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Abstract

In our article [AK13] we state the the Domino problem is undecidable
for all Baumslag-Solitar groups BS(m,n), and claim that the proof is
a direct adaptation of the construction of a weakly aperiodic subshift
of finite type for BS(m,n) given in the paper. In this addendum, we
clarify this point and give a detailed proof of the undecidability result.
We assume the reader is already familiar with the article [AK13].

Introduction

In [AK13] we state as a direct corollary of the main construction that the Domino
problem is undecidable on all Baumslag-Solitar groups BS(m,n). It turns out
that it is not as immediate as we write it, and we believe that this result deserves
a full explanation.

The proof is based on the proof of the undecidability of the Domino problem
on the discrete hyperbolic plane given by the second author in [Kar07].This
latter is an adaptation of a former construction of a strongly aperiodic SFT
on Z2 [Kar96]. This proof proceeds by reduction to the immortality problem
for rational piecewise affine maps. We first recall the key ingredients of this
proof.

A mapping f : U → U ⊂ R2 is a rational piecewise affine map if there exists
a partition U = U1 ∪ U2 ∪ · · · ∪ Un where every Ui is a unitary square with
integer coordinates, and such that f = fi on every Ui, and fi : Ui → R2 is an
affine function with rational parameters. A point −→x ∈ U is immortal for f if for
every k ∈ Z, the iterated image fk(−→x ) belongs to U . The immortality problem
for rational piecewise affine maps is the decision problem that inputs such a
function f , and outputs Yes if f possesses an immortal point, and No otherwise.
This problem reduces to the immortality problem for Turing machines, which
is known to be undecidable [Hoo66].

Theorem 1 ([Kar07]). The immortality problem for rational piecewise affine
maps is undecidable.
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The second author proves in [Kar07] that the problem of tiling the discrete
hyperbolic plane H2 with pentagonal Wang tiles is undecidable, by a reduction
to the immortality problem for rational piecewise affine maps. The proof is
based on the construction, for every piecewise affine map f : U → U with
rational parameters, of a finite tileset that computes the function f , meaning
that a tiling by this tileset encodes the orbit of a point −→x ∈ U under the action
of f .

Theorem 2 ([Kar07]). The Domino problem is undecidable on the discrete
hyperbolic plane H2.

The most difficult part in the construction is to ensure finiteness of the tileset.
This issue may be bypassed by combining two main ingredients: representing
real numbers by Beatty sequences, and taking advantage of the rationality of
function f . Instead of Beatty sequences of a point −→x ∈ R2 we use its balanced
representation, to be defined on page 6, and that takes accounts of the merges
between sheets in BS(m,n).

Adaptation to Baumslag-Solitar groups BS(m, n)

Following [Kar07] we prove that the Domino problem is undecidable for all
Baumslag-Solitar BS(m,n) for all integers m,n ∈ N∗

BS(m,n) = 〈a, t|t−1amt = an〉.

Since BS(−m,−n) is isomorphic to BS(m,n), it is enough to consider
groups with m > 0. For simplicity, we also assume that n > 0. The case n < 0
is analogous. The Cayley graph of BS(m,n) with generating set {a, t, a−1, t−1}
is made of several sheets that merge m by m from top to give n other sheets to
the bottom, so that the global structure these sheets are arranged looks like an
(m + n)-regular tree. Each of these sheets is quasi-isometric to the hyperbolic
plane H2.

t

a a

t

a a a

Figure 1: A portion of the right Cayley graph of the group BS(2, 3) with gen-
erating set {a, t, a−1, t−1}. Three sheets from the top merge and separate into
two sheets to the bottom.
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The groupBS(m,n) is embedded into R2 through a function Φm,n : BS(m,n) →
R2, that is first defined recursively on wordsw on the alphabetA = {a, t, a−1, t−1}.
If x is a letter from A, denote |w|x the number of occurrences of the letter x in
the word w. We also call contribution of x to w the integer ‖ w ‖x= |w|x−|w|x−1 .
With these notations we first define a function β : A∗ → Z by β(w) := − ‖ w ‖t,
and a function αm,n : A∗ → R, simply denoted α in the sequel, which is defined
by induction on the length of words (ε denotes the empty word) by:

α(ε) = 0

α(w.t) = α(w.t−1) = α(w)

α(w.a) = α(w) +
(m

n

)−β(w)

α(w.a−1) = α(w) −
(m

n

)−β(w)

By induction on the length of words w we get the formula:

Proposition 3. For every words u, v ∈ A∗ one has

α(u.v) = α(u) +
(m

n

)−β(u)

α(v).

