗(δ),

(i) the trust-region is active, i.e. λk > 0 and xδk belongs to B2ρ(x
δ
k̄
) and to Bρ(x

†);

(ii) ‖xδk+1 − x†‖ < ‖xδk − x†‖;
(iii) there exists a constant λ̄ > 0 such that λk ≤ λ̄.

Proof (i)-(ii) By (4.30) and (1.2) we get

‖yδ − F (xδk̄)− J(xδk̄)(x† − xδk̄)‖ ≤ δ + ‖y − F (xδk̄)− J(xδk̄)(x† − xδk̄)‖
≤ δ + c‖x† − xδk̄‖ ‖y − F (xδk̄)‖
≤ (1 + c‖x† − xδk̄‖)δ + c‖x† − xδk̄‖ ‖y

δ − F (xδk̄)‖.

Then, at iteration k̄, condition (1.4) gives

‖yδ − F (xδk̄)− J(xδk̄)(x† − xδk̄)‖ ≤

(
1 + c‖x† − xδ

k̄
‖

τ
+ c‖x† − xδk̄‖

)
‖yδ − F (xδk̄)‖,
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and (4.32) yields (2.12) at k = k̄ with θk̄ =
qτ

1 + c(1 + τ)‖x† − xδ
k̄
‖
> 1. Then, Lemma 2 and Lemma

5 yield λk̄ ≥ λ
q

k̄
with λq

k̄
> 0 strictly positive. Further, by Lemma 6 condition (4.33) is satisfied with

θk = θk̄, and this implies ‖xδ
k̄+1
− x†‖ < ‖xδ

k̄
− x†‖ and consequently xδ

k̄+1
belongs to B2ρ(x

δ
k̄
) and

to Bρ(x
†). Repeating the above arguments, by induction we can prove that, for k̄ < k < k∗(δ),

condition (2.12) holds, λk > 0, and (4.33) is satisfied with θk =
qτ

1 + c(1 + τ)‖x† − xδk‖
. Thus

‖xδk+1 − x†‖ < ‖xδk − x†‖ and θk+1 > θk for k̄ ≤ k < k∗(δ).

(iii) Proceeding as in the proof of point (iii) of Theorem 7, just replacing xk with xδk, we get
that for k̄ ≤ k < k∗(δ), λk < λ̄ with

λ̄ ≤ max

{
1

γω
,

1

Cmin

}
.

where ω is obtained replacing y with yδ in (4.40).

Theorem 4 Suppose that Assumptions 31 and 41 hold for δ ≥ 0. Then, for δ > 0, the iterates
generated by Algorithm 3.1 satisfy the stopping criterion (1.4) after a finite number k∗(δ) of
iterations.

Moreover, suppose that the sequence {xk} generated with the exact data y satisfies πk(xk+1 −
xk) 6= η, for all k. Then the sequence {xδk∗(δ)} converges to a solution of (1.1) whenever δ tends
to zero.

Proof Summing up from k̄ to k∗(δ)− 1, by (2.21) and (4.33) it follows

(k∗(δ)− k̄)τ2δ2 ≤
k∗(δ)−1∑
k=k̄

‖F (xδk)− yδ‖2 ≤ θk̄λ̄

2(θk̄ − 1)q2
‖xδk̄ − x

†‖2.

Thus, k∗(δ) is finite for δ > 0.
Convergence of xδk∗(δ) to a solution of (1.1) as δ tends to zero is obtained by adapting the

proof of [12, Theorem 2.3]. Specifically, let x∗ be the limit of the sequence {xk} corresponding
to the exact data y and let {δn} be a sequence of values of δ converging to zero as n → ∞.
Denote by yδn a corresponding sequence of perturbed data, and by kn = k∗(δn) the stopping
index determined from the discrepancy principle (1.4) applied with δ = δn. Assume first that k̃ is
a finite accumulation point of {kn}. Without loss of generality, for the monotonicity of (1.5), we
can assume that kn = k̃ for all n ∈ N. Thus, from the definition of kn it follows that

‖yδn − F (xδn
k̃

)‖ ≤ τδn. (4.44)

By assumption, πk(xk+1 − xk) 6= η, for all k, it follows that for the fixed index k̃, the iterate xδ
k̃

depends continuously on δ. Then

xδn
k̃
→ xk̃, F (xδn

k̃
)→ F (xk̃) as δn → 0. (4.45)

Therefore, by (4.44), it follows that the k̃-th iterate with exact data y is a solution of F (x) = y,
i.e. x∗ = xk̃, and we can conclude that xδnkn → x∗ as δn → 0.

