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ABSTRACT

The definition of an ”object” through the presentation of several of
its instances is certainly one of the most efficient ways for humans
and machines to learn. An object can be ”learned” from a single
image, just because it is repeating. In this paper, we explore a three
step algorithm to detect repeated objects in images. Starting from a
graph of auto-correspondences inside an image, we first extract sub-
graphs composed of repetitions of unbreakable pieces of objects, that
we call atoms. Then, these graphs of atoms are grouped into initial
propositions of object instances. Finally, geometry inconsistencies
are filtered out to end up with the final repeated object. The mean-
ingfulness of object repetitions is measured by their Number of False
Alarms (NFA), which provides a natural order among repeated ob-
jects in images; a very low NFA being a strong proof of existence
of the discovered object. Source codes are available at https:
//rdguez-mariano.github.io/pages/autosim.

Index Terms— image comparison, SIFT, autosimilarities, sym-
metry detection, RANSAC, NFA.

1. INTRODUCTION

Everyday images often contain repeated objects, such as roof tiles,
windows on buildings or chairs in a classroom. Humans not only
identify these repetitions but also extract meaningful information
from them. Sometimes, repetitions follow regularity patterns (e.g.
directional, grids, symmetries, etc), but in other cases, no apparent
structure is perceived.

Reliably detecting repetitions is challenging. Most approaches
of the literature require strong assumptions. For example, in [1] a
2D repetition grid is required. In [2], and similar to [3], authors
assume that large repetitive structures repeat along the horizontal
direction in facade images. More specific relationships for repeated
elements have also been investigated in [4–7]. Yet another active
field imposing patterns to repetitions is symmetry detection [8–13].

Some state-of-the-art matching methods are compatible with the
detection of repeated structures [14–19]. Others sacrifice this feature
in order to be distinctive in practical applications [20]. Ideally, the
best suited matching method for repetitions should return fully con-
nected groups of similar key points whenever repeated objects are
present in images; also, it should not connect to unrelated objects.

This paper proposes a method free from any a priori geomet-
ric assumption on the repetition patterns. Figure 1 describes the
main steps of our proposal. Our input data is a graph of auto-
correspondences in the considered image, obtained by applying
a reformulation of SIFT [21] presented in [19] (based on the a-
contrario procedure [22]) between the image and itself. Our bottom
up method starts by identifying sub-graphs corresponding to repeti-
tions of small object pieces (called atoms), then groups these atoms
to form repeated objects. An atom in our approach is an image patch
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Fig. 1: Proposed steps for automatic detection of repeated objects.
(a): Creating graphs of repeated atoms and filtering out mutations
(black ×); (b): Grouping of key points for graphs of equal cardinal-
ity; (c): A repeated object is identified if geometry consistency is
assessed among groups.

(a local element), equipped with a key point (the center’s coordi-
nates) and a local description. Repetitions are identified regardless
of any a priori pattern, but the presence of several atoms in an
object is required to validate the geometric transformation between
instances of the object, and therefore identify this object. At this
point, two atoms may be connected by a path of strong similarity
scores, while not corresponding to the exact same physical part of an
object (see Figure 2). We call these, mutations. Unfortunately, these
mutations often occur between two spatially close atoms, and if not
treated, they may harm the detection process. To avoid this situa-
tion, we treat these mutations by splitting the sub-graphs containing
overlapping atoms.

2. GRAPHS OF AUTO-CORRESPONDENCES IN IMAGES

In this section we introduce the mathematical objects that will be
useful in the paper. Let V = {v1, · · · , vn} be a set of atoms in
an image u, and let wij be the similarity score between the local
descriptors from atoms vi and vj . We define G = (V,E), the non-
directed graph with set of nodes V and set of edges E. Edges rep-
resent the detected auto-correspondences between atoms. An edge
between nodes vi and vj , denoted by vi ↔ vj , is weighted by wij .