In the sequel we will use in particular the following equalities:

α(ga) = α(g) +
(m

n

)−β(g)

β(gt) = β(g)− 1

Finally the function Φm,n : BS(m,n) → R2 is

Φm,n(g) = (α(w), β(w)) ,

where w is a word that represents the group element g. One can check that
Φm,n is well-defined, i.e. the value for Φm,n(g) does not depend on the word w

chosen, thanks to Proposition 3.

Proposition 4. The function Φm,n is well-defined on BS(m,n).

Note that for m = 1 we find the same function as the isomorphism Φ defined
only for amenable Baumslag-Solitar groups in [AS20].

Remark 5. If |m| 6= 1 and |n| 6= 1 then the function Φm,n is not injective.
In [AK13] we give an example of injectivity default for m = 3 and n = 2: the
group element ω = bab−1a2ba−1b−1a−2 is sent to the origin byΦ3,2, but has
infinite order. In [EM20] the authors exhibit the word ω = bab−1aba−1b−1a−1

which satisfies that Φm,n(ω) = (0, 0) for all m,n such that |m| 6= 1 and |n| 6= 1.
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−→x 1
. . . −→x n

−→

ℓ
−→r

−→y 1
−→y 2

. . . −→y m

Figure 2: A Wang tile for BS(m,n).

Fix two integers m,n ∈ N∗. A tile on BS(m,n) computes a function fi :
Ui ⊂ R2 → R2 if, the following holds (colors on the edges of the tile are named
after Figure 2):

−→y 1 + . . .−→y m

m
+−→r = fi

(−→x 1 + . . .−→x n

n

)

+
−→
ℓ .

For a single sheet of BS(m,n), one can easily adapt what is done for the
discrete hyperbolic plane H2 [Kar07]: select all tiles satisfying the relation with
colors on the edges belonging to a well chosen finite set. For the whole group
difficulties arise where different sheets merge: clearly the direct adaptation of
the H2 case is not enough, and the tileset should be enriched to take into account
the specific structure of BS(m,n). Our solution uses function Φm,n, from which
we define a function λ : BS(m,n) → R by

λ(g) :=
1

m

( n

m

)−β(g)

α(g),

for every g ∈ BS(m,n), and one can check that the following holds

λ(ga) = λ(g) +
1

m

λ(gt) =
n

m
λ(g).

Thanks to the function λ and to the properties it satisfies, we detail the
content of every tile that computes a piecewise affine function fi : Ui ⊂ R2 → R2

such that fi(
−→x ) = M−→x +

−→
b :

−→x k(g,
−→x ) := ⌊(nλ(g) + k)−→x ⌋ − ⌊(nλ(g) + (k − 1))−→x ⌋ for k = 1 . . .m

−→y k(g,
−→x ) := ⌊(mλ(g) + k) fi(

−→x )⌋ − ⌊(mλ(g) + (k − 1)) fi(
−→x )⌋ for k = 1 . . . n

−→
ℓ (g,−→x ) :=

1

n
fi (⌊nλ(g)

−→x ⌋)−
1

m
⌊mλ(g)fi(

−→x )⌋+ ⌊λ(g)−
1

2
⌋
−→
b

−→r (g,−→x ) :=
1

n
fi (⌊(nλ(g) + n)−→x ⌋)−

1

m
⌊(mλ(g) +m) fi(

−→x )⌋+ ⌊λ(g) +
1

2
⌋
−→
b

We check that the tile on Figure 3 does compute the function fi, in other
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x1 (g,
−→x ) . . . −→x n (g,−→x )

−→

ℓ (g,−→x )
−→r (g,−→x )