It remains to consider the case where kn →∞ as n→∞. As {xk} converges to a solution x∗

of (1.1) by Theorem 3, there exists k̃ > 0 such that

‖xk − x∗‖ ≤
1

2
ρ̄ for all k ≥ k̃,

where ρ̄ < min

{
qτ − 1

c(1 + τ)
, ρ

}
. Then, as xδk depends continuously on δ, δn tends to zero and

k∗(δn)→∞, there exists δn sufficiently small such that k̃ ≤ k∗(δn) and

‖xδn
k̃
− xk̃‖ ≤

1

2
ρ̄.
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Then, for δn sufficiently small

‖xδn
k̃
− x∗‖ ≤ ‖xδn

k̃
− xk̃‖+ ‖xk̃ − x

∗‖ ≤ ρ̄. (4.46)

Now, from item (i) of Lemma 8, it holds xδn
k̃
∈ B2ρ(x

δn
k̄

), while from (4.32) and Theorem 3 it

holds x∗ ∈ B2ρ(x
δn
k̄

) as

‖xδn
k̄
− x∗‖ ≤ ‖xδn

k̄
− x†‖+ ‖x† − x∗‖ ≤ 2ρ.

Repeating arguments in Lemma 8, we use (4.30), (1.2) and (1.4) and get

‖yδn − F (xδn
k̃

)− J(xδn
k̃

)(x∗ − xδn
k̃

)‖ ≤ δn + ‖y − F (xδn
k̃

)− J(xδn
k̃

)(x∗ − xδn
k̃

)‖

≤ δn + c‖x∗ − xδn
k̃
‖ ‖y − F (xδn

k̃
)‖

≤ (1 + c‖x∗ − xδn
k̃
‖)δ + c‖x∗ − xδn

k̃
‖ ‖yδn − F (xδn

k̃
)‖

≤

(
1 + c‖x∗ − xδn

k̃
‖

τ
+ c‖x∗ − xδn

k̃
‖

)
‖yδn − F (xδn

k̃
)‖.

Thus, by (4.46) and ρ̄ < min

{
qτ − 1

c(1 + τ)
, ρ

}
, it follows that the following counterpart of (2.12)

‖F (xδk)− yδ + J(xδk)(x∗ − xδk)‖ ≤ q

θk
‖F (xδk)− yδ‖

is satisfied at k = k̃ with θk̃ =
qτ

1 + c(1 + τ)ρ̄
> 1. Replacing x† with x∗, (4.33) gives ‖xδn

k̃+1
−x∗‖ <

‖xδn
k̃
− x∗‖ and repeating the above arguments, by induction we obtain monotonicity of the error

‖xδnk − x∗‖ for k̃ ≤ k ≤ kn. Then

‖xδnkn − x
∗‖ < ‖xδn

k̃
− x∗‖ ≤ ρ̄. (4.47)

Finally, since the previous arguments can be repeated for any positive ε ≤ ρ̄, provided that δn is
small enough, we obtain that

xδnkn → x∗ as δn → 0.

We underline that the trust-region radius ∆k selected in Algorithm 3.1 depends continuously
on δ in a right interval of the origin whenever πk(xk+1 − xk) 6= η, for all k ≥ 0. Under this
assumption, the scalar λk, implicitly defined by the trust-region problem, depends continuously
on δ and this feature is crucial for proving that the sequence {xδk∗(δ)} tends to a solution of (1.1) as
δ tends to zero. In the following corollary, we show that, whenever the initial guess x0 is sufficiently
close to a solution of (1.1), it holds πk(xk+1−xk) > η and therefore the regularizing properties of
our trust-region method are valid under Assumptions 21 and 22. Then, the proposed trust-region
approach shows the same local regularizing properties of the regularizing Levenberg-Marquardt
method.

Corollary 1 Suppose that Assumptions 21 and 22 hold and δ ≥ 0. For δ > 0, let k∗(δ) be defined
in (1.4).

