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Abstract

In this paper, we study a high accurate monotonicity-preserving (MP) Semi-Lagrangian scheme
for Vlasov-Poisson simulations. The classical Semi-Lagrangian scheme is known to be high accurate
and free from CFL condition, but it does not satisfy local maximum principle. To remedy this
drawback, using the conservative form of the Semi-Lagrangian scheme, we recast existing MP schemes
for the numerical flux in a common framework, and then substitute the local minimum/maximum
by some ”better” guess, in order to avoid as much as possible loss of accuracy and clipping near
extrema, while keeping the monotonicity on monotone portions. With the limiter, on the one hand,
the scheme keeps the good properties of the unlimited scheme: it is conservative, free from CFL
condition and high accurate. On the other hand, for locally monotonic data, the monotonicity of
the solution is preserved. Numerical tests are made on free transport equation and Vlasov-Poisson
system to illustrate the robustness of our method.
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1 Introduction

The Vlasov-Poisson system describes the evolution of charged particles under a self-consistent electric
field. One important application of the Vlasov-Poisson system is in the study of the controlled fusion.
The Vlasov-Poisson system has a number of conservation properties that need special attention when
developing numerical methods. Ideally, we want numerical method to retain the exact invariants in
numerical methods. However, when it is not possible to keep them all, they can be used to monitor the
validity of the simulation by checking accuracy of these invariants. Many attempts have been made for
solving Vlasov-Poisson system, including classical discretizations as finite difference methods [2], finite
element method [49, 36, 1], finite volume method [24, 25, 13, 43] , spectral method [31], discontinuous
Galerkin methods [29, 17, 10, 9, 48, 39, 30], statistical based method as particle-in-cell method [11, 42,
19, 26, 18, 14]. There is also another important category named Semi-Lagrangian methods [35, 3, 15, 33,
32, 41, 8, 44, 4, 22, 23], which is popular thanks to its good precision and as it is free from time step
limitation. In this paper, we will focus on designing a Semi-Lagrangian method for the Vlasov-Poisson
system.
The Semi-Lagrangian methods use the characteristics of the scalar hyperbolic equation, along with an
interpolation method, to update the unknown from one time step to the next. The classical Semi-
Lagrangian method with high order interpolation can generate new extrema, violate the monotonicity
and develop numerical oscillations.
Some remedies have been proposed. Conservative Semi-Lagrangian methods were introduced by using
flux formulation [15], permitting to add filters to impose monotonicity or positivity, while keeping the
conservativity, which turns out to be satisfied for the current applications in this paper (constant advection
equation with periodic boundary conditions). Such design was essentially developed by changing the
derivatives at the cell edges and a full monotonic or bounded preserving solution was obtained, in the
framework of Hermite representation of the solution, that is locally a polynomial of degree ≤ 3. The case
of higher order reconstructions is more complex (see [20]), as one has to have conditions for a polynomial
to be monotone or positive. A nearby solution is the PFC scheme that was earlier developed [27], and
a local variant has been proposed by Umeda [40], and then a generalization has been performed for
polynomials of degree ≤ 4 [41] instead of degree ≤ 3. Another strategy is based on a WENO type
reconstruction [33, 44], typically with polynomials of degree ≤ 5. However, WENO type reconstruction
is too much dissipative for long term simulation as shown in section 4. The key point of WENO type
method is to find ”optimal” non-linear combination weights. In contrast, we will position our design in the
framework of Monotonicity-Preserving (MP) constraint, that is applied directly on classical interpolations
and the modification is directly on the numerical flux [37], which removes the problem of dealing with
high order polynomials and corresponding criteria to get monotonicity or positivity.
Suresh et al. [37] proposed such a limiter for numerical flux, which can retain high accuracy and in the
meantime preserves monotonicity, so that the scheme can efficiently remove spurious oscillations. The
idea is to distinguish automatically monotone portion and extrema portion of solution. On the one hand,
for monotone solution, the limiter preserves monotonicity of the solution, on the other hand, it provides
enough relaxation space to retain high accuracy of solution. However, this limiter has limitation of
CFL condition. It has been applied recently to the Semi-Lagrangian method and for the Vlasov-Poisson
system [38]. Note also that an extension work of [37] has been made [16] to give more relaxation space.
We refer also to the recent paper [34] for some complementary references on the numerical resolution of the
Vlasov equation by Semi-Lagrangian type methods focussing precisely on removing spurious oscillations,
which is the concern of our paper.
In this paper, we focus on developing a new limiter for Semi-Lagrangian method. We first reformulate the
existing MP limiters in a common framework, that is the Monotonicity-Preserving constraint mentioned
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in [21], then we substitute local maximum/minimum by some ”better” guess maximum/minimum. In this
framework, we can easily compare among the existing limiters and propose our best choice. In numerical
tests, we use L1 norm invariant to estimate growing of spurious oscillation and L2 norm invariant for
dissipation of the solution.
The outline of this paper is following. The high accurate Semi-Lagrangian scheme is revised in the
section 2. The construction for left flux and right flux is presented respectively. Some symmetry argument
between left flux and right flux is also explained here. In the section 3, the new limiter is introduced. We
first define the Monotonicity-Preserving constraints for both left flux and right flux. Then the proposed
relaxations to the MP constraints are explained in detail and a MP property is proven. Finally, a short
analysis of comparison is given for different limiters. In the section 4, we give a portion of C code for the
limiters. Then numerical results for linear advection equation and Vlasov-Poisson system are collected.
At the end, we give a conclusion and perspectives.