−→y 1 (g,
−→x ) −→y 2 (g,

−→x ) . . . −→y m (g,−→x )

•g

Figure 3: Tile to encode a piecewise affine map fi : Ui ⊂ R2 → R2 on the group
BS(m,n).

words that the quantity S detailed below sums to null vector
−→
0 :

S :=
−→y 1 + · · ·+−→y m

m
+−→r − fi

(−→x 1 + · · ·+−→x n

n

)

−
−→
ℓ

By replacing every term −→y k and −→x k by its expression given above, the two
sums −→y 1 + · · ·+−→y m and −→x 1 + · · ·+−→x n telescope and S simplifies in

S =
1

m
⌊(mλ(g) +m) fi(

−→x )⌋ −
1

m
⌊mλ(g)fi(

−→x )⌋+
1

n
fi (⌊(nλ(g) + n)−→x ⌋)−

1

m
⌊(mλ(g) +m) fi(

−→x )⌋

+ ⌊λ(g) +
1

2
⌋
−→
b − fi

(

1

n
⌊(nλ(g) + n)−→x ⌋ −

1

n
⌊nλ(g)−→x ⌋

)

−
1

n
fi (⌊nλ(g)

−→x ⌋) +
1

m
⌊mλ(g)fi(

−→x )⌋ − ⌊λ(g)−
1

2
⌋
−→
b

which then reduces to

S =
1

n
f (⌊(nλ(g) + n)−→x ⌋) + ⌊λ(g) +

1

2
⌋
−→
b

− f

(

1

n
⌊(nλ(g) + n)−→x ⌋ −

1

n
⌊nλ(g)−→x ⌋

)

−
1

n
f (⌊nλ(g)−→x ⌋)− ⌊λ(g)−

1

2
⌋
−→
b .

We now use the fact that fi(c
−→y − c−→z ) = cfi(

−→y )− cfi(
−→z ) +

−→
b to obtain:

S = −
1

n
fi (⌊nλ(g)

−→x ⌋) + ⌊λ(g) +
1

2
⌋
−→
b

−
1

n
fi (⌊(nλ(g) + n)−→x ⌋) +

1

n
fi (⌊nλ(g)

−→x ⌋)−
−→
b +

1

n
fi (⌊(nλ(g) + n)−→x ⌋)− ⌊λ(g)−

1

2
⌋
−→
b
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afterwards only remains:

S = ⌊λ(g) +
1

2
⌋
−→
b −

−→
b − ⌊λ(g)−

1

2
⌋
−→
b

and since ⌊z+ 1
2⌋−⌊z−+ 1

2⌋ = 1 for every real number z, we finally conclude
that S = 0.

Proposition 6. For every g ∈ BS(m,n) and every −→x ∈ Ui, the tile described
on Figure 3 computes the piecewise affine map fi : Ui ⊂ R2 → R2.

Every tile thus individually computes the image by fi of the average of the
elements on the bottoms edges, and redistributes this image on the top edges.
This is performed up to calculation errors, that are stored in the left and right
edges of the tile.

As explained in [AK13], for all −→x ∈ R2 and z ∈ R, if one defines for every
k ∈ Z

−→
B k(

−→x , z) := ⌊(z + k)−→x ⌋ − ⌊(z + (k − 1))−→x ⌋,

then the bi-infinite sequence
(−→
B k(

−→x , z)
)

k∈Z

is a balanced representation of −→x .

In particular, it is a representation of −→x = (x1, x2), meaning that

• every
−→
B k(

−→x , z) has integer coordinates in {⌊x1⌋; ⌊x1⌋+ 1}×{⌊x2⌋; ⌊x2⌋+ 1}
;

• the following average converges towards −→x

lim
k→∞

1

2k + 1

k
∑

j=−k

−→
B j(

−→x , z) = −→x .

Proposition 7. For every g0 ∈ BS(m,n) and every −→x ∈ Ui, if we put the
tile from Figure 3 in position g for every g ∈

{

g0 · a
k | k ∈ Z

}

, then one can

read the balanced representation
−→
B k (

−→x , λ(g)) of −→x on the bottom edges and the

balanced representation
−→
B k

(

fi(
−→x ), λ(gt−1)

)

of fi(
−→x ) on the top edges.

