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Abstract In this paper we consider large scale nonlinear least-squares problems for which function
and gradient are evaluated with dynamic accuracy and propose a Levenberg-Marquardt method
for solving such problems. More precisely, we consider the case in which the exact function to
optimize is not available or its evaluation is computationally demanding, but approximations of
it are available at any prescribed accuracy level. The proposed method relies on a control of
the accuracy level, and imposes an improvement of function approximations when the accuracy
is detected to be too low to proceed with the optimization process. We prove global and local
convergence and complexity of our procedure and show encouraging numerical results on test
problems arising in data assimilation and machine learning.

Keywords Levenberg-Marquardt method · Dynamic accuracy · Large-scale · Nonlinear
least-squares

1 Introduction

Let us consider the following nonlinear least-squares problem

min
x∈Rn

f(x) =
1

2
‖F (x)‖2 (1.1)

where F : Rn → RN with N ≥ n, continuously differentiable. Let J(x) ∈ RN×n be the Jacobian
matrix of F (x) and g(x) ∈ Rn the gradient of f(x). Let x∗ be a solution of (1.1).

We are interested in large scale nonlinear least-squares problems for which we do not have
access to exact values for function F and for the Jacobian matrix or in problems for which an
evaluation of f is computationally demanding and can be replaced by cheaper approximations.
In both cases, to recover x∗, we assume we can solely rely on approximations fδ to f . We are
interested in the case in which the accuracy level of these approximations can be estimated and
improved when judged to be too low to proceed successfully with the optimization process.

Typical problems that fit in this framework are those arising in the broad context of derivative-
free optimization, where models of the objective function may result from a possibly random
sampling procedure, cf. [3,12]. An example is given by data-fitting problems like those arising
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Firenze, Italia. E-mail: elisa.riccietti@unifi.it



2 Stefania Bellavia and Serge Gratton and Elisa Riccietti

in machine learning, cf. [9,16], in which a huge amount of data is available, so that N is really
large and optimizing f is usually very expensive. Moreover, in this context there is often an
approximate form of redundancy in the measurements, which means that a full evaluation of the
function or the gradient may be unnecessary to make progress in solving (1.1), see [15]. This
motivates the derivation of methods that approximate the function and/or the gradient and even
the Hessian through a subsampling. This topic has been widely studied recently, see for example
[7–9,15,20,21,23]. In these papers the data-fitting problem involves a sum, over a large number
of measurements, of the misfits. In [8,9,20,23] exact and inexact Newton methods and line-search
methods based on approximations of the gradient and the Hessian obtained through subsampling
are considered, in [21] the problem is reformulated in terms of constrained optimization and
handled with an Inexact Restoration technique. In [15] the stochastic gradient method is applied
to the approximated problems and conditions on the size of the subproblems are given to maintain
the rate of convergence of the full gradient method. In [7,10] a variant of the traditional trust-
region method for stochastic nonlinear optimization problems is studied. A theoretical analysis is
carried out with the help of martingale theory and under the fully-linear model assumption.

Examples of nonlinear least-squares problems for which the exact gradient is not available
and is replaced by a random model arise in variational modelling for meteorology, such as 3D-
Var and 4D-Var which are the dominant data assimilation least-squares formulations used in
numerical weather prediction centers worldwide, cf. [13,26]. In this context tri-dimensional fields
are reconstructed combining the information arising from present and past physical observations of
the state of the atmosphere with results from the mathematical model, cf. [16,27]. The result of this
minimization procedure is the initial state of a dynamical system, which is then integrated forward
in time to produce a weather forecast. This topic has been studied for example in [6,16,17]. In [16]
conjugate-gradients methods for the solution of nonlinear least-squares problems regularized by a
quadratic penalty term are investigated. In [17] an observation-thinning method for the efficient
numerical solution of large-scale incremental four dimensional (4D-Var) data assimilation problems
is proposed, built exploiting an adaptive hierarchy of the observations which are successively added
based on a posteriori error estimate. In [6] a Levenberg-Marquardt approach is proposed to deal
with random gradient and Jacobian models. It is assumed that an approximation to the gradient is
provided but only accurate with a certain probability and the knowledge of the probability of the
error between the exact and the approximated gradient is used in the update of the regularization
parameter.

Problems in which inaccurate function values occur, and do not necessarily arise from a sam-
pling procedure, are those where the objective function evaluation is the result of a computation
whose accuracy can vary and must be specified in advance. For instance, the evaluation of the
objective function may involve the solution of a nonlinear equation or an inversion process. These
are performed through an iterative process that can be stopped when a certain accuracy level
is reached. Such problems are considered for example in [11, Section 10.6], where a trust-region
approach is proposed to solve them, provided that a bound on the accuracy level is available.

In this paper we present a modification of the approach proposed in [6], to obtain a method able
to take into account inaccuracy also in the objective function, while in [6] it is assumed to have at
disposal the exact function values. In our procedure, following [11] and deviating from [6], we re-
place the request made in [6] on first-order accuracy of the gradient up to a certain probability with
a control on the accuracy level of the function values. Then, we propose a Levenberg-Marquardt
approach that aims at finding a solution of problem (1.1) considering a sequence of approxima-
tions fδk of known and increasing accuracy. Moreover, having in mind large scale problems, the
linear algebra operations will be handled by an iterative Krylov solver and inexact solutions of
the subproblems will be sought for.

Let us outline briefly our solution method. We start the optimization process with a given
accuracy level δ = δ0. We rely during the iterative process on a control that allows us to judge
whether the accuracy level is too low. In this case the accuracy is changed, making possible the
use of more accurate approximations of function, gradient and Jacobian in further iterations. We
assume that we have access to approximate function and gradient values at any accuracy level. In
the following we define the approximation of f at iteration k as

fδk(x) =
1

2
‖Fδk(x)‖2, (1.2)
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where Fδk is the approximation of F at iteration k. Moreover we denote by Jδk(x) ∈ Rn×n the
approximation to the Jacobian matrix of F (x) and with gδk(x) = Jδk(x)TFδk(x) ∈ Rn the gradient
approximation.

We assume that there exists δk ≥ 0 such that at each iteration k:

max{
∣∣fδk(xk + pLMk )− f(xk + pLMk )

∣∣ , |fδk(xk)− f(xk)|} ≤ δk. (1.3)

As the quality of both the approximations of f and g at xk depends on the distance max{‖Fδk(xk)−
F (xk)‖, ‖Jδk(xk)− J(xk)‖}, as follows:

|fδk(xk)− f(xk)| ≤ 1

2
‖Fδk(xk)− F (xk)‖

N∑
j=1

|Fj(xk) + (Fδk)j(xk))|,

‖g(xk)− gδk(xk)‖ ≤ ‖Jδk(xk)− J(xk)‖‖F (xk)‖+ ‖Jδk(xk)‖‖Fδk(x)− F (x)‖,

we can also assume that there exists K̄ ≥ 0 such that at each iteration k:

‖gδk(xk)− g(xk)‖ ≤ K̄δk. (1.4)

We will refer to δk as the accuracy level and to fδk , gδk , Jδk as approximated function, gradient and
Jacobian matrix. If not differently specified, when the term accuracy is used, we refer to accuracy
of such approximations.

Our intention is to rely on less accurate (and hopefully cheaper quantities) whenever possible
in earlier stages of the algorithm, increasing only gradually the demanded accuracy, so as to
obtain a reduced computational time for the overall solution process. To this aim we build a
non-decreasing sequence of regularization parameters. This is needed to prevent the sequence of
solution approximations from being attracted by a solution of the problems with approximated
objective functions, cf. [4,18,19], and to allow inexactness in function and gradient till the last
stage of the procedure. The obtained approach is shown to be globally convergent to first-order
critical points. Along the iterations, the step computed by our procedure tends to assume the
direction of the approximated negative gradient, due to the choice of generating a non-decreasing
bounded above sequence of regularization parameters. Then, eventually the method reduces to
a perturbed steepest descent method with step-length and accuracy in the gradient inherited by
the updating parameter and accuracy control strategies employed. Local convergence for such a
perturbed steepest descent method is proved, too. We stress that overall the procedure benefits
from the use of a genuine Levenberg-Marquardt method till the last stage of convergence, gaining a
faster convergence rate compared to a pure steepest descent method. Moreover this can be gained
at a modest cost, thanks to the use of Krylov methods to solve the arising linear systems. These
methods take a reduced number of iterations when the regularization term is large: in the last
stage of the procedure the cost per iteration is that of a first-order method.

We are not aware of Levenberg-Marquardt methods for both zero and non-zero residual non-
linear least-squares problems with approximated function and gradient, for which both local and
global convergence is proved. Contributions on this topic are given by [6] where the inexactness is
present only in the gradient and in the Jacobian and local convergence is not proved and by [4,5]
where the Jacobian is exact and only local convergence is considered.

Importantly enough, the method and the related theory also apply to the situation where the
output space of Fδk has smaller dimension than that of F , i.e. Fδk : Rn → RKk with Kk ≤ N for
some k. This is the case for example when approximations to f stem from a subsampling technique
and Fδk is obtained by selecting randomly some components of F . We assume it is possible to get
a better approximation to f by adding more observations to the considered subset, i.e. increasing
Kk. We denote accordingly by Jδk(x) ∈ RKk×n the Jacobian matrix of Fδk(x).