2 High accurate Semi-Lagrangian scheme

In this section, we will introduce the high accurate Semi-Lagrangian scheme for the free transport equation

∂tf + v∂xf = 0. (1)

Let us first introduce uniform mesh in space as xi = ih, i ∈ Z, where h is a fixed mesh size. Similarly, we
give discrete time as tn = n∆t, n ∈ Z+, where ∆t is time step. Hence the numerical solution at discrete
grid is denoted by fni .
The classical Semi-Lagrangian scheme is divided in two steps. The first step is devoted to find foot of
characteristic curve. For the free transport equation (1), the foot is simply xi − v∆t, if we start from xi.
The second step consists to approximate the solution by Lagrangian interpolation thanks to the following
relation

f(tn+1, xi) = f(tn, xi − v∆t).

Next, we will recast the Lagrangian interpolation into a flux formulation, which is a preparation step for
MP limiter. Two types of flux formulation are considered, left flux or right flux, corresponding to wind
direction, as we have in a classical finite volume scheme.

2.1 Construction of left flux

We can always suppose the foot of characteristic curve locates between xjL−1 and xjL , and can write

xjL − (xi − v∆t) = νLh, thus the numerical solution by interpolation of degree one is given by fn+1
i =

νLf
n
jL−1 + (1− νL)fnjL , and more generally of odd degree 2d+ 1, with d ∈ N, is given by

fn+1
i =

d+1∑
`=−d

L`(1− νL)fnjL−1+` =

d+1∑
`=−d

L1−`(νL)fnjL−1+` =

d+1∑
`=−d

L`(νL)fnjL−`, (2)

where L` is Lagrangian basis function defined by L`(x) =
∏d+1
k=−d,k 6=`

x−k
`−k .

The Semi-Lagrangian scheme (2) can be written under a conservative form. For d = 0, we have fn+1
i =

fnjL − νL
(
fnjL − f

n
jL−1

)
. We shall more generally write the Semi-Lagrangian scheme (2) with left flux

(symbolized by L), expressed as

fn+1
i = fnjL − νL

(
fLjL+1/2 − f

L
jL−1/2

)
, (3)
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defining the linear formula

fLj+1/2 =

d∑
`=−d

cL` f
n
j+`, j ∈ Z, (4)

where cL` , ` ∈ {−d, . . . , d} are the coefficients to be determined. We will omit superscript ”L” if there is
no confusion. Thanks to this linear definition, the Semi-Lagrangian scheme can be recast as

fn+1
i = fnj − ν

(
d∑

`=−d

cL` f
n
j+` −

d∑
`=−d

cL` f
n
j+`−1

)

= −νcLd fnj+d + νcL−df
n
j−d−1 − ν

d−1∑
`=−d, 6̀=0

(cL` − cL`+1)fnj+` + (1− ν(cL0 − cL1 ))fnj .

Comparing the corresponding term in (2), we get

νcL−d = Ld+1(ν),

−ν(cL` − cL`+1) = L−`(ν), ` = −d, . . . ,−1,

−νcLd = L−d(ν),

−ν(cL` − cL`+1) = L−`(ν), ` = 1, . . . , d− 1,

1− ν(cL0 − cL1 ) = L0(ν).