If x0 is sufficiently close to a solution of (1.1), then the sequence {xδk∗(δ)} converges to a

solution of (1.1) whenever δ tends to zero.

Proof Theorem 3 implies that {xk} converges to a solution of (1.1). Using (4.36)–(4.39) and
‖pk‖ ≤ ∆k, it follows

1− πk(pk) ≤

1

2
cκJ∆

2
k(cκJ∆

2
k + ‖F (xk)− y‖)

1

2
∆k‖gk‖

=
cκJ∆k(cκJ∆

2
k + ‖F (xk)− y‖)
‖gk‖

,

while ∆k ≤ Cmax‖gk‖ implies

1− πk(pk) ≤ cκJCmax(cκJ∆
2
k + ‖F (xk)− y‖).

By the convergence of {xk} to a solution of (1.1), the right-hand side of the above inequality tends
to zero. Hence, if x0 is close enough to a solution of (1.1) to ensure 1 − πk(pk) > η, for k ≥ 0,
Theorem 4 gives the thesis.
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5 Numerical results

In this section we report on the performance of the regularizing trust-region method and make
comparisons with the regularizing Levenberg-Marquardt method and a standard version of the
trust-region method. The test problems are ill-posed and with noisy data, and arise from the
discretization of nonlinear Fredholm integral equations of the first kind∫ 1

0

k(t, s, x(s))ds = y(t), t ∈ [0, 1]. (5.48)

The integral equations considered model inverse problems from groundwater hydrology and
geophysics. Their kernel is of the form

k(t, s, x(s)) = log

(
(t− s)2 +H2

(t− s)2 + (H − x(s))2

)
, (5.49)

see [25, §3], or

k(t, s, x(s)) =
1√

1 + (t− s)2 + x(s)2
, (5.50)

see [15, §6]. The interval [0, 1] was discretized with n = 64 equidistant grid points ti = (i − 1)h,
h = 1/(n − 1), i = 1, . . . , n. Function x(s) was approximated from the n-dimensional subspace
of H1

0 (0, 1) spanned by standard piecewise linear functions. Specifically, we let sj = (j − 1)h,
h = 1/(n− 1), j = 1, . . . , n, and looked for an approximation x̂(s) =

∑n
j=1 x̂jφj(s) where

φ1(s) =

{ s2 − s
h

if s1 ≤ s ≤ s2

0 otherwise
, φn(s) =

{ s− sn−1

h
if sn−1 ≤ s ≤ sn

0 otherwise
,

and

φj(s) =


s− sj−1

h
if sj−1 ≤ s ≤ sj ,

sj+1 − s
h

if sj ≤ s ≤ sj+1,

0 otherwise

j = 2, . . . n− 1.

Finally, the integrals
∫ 1

0
k(ti, s, x̂(s))ds, 1 ≤ i ≤ n, were approximated by the composite trapezoidal

rule on the points sj , 1 ≤ j ≤ n. The resulting discrete problems are square nonlinear systems
(1.1) with unknown x = (x̂1, . . . , x̂n)T . We observe that x̂(sj) = x̂j ; thus, the j-th component of
x approximates a solution of (5.48) at sj .

Two problems with kernel (5.49) and two problems with kernel (5.50) were considered and
built so that solutions (later denoted as true solutions) are known. Concerning kernel (5.49),
the first problem is given in [25, p. 46]; it admits as true continuous solutions the functions

xtrue(s) = c1e
d1(s+p1)2+c2e

d2(s−p2)2+c3+c4 and xtrue(s) = 2H−c1ed1(s+p1)2−c2ed2(s−p2)2−c3−c4
where H = 0.2, c1 = −0.1, c2 = −0.075, d1 = −40, d2 = −60, p1 = 0.4, p2 = 0.67, c3 and c4 are
chosen such that xtrue(0) = xtrue(1) = 0. The second problem was given in [27, p. 835] and it has
true continuous solutions xtrue(s) = 1.3s(1− s) + 0.2 and xtrue(s) = 1.3s(s− 1).