The paper is organized as follows. We describe the proposed Levenberg-Marquardt approach
in Section 2, focusing on the strategy to control the accuracy level. We analyse also the asymptotic
behaviour of the sequence of regularization parameters generated. In Section 3 global convergence
of the procedure to first-order critical points is proved. In Section 4, we show that the step
computed by our procedure tends to asymptotically assume the direction of the approximated
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negative gradient and motivated by this asymptotic result, we prove local convergence for the
steepest descent method we reduce to. In Section 5 we provide a global complexity bound for
the proposed method showing that it shares its complexity properties with the steepest descent
and trust-region methods. Finally, in Section 6 we numerically illustrate the approach on two
test problems arising in data assimilation (Section 6.1) and in machine learning (Section 6.2). We
show that our procedure is able to handle the inaccuracy in function values and find a solution
of problem (1.1), i.e. of the original problem with exact objective function. Moreover we show
that when the exact function is available, but it is expensive to optimize, the use of our accuracy
control strategy allows us to obtain large computational savings.

2 The method

A Levenberg-Marquardt approach is an iterative procedure that at each iteration computes a step
as the solution of the following linearized least-squares subproblem:

min
p∈Rn

mk(xk + p) =
1

2
‖Fδk(xk) + Jδk(xk)p‖2 +

1

2
λk‖p‖2, (2.5)

where λk > 0 is an appropriately chosen regularization parameter. As we deal with large scale
problems, we do not solve (2.5) exactly, but we seek for an approximate solution. We say that p
approximately minimizes mk if it achieves the sufficient Cauchy decrease, i.e. if it provides at least
as much reduction in mk as that achieved by the so-called Cauchy point, which is the minimizer
of mk along the negative gradient direction [28]:

mk(xk)−mk(xk + p) ≥ θ

2

‖gδk(xk)‖2

‖Jδk(xk)‖2 + λk
, θ > 0. (2.6)

Achieving the Cauchy decrease is a sufficient condition to get global convergence of the method,
so one can rely on approximated solutions of problem (2.5), see [11]. A solution of (2.5) can
alternatively be found solving the optimality conditions

(Jδk(xk)TJδk(xk) + λkI)p = −gδk(xk). (2.7)

Then, we approximately solve (2.7), i.e. we compute a step p such that

(Jδk(xk)TJδk(xk) + λkI)p = −gδk(xk) + rk,

where vector rk = (Jδk(xk)TJδk(xk) + λkI)p+ gδk(xk) is the residual of (2.7). If the norm of the
residual vector is small enough, p achieves the Cauchy decrease, as stated in the next Lemma.

Lemma 1 The inexact Levenberg-Marquardt step pLMk computed as

(Jδk(xk)TJδk(xk) + λkI)pLMk = −gδk(xk) + rk (2.8)

for a residual rk satisfying ‖rk‖ ≤ εk‖gδk‖, with

0 ≤ εk ≤

√
θ2

λk
‖Jδk(xk)‖2 + λk

, (2.9)

for some θ2 ∈
(
0, 1

2

]
, achieves the Cauchy decrease (2.6), with θ = 2(1− θ2) ∈ [1, 2).

Proof For the proof see [6], Lemma 4.1.

�
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Let us describe now in details the way the accuracy level is controlled along the iterations. In
classical Levenberg-Marquardt methods, at each iteration, if the objective function is sufficiently
decreased, the step is accepted and the iteration is considered successful. Otherwise the step is
rejected, λk is updated and problem (2.5) is solved again. Here we assume that the objective
function is not evaluated exactly. In our approach, it is desirable to have an accuracy level high
enough to ensure that the achieved decrease in function values, observed after a successful iteration,
is not merely an effect of the inaccuracy in these values, but corresponds to a true decrease also in
the exact objective function. In [11, Section 10.6], it is proved that this is achieved if the accuracy
level δk is smaller than a multiple of the reduction in the model:

δk ≤ η0[mk(xk)−mk(xk + pLMk )],

with η0 > 0.
We will prove in (2.14) and numerically illustrate in Section 6, that for our approach

mk(xk)−mk(xk + pLMk ) = O(λk‖pLMk ‖2). (2.10)

According to this and following [11], we control the accuracy level asking that

δk ≤ κdλαk‖pLMk ‖2, (2.11)

for constants κd > 0 and α ∈
[

1
2 , 1
)
. Parameter α in (2.11) is introduced to guarantee global

convergence of the procedure, as shown in Section 3. Notice also that (2.11) is an implicit relation,
as pLMk depends on the accuracy level. If condition (2.11) is not satisfied at iteration k, the
uncertainty in the function values is considered too high and the accuracy is increased, i.e. δk is
decreased. We will prove in Lemma 2 that after a finite number of reductions condition (2.11) is
met.

Algorithm 2.1: Levenberg-Marquardt method for problem (1.1)

Given x0, δ0, κd ≥ 0, α ∈
[
1
2
, 1
)
, β > 1, η1 ∈ (0, 1), η2 > 0, λmax ≥ λ0 > 0, γ > 1.

Compute fδ0 (x0) and set δ−1 = δ0.
For k = 0, 1, 2, ...
1. Compute an approximate solution of (2.5) solving (2.8) and let pLMk denote such a solution.
2. If

δk ≤ κdλαk ‖p
LM
k ‖2,

compute fδk (xk + pLMk ), and set δk+1 = δk.

Else reduce δk: δk = δk
β

and go back to 1.

3. Compute ρ
δk
k (pLMk ) =

fδk−1
(xk)−fδk (xk+p

LM
k )

mk(xk)−mk(xk+pLMk )
.

(a) If ρ
δk
k (pLMk ) ≥ η1, then set xk+1 = xk + pLMk and

λk+1 =

{
min{γλk, λmax} if ‖gδk (xk)‖ < η2/λk,
λk if ‖gδk (xk)‖ ≥ η2/λk.

(b) Otherwise set xk+1 = xk, λk+1 = γλk and δk+1 = δk−1.

Our approach is sketched in Algorithm 2.1. At each iteration k a trial step pLMk is computed using
the accuracy level of the previous successful iteration. The norm of the trial step is then used to
check condition (2.11). In case it is not satisfied, the accuracy level is increased in the loop at
steps 1-2 until (2.11) is met. On the other hand, when the condition is satisfied it is not necessary
to estimate the accuracy again for next iteration. The value δk obtained at the end of the loop is
used to compute fδk(xk + pLMk ). Then, the ratio between the actual and the predicted reduction

ρδkk (pLMk ) =
fδk−1

(xk)− fδk(xk + pLMk )

mk(xk)−mk(xk + pLMk )
(2.12)
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is computed to decide whether to accept the step or not. Practically, notice that if at iteration k
the accuracy level is changed, i.e. δk 6= δk−1, the function is not evaluated again in xk to compute
ρδkk (pLMk ), and the ratio is evaluated computing the difference between fδk−1

(xk) (evaluated at
the previous step), and the new computed value fδk(xk + pLMk ). The step acceptance and the
updating of the regularization parameter are based on this ratio. A successful step is taken if
ρδkk (pLMk ) ≥ η1. In such case, deviating from classical Levenberg-Marquardt and following [3,6],
λk is increased if the norm of the gradient model is of the order of the inverse of the regularization
parameter (condition ‖gδk(xk)‖ < η2/λk in Algorithm 2.1), otherwise it is left unchanged. In case
the step is unsuccessful λk is increased and reductions of δk performed at steps 1-2 are not taken
into account. That is, the subsequent iteration k + 1 is started with the same accuracy level of
iteration k (see step 3b).

First we prove the well-definedness of Algorithm 2.1. Specifically in Lemma 2, we prove that
the loop at steps 1-2 of Algorithm 2.1 terminates in a finite number of steps. To this aim we need
the following assumption:

Assumption 1 Let {xk} be the sequence generated by Algorithm 2.1. Then there exists a positive
constant κJ such that, for all k ≥ 0 and all x ∈ [xk, xk + pLMk ], ‖Jδk(x)‖ ≤ κJ .

In standard Levenberg-Marquardt method it is customary to assume the boundedness of the
norm of the Jacobian matrix, cf. [11]. Here, we need the boundedness assumption on the norm
of the Jacobian’s approximations. In the applications of our interest, that we will present in the
numerical results section, this assumption is met and κJ ∼ 1.

Lemma 2 Let Assumption 1 hold and let pLMk be defined as in Lemma 1. If xk is not a stationary
point of f , the loop at steps 1-2 of Algorithm 2.1 terminates in a finite number of steps.

Proof If δk tends to zero, gδk(xk) tends to g(xk) from (1.4). Equation (2.9) yields εk ≤
√
θ2, and

from (2.8) it follows

‖pLMk ‖ =‖(Jδk(xk)TJδk(xk) + λkI)−1(−gδk(xk) + rk)‖ ≥

≥ (1− εk)‖gδk(xk)‖
‖Jδk(xk)‖2 + λk

≥ (1−
√
θ2)‖gδk(xk)‖
κ2
J + λk

. (2.13)

Then,

lim inf
δk→0

‖pLMk ‖ ≥ (1−
√
θ2)

κ2
J + λk

‖g(xk)‖ > 0

as g(xk) 6= 0, so for δk small enough (2.11) is satisfied.

�

As far as the sequence of regularization parameters is concerned, we notice that it is bounded
from below, as λmin = λ0 ≤ λk for all k. Moreover un upper bound λmax is provided for successful
iterations in step 3a, so that the procedure gives rise to a sequence of regularization parameters
with different behaviour than the one generated in [6]. It is indeed possible to prove that the
bound is reached and for k large enough λk = λmax on the subsequence of successful iterations,
while in [6] the sequence is shown to diverge. The result is proved in the following Lemma.