Solving the linear system yields, for ν 6= 0, the coefficients

cL` =


1
ν

`−1∑
k=−d−1

L−k(ν), ` = −d, . . . , 0,

− 1
ν

d∑
k=`

L−k(ν), ` = 1, . . . , d,

(5)

since νcL−d +
∑d−1
`=−d−ν(cL` − cL`+1) − νcLd +

∑d−1
`=1 −ν(cL` − cL`+1) + 1 − ν(cL0 − cL1 ) = 1, and Ld+1(ν) +∑d−1

`=−d L−`(ν) +L−d(ν) +
∑d−1
`=1 L−`(ν) +L0(ν) =

∑d+1
`=−d L`(ν) = 1. For ν = 0, the cL` can be arbitrary

from the system; we define them by taking the limit of (5), as ν → 0, which is well defined, since 0
is a root of Lk, for k 6= 0. For implementing issues, we can use the following formulae which have no
evaluation problem:

cL` =


`−1∑

k=−d−1

L̃−k(ν), ` = −d, . . . , 0,

−
d∑
k=`

L̃−k(ν), ` = 1, . . . , d,

(6)

with

L̃`(x) =
1

`

d+1∏
k=−d,k 6∈{`,0}

x− k
`− k

,

for ` = −d, . . . , d+ 1, ` 6= 0. We report on Table 1, the expressions for some values of d.
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cL0 1
cL−1

1
6ν

2 − 1
6

cL0 − 1
3ν

2 + 1
2ν + 5

6
cL1

1
6ν

2 − 1
2ν + 1

3

cL−2
1

120ν
4 − 1

24ν
2 + 1

30
cL−1 − 1

30ν
4 + 1

24ν
3 + 1

4ν
2 − 1

24ν −
13
60

cL0
1
20ν

4 − 1
8ν

3 − 1
3ν

2 + 5
8ν + 47

60
cL1 − 1

30ν
4 + 1

8ν
3 + 1

12ν
2 − 5

8ν + 9
20

cL2
1

120ν
4 − 1

24ν
3 + 1

24ν
2 + 1

24ν −
1
20

Table 1: Values of cLk = cR−k, k = −d, . . . , d, for d = 0, 1, 2, using (5).

Remark 2.1. We can propose another formula to define the left flux. Using (4) and (5), we have for
j ∈ Z,

νfLj+1/2 =

0∑
`=−d

`−1∑
k=−d−1

L−k(ν)fnj+` −
d∑
`=1

d∑
k=`

L−k(ν)fnj+`,

=

−1∑
k=−d−1

L−k(ν)

0∑
`=k+1

fnj+` −
d∑
k=1

L−k(ν)

k∑
`=1

fnj+`

=

−1∑
k=−d

(
−
−k∑
`=1

fnj+`

)
Lk(ν) +

d+1∑
k=1

(
0∑

`=−k+1

fnj+`

)
Lk(ν).

Defining Sk = −
∑−k
`=1 f

n
j+`, k = −d, . . . ,−1 and Sk =

∑0
`=−k+1 f

n
j+`, k = 1, . . . , d + 1, we have

Sk+1−Sk = fnj−k, for k = −d, . . . ,−2 and Sk+1−Sk = fnj−k, for k = 1, . . . , d. Denoting S0 = 0, we have
S0 − S−1 = −S−1 = fnj−1, and S1 − S0 = S1 = fnj , so that we have Sk+1 − Sk = fnj−k, for k = −d, . . . , d.
Thus, the Sk are uniquely determined, by Sk+1 − Sk = fnj−k, k = −d, . . . , d and S0 = 0 and finally,

νfLj+1/2 =
∑d+1
k=−d SkLk(ν).

2.2 Construction of right flux

In order now, to use the right flux, we can also always suppose that the foot of characteristic curve
locates between xjR and xjR+1, and can write (xi − v∆t) − xjR = νRh, thus the numerical solution by

interpolation of degree one is now given by fn+1
i = (1 − νR)fnjR + νRf

n
jR+1, and more generally of odd

degree 2d+ 1, with d ∈ N, is given by

fn+1
i =

d+1∑
`=−d

L`(νR)fnjR+`. (7)

We get the same solution as before, but we now will make a link with the conservative form using
the right flux (symbolized by the letter R) instead of the left flux. We can write for d = 0, fn+1

i =
fnjR + νR(fnjR+1 − f

n
jR), and more generally

fn+1
i = fnjR + νR

(
fRjR+1/2 − f

R
jR−1/2

)
, (8)

defining the linear formula

fRj−1/2 =

d∑
`=−d

cR` f
n
j+`, j ∈ Z, (9)
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where cR` , ` ∈ {−d, . . . , d} are the coefficients to be determined. We will also omit superscript ”R” if
there is no confusion.
Now, the Semi-Lagrangian scheme can be recast as

fn+1
i = fnj + ν

(
d∑

`=−d

cR` f
n
j+`+1 −

d∑
`=−d

cR` f
n
j+`

)