Proposition 7 expresses the fact that moving from a single tile that computes
fi with errors to an infinite row of tiles makes the calculation of fi exact.

We now check that among all possible tiles that compute fi, we can restrict to

a finite tileset. For every g ∈ BS(m,n), the sequence
−→
B k(

−→x , λ(g)) is a balanced
representation of −→x , so that there exist only finitely many possible values for
−→x k, and the same argument prevails for −→y k. It remains to check that the

−→
ℓ

and −→r can be chosen among a finite set. Using the fact that λ(gam) = λ(g)+1,

we remark that
−→
ℓ (gam,−→x ) = −→r (g,−→x ) ; hence it is enough to ensure a finite

number of choices for the
−→
ℓ only. Remind that
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−→
ℓ (g,−→x ) :=

1

n
fi (⌊nλ(g)

−→x ⌋)−
1

m
⌊mλ(g)fi(

−→x )⌋+ ⌊λ(g)−
1

2
⌋
−→
b .

We first check that
−→
ℓ (g,−→x ) is bounded, as a consequence of −→z −1 ≤ ⌊−→z ⌋ <

−→z (inequalities shall apply coordinate by coordinate). Indeed:

λ(g)
(

fi(
−→x )−

−→
b
)

−
1

n
M

−→
1 −

1

n

−→
b − λ(g)fi(

−→x ) + λ(g)
−→
b −−

1

2

−→
b +

−→
b <

−→
ℓ (g,−→x )

−
1

n
M

−→
1 −

3n+ 2

2n

−→
b <

−→
ℓ (g,−→x )

and

−→
ℓ (g,−→x ) < λ(g)

(

fi(
−→x )−

−→
b
)

+
1

n

−→
b − λ(g)fi(

−→x ) + λ(g)
−→
b −−

1

m

−→
1 + λ(g)

−→
b −

1

2

−→
b

−→
ℓ (g,−→x ) < −

1

m

−→
1 −

n− 2

2n

−→
b .

Since both vector
−→
b and matrix M have rational coefficients, one can put

at the same denominator q the two inequalities above, so that there exist two
vectors −→p1,

−→p2 ∈ Z2 such that

−→p1
q

≤
−→
ℓ (g,−→x ) ≤

−→p2
q
,

where −→p1 is chosen maximal and −→p2 minimal. Better than that, the value for
−→
ℓ (g,−→x ) should belong to the finite set

{

−→p1
q
,
−→p1 + (0, 1)

q
,
−→p1 + (1, 0)

q
,
−→p1 +

−→
1

q
, . . . ,

−→p2
q

}

⊂ Q

for every g ∈ BS(m,n) and every −→x ∈ U . Indeed, a careful observation of

rational numbers that appear in the expression of
−→
ℓ (g,−→x ), shows that

−→
ℓ (g,−→x )

can be written as
−→p
q
. The fact that −→p1 ≤ −→p ≤ −→p2 directly follows from the

definition of −→p1 and −→p2. The tileset τfi corresponding to the function fi is thus
finite.

Proposition 8. There exists a finite number of tiles on BS(m,n) with colors
as on Figure 3 that computes fi(

−→x ) for every −→x ∈ Ui.

Thanks to the properties of the function λ stated above, one has

y1
(

g · ak,−→x
)

= y1+k (g,
−→x ) for k ∈ [1;m− 1]

y1 (gt,
−→x ) = x1 (g, fi (

−→x )) ,

7



which ensures that for a given −→x ∈ Ui, there exists a tiling of the coset {ak | k ∈
Z} such that the balanced representations of −→x and fi(

−→x ) appear respectively
on bottom and top edges. We then put together all tilesets corresponding to
every function fi, by adding to these tiles the number i of the function fi they
encode. With the additional local rule that two tiles in positions g and ga should
share the same number i, we finally get the desired result.

Theorem 9. The Domino problem is undecidable on Baumslag-Solitar groups
BS(m,n) for every integers m,n ∈ Z.
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