Lemma 3 Let Assumption 1 hold and let pLMk be defined as in Lemma 1. It exists k̄ ≥ 0 such
that the regularization parameters {λk} generated by Algorithm 2.1 satisfy λk = λmax for any
successful iteration k, with k ≥ k̄.

Proof If the result is not true, there exists a bound 0 < B < λmax such that the number of times
that λk < B happens is infinite. Because of the way λk is updated one must have an infinity of
iterations for which λk+1 = λk, and for them one has ρδkk (pLMk ) ≥ η1 and ‖gδk(xk)‖ ≥ η2/B. Thus,
from Lemma 1 and relation (2.6)

fδk−1
(xk)− fδk(xk + pLMk ) ≥ η1(mk(xk)−mk(xk + pLMk ))

≥ η1

2

θ‖gδk(xk)‖2

‖Jδk(xk)‖2 + λk

≥ η1

2

θ

κ2
J +B

(η2

B

)2

.
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Since fδk is bounded below by zero and the sequence {fδk(xk+1)} is decreasing and hence con-
vergent, the number of such iterations cannot be infinite, hence we derive a contradiction. Then,
for an infinite number of iterations λk+1 > λk and for the subsequence of successful iterations it
exists k̄ large enough for which λk = λmax for all k ≥ k̄.

�

From the updating rule of λk in Algorithm 2.1, the generated sequence of regularization pa-
rameters is non-decreasing. This result enables us to prove (2.10) and to motivate condition (2.11).
From the model definition and (2.8) it holds

mk(xk)−mk(xk + pLMk ) = −1

2
(pLMk )T (Jδk(xk)TJδk(xk) + λkI)pLMk − (pLMk )T gδk(xk)

=
1

2
‖Jδk(xk)pLMk ‖2 +

1

2
λk‖pLMk ‖2 − (pLMk )T rk.

Considering that from (2.9) and (2.13)

(pLMk )T rk ≤ εk‖pLMk ‖ ‖gδk(xk)‖ ≤
√
θ2

1−
√
θ2

(κ2
J + λk)‖pLMk ‖2,

and that parameters λk form a non-decreasing sequence, we can conclude that

mk(xk)−mk(xk + pLMk ) = O(λk‖pLMk ‖2). (2.14)

In the following section, we will prove that the sequence generated by Algorithm 2.1 converges
globally to a solution of (1.1).

3 Global convergence

In this section we prove the global convergence of the sequence generated by Algorithm 2.1. We
assume to compute an inexact Levenberg-Marquardt step according to the following assumption:

Assumption 2 Let pLMk satisfy

(Jδk(xk)TJδk(xk) + λkI)pLMk = −gδk(xk) + rk

for a residual rk satisfying ‖rk‖ ≤ εk‖gδk‖, with

0 ≤ εk ≤ min

{
θ1

λαk
,

√
θ2

λk
‖Jδk(xk)‖2 + λk

}
(3.15)

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈

[
1
2 , 1
)

is defined in (2.11).

As stated in Lemma 1, this step achieves the Cauchy decrease. Then, the idea is to solve the
linear systems (2.7) with an iterative solver, stopping the iterative process as soon as requirement
(3.15) on the residual of the linear equations is met. The first bound in (3.15) will be used in
the convergence analysis. We point out that the allowed inexactness level in the solution of the
linear systems decreases as λk increases. However, an upper bound on λk is enforced, so we do
not expect extremely small values of 1

λαk
, especially if α = 0.5 is chosen. Also, we point out that if

λk is large, the matrix in the linear systems is close to a multiple of the identity matrix and fast
convergence of the Krylov iterative solver is expected.

We now report a result relating the step length and the norm of the approximated gradient at
each iteration, that is going to be useful in the following analysis.

Lemma 4 Let Assumptions 1 and 2 hold. Then

‖pLMk ‖ ≤ 2‖gδk(xk)‖
λk

. (3.16)
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Proof Taking into account that from Assumption 2 ‖rk‖ ≤ εk‖gδk‖ ≤ ‖gδk‖, it follows

‖pLMk ‖ = ‖(JTδkJδk + λkI)−1(−gδk(xk) + rk)‖ ≤ 2‖gδk(xk)‖
λk

.

�

In the following Lemma we establish a relationship between the exact and the approximated
gradient which holds for λk large enough. This relation shows that it is possible to control the
accuracy on the gradient through the regularization parameter. Specifically, large values of λk
yield a small relative error on ‖gδk(xk)‖.

Lemma 5 Let Assumptions 1 and 2 hold. For λk sufficiently large, i.e. for

λk ≥ νλ∗ = ν(2
√
δ0κdK̄)

2
2−α ν > 1, (3.17)

it exists ck ∈ (0, 1) such that the following relation between the exact and the approximated gradient
holds:

‖g(xk)‖
(1 + ck)

≤ ‖gδk(xk)‖ ≤ ‖g(xk)‖
(1− ck)

, with ck =
2K̄
√
δ0κd

λ
1−α/2
k

=

(
λ∗

λk

)1−α/2

. (3.18)

Proof From (1.4), (2.11) and (3.16) it follows

|‖g(xk)‖ − ‖gδk(xk)‖| ≤ ‖g(xk)− gδk(xk)‖ ≤ K̄
√
δ0
√
δk ≤ K̄

√
δ0κdλαk‖pLMk ‖2 =

K̄
√
δ0κdλ

α/2
k ‖p

LM
k ‖ ≤ 2K̄

√
δ0κd

‖gδk(xk)‖
λ

1−α/2
k

= ck‖gδk(xk)‖

where we have set ck = 2K̄
√
δ0κd

λ
1−α/2
k

. Then,

‖g(xk)− gδ(xk)‖ ≤ ck‖gδk(xk)‖, (3.19)

(1− ck)‖gδk(xk)‖ ≤ ‖g(xk)‖ ≤ (1 + ck)‖gδk(xk)‖, (3.20)

and for λk > λ∗, the thesis follows.

�

From the updating rule of the accuracy level δk in step 2 of Algorithm 2.1, if δk−1 is the
successful accuracy level at iteration k − 1, the successful accuracy level at iteration k is

δk =
δk−1

βnk
(3.21)

where nk ≥ 0 counts the number of times the accuracy is increased (i.e. δk is decreased) in
the loop at steps 1-2, that is finite from Lemma 2. We can also prove that the sequence {βnk}
is bounded from above. To this aim, we need the following Assumption, which is standard in
Levenberg-Marquardt methods, cf. [11]:

Assumption 3 Assume that function f has Lipschitz continuous gradient with corresponding
constant L > 0: ‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Lemma 6 Let Assumptions 1, 2, 3, hold and λ∗ be defined in (3.17). Then, if λk ≥ νλ∗ for ν > 1,
there exists a constant β̄ > 0 such that βnk ≤ β̄.

Proof Let δk−1 be the successful accuracy level at iteration k − 1. Then, it holds

δk−1 ≤ κdλαk−1‖pLMk−1‖2.

If in (3.21) nk ≤ 1 there is nothing to prove, so let assume nk > 1. If nk > 1 it holds

βδk > κdλ
α
k‖pLMk ‖2.
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From the updating rule at step 3 of Algorithm 2.1 it follows

λk−1 ≤ λk ≤ γλk−1. (3.22)

Using the first inequality in (3.22) and (2.11) we get from (3.21) that

βnk−1 =
δk−1

βδk
<
κdλ

α
k−1‖pLMk−1‖2

κdλαk‖pLMk ‖2
≤
‖pLMk−1‖2

‖pLMk ‖2
.

Then, from Assumption 2, recalling (3.18) and that εk <
√
θ2 from (3.15), we have

βnk−1 ≤
‖(Jδk−1

(xk−1)TJδk−1
(xk−1) + λk−1I)−1(−gδk−1

(xk−1) + rk−1)‖2

‖(Jδk(xk)TJδk(xk) + λkI)−1(−gδk(xk) + rk)‖2
≤

≤ ‖Jδk(xk)TJδk(xk) + λkI‖2

(1−
√
θ2)2‖gδk(xk)‖2

4‖gδk−1
(xk−1)‖2

λ2
k−1

≤

≤ 4

(1−
√
θ2)2

(
κ2
J + λk
λk−1

)2
(1 + ck)2

(1− ck−1)2

‖g(xk−1)‖2

‖g(xk)‖2
.

By (3.22) it follows λk−1 ≥ λk
γ > λ∗

γ . This and ck < 1 yield

βnk−1 ≤ 16

(1−
√
θ2)2

(
κ2
J

λmin
+ γ

)2(
1

1− γ1−α/2

)2(‖g(xk−1)‖
‖g(xk)‖

)2

.

Let us now consider the term ‖g(xk−1)‖
‖g(xk)‖ . By (3.16), (3.18) and the Lipschitz continuity of the

gradient we get:

‖g(xk−1)‖
‖g(xk)‖

≤1 +
‖g(xk−1)− g(xk)‖

‖g(xk)‖
≤ 1 +

L‖pLMk ‖
‖g(xk)‖

≤1 +
2L‖gδk(xk)‖
λk‖g(xk)‖

≤ 1 +
2L

(1− ck)λk

≤1 +
2L

(1− ν α2−1)λmin
.