= νcRd fj+d+1 − νcR−dfj−d + ν

d−1∑
`=−d, 6̀=−1

(cR` − cR`+1)fj+`+1 + (1 + ν(cR−1 − cR0 ))fj

= νcRd fj+d+1 − νcR−dfj−d + ν

d∑
`=−d+1, 6̀=0

(cR`−1 − cR` )fj+` + (1 + ν(cR−1 − cR0 ))fj .

Comparing the corresponding term in (7), we get

−νcR−d = L−d(ν),

ν(cR`−1 − cR` ) = L`(ν), ` = −d+ 1, . . . ,−1,

νcRd = Ld+1(ν),

ν(cR`−1 − cR` ) = L`(ν), ` = 1, . . . , d,

1 + ν(cR−1 − cR0 ) = L0(ν).

We find similarly the coefficients as follows

cR` =


−
∑̀
k=−d

L̃k(ν), ` = −d, . . . ,−1,

d+1∑
k=`+1

L̃k(ν), ` = 0, . . . , d,

(10)

We have, for ` = −d, . . . ,−1, cR` = −
∑̀
k=−d

L̃k(ν) and cL−` = −
d∑

k=−`
L̃−k(ν) = −

∑̀
k=−d

L̃k(ν) = cR` . On the

other hand, we also have for ` = 0, . . . , d, cR` =
d+1∑
k=`+1

L̃k(ν) and cL−` =
−`−1∑

k=−d−1

L̃−k(ν) =
d+1∑
k=`+1

L̃k(ν) = cR` .

We conclude that cR` = cL−`, for ` = −d, . . . , d.

Remark 2.2. By following a classical finite volume scheme (not semi-Lagrangian), we may think of
using the left flux formula for v > 0 and the right flux formula for v < 0, but it is not necessary.
On the other hand, one natural choice is to always consider the solution for which 0 ≤ ν ≤ 1

2 . Let
J ∈ Z (which can be arbitrary), and consider g(t, x) = f(t,−x + 2xJ) (putting y = −x + 2xJ , we have
x = −y+ 2xJ , and also f(t, x) = g(t,−x+ 2xJ)). We have g(tn+1, xi) = g(tn, xi + v∆t). Now, using the
formula with the left flux, we write xLj − (xi + v∆t) = νRh, if xi + v∆t is between xjL−1 and xjL . We

then have gn+1
i = gnjL − νR

(
gLjL+1/2 − g

L
jL−1/2

)
, with gLj+1/2 =

∑d
`=−d c

L
` g

n
j+`, j ∈ Z. Finally, we have

fn+1
i = gn+1

2J−i, i ∈ Z.

Remark 2.3. The right flux formula can also be deduced by the symmetry argument. We have f(t, xJ+i) =
f(t, x0 + (J + i)h) = g(t,−x0 − (J + i)h + 2x0 + 2Jh) = g(t, x0 + (J − i)h) = g(t, xJ−i). So, from the

6



scheme for g, we can deduce a scheme for f , taking fnJ+i = gnJ−i. Let us denote (·)∗,L/(·)∗,R for the

nearest grid point of characteristic foot for left/right flux. So we have fn+1
J+i = gn+1

J−i = gn(J−i)∗,L −

νR

(
gL(J−i)∗,L+1/2 − g

L
(J−i)∗,L−1/2

)
, with gLj+1/2 =

∑d
`=−d c

L
` g

n
j+`, j ∈ Z. We have x(J−i)∗,L − (xJ−i +

v∆t) = νRh, giving (J − i)∗ − ν = J − i + v∆t/h, that is (J − i)∗,L − J + i − νR = v∆t/h and thus
2J − (J − i)∗,L + νR = i+ J − v∆t/h, that is xi+J − v∆t− x2J−(J−i)∗,L = νRh, and we get (J + i)∗,R =

2J−(J−i)∗,L. Now, we have gn(J−i)∗,L = gnJ+(J−i)∗,L−J = fn2J−(J−i)∗,L = fn(J+i)∗,R . We also have gLj+1/2 =∑d
`=−d c