Definition 1. Let G̃1 =
(
Ṽ1, Ẽ1

)
and G̃2 =

(
Ṽ2, Ẽ2

)
be two sub-

graphs of G = (V,E). We define the merging operation between
two graphs, G̃1 and G̃2, as the graph

G̃1

⊕
G̃2 :=

(
Ṽ1

⋃
Ṽ2, Ẽ1

⋃
Ẽ2

)
⊂ G.

Definition 2. Let A ⊂ V , we say A is a connected component if
and only if any two nodes in A are connected by a path of positive
edges in E and there is no path of positive edges connecting A and
Ac.



(a) (Ideal behavior) A fully con-
nected component (4 nodes, 6
edges) from the similarity graph,
presenting one and only one atom.

(b) (Undesired behavior) A con-
nected component (7 nodes, 7
edges) from the similarity graph,
presenting three atom mutations;
see the three pairs of overlapping
atoms (i.e. spatially close atoms).

Fig. 2: SIFT connected components.

Definition 3. Let G̃ =
(
Ṽ , Ẽ

)
be a sub-graph of G = (V,E). We

denote

Int
(
G̃
)

:=
{
m ∈ E | m connects two nodes of Ṽ

}
= Ẽ,

and

Bd
(
G̃
)

:=
{
m ∈ E | m connects a node of Ṽ to a node of Ṽ c

}
,

the interior and boundary sets of G̃, respectively.

Remark 1. Both interior and boundary sets of a graph defined
above are composed of edges, not nodes.

Definition 4. We say that G is a partition of G = (V,E) if and only
if

G̃ ∈ G ⇒ G̃ ⊂ G;
⋃
G̃∈G

Int
(
G̃
)

= E;

and
G̃1, G̃2 ∈ G ⇒ Int

(
G̃1

)⋂
Int
(
G̃2

)
= ∅.

Definition 5. Let G = (V,E) be a graph. Let {x↔ y} = m ∈ E.
We define the singleton graph as: S(m) := ({x, y} ,m) ⊂ G.

Definition 6. Let G be a partition of G. We denote by Gm, m ∈
Int (G) , the only element G̃ ∈ G such that m ∈ Int

(
G̃
)

.

3. RETRIEVING ATOMS IN IMAGES

Small local elements, called atoms, are the unbreakable pieces that
compose objects. Ideally, a perfect matching method should return
fully connected components in the similarity graph whenever atom
repetitions are observed (see Figure 2a); in those cases, any node can
act as the class representative for the atom repetition. Unfortunately,
it is often the case with existing matching methods that more than
one atom repetition are present in a connected component. This is
due to mutations, see Figure 2b, which are often observed with spa-
tially close atoms. Also, atom repetitions do not always appear as
fully connected components, due to missed matches. Nevertheless,
the intuition supports that all ‘copies’ of an atom should belong to a
unique connected component.

If not treated properly, mutations from spatially close atoms are
a nuisance to the detection process, for they may point to a bigger

(and misleading) number of repetitions, see Figure 2b. In order to
avoid the aforementioned nuisance, we encourage the splitting of
connected components harboring overlapping atoms. Other types of
mutation not harming the inferred number of repetitions are more
easily handled as geometry consistency will be imposed in the next
steps.

In this section we want to identify atoms to the interior of some
similarity graph. Each interior should be free from mutations, so it
can be considered to harbor several instances of only one atom. For
that, a pre-processing of the raw similarity graph is required. Usu-
ally, clustering algorithms, related to the minimization of a func-
tional (i.e. RatioCut, Ncut, etc), are used for this purpose. How-
ever, the main drawback of best-performing clustering algorithms is
the added time in computations. Furthermore, it is not straightfor-
ward for classic clustering algorithms to add a free-from-mutation
constraint to the functional. With this in mind, we define a simple
functional, well suited to our problem, and propose a heuristic to
optimize it.