We can then conclude that sequence βnk is bounded from above by a constant for λk sufficiently
large.

�

The result in Lemma 6 can be employed in the following Lemma, to prove that for sufficiently
large values of the parameter λk the iterations are successful.

Lemma 7 Let Assumptions 1, 2 and 3 hold. Assume that

λk > max{νλ∗, λ̄} (3.23)

with λ∗ defined in (3.17) and

λ̄ =

(
ϕ

1− η1

) 1
1−α

ϕ =

(
κ2J/λmin + 1

θ

)(
2θ1

λ2α−1
min

+
2L

λαmin

+ 4(3 + β̄)κd +
8κdḡ

λmin

)
, (3.24)

with η1, β̄, θ1, θ, α, L defined respectively in Algorithm 2.1, Lemma 6, Assumption 2, (2.6), (2.11)
and Assumption 3, and ḡ = κJ

√
2fδ0(x0). If xk is not a critical point of f then ρδkk (pLMk ) ≥ η1.
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Proof We consider

1−
ρδkk (pLMk )

2
=
−(pLMk )T (Jδk(xk)TJδk(xk) + λkI)pLMk − 2(pLMk )T gδk(xk)

2(mk(xk)−mk(xk + pLMk ))
(3.25)

+
1
2‖Fδk(xk + pLMk )‖2 − 1

2‖Fδk−1
(xk)‖2

2(mk(xk)−mk(xk + pLMk ))
. (3.26)

From the Taylor expansion of f and denoting with R̄ the reminder, we obtain

fδk(xk + pLMk ) = fδk(xk) + (pLMk )T gδk(xk) + (fδk(xk + pLMk )− f(xk + pLMk ))

+ (f(xk)− fδk(xk)) + ((pLMk )T g(xk)− (pLMk )T gδk(xk)) + R̄.

Then, from conditions (1.3), (2.11) and the fact that if λk > λ∗ from Lemma 6
δk−1 = βnkδk ≤ β̄δk, it follows

fδk(xk + pLMk )− fδk−1
(xk) =fδk(xk)− fδk−1

(xk) + (pLMk )T gδk(xk) +R

≤(1 + β̄)κdλ
α
k‖pLMk ‖2 + (pLMk )T gδk(xk) +R,

where

R = (fδk(xk + pLMk )− f(xk + pLMk )) + (f(xk)− fδk(xk)) + (pLMk )T (g(xk)− gδk(xk)) + R̄.

Moreover, by (1.3), (1.4) and (2.11) we can conclude that

|R| ≤
(

(2 + ‖pLMk ‖)κdλαk +
L

2

)
‖pLMk ‖2.

Then, from Lemma 4, Assumption 2 it follows that the numerator in (3.25)-(3.26) can be bounded
above by

− (pLMk )T (−gδk(xk) + rk)− (pLMk )T gδk(xk) +R+ (1 + β̄)κdλ
α
k‖pLMk ‖2 ≤

≤ ‖pLMk ‖‖rk‖+

(
κdλ

α
k

(
2 + ‖pLMk ‖

)
+
L

2

)
‖pLMk ‖2 + (1 + β̄)κdλ

α
k‖pLMk ‖2 ≤

≤
(

2θ1

λ1+α
k

+
2L

λ2
k

+
4(3 + β̄)κd

λ2−α
k

+
8κdḡ

λ3−α
k

)
‖gδk(xk)‖2,

with ḡ = κJ
√

2fδ0(x0). From (2.6) it follows

1−
ρδkk (pLMk )

2
≤
(
κ2
J/λmin + 1

θ

)(
2θ1

λαk
+

2L

λk
+

4(3 + β̄)κd

λ1−α
k

+
8κdḡ

λ2−α
k

)
≤ ϕ

λ1−α
k

,

with ϕ defined in (3.24) and from (3.23) ρδkk (pLMk ) ≥ 2η1 > η1.

�

We can now state the following result, which guarantees that eventually the iterations are suc-
cessful, provided that

λmax > max{νλ∗, λ̄}. (3.27)

Corollary 1 Let Assumptions 1, 2 and 3 hold. Assume that λmax is chosen to satisfy (3.27).
Then, there exists an iteration index k̄ such that the iterations generated by Algorithm 2.1 are
successful for k > k̄. Moreover,

λk ≤ max
{
γmax{νλ∗, λ̄}, λmax

}
k > 0. (3.28)
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Proof Notice that by the updating rules at step 3 of Algorithm 2.1, λk increases in case of un-
successful iterations and it is never decreased. Therefore, after a finite number of unsuccessful
iterations it reaches the value max{νλ∗, λ̄}. Moreover, condition (3.27) and the Algorithm’s up-
dating rules guarantee that λk > max{νλ∗, λ̄} for all the subsequent iterations. Then, by Lemma
7 it follows that eventually the iterations are successful. Finally, the parameter updating rules
yield (3.28).

�

We are now ready to state and prove the global convergence of Algorithm 2.1 under the
following further assumption:

Assumption 4 Assume that λmax is chosen large enough to satisfy

λmax > γmax{νλ∗, λ̄}. (3.29)

Notice that, under this assumption λk ≤ λmax for all k > 0. In practice the choice of this value is
not crucial. If a rather large value is set for this quantity the stopping criterion is usually satisfied
before that value is reached. Moreover, since both λ∗, λ̄ depend on known algorithm’s parameters,
on the gradient Lipschitz constant L and on K̄ in (1.4), assuming to be able to estimate these two
latter quantities, it is possible to choose a value of λmax satisfying (3.29).

Theorem 1 Let Assumptions 1, 2, 3 and 4 hold. The sequences {δk} and {xk} generated by
Algorithm 2.1 are such that

lim
k→∞

δk = 0, lim
k→∞

‖g(xk)‖ = 0.

Proof From the updating rule of the accuracy level, {δk} is a decreasing sequence and so it is
converging to some value δ∗. Denoting with ks the first successful iteration and summing up over
all the infinite successful iterations, from Lemma 1 and Assumption 4 we obtain

fδks−1
(xks)− lim inf

k→∞
fδk(xk+1) ≥

∑
ksucc

(fδk−1
(xk)− fδk(xk+1)) ≥

η1

2

θ

κ2
J + λmax

∑
ksucc

‖gδk(xk)‖2,

so
∑
ksucc

‖gδk(xk)‖2 is a finite number and ‖gδk(xk)‖ → 0 on the subsequence of successful iterations,

so that lim infk→∞ ‖gδk(xk)‖ = limk→∞ ‖gδk(xk)‖ = 0, taking into account that by Corollary 1
the number of unsuccessful iterations is finite. Finally from (2.11) and (3.16) we have that

δk ≤ κdλαk‖pLMk ‖2 ≤ 4κd
‖gδk(xk)‖2

λ2−α
min

,

so we can conclude that δk converges to zero and by (1.4) it follows that limk→∞ ‖g(xk)‖ = 0.

�

4 Local convergence

In this section we report on the local convergence of the proposed method. To this aim, it is useful to
study the asymptotic behaviour of the inexact step. We first establish that, if pLMk satisfies (2.8),
then asymptotically pLMk tends to assume the direction of the negative approximated gradient
−gδk(xk). Then, we study the local convergence of the gradient method with a perturbed gradient
step, where the accuracy in the gradient is driven by the accuracy control strategy employed.

Lemma 8 Let Assumptions 1, 2, 3 and 4 hold. Then

lim
k→∞

(pLMk )i +
θ

κ2
J + λk

(gδk(xk))i = 0 for i = 1, . . . , n,

where (·)i denotes the i-th vector component.
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Proof From (2.6)

θ

2

‖gδk(xk)‖2

κ2
J + λk

≤mk(xk)−mk(xk + pLMk )

=− (pLMk )T gδk(xk)− 1

2
(pLMk )T (Jδk(xk)TJδk(xk) + λkI)pLMk

≤− (pLMk )T gδk(xk)− 1

2
λk‖pLMk ‖2.

Therefore, as θ ∈ [1, 2) from Lemma 1, it follows

θ‖gδk(xk)‖2

κ2
J + λk

+ 2(pLMk )T gδk(xk) +
λk
θ
‖pLMk ‖2 < 0,∥∥∥∥∥

√
θ

κ2
J + λk

gδk(xk) +

√
κ2
J + λk
θ

pLMk

∥∥∥∥∥
2

≤ κ2
J

θ
‖pLMk ‖2.

Then, from Lemma 4∥∥∥∥ θ

κ2
J + λk

gδk(xk) + pLMk

∥∥∥∥2

≤ κ2
J

κ2
J + λk

‖pLMk ‖2 ≤ 4κ2
J‖gδk(xk)‖2

κ2
Jλ

2
min

and the thesis follows as the right-hand side goes to zero when k tends to infinity from Theorem
1.

�

From Lemma 8, if λk is large enough, pLMk tends to assume the direction of gδk(xk) with
step-length θ

κ2
J+λk

. Then, eventually the method reduces to a perturbed steepest descent method

with step-length and accuracy in the gradient inherited by the updating parameter and accuracy
control strategies employed.

In the following theorem we prove local convergence for the steepest descent step resulting
from our procedure. The analysis is inspired by the one reported in [22, §1.2.3], which is extended
to allow inaccuracy in gradient values. It relies on analogous assumptions.