The third and fourth problems have kernel (5.50); the former has solutions xtrue(s) = 1 and
xtrue(s) = −1, s ∈ [0, 1], see [15, p. 660], while the latter has the discontinuous functions

xtrue(s) =


1 if 0 ≤ s ≤ 1

2

0 if
1

2
< s ≤ 1

, xtrue(s) =


−1 if 0 ≤ s ≤ 1

2

0 if
1

2
< s ≤ 1

(5.51)

as the true solutions, [15, p. 662].
The nonlinear systems arising from the discretization of the four problems are denoted as P1,

P2, P3 and P4 respectively, while x† ∈ Rn denotes a solution of the discretized problems. Given
the error level δ, the exact data y was perturbed by normally distributed values with mean 0 and
variance δ using the Matlab function randn.
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All procedures were implemented in Matlab and run using Matlab 2014b on an Intel
Core(TM) i7-4510U 2.6 GHz, 8 GB RAM; the machine precision is εm ≈ 2 · 10−16. The Jaco-
bian of the nonlinear function F was computed by finite differences. The parameter q used in (2.9)
and in (2.21) was set equal to 1.1/τ and the discrepancy principle (1.4) with τ = 1.5 was used
as the stopping criterion. A maximum number of 300 iterations was allowed and a failure was
declared when this limit was exceeded.

In the implementation of the regularizing trust-region method, Step 3 in Algorithm 3.1 was

performed setting η =
1

4
, γ =

1

6
. Then, in Step 2 the trust-region radius was updated as follows

∆0 = µ0‖F (x0)− yδ‖, µ0 = 10−1, (5.52)

∆k+1 = µk+1‖F (xδk+1)− yδ‖, µk+1 =


1

6
µk if qk < q

2µk if qk > νq

µk otherwise

(5.53)

with qk =
‖F (xδk)− yδ + J(xδk)pk‖

||F (xδk)− yδ||
, and ν = 1.1. The maximum and minimum values for ∆k

were set to ∆max = 104 and ∆min = 10−12. This updating strategy turned out to be efficient in
practice and was based on the following considerations. Clearly, ∆k is cheaper to compute than
the upper bound in (3.28) and preserves convergence to zero as δ tends to zero and a solution of
problem (1.3) is approached. Further, ∆k is adjusted taking into account the q-condition and by
monitoring the value qk; therefore, if the q-condition was not satisfied at the last computed iterate
xδk, it is reasonable to take a smaller radius than in the case where the q-condition was fulfilled.

The computation of the parameter λk was performed applying Newton’s method to the equa-
tion

ψ(λ) =
1

‖p(λ)‖
− 1

∆k
= 0, (5.54)

and each Newton’s iteration requires the Cholesky factorization of a shifted matrix of the form
Bk + λI [5]. Typically high accuracy in the solution of the above scalar equations is not needed
[2,5] and this fact was experimentally verified also for our test problems. Hence, after extensive
numerical experience, we decided to terminate the Newton’s process as soon as |∆k − ‖p(λ)‖| ≤
10−2∆k.

In our implementation of the standard trust-region method, we chose the trust-region radius
accordingly to technicalities well-known in the literature, see e.g. [5, §6.1] and [23, §11.2]. In
particular, we set ∆0 = 1,

∆k+1 =


‖pk‖

4
, if πk(pk) <

1

4
,

∆k, if
1

4
≤ πk(pk) ≤ 3

4
,

min{2∆k, ∆max}, otherwise,

with ∆max = 104 and chose ∆min = 10−12 as the minimum values for ∆k.
Finally the Levenberg-Marquardt approach was implemented imposing condition (2.9) and

solving (2.19) by Newton’s method. In order to find an accurate solution for (2.9) it was necessary
to use a tighter tolerance, equal to 10−5, than that used in the trust-region algorithm.

Our experiments were made varying the noise level δ on the data yδ. Tables 1 and 2 display
the results obtained by the regularizing trust-region algorithm with noise δ = 10−4 and δ = 10−2

respectively. Runs for four different initial guesses x0 are reported in the tables. For problems
P1 and P2 the initial guesses are x0 = 0e,−0.5e,−e,−2e and x0 = 0e, 0.5e, e, 2e respectively,
where e denotes the vector e = (1, . . . , 1)T . For problem P3 the initial guess was chosen as the
vector x0(α) with j-th component given by (x0(α))j = gα(sj) for j = 1, . . . , n, where gα(s) =
(−4α+4)s2 +(4α−4)s+1, and sj being the grid points in [0, 1]. We have used the following values
of α, α = 1.25, 1.5, 1.75, 2. For problem P4 the initial guess x0(β, χ) has components (x0(β, χ))j =
gβ,χ(sj) for j = 1, . . . , n with gβ,χ = β − χs and (β, χ) = (1, 1), (0.5, 0), (1.5, 1), (1.5, 0). In the
tables we report: the initial guesses (for increasing distance from the true solutions) the number
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Problem RTR RLM
x0 it ||F|| nf cf eI eT eI eT