Let G = {G1, · · · , Gk} be a partition of graphs. Starting from
the thinnest partition G (i.e. composed of isolated matches), the
merging procedure will be guided by the following functional:

f (G) :=
∑
G∈G [fI (G) + fO (G)] , (1)

where
fI (G) = 1∑

e∈E we
,

and

fO (G) =

{
0, G has no overlapping atoms
∞, G has overlapping atoms .

The functional f will encourage the merging of graphs resulting
in higher cumulative similarities and no overlapping atoms. Algo-
rithm 1 proposes an heuristic to minimize the functional appearing in
Equation 1. It ensures that sub-graphs in the resulting partition will
not exhibit the undesired behavior of Figure 2b. In order to minimize
the proposed functional, Algorithm 1 keeps track of the interior and
boundary sets after each merge with the following formulas:

Int
(
G̃1

⊕
G̃2

)
= Int

(
G̃1

)⋃
Int
(
G̃2

)
,

Bd
(
G̃1

⊕
G̃2

)
= Bd

(
G̃1

)⋃
Bd
(
G̃2

)
\ Int

(
G̃1

⊕
G̃2

)
.

Algorithm 1 Greedy heuristic to minimize Equation 1
input: M - set of Matches. It includes similarity measurements.
start:
M.SORT() . Order matches with respect to similarity measurements

G =
⋃
m∈M S(m) . Initial partition of singleton-graphs

f∗ =∞ . f∗ serves to identify when G is not being modified
while f (G) < f∗ do

f∗ = f (G)
foreach m ∈M do

. Matches with higher similarity scores are analyzed first
m∗1 ∈ argminm1∈Bd(Gm) f

(
Gm

⊕
Gm1

)
− f(Gm)− f(Gm1

)

if f
(
Gm
⊕
Gm∗1

)
< f(Gm) + f(Gm∗1 ) then

G = Gm
⊕
Gm∗1

⋃
G \

{
Gm,Gm∗1

}
. Update the graph partition

return: G



4. FROM ATOMS TO OBJECTS

In the previous section we have addressed the problem of identifying
repetitions of unbreakable pieces of objects, atoms. These atom rep-
etitions are provided by Algorithm 1 as a partition of graphs, G. In
this section, we pass from repeated atoms to the detection of repeated
objects.

4.1. Pre-labeling object instances

Intuitively, an object atom is supposed to be present in all instances
of the object in question, i.e., the number of object instances equals
the number of instances of any of its atoms. Let ΥNG be the set
of all graphs in G with fixed cardinality NG, representing all atoms
that repeat NG times in the image. For a fixed number of instances
NG, we define the most meaningful object repetition as the one that
possesses the more atoms in ΥNG . We assume that no image zone
should belong to two instances of an object at the same time.

In this section, we look for a functionL that assigns to each node
of a graph in ΥNG , a tentative instance of the most meaningful NG-
times-repeated object. Let us define such a function, called labeling
function, as

L : ΥNG × {1, · · · , NG} → {1, · · · , NG}
(G, i) 7→ c

, (2)

where the i-th node of G is assigned to the object instance c. We
say that G is unconsensual if and only if ∃i, j, i 6= j, such that
L (G, i) = L (G, j). We also define the consensual score as:

Lscore (L) :=
∑

G∈ΥNG

NG∏
c=1

| {i : L (G, i) = c} |, (3)

where the inner expression in the sum equals zero if two or more
nodes of a graph are assigned to the same cluster by L; and one
otherwise.

In practice, the labeling function can be provided by one of
the following clustering algorithms: Spectral Clustering on KNN
graphs, Gaussian Mixture Models clustering, or even the simple
KNN clustering algorithm. We argue that the set of all nodes is not
difficult to cluster, as our graphs are based on information provided
by a distinctive matching method. Indeed, a simple KNN algorithm
already provides fair enough results, see Figure 3.