Theorem 2 Let x∗ be a solution of problem (1.1). Let Assumptions 1 and 3 hold and let {xk} be
a sequence such that

xk+1 = xk + pSDk , k = 0, 1, 2, . . .

with

pSDk = −h(λk)gδk(xk), (4.30)

the perturbed steepest descent step with step-length h(λk) = θ
κ2
J+λk

. Assume that there exists r > 0

such that f is twice differentiable in Br(x∗) and let H be its Hessian matrix. Assume that ‖H(x)−
H(y)‖ ≤ M‖x − y‖ for all x, y ∈ Br(x∗) and let 0 < l ≤ L̃ < ∞ be such that lI � H(x∗) � L̃I.
Assume that there exists an index k̄ for which ‖xk̄ − x∗‖ < r̄ and

λk > max

{
θ(L̃+ l)

2
, λ∗

(
1 +

2L

l

)2/(2−α)
}
, (4.31)

where λ∗ is defined in (3.17) and r̄ = min{r, l
M }. Then for all k ≥ k̄ the error is decreasing, i.e.

‖xk+1 − x∗‖ < ‖xk − x∗‖, and ‖xk − x∗‖ tends to zero.

Proof We follow the lines of the proof of Theorem 1.2.4 in [22] for an exact gradient step, taking
into account that our step is computed using an approximated gradient. As g(x∗) = 0,

g(xk) = g(xk)− g(x∗) =

1∫
0

H(x∗ + τ(xk − x∗))(xk − x∗) dτ := Gk(xk − x∗),
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where we have defined Gk =
1∫
0

H(x∗ + τ(xk − x∗)) dτ . From (4.30),

xk+1 − x∗ = xk − x∗ − h(λk)g(xk) + h(λk)(g(xk)− gδk(xk)) =

= (I − h(λk)Gk)(xk − x∗) + h(λk)(g(xk)− gδk(xk)).

From (3.19)

‖gδk(xk)− g(xk)‖ ≤ ck‖gδk(xk)‖ ≤ ck‖gδk(xk)− g(xk)‖+ ck‖g(xk)‖. (4.32)

Notice that ck =
(
λ∗

λk

)1−α2
(see (3.18)). If we let k ≥ k̄, (4.31) ensures λk > λ∗, and ck < 1. Then,

from (4.32) and the Lipschitz continuity of g we get

(1− ck)‖gδk(xk)− g(xk)‖ ≤ ck‖g(xk)− g(x∗)‖ ≤ Lck‖xk − x∗‖.

Then, as (4.31) also yields λ
1−α2
k − (λ∗)1−α2 ≥ 2L

l (λ∗)1−α2 , it follows

‖gδk(xk)− g(xk)‖ ≤ Lck
1− ck

‖xk − x∗‖ ≤
l

2
‖xk − x∗‖.

Let us denote ek = ‖xk − x∗‖. Then it holds

ek+1 ≤ ‖I − h(λk)Gk‖ek + h(λk)‖g(xk)− gδk(xk)‖ ≤ ‖I − h(λk)Gk‖ek +
h(λk)l

2
ek. (4.33)

From [22], Corollary 1.2.1

H(x∗)− τMekI � H(x∗ + τ(xk − x∗)) � H(x∗) + τMekI.

Then, (
l − ek

2
M
)
I � Gk �

(
L̃+

ek
2
M
)
I,[

1− h(λk)
(
L̃+

ek
2
M
)]
I � I − h(λk)Gk �

[
1− h(λk)

(
l − ek

2
M
)]
I.

If we denote with

ak(h(λk)) =
[
1− h(λk)

(
l − ek

2
M
)]
, bk(h(λk)) =

[
1− h(λk)

(
L̃+

ek
2
M
)]
,

we obtain ak(h(λk)) > −bk(h(λk)) as by (4.31) h(λk) < 2
l+L̃

.

Then it follows

‖I − h(λk)Gk‖ ≤ max{ak(h(λk)),−bk(h(λk))} = 1− h(λk)l +
Mh(λk)

2
ek.

From (4.33)

ek+1 ≤
(

1− h(λk)l

2
+
Mh(λk)ek

2

)
ek < ek

if ek < r̄ = l
M .

Let us estimate the rate of convergence. Let us define qk = lh(λk)
2 and mk = Mh(λk)

2 = qk
r̄ .

Notice that as ek < r̄ < qk+1
mk

= 2
Mh(λk) + l

M , then 1−mkek + qk > 0. So

ek+1 ≤ (1− qk)ek +me2
k = ek

1− (mkek − qk)2

1− (mkek − qk)
≤ ek

1−mkek + qk
1

ek+1
≥ 1 + qk −mkek

ek
=

1 + qk
ek

−mk =
1 + qk
ek

− qk
r̄
,

1

ek+1
− 1

r̄
≥ (1 + qk)

(
1

ek
− 1

r̄

)
≥ (1 + qM )

(
1

ek
− 1

r̄

)
> 0,
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with qM = lθ
2(κ2

J+λmax)
. Then, we can iterate the procedure obtaining

1

ek
≥
(

1

ek
− 1

r̄

)
≥ (1 + qM )k−k̄

(
1

ek̄
− 1

r̄

)
,

ek ≤
(

1

1 + qM

)k−k̄
r̄ek̄
r̄ − ek̄

,

and the convergence of ‖xk − x∗‖ to zero follows.

�

Note that if in Algorithm 2.1 we choose

λmax > max
{
γλ∗, γλ̄,

θ(L̃+ l)

2
, λ∗

(
1 +

2L

l

)2/(2−α) }
we have that it exists k̄ such that for k ≥ k̄, all the iterations are successful and (4.31) is satisfied.
Then, Theorem 2 shows the local behaviour of our procedure, provided that an accumulation point
x∗ exists, at which the Hessian satisfies the assumptions in Theorem 2.

We point out however that overall the procedure benefits from the use of a genuine Levenberg-
Marquardt method till the last stage of convergence, despite the use of increasingly large regular-
ization parameters. We will see in the numerical results section that our method gains an overall
faster convergence rate compared to a pure steepest descent method. Moreover this can be gained
at a modest cost, as we solve the linear systems inexactly by an iterative solver. The number of
inner iterations is small, even if the required inexactness level decreases with λk. In fact, when the
regularization term is large Jδk(xk)TJδk(xk) + λkI ' λkI.

5 Complexity

In this section we will provide a global complexity bound for the procedure sketched in Algorithm
2.1. The analysis is inspired by that reported in [29]. We will prove that the number of iterations
required to obtain an ε-accurate solution is O(ε−2).

Let us observe that in our procedure the regularization parameter at the current iteration
depends on the outcome of the previous iteration and consequently let us define the following sets

S1 = {k + 1 : ρδkk (pLMk ) ≥ η1; ‖gδk(xk)‖ < η2/λk}, (5.34)

S2 = {k + 1 : ρδkk (pLMk ) ≥ η1; ‖gδk(xk)‖ ≥ η2/λk}, (5.35)

S3 = {k + 1 : ρδkk (pLMk ) < η1}. (5.36)

Let Ni = |Si| for i = 1, 2, 3, so that the number of successful iterations is N1 +N2 and the number
of unsuccessful iterations is N3. Moreover S1 can be split into two subsets

S1 = A ∪B = {k + 1 ∈ S1 : γλk < λmax} ∪ {k + 1 ∈ S1 : γλk ≥ λmax},

taking into account that if k + 1 ∈ S1 from the updating rule at step 3a either λk+1 = γλk (A),
or λk+1 = λmax (B).

The analysis is made under the following Assumption:

Assumption 5 Let us assume that the procedure sketched in Algorithm 2.1 is stopped when
‖gδk(xk)‖ ≤ ε.

In the following Lemma we provide un upper bound for the number of successful iterations.

Lemma 9 Let Assumptions 1, 2, 3, 4 and 5 hold. Let ks be the index of the first successful
iteration.

1. The number N1 of successful iterations belonging to set S1 is bounded above by:

N1 ≤ fδks−1
(xks)

2

η1

κ2
J + λmax

θε2
= O(ε−2).
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2. The number N2 of successful iterations belonging to set S2 is bounded above by a constant
independent of ε:

N2 ≤ fδks−1
(xks)

2

η1

κ2
J + λmax

θ

(
λmax

η2

)2

.

Proof From (2.6), as λk ≤ λmax for all k, it follows

mk(xk)−mk(xk + pLMk ) ≥ θ

2

‖gδk(xk)‖2

κ2
J + λmax

.

Then, as the iteration is successful

fδk−1
(xk)− fδk(xk + pLMk ) ≥ η1(mk(xk)−mk(xk + pLMk ))

≥ η1

2

θ‖gδk(xk)‖2

κ2
J + λmax

.

For all k it holds ‖gδk(xk)‖2 ≥ ε2 and in particular for k ∈ S2

‖gδk(xk)‖2 ≥
(

η2

λmax

)2

.

Then

fδks−1
(xks) ≥

∑
j∈S1∪S2

(fδj−1
(xj)− fδj (xj+1))

=
∑
j∈S1

(fδj−1
(xj)− fδj (xj+1)) +

∑
j∈S2

(fδj−1
(xj)− fδj (xj+1))

≥ η1N1

2

θ

κ2
J + λmax

ε2 +
η1N2

2

θ

κ2
J + λmax

(
η2

λmax

)2

,

and the thesis follows.

�

In the following Lemma we provide un upper bound for the number of unsuccessful iterations.

Lemma 10 Let Assumptions 1, 2, 3, 4 and 5 hold. The number of unsuccessful iterations N3 is
bounded above by a constant independent of ε:

N3 ≤
log λmax

λ0

log γ
.