P1 0 e 43 1.3e−4 44 5 5.5e−3 5.5e−3 4.5e−3 4.5e−3
−0.5 e 63 1.2e−4 71 5 3.2e−2 7.9e−2 3.0e−2 7.1e−2
−1 e 82 1.4e−4 94 4 3.4e−2 8.4e−2 4.0e−2 7.2e−2
−2 e 115 1.5e−4 138 4 3.4e−2 8.6e−2 2.9e−2 6.1e−2

P2 0 e 54 1.2e−4 55 5 7.4e−3 7.4e−3 * *
0.5 e 56 1.4e−4 59 5 1.1e−2 1.3e−2 * *

1 e 73 1.4e−4 84 4 1.0e−2 1.3e−2 7.3e−3 8.3e−3
2 e 118 1.4e−4 138 4 9.3e−3 1.1e−2 4.8e−3 4.8e−3

P3 x0(1.25) 35 1.4e−4 36 3 1.2e−2 1.2e−2 3.1e−3 3.1e−3
x0(1.5) 43 1.4e−4 44 3 5.1e−2 5.1e−2 6.2e−2 6.2e−2
x0(1.75) 45 1.3e−4 46 3 3.2e−1 3.2e−1 3.1e−1 3.1e−1
x0(2) 65 1.4e−4 71 3 4.6e−1 4.6e−1 3.8e−1 3.8e−1

P4 x0(1, 1) 68 1.5e−4 82 3 4.8e−1 4.8e−1 * *
x0(0.5, 0) 64 1.5e−4 75 3 4.9e−1 4.9e−1 4.7e−1 4.7e−1
x0(1.5, 1) 69 1.5e−4 78 3 5.1e−1 5.1e−1 4.8e−1 4.8e−1
x0(1.5, 0) 68 1.5e−4 78 4 5.2e−1 7.1e−1 5.1e−1 6.3e−1

Table 1 Results obtained by the regularizing trust-region method and the regularizing Levenberg-Marquardt
method with noise δ = 10−4 and varying initial guesses.

Problem RTR RLM
x0 it ||F || nf cf eI eT eI eT

P1 0 e 20 1.5e−2 21 6 1.9e−2 1.9e−2 1.8e−2 1.8e−2
−0.5 e 29 1.0e−2 30 6 2.2e−2 3.1e−1 2.1e−2 3.1e−1
−1 e 35 1.4e−2 36 5 3.6e−2 6.1e−1 3.3e−2 6.1e−1
−2 e 40 1.3e−2 41 5 4.9e−2 1.2e+0 4.5e−2 1.2e+0

P2 0 e 30 1.4e−2 31 5 6.9e−3 1.3e−2 * *
0.5 e 25 1.4e−2 26 5 1.7e−2 2.1e−1 * *

1 e 29 1.4e−2 30 5 3.8e−2 5.4e−1 1.3e−1 5.2e−1
2 e 37 1.4e−2 39 5 5.5e−2 1.2e+0 2.2e−1 1.1e+0

P3 x0(1.25) 15 1.2e−2 16 4 1.5e−1 1.5e−1 1.5e−1 1.5e−1
x0(1.5) 17 1.4e−2 18 4 3.2e−1 3.2e−1 3.2e−1 3.2e−1
x0(1.75) 19 1.4e−2 20 4 5.0e−1 5.0e−1 5.1e−1 5.1e−1
x0(2) 22 1.5e−2 23 4 6.9e−1 6.9e−1 7.0e−1 7.0e−1

P4 x0(1, 1) 17 1.4e−2 18 5 5.7e−1 5.7e−1 5.4e−1 5.4e−1
x0(0.5, 0) 20 1.3e−2 21 4 5.5e−1 5.5e−1 * *
x0(1.5, 1) 22 1.4e−2 23 4 5.1e−1 5.1e−1 5.0e−1 5.0e−1
x0(1.5, 0) 26 1.5e−2 27 4 5.2e−1 8.8e−1 * *