Algorithm 2 presents how a generic clustering method is used
to create labeling functions L in the presence of graph outliers. In
the following we describe this process for a simple clustering based
on Voronoi regions. First, we select one graph G at random from
ΥNG and propose it as center of each NG cluster. We then count the
number of graphs from ΥNG whose nodes belong to one and only
one Voronoi region. Finally, we iterate this process and keep the
clusters (with centers at G) providing the biggest number of graphs
in consensus with them. As depicted in Figure 3, each node from
each graph is then labeled with a reference to the cluster to which it
belongs. As one can imagine, these labels might not yet represent
repetitions of objects due to spurious graphs. They will be filtered
out in the next section.

For simplicity, we assume that all unconsensual graphs (0-
labeled by Algorithm 2) are removed from ΥNG and that all nodes
are rearranged so as to

L (G, i) = i, ∀i ∈ {1, · · · , NG} .

Algorithm 2 Generic pre-labeling of nodes
input: ΥNG - All graphs of matches having NG nodes; Niters -
Number of iterations; FINDCLUSTERS - Clustering method.
start:
for i ∈ {1, · · · , Niters} do

Select G at random from ΥNG .
Define Li with the help of FINDCLUSTERS, initialized at G.

i? = arg maxi Lscore(Li).
Set Li? labels of non consensual graphs to 0.

. The 0 label acts as an unconsensual flag.

return: Li? .

Fig. 3: Pre-labeling graphs nodes for Υ6. Labeling provided by
spectral clustering, gaussian mixture models and KNN. Random col-
ors indicates appartenance to clusters. Black nodes belong to a non
consensual graph, as there are two nodes belonging to the same clus-
ter (the top right cluster).

4.2. Geometry consistency

The standard RANSAC (RAndom SAmple Consensus) algorithm [23]
computes the parameters fitting a mathematical model from ob-
served data in the presence of outliers. Numerous improvements
have been proposed in the literature for RANSAC, see [24–28], but
the core idea behind them remains.

In the case of homography estimation, the classic RANSAC al-
gorithm returns the homography ηj computed in iteration j having
the largest consensus of inliers among all iterations. The j-iteration
can be briefly described in two steps:

1. (Model fitting) Randomly select smatches (xi ↔ yi)i=1,...,s

from the set of all matches (MT ) and compute the homogra-
phy ηj that yields the best fit.

2. (Model consensus) Count the number of matches from MT

that are within a distance threshold of σ (i.e. counting inliers).

We propose to detect a repeated object from pre-labeled graphs
by finding graphs in consensus with respect to multiple homogra-
phies. These homographies describe the transformations of a query
object to all other present instances of it. The labeling function L
in Equation 2 assigns to each node (i.e. atom) from a fixed graph, a
label. These labels indicate an initial proposition of object instances,
but without geometric validation. We describe in Algorithm 3 how
to identify homography consistent copies of an object from graphs
in ΥNG and a pre-labeling function. For simplicity, we select the
query object to be among nodes assigned to the first label (c = 1)
and all other labels relate to different instances of this object. The ho-
mography fitting function HFITTINGNs of Algorithm 3 can be based
on raw matches (Ns = 4) or on the affine information (Ns = 2).
Notice that αmax = (∞,∞,∞,∞) implies the classic score for
homography consensus in Equation 4.



Algorithm 3 REP-RANSAC
input: ΥNG - All graphs of matches having NG nodes;
HFITTINGNs - a homography model estimator from Ns matches;
Niters - Number of iterations; αmax - vector of maximal affine dis-
cordance; σ - maximal distance error threshold; Ns - Number of
samples needed for Homography fitting.
start:
for i ∈ {1, · · · , Niters} do

Randomly select G1, · · · , GNs from ΥNG

for c = 2, · · · , NG do
ηic := HFITTINGNs(x

1
G1
↔ xcG1

, · · · ,x1
GNs

↔ xcGNs )
Ac := 1{

α(AE(x1
G
↔xc

G
),A

ηic
(x1
G

))<αmax

}
. where xcG correspond to

theG node pre-labeled to cluster c, α is the affine discordance measure appearing
in [28], α(AE(x1

G ↔ xcG) are the estimated affine maps from x1
G to xcG, and

Aηic
(x1
G) are the first order Taylor approximations of ηic around x1

G.