Proof Notice that from Assumption 4 it is not possible to have an iteration index in B before
the last unsuccessful iteration. Then, if we denote with N̄ the last unsuccessful iteration index, if
k < N̄ is a successful iteration, it belongs to A. Denoting with Na the number of such iterations,
it follows

λN̄ = γNa+N3λ0 ≤ λmax.

Then

N3 ≤ Na +N3 ≤
log λmax

λ0

log γ
,

and the thesis follows.

�

Then, taking into account the results proved in the previous Lemmas, we can state the following
complexity result, that shows that the proposed method shares the known complexity properties
of the steepest descent and trust-region procedures.
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Corollary 2 Let Assumptions 1, 2, 3, 4 and 5 hold, and let NT be the total number of iterations
performed. Then,

NT ≤ fδks−1
(xks)

2

η1

κ2
J + λmax

θ

(
1

ε2
+

(
λmax

η2

)2
)

+
log λmax

λ0

log γ
= O(ε−2). (5.37)

We underline that λmax and therefore the constant multiplying ε−2 in (5.37) may be large if κJ
is large. On the other hand, in the applications of our interest, that we present in next section, it
holds κJ ' 1.

6 Numerical results

In this section we analyse the numerical behaviour of the Levenberg-Marquardt method described
in Algorithm 2.1. We show the results of its application to two large scale nonlinear least-squares
problems, arising respectively from data assimilation and machine learning. These problems can
be written as

min
x∈Rn

f(x) =
1

2
‖F (x)‖2 +

1

2
‖x‖2 =

N∑
j=1

Fj(x)2 +
1

2
‖x‖2, (6.38)

with Fj : Rn → R, for j = 1, . . . , N .
In both test problems the inaccuracy in the function and gradient arises from the use of a

subsampling technique. Then, at each iteration the approximations Fδk to F are built by selecting
randomly a subset of the samples indices Xk ⊆ {1, . . . , N} such that |Xk| = Kk for each k. For
this reason we will denote Algorithm 2.1 as subsampled Levenberg-Marquardt method (SSLM).
Each time condition (2.11) is not verified we increase the size of the subsampled set to improve
the accuracy of the approximations. This is done in a linear way by a factor K∗, so that if the
loop 1-2 is performed nk times it holds

|Xk+1| = Knk
∗ |Xk|. (6.39)

Notice that other updates, different from linear, could be used affecting the speed of convergence
of the procedure, see for example [8,15]. Moreover, the subsampling is performed in a random way.
In some cases, like for data assimilation problems, it is possible to devise more efficient strategies
taking into account the particular structure of the problem. This leads to a quicker improvement
in the accuracy level, the number of samples being the same, see [17], but this is out of the scope
of this paper.

The procedure was implemented in Matlab and run using Matlab 2015a on an Intel(R)
Core(TM) i7-4510U 2.00GHz, 16 GB RAM; the machine precision is εm ∼ 2 ·10−16. We run SSLM
with η1 = 0.25, η2 = 1.e − 3, γ = 1.001, α = 0.9, λmax = 1.e + 6, λmin = 1. We remind that
from the update at step 3 of Algorithm 2.1 the generated sequence of regularization parameters is
increasing. This is needed to make the accuracy control (2.11) work. However a too quick growth
would lead to a slow procedure. Then, the choice of γ in Algorithm 2.1 is relevant, as it determines
the rate of growth of the parameters. In practice, it is advisable to choose a value of γ not too big.
The chosen value of γ is shown to be effective in controlling the accuracy level without impacting
negatively on the rate of convergence. On the other hand, the choice of λmax is not critical as, if
a high value is chosen, the stopping criterion is satisfied before that value is reached.

In order to solve the linear subproblems (2.8) we employed the Matlab function cgls available
at [24], that implements conjugate gradient (CG) method for least-squares. We set the stopping
tolerance according to (3.15), where we have chosen θ1 = θ2 = 1.e − 1. In both problems this
choice corresponds to the tolerance εk ' 1.e − 1 along all the optimization process. We set to 20
the maximum number of iterations CG is allowed to perform. We will see in the numerical tests
that the average number of CG iterations per nonlinear iteration is really low, and this maximum
number is never reached.

In the following we are going to compare the performance of the proposed SSLM to that of
three inexact methods, all of them used to solve the exact problem (6.38):
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– Full Levenberg-Marquardt method (FLM), i.e. the procedure described in Algorithm 2.1, but
run using all the available samples, so that Kk = N for all k and δk is zero along all the
optimization process.

– SLM, an inexact Levenberg-Marquardt method based on a standard update of the regulariza-
tion parameters:

λk+1 =


γ1λk if ρk(pLMk ) > η2,

λk if ρk(pLMk ) ∈ [η1, η2],

γ0λk if ρk(pLMk ) < η1.

with λ0 = 0.1, γ0 = 2, γ1 = 0.5, η1 = 0.25, η2 = 0.75.
– An inexact Gauss-Newton method GN with λk = 0 for all k.

For the three methods the linear algebra operations are handled as for the SSLM, i.e. the linear
systems are solved with cgls with the same stopping criterion and maximum number of iterations
set for SSLM. The aim of this comparison is to evaluate the effectiveness of the strategy we pro-
posed to control the accuracy of function approximations. Our goal is to show that approximating
the solution of (6.38) with the proposed strategy is more convenient in term of computational costs
than solving the problem directly, and it does not affect the quality of the approximate solution
found. First, we compare SSLM to FLM to show the savings arising from the use of approxima-
tions to the objective function, when the same rule for updating the regularization parameters is
used. Then, we extend the comparison also to SLM and GN. This is done as we have to take into
account that the specific update of the regularization parameters at step 3 of Algorithm 2.1 is
designed to be used in conjunction with the strategy to control the accuracy (2.11). To solve the
exact problem directly, it may be more effective to use a more standard update, that we expect
to result in a quicker procedure.

To evaluate the performance of SSLM and compare it to that of the other solvers, we use two
different counters, one for the nonlinear function evaluations and one for matrix-vector products
involving the Jacobian matrix (transposed or not), which includes also the products performed
in the conjugate gradients iterations. Notice that the counters are cost counters, i.e. they do
not count the number of function evaluations or of matrix-vector products, but each function
evaluation and each product is weighted according to the size of the samples set. The cost of a
function evaluation or of a product is considered unitary when the full samples set is considered,

otherwise it is weighted as |Xk|N .

We use a reference solution the approximation x∗ provided by FLM with stopping criterion
‖g(x∗)‖ < 1.e−8. We compared the solution approximations computed by all the other procedures
to x∗ and we measured the distance by the Root Mean Square Error (RMSE):

RMSE =

√∑n
i=1(x∗(i)− x(i))2

n
.

In the Tables the columns heads have the following meanings: it: nonlinear iterations counter,
CGit: average number of CG iterations per nonlinear iteration, costf : function evaluations cost
counter, costp: matrix-vector products cost counter, |Xit|: value of the cardinality of the samples
set at the end of the process, RMSE: root mean square error, savef , savep: savings gained by
SSLM in function evaluations and matrix-vector products respectively, compared to the FLM.

6.1 A data assimilation problem

In this section we consider the data assimilation problem described in [17]. We consider a one-
dimensional wave equation system, whose dynamics is governed by the following nonlinear wave
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equation:

∂2u(z, t)

∂t2
− ∂2u(z, t)

∂z2
+ f̃(u) = 0, (6.40)

u(0, t) = u(1, t) = 0, (6.41)

u(z, 0) = u0(z),
∂u(z, 0)

∂t
= 0, (6.42)

0 ≤ t ≤ T, 0 ≤ z ≤ 1, (6.43)

where

f̃(u) = µeνu. (6.44)

The system is discretized using a mesh involving n = 360 grid points for the spatial discretization
and Nt = 64 for the temporal one. We look for the initial state u0(z), which is possible to recover
solving the following data assimilation problem:

min
x∈Rn

1

2
‖x− xb‖2B−1 +

1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2R−1
j

(6.45)

where, given a symmetric positive definite matrix M , ‖x‖2M denote xTMx. Here xb ∈ Rn is the
background vector, which is an a priori estimate, yj ∈ Rmj is the vector of observations at time
tj and Hj is the operator modelling the observation process at the same time. The state vector
x(tj) is the solution of the discretization of the nonlinear model (6.40)-(6.43) at time tj . Matrices
B ∈ Rn×n and Rj ∈ Rmj×mj represent the background-error covariance and the observation-error
covariance at time tj respectively. In our test we build the background vector and the observations
from a chosen initial true state xT by adding a noise following the normal distributions N(0, σ2

b )
and N(0, σ2

o) respectively. We have chosen σb = 0.2, σo = 0.05 and we assume the covariances
matrices to be diagonal: B = σ2

b I and Rj = σ2
oImj for each j. For further details on the test

problem see [17]. We can reformulate (6.45) as a least-squares problem (6.38), defining

F (x) =


1
σo

(H0(x(t0))− y0)
...

1
σo

(HNt(x(tNt))− yNt)

 ,
where (Hj(x(tj))− yj) ∈ Rmj for j = 1, . . . , Nt.

We assume to have an observation for each grid point, so that the total number of observations
is N = n·Nt = 23040. The full problem (6.38) is obtained when all the observations are considered,
in this case mj = 360 for every j. The approximations Fδk are obtained selecting randomly Kk

observations among the available ones, so that vectors (Hj(x(tj))− yj) have dimension mj ≤ 360
and it may be mi 6= mj if i 6= j.