Table 2 Results obtained by the regularizing trust-region method and the regularizing Levenberg-Marquardt
method with noise δ = 10−2 and varying initial guesses.

of iterations it performed; the final norm of function F ; the number of function evaluations nf

performed; the rounded average number cf of Cholesky factorizations per iteration. To assess
the quality of the results obtained, we measured the distance between the final iterate xδk∗(δ)

and the true solution approached; in particular eI = max2≤j≤n−1 |xtrue(sj) − (xδk∗(δ))j | is the
maximum absolute value of the difference between the components associated to internal points
sj ∈ (0, 1), while eT = max1≤j≤n |xtrue(sj) − (xδk∗(δ))j | is the maximum absolute value of the
difference between the components associated to points sj including the end-points of the interval
[0, 1]. The symbol “∗” indicates that either the procedure failed to satisfy the discrepancy principle
within the prescribed maximum number of iteration, or the final xδk∗(δ) was not an approximation
of one of the true solutions described above.

Tables 1 and 2 show that the regularizing trust-region method solves all the tests. By Step 3 of
our Algorithm 3.1, the difference between the number of function evaluations and the number of
trust-region iterations, if greater than one, indicates the number of trial iterates that were rejected
because a sufficient reduction on Φ was not achieved. We observe that in 20 out of 32 runs, all the
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iterates generated were accepted; this occurrence seems to indicate that the trust-region updating
rule works well in practice.

Further insight on the trust-region updating rule (5.52)-(5.53) can be gained analyzing the
regularizing properties of the implemented trust-region strategy. First, we verified numerically
that, though not explicitly enforced, the q-condition is satisfied in most of the iterations. As an
illustrative example, we consider problem P2 with δ = 10−4 and x0 = 0e and, in the left plot

in Figure 1, we display the values qk =
||F (xδk)− yδ + J(xδk)pk||

||F (xδk)− yδ||
at the trust-region iterations,

marked by an asterisk, and the value q = 1.1/τ ≈ 0.733 fixed in our experiments, depicted by a
solid line. We observe that, even if we have not imposed the q-condition, it is satisfied at most
of the iterations. The plot on the right of Figure 1 shows a monotone decay of the error between
xδk and x† through the iterations, which results to be in accordance with the theoretical results in
Theorem 8. The regularizing properties of the implemented trust-region scheme are also shown in
Figure 2 where, for each test problem we plot the error ||xδk∗(δ) − x

†|| for decreasing noise levels;
it is evident that, in accordance with the theory, the error decays as the noise level decreases.
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Fig. 1 Regularizing trust-region applied to P2, x0 = 0e, δ = 10−4: values qk =
||F (xδk)−y

δ+J(xδk)pk||
||F (xδ

k
)−yδ|| (marked by

an asterisk) and value of q = 1.1/τ (solid line) versus the iterations (on the left); semilog plot of the error ||xδk−x
†||

versus the iterations (on the right).

Let now compare the regularizing trust-region and Levenberg-Marquardt procedures. On suc-
cessful runs for both methods, the two methods provide solutions of similar accuracy and such
an accuracy increases with the vicinity of the initial guess to the true solution; as an example
Figure 3 shows the solutions computed by the two methods for problems P1 and P3 for δ = 10−2.
On the other hand, for large noise δ and initial guesses farther from the true solution, for both
methods the accuracy at the endpoints of the interval [0, 1] may deteriorate; for this occurrence
we refer to Table 2 and runs on problems P1 and P2. Concerning failures, in 7 runs out of 32 the
Levenberg-Marquardt algorithm does not act as a regularizing method as the generated sequence
approaches a solution of the noisy problem. In Figure 4 we illustrate two unsuccessful runs of the
Levenberg-Marquardt method; approximated solution computed by the regularizing trust-region
and Levenberg-Marquardt procedures are shown for runs on problems P2 and P4.

The overall experience on the Levenberg-Marquardt algorithm seems to indicate that the use of
the q-condition is more flexible than condition (2.9) and provides stronger regularizing properties.
In order to support this claim, in Figure 5 we report four solution approximations computed by the
Levenberg-Marquardt algorithm for varying values of q, i.e. q = 0.67, 0.70, 0.73, 0.87. It is evident
that the method is highly sensitive to the choice of the parameter q and the quality of the solution
approximation does not steadily improves as q increases.