Si
({
ηic

}
c

)
=

∑
G∈ΥNG

NG∏
c=2

1{‖ηic(x1
G

)−xc
G
‖
L2≤σ} × Ac (4)

i? = arg maxi Si

return:
{
ηi
?

c

}
c∈{2,··· ,NG}

4.3. Detecting meaningful objects across cardinalities

Up until now and for each set ΥNG , a most significant repeated
object is proposed and validated. In this section, we order these
propositions by their Number of False Alarms (NFA), based on the
a-contrario procedure [22]. Notice that we do not use the NFA to
automatically set up parameters as done in [24]; instead we use it to
measure meaningfulness across cardinalities.

For each possible cardinality NG, we define the associated NFA
of its most meaningful object (computed in Algorithm 3) as,

NFA
(
{ηc}c

)
= (n−Ns)

(
n
k

)(
k
Ns

)
P (k, n) (5)

where n = |ΥNG |, k = S
(
{ηc}c

)
(the function S appears in Equa-

tion 4) and the probability of a random graph to be an inlier of the
model is expressed as

P (k, n) = P
(
{‖X‖L2 ≤ σ}

⋂
{A < αmax}

)(NG−1)(k−Ns)

.

Indeed, if there are k graphs inliers, potentially all Ns out of
them yield the correct configuration. Each one has a probability

P
(
{‖X‖L2 ≤ σ}

⋂
{A < αmax}

)(NG−1)

of being inlier according to the background model, see Equation 4.
Through the assumption of independence among graphs, the proba-
bility that all k of them are inliers is the above quantity powered by
k − Ns, since Ns ones were used for estimation are automatically
inliers (they have error 0). The number k of inliers is usually not
known in advance, so all values of k are tested (from Ns + 1 to n),
which explains the factor (n−Ns) in Equation 5.

Equation 5 allow us to assign a natural order between all de-
tected objects by Algorithm 3. Figure 4 shows these ordered detec-
tions across cardinalities. Clearly, a strong NFA (i.e. log NFA� 0)

log NFA = −281.81 log NFA = −249.12 log NFA = −129.29
NG = 2 NG = 3 NG = 6

log NFA = −1530.98 log NFA = −161.51 log NFA = −53.14
NG = 4 NG = 3 NG = 2

Fig. 4: In descending order from left to right, the three most signif-
icant detections. Each instance of an object is randomly colored.

log NFA = −14.51 log NFA = −2.63 log NFA > 0
NG = 2 NG = 2

Fig. 5: Most significant repeated objects with weak NFAs.

supports the evidence of a repeated object. On the other hand, weak
NFA signatures (i.e. log NFA ≈ 0) shows poor evidence of repeated
objects. If for a fixed image all log NFA > 0, then a no detection is
reported. Examples of most significant repeated objects with weak
NFAs can be found in Figure 5.

5. CONCLUSIONS

We have presented a methodology to identify object repetitions
based on graphs derived from multiple SIFT matches. The SIFT
method can be replaced by any other local matching method. The
underlying idea is simple: if several local descriptions of a repeated
object stand out (for the similarity score), then a coherence between
their associated graphs points out repetitions of a same object. The
pipeline for detecting object repetitions starts by analysing each
detected similarity graph, associated with the repetition of a local
atom. Then, an initial proposition of the most significant repeated
object is deduced from graphs of equal cardinality, and its geometric
inconsistencies filtered out to provide a final proposition of ”re-
peated object”. The validity of the object’s repetitions is determined
by computing an NFA. Clearly, in order to keep detecting more
repeated objects, a simple workaround would consist in removing
all geometrically consistent graphs and iterate the pipeline over the
remaining graphs till no object repetition is detected. This will be
explored in the future.
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