We consider two different problems of the form (6.45), corresponding to two different values
of µ in (6.44). We consider a mildly nonlinear problem, choosing µ = 0.01 because this is usually
the case in practical data assimilation applications and then we increase µ to 0.5 to consider the
effect of the nonlinearity on our procedure.

We remind that we denote with x∗ the solution approximation found by FLM, computed
asking ‖g(x∗)‖ < 1.e − 8. If we compare this approximation to the true state xT we obtain√∑n

i=1(x∗(i)−xT (i))2

n = 5.2e − 3. Then, we study the effect of the presence of inaccuracy in the
function arising from the use of subsampling techniques and we compare the solution found by
SSLM to x∗. Taking into account (1.3) the accuracy level δk is approximated in the following way.
At the beginning of the iterative process δ0 is set to |fδ0(x0)−f(x0)|. Then, it is left constant and
updated only when condition (2.11) is not satisfied as follows

δk ' |fδk(xk)− f(xk)|. (6.46)

We stress that this computation is not expensive as it does not affect the matrix-vector product
counter and marginally contributes to the function evaluations counter. In fact, the evaluation of
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the full function is required only when condition (2.11) is not met and is performed just once in
the loop 1-2, as xk is fixed.

In general a very accurate solution is not needed in practical applications, so the optimization
process is stopped as soon as the residuals are detected to be Gaussian. As a normality test we
employ the Anderson-Darling test, see [2], which tests the hypothesis that a sample has been drawn
from a population with a specified continuous cumulative distribution function Φ, in this case the
Gaussian distribution. Assuming to have a sample of n ordered data {x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn},
a statistic is built in the following way:

W 2
n = −n− 1

n

n∑
i=1

(ln(Φ(xi)) + ln(1− Φ(xn−i+1))).

If W 2
n exceeds a given critical value, then the hypothesis of normality is rejected with some

significance level. We used the critical value for significance level 0.01 which is 1.092, see [25].
The performance of our procedure is affected by mainly three choices: the cardinality of the

starting set of observations K0, factor K∗ in (6.39) and the parameter κd in (2.11). The choice
of K∗ determines how much the accuracy is increased at each loop at steps 1-2 of Algorithm 2.1.
A too small value could lead to a too low increase, gaining an accuracy level δk that still does
not satisfy condition (2.11), so that the loop should be performed nk > 1 times. Each time the
accuracy is increased, the computation of a trial step is required, through the solution of a linear
system (2.8) of increasing size, so it is advisable to consider a reasonable increase in the subsets
size. Again too small values of κd generally lead to too frequently rise the accuracy. In this section
we investigate the effect of parameter κd combined with different values of K0, while in the next
section we analyse the effect of the choice of K∗.

We run the procedure choosing two different values of K0, combined with different values of
κd, while K∗ is kept fixed, K∗ = 1.5. Tables 1 and 2 refer to problem µ = 0.5 for K0 = 2000
and K0 = 5000 respectively, while Table 3 refers to test problem µ = 0.01 for K0 = 2000 and
K0 = 7000. We also solved the two problems using FLM, GN and SLM. In these tables we report
just figures corresponding to runs of FLM. On these problems indeed, FLM converges quickly
and the update of the regularization parameter does not play a key role in the convergence. As
a consequence, the behaviour of GN and SLM is really similar to that of FLM. Then, in the first
column we report the results of the optimization process performed by FLM and in the last two
rows the savings gained by SSLM in function evaluations savef and matrix-vector products savep.

We notice that SSLM requires on average a higher number of CG iterations than FLM and this
is due to the need of recomputing the step when (2.11) is not satisfied. This number is affected
by the choice of parameter κd, as generally it decreases with κd. This is less evident for µ = 0.5,
while it is crystal clear for µ = 0.01. Moreover, the value of κd does not affect the number of
nonlinear iterations performed by SSLM, while it has a deep impact on the procedure cost, as we
can see from the significant variation of function evaluations and matrix-vector products counters.
We notice that in all cases our procedure is much less expensive than FLM, and consistent savings
are provided by higher values of κd. In these cases indeed the accuracy is increased less frequently,
as condition (2.11) is more likely satisfied, and as a result the overall process is performed with
less observations and is less expensive, at the cost however of a less accurate solution. Indeed,
if κd is too large the accuracy control strategy is not effective, the accuracy level may be never
increased and the sequence may approach a solution of a problem with inaccurate function, that
can be a bad approximation to that of (1.1). In Figure 1 we compare solution approximations for
µ = 0.5 provided by: FLM (up left), SSLM with K0 = 5000 and κd = 10 (up right), SSLM with
K0 = 2000 (bottom left) and K0 = 5000 (bottom right) and κd = 10000. In all the plots the solid
line represents the true state xT and the dotted line the computed solution approximation. It is
evident that in the bottom left plot, corresponding to the last column of Table 1, the solution
found is less accurate. In fact, due to the high value of κd the accuracy is never increased and
the problem is solved considering just the samples in the initial subset, which are not sufficient
to obtain the same error in the approximate solution gained by the FLM. Then κd should not be
chosen too high, especially if K0 is small. On the other hand, if K0 is large enough one can expect
to gain a low error in the solution approximation even with a higher κd. For example K0 = 5000
is large enough to obtain a good solution approximation, so the best performance is obtained with
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Table 1 Performance of SSLM for test problem µ = 0.5 and K0 = 2000.

FLM κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 12 12 12 11
CGit 2.4 5.4 4.9 4.2 4.2 3.9
costf 10 9.7 6.1 3.3 3.2 2.0
costp 67 46.1 26.8 14.9 13.5 10.3
|Xit| 23040 15188 6750 3000 3000 2000
RMSE 1.2e-2 3.0e-2 2.8e-2 3.8e-2 4.4e-2 7.8e-2
savef 3% 39% 67% 68% 80%
savep 31% 60% 78% 80% 85%

Table 2 Performance of SSLM for test problem µ = 0.5 and K0 = 5000.

FLM κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 11 12 12 12
CGit 2.4 4.1 3.9 4.0 4.1 3.7
costf 10 9.1 6.5 5.1 4.9 3.6
costp 67 54.8 37.2 34.6 32.9 27.3
|Xit| 23040 16875 11250 7500 7500 5000
RMSE 1.2e-2 2.7e-2 3.0e-2 2.1e-2 2.1e-2 2.7e-2
savef 9% 35% 49% 51% 64%
savep 18% 44% 48% 51% 59%

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

computed solution

true state

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

computed solution

true state

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

computed solution

true state

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

computed solution

true state

Fig. 1 Problem µ = 0.5. Comparison of true state (solid line) and computed solution (dotted line) computed by
FLM (up left), SSLM with K0 = 5000 and κd = 10 (up right), SSLM with K0 = 2000 (bottom left) and K0 = 5000
(bottom right) with κd = 10000.

large κd. Then, κd should be chosen in relation to K0 and according to the desired accuracy on
the solution of the problem.

In Figure 2 we relate the savings gained with the corresponding error in the solution. The
solid lines refer to Table 1 while the dotted ones to Table 2. In the left plot we report the savings
in function evaluations (lines marked by stars) and in matrix-vector products (lines marked by
circles), while in the right plot the RMSE, versus κd . If K0 = 5000 the error is almost the same
for all choices of κd but the savings increase with κd, while if K0 = 2000 the most significant
savings are obtained choosing large κd, but at the expense of a higher error.

Notice also that in the tests the final value |Xit| is always less than N , which confirms that it
is not necessary to use all the available observations to obtain a good solution approximation.

In Figure 3 we report as an example for problem µ = 0.5 and K0 = 2000, κd = 10 the behaviour
of the accuracy level (left plot) and that of the error (right plot) through iterations. We underline
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Fig. 2 Left plot: savef (lines marked by a star) and savep (lines marked by a circle) for tests in Tables 1 (solid
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Table 3 Performance of SSLM for test problem µ = 0.01.

K0 = 2000 K0 = 7000
FLM κd = 1 κd = 10, 100 κd = 1000 κd = 1, 10 κd = 100, 1000

it 3 3 4 3 3 3
CGit 3.0 12.3 9.5 6.0 5.7 4.0
costf 4 2.9 3.5 1.3 3.1 1.9
costp 27 12.6 10.8 3.9 15.3 10.0
|Xit| 23040 6750 4500 2000 10500 7000
RMSE 6.8e-3 2.0e-2 1.1e-2 3.4e-2 1.5e-2 1.6e-2
savef 27% 12% 67% 22% 52%
savep 53% 60% 85% 43% 63%

that condition (2.11) is not violated at each iteration, then the accuracy is kept fixed for some
consecutive iterations, and the evaluation of the full function, by the computation of the remaining
components, is only sporadically necessary.

Regarding the choice µ = 0.01 we report statistics in Table 3. The problem is almost linear,
so it is solved in few iterations. Due to the really low number of iterations, it is advisable to start
with a rather large initial set to avoid converging to a solution of a problem with approximated
objective function and to gain the same solution accuracy as FLM. In this case the procedure is
less sensitive to the choice of parameter κd than in the other case and only significant changes
in κd affect its performance. Also for this problem the use of SSLM provides significant savings
compared to FLM.