We conclude this section considering the standard trust-region strategy. It is well-known that
the standard updating rule promotes the use of inactive trust-regions, at least in the late stage
of the procedure. Clearly, this can adversely affect the solution of our test problems and our
experiments confirmed this fact. In particular, for δ = 10−2 and problems P1 and P2, the sequences
computed by the standard trust-region method approach solutions of the noisy problem. The same
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Fig. 2 Regularizing trust-region applied to P1, x0 = 0e (top left), P2, x0 = 0e (top right), P3, x0 = x0(α) =
x0(1.25) (lower left) and to P4, x0 = x0(β, χ) = x0(0.5, 0) (lower right): log plot of the error ||xδ

k∗(δ) − x
†|| versus

the noise δ.

behaviour occurs in most of the runs with P1 and P2 and noise level δ = 10−4. Conversely, the
approximations provided by the regularizing trust-region procedure are accurate approximations
of true solutions in all the tests. The approximations computed by the standard trust-region
applied to problems P3 and P4 are less accurate than those computed by the regularizing trust-
region although they do not show the strong oscillatory behaviour arising in problems P1 and P2.
In problem P4, this behaviour is evident when the second, third and fourth starting guesses are
used, while the approximation computed starting from the first initial guess is as accurate as the
one computed by the regularizing trust-region. This good result of the standard trust-region on
problem P4 with x0 = x0(1, 1) is due to the fact that the trust-region is active in all iterations and
therefore a regularizing behaviour is implicitly provided. As an example in Figure 6 we compare
some solution approximations computed by the regularizing trust-region (left) and by the standard
trust-region (right) with δ = 10−2 applied to problem P1 (figures (a)-(b)), P2 (figures (c)-(d)), P3
(figures (e)-(f)) and P4 (figures (g)-(h)).

6 Conclusions

We have presented a trust-region method for nonlinear ill-posed systems, possibly with noisy data,
where the regularizing behaviour is guaranteed by a suitable choice of the trust-region radius. The
proposed approach shares the same local convergence properties as the regularizing Levenberg-
Marquardt method proposed by Hanke in [12] but it is more likely to satisfy the discrepancy
principle irrespective of the closeness of the initial guess to a solution of (1.1). The numerical
experience presented confirms the effectiveness of the trust-region radius adopted and the regu-
larizing properties of the resulting trust-region method. It also enlights that the new approach is
less sensitive than the regularizing Levenberg-Marquardt method to the choice of the parameter
q involved in the regularizations (2.9) and (2.21). Finally, numerical experience confirms that the
solution of the noisy problems may be misinterpreted by the standard trust-region method.
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Fig. 3 Regularizing trust-region (left) and regularizing Levenberg-Marquardt (right), true solution (solid line) and
approximate solutions (dotted line). Upper part: P1, δ = 10−2, x0 = 0e; lower part: P3, δ = 10−2, x0 = x0(α) =
x0(1.25).
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Regularizing Levenberg−Marquardt
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Regularizing Levenberg−Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2000

−1500

−1000

−500

0

500

1000

1500

2000
plot of the true and the computed solution, q=0.73

 

 

Regularizing Levenberg−Marquardt
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Regularizing Levenberg−Marquardt

Fig. 5 Problem P4, δ = 10−2, x0 = x0(β, χ) = x0(1.5, 0): true solution (solid line) and approximate solution
(dotted line) computed by the regularizing Levenberg-Marquardt method for values of q = 0.67, 0.70, 0.73, 0.87.
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Regularizing trust−region
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Standard trust−region
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Standard trust−region

(d)
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Regularizing trust−region

(e)
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Standard trust−region
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Regularizing trust−region

(g)
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Standard trust−region

(h)

Fig. 6 True solution (solid line) and approximate solutions (dotted line) computed by the regularizing trust-region
method (on the left) and the standard trust-region method (on the right). (a)-(b) problem P1, δ = 10−2, x0 = 0e;
(c)-(d) problem P2, δ = 10−2, x0 = 0e; (e)-(f) problem P3, δ = 10−2, x0 = x0(1.25); (g)-(h) problem P4, δ = 10−2,
x0 = x0(0.5, 0).