6.2 A machine learning problem

In this section we consider a binary classification problem. Suppose to have at disposal a set of
pairs {(zi, yi)} with zi ∈ Rn, yi ∈ {−1,+1} and i = 1, . . . , N . We consider as a training objective
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Table 4 Performance of SSLM for machine learning test problem for different values of K∗.

K∗
GN SLM FLM 1.1 1.5 2 2.5 3 3.5

it 23 22 52 82 43 38 39 34 53
CGit 16.2 14.7 5.7 8.5 8.0 7.5 7.3 7.2 5.5
costf 24 23 53 19.8 14.1 15.9 21.2 16.5 37.7
costp 838 738 808 671.2 351.3 316.7 400.7 310.4 521.1
|Xit| 16033 16033 16033 16033 16000 16033 16033 16033 16033
RMSE 9.9e-3 9.2e-3 1.0e-2 1.0e-1 6.6e-2 5.4e-2 4.7e-2 4.1e-2 3.9e-2
ete 0.184 0.183 0.185 0.180 0.181 0.187 0.184 0.183 0.185
savef 63% 74% 70% 60% 69% 29%
savep 17% 56% 61% 50% 62% 35%

function the logistic loss with l2 regularization, see [8]:

f(x) =
1

2N

N∑
i=1

log(1 + exp(−yixT zi)) +
1

2N
‖x‖2. (6.47)

Since this is a convex nonlinear programming problem, it could potentially be solved also by a
subsampled Newton method. Here, for sake of gaining more computational experience with our
approach, we reformulate it as a least-square problem (6.38), scaled by N , where F : Rn → RN is
given by

F (x) =


√

log(1 + exp(−y1xT z1))
...√

log(1 + exp(−yNxT zN ))

 .
We consider the CINA dataset available at [1], for which n = 132 and that is divided in a

training set of size N = 16033 and a testing set of size Ñ = 10000. We build the approximations
fδk as:

fδk(x) =
1

2Kk

∑
i∈Xk

log(1 + exp(−yixT zi)) +
1

2Kk
‖x‖2.

We start the optimization process with K0 = 1000 and we stop the procedure when ‖gδk(xk)‖ ≤
1.e− 4. Parameter κd is set to 100.

The results provided in this section are obtained without computing the accuracy level δk
as outlined in the previous subsection (see (6.46)), in order to avoid the evaluation of the full
function f(x) each time condition (2.11) is not satisfied. Indeed, we can spare these evaluations
by estimating the accuracy level in the following way:

δk '
√

2(N −Kk)

Kk
, with Kk = |Xk|. (6.48)

This approximation is based on the observation that if the components Fi(x) of F (x) were Gaus-
sian,

∑
i/∈Xk Fi(x)2 would follow a Chi-squared distribution with standard deviation

√
2(N −Kk).

Even if the normality assumption does not hold, this estimation works well in practice, as we will
see in the following.

We study the effect of the choice of K∗ in (6.39) on the procedure performance. Then, we
fix K0 = 132 and κd = 100. Once the problem is solved, the computed solution x† is used to

classify the samples in the testing set. The classification error ete is defined as 1
2Ñ

∑Ñ
i=1 log(1 +

exp(−ŷix†T zi)), which consists of f(x†) omitting the regularization term 1
2Ñ
‖x‖2, cf. [8], and

employing the estimations ŷi for yi, computed for zi in the testing set as

ŷi =

{
+1 if σ(zi) ≥ 0.5

−1 if σ(zi) < 0.5,

where σ(z) = 1
1+exp(−zT x†) . Notice that in these runs all the available training samples are used

during the optimization process, so that the final value |Xit| always reaches the maximum value
N .
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Fig. 4 Values of nk (dotted line) and number of CG iterations (dashed line) per nonlinear iteration, for K∗ = 1.1
(up left), K∗ = 2 (up right) and K∗ = 3.5 (bottom).

The results are reported in Table 4. Concerning the three reference methods, we can notice
that, as expected, the convergence rate of SLM or GN is faster compared to that of the FLM (the
number of outer iterations performed is half of those required by FLM). However, the average
number of CG iterations per outer iteration is more than the double. Indeed, the linear systems
to be solved are less regularized, as the regularization parameters are smaller, so that the linear
solver requires more iterations to converge. As a result, the cost of SLM and GN in terms of
function evaluations is lower than that of FLM, but the cost in terms of matrix-vector products
is comparable.

The results reported in Table 4 show that for every choice of K∗ SSLM provides significant
savings compared to all the reference methods, in terms of function evaluations (except for K∗ =
3.5) and especially in terms of matrix-vector products. The savings in percentage form in the last
rows (savef , savep) are computed with respect to FLM method. The RMSE and the testing error
show that the quality of the approximate solutions is not affected by the use of the subsampling
technique. The counters anyway are affected by the choice of K∗, both too small and too large
values lead to a more expensive SSLM procedure. The effect of small parameter values is clearly
shown in Figure 4. In each plot are reported the values of nk (dotted line) and the number of CG
iterations (dashed line) for each nonlinear iteration k, for K∗ = 1.1 (up left), K∗ = 2 (up right)
and K∗ = 3.5 (bottom). The values of nk indicate how many times loop 1-2 in Algorithm 2.1 is
performed (nk = 1 means that the accuracy in function values is increased once at iteration k,
nk = 0 means that the accuracy is kept constant for that iteration). We notice that the number of
CG iterations performed in a nonlinear iteration in which the accuracy is increased is much higher
than that required by iterations in which it is kept constant, as the linear system (2.8) is solved
more than once. When K∗ is small, the accuracy is increased of a small amount when condition
(2.11) is not satisfied, and this leads to the need of increasing the accuracy of the approximations
more often and then to perform a higher number of CG iterations, as it is shown in Table 4 and in
Figure 4. On the other hand, with large values of K∗ the accuracy is increased less often, but a too
large choice leads Kk to quickly reach the maximum value N , so that many expensive iterations
are performed and so again the computational costs are higher. In the left plot of Figure 5 we
report values of |Xk| along the iterations for different values of K∗. We notice that when K∗ is
small the size is often increased of a small amount while for larger values it raises quickly.

In the right plot of Figure 5 we compare the cost of matrix-vector products at each iteration of
SSLM for various K∗ and of the FLM (solid line). We can see that significant savings are obtained
at the beginning of the optimization process, due to the reduced size of the subproblems, which
compensate the greater costs in the final stage, when the samples subsets are of size close to N
and additional CG iterations are required when condition (2.11) is not satisfied.
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Table 5 Comparison of subsampled Levenberg-Marquardt method with estimated accuracy level (first row,
SSLMest) and accuracy level approximated by (6.46) (second row, SSLMappr).

Solver it CGit costf costp |Xit| err ete
SSLMest 38 7.5 15.9 316.7 16000 5.4e-2 0.187
SSLMappr 37 7.4 17.7 318.1 16000 5.7e-2 0.186

Notice that in all the tests performed the average number of CG iterations is generally low and
the maximum number of allowed iterations is never reached. This is due to the low accuracy we
solve the linear systems with, which anyway is enough to get convergence. Despite the use of an
increasing sequence of regularization parameters, our method still gains the benefits of a quicker
convergence compared to first-order methods. this is obtained at no great expense, as the number
of CG iterations is extremely low. We used the Matlab function steep implementing the steepest
descend method and available at [14] to solve the problem with exact objective function and after
1000 iterations the desired accuracy was not yet reached and the norm of the gradient was of the
order of 1.e− 3.

In the left plot of Figure 6 we consider SSLM with K∗ = 2 and we compare the approximation
of the accuracy level provided by (6.46) (solid line) with that estimated through (6.48) (dashed
line). The estimate is good enough to ensure the procedure run with the estimated accuracy level
(SSLMest) to achieve the same performance as that run approximating it via (6.46) (SSLMappr),
as it is shown in Table 5. We highlight that the use of (6.48) does not affect the quality of the
classification process. Moreover it produces a saving in terms of function evaluations, even if also
the approximation of the accuracy level through (6.46) is affordable, as increasing the accuracy,
and so the evaluation of the full function, is needed only sporadically. For example for K∗ = 2 it is
needed just four times along all the optimization process, as it is evident from Figure 4 or Figure
5.

Finally, in the right plot of Figure 6 we compare the decrease in the model mk(xk)−mk(xk +
pLMk ) to that of the term 1

2λk‖p
LM
k ‖2 used to approximate it in the control (2.11). As we have

claimed in Section 2, the approximation is good, showing that in practice the assumption we made
is verified.
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7 Conclusions

In this paper we proposed an inexact Levenberg-Marquardt approach to solve nonlinear least-
squares problems with inaccurate function and gradient, assuming to be able to control the accu-
racy of the approximations. We proved that the proposed approach guarantees global convergence
to a solution of the problem with exact objective function and that asymptotically the step tends
to the direction of the negative approximated gradient. Then, we performed a local analysis for
the perturbed steepest descent method we reduce to. The procedure was tested on two problems
arising in machine learning and data assimilation. The results show that the implemented proce-
dure is able to find a first-order solution of the problem with exact objective function and that
the proposed strategy to control the accuracy level allows significant savings both in function
evaluations and in matrix-vector products, compared to the same procedure performed on the
problem with exact objective function. The provided numerical results also show the efficiency of
the procedure in terms of inner Krylov iterations. Indeed, a very rough accuracy in the solution of
the arising linear systems is imposed and as a result the number of performed Krylov iterations is
quite low. Overall the method gains a faster convergence rate compared to a pure steepest descent
method.
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