L
` f

n
2J−j−`, j ∈ Z, leading to gL(J−i)∗,L+1/2 =

∑d
`=−d c

L
` f

n
2J−(J−i)∗,L−` =

∑d
`=−d c

L
` f

n
(J+i)∗,R−` =∑d

`=−d c
L
−`f

n
(J+i)∗,R+` = fR(J+i)∗,R−1/2, and gL(J−i)∗,L−1/2 =

∑d
`=−d c

L
` f

n
(J+i)∗,R−`+1 =

∑d
`=−d c

L
−`f

R
(J+i)∗,R+1+` =

fn(J+i)∗,R+1/2, where we have defined fRj−1/2 =
∑d
`=−d c

L
−`f

n
j+`, j ∈ Z, and we have finally the formula

fn+1
J+i = fn(J+i)∗,R − νR

(
fR(J+i)∗,R−1/2 − f

R
(J+i)∗,R+1/2

)
, which is exactly (8), as cL−` = cR` .

3 A new limiter

The proposed scheme in the previous section is simple and very accurate for regular solutions. However,
it may provoke spurious oscillations for irregular solutions. In this section, we focus on proposing a flux
limiter, such that on the one hand, the scheme has a monotonicity-preserving property, and on the other
hand, the scheme can preserve high accuracy.
The strategy for deriving flux limiter consists of two steps: the first is to identify the monotonicity-
preserving constraints, the second is to relax the MP constraints near extrema.

3.1 Monotonicity-preserving constraints

The monotonicity-preserving constraint consists of two parts, as mentioned in [21]. The first one is that
the flux fnj+1/2 should locate between fnj and fnj+1, i.e.

mj+1/2 ≤ fnj+1/2 ≤Mj+1/2, (11)

where mj+1/2 = min
(
fnj , f

n
j+1

)
and Mj+1/2 = max

(
fnj , f

n
j+1

)
, for j ∈ Z. The second one is TVD (Total

Variation Diminishing) condition, i.e.

mj−1/2 ≤ fn+1
i ≤Mj−1/2.

Let us first present the scheme for left flux. Using the conservative form fn+1
i = fnj −ν

(
fnj+1/2 − f

n
j−1/2

)
,

the above TVD condition is equivalent to

fnj−1/2 +
1

ν

(
fnj −Mj−1/2

)
≤ fnj+1/2 ≤ f

n
j−1/2 +

1

ν

(
fnj −mj−1/2

)
.

Consider that mj−1/2 ≤ fnj−1/2 ≤Mj−1/2, then a sufficient condition of TVD scheme is

Mj−1/2 +
1

ν

(
fnj −Mj−1/2

)
≤ fnj+1/2 ≤ mj−1/2 +

1

ν

(
fnj −mj−1/2

)
. (12)

Hence the inequalities (11) and (12) are monotonicity-preserving constraints.

7



In the sequel, we will use same notations as in [37]:

minmod(x, y) =
1

2
(sgn(x) + sgn(y)) min(|x|, |y|),

median(x, y, z) = x+ minmod(y − x, z − x),

I[x1, . . . , xk] = [min(x1, . . . , xk),max(x1, . . . , xk)],

where sgn is the sign function.
As mentioned in literatures [45, 47], these monotonicity-preserving constraints will limit numerical solu-
tion to first order, the so called clipping near extrema, thus they alter high accuracy of scheme.
For instance, in [37], two cases near extrema are identified:

Case 1: When fnj = fnj+1, the constraint (11) leads that the numerical flux is limited as fnj+1/2 = fnj .

Case 2: When fnj−1 = fnj , the constraint (12) leads also that fnj+1/2 = fnj .

It is clear that when the solution is not constant near extrema, we will lose accuracy.
To remedy this drawback of monotonicity-preserving constraints, we should relax the constraints (11)
and (12) near extrema. The rule of relaxation is on the one hand to provide relaxed space as much as
possible near extrema, and on the other hand to preserve monotonicity for monotone portion.
We notice that the constraints (11) and (12) are defined by the local maximum Mj+1/2 and local minimum
mj+1/2. Thus, one possible way to relax the monotonicity-preserving constraints near extrema is to
replace the local maximum/minimum by some ”better” guess of maximum/minimum. More precisely,
we denote the ”better” guess maximum/minimum by M (1)/m(1) and M (2)/m(2). Then injecting them
into the constraints (11) and (12) yields

m
(1)
j+1/2 ≤ f

n
j+1/2 ≤M

(1)
j+1/2, (13)

and

M
(2)
j−1/2 +

1

ν

(
fnj −M

(2)
j−1/2

)
≤ fnj+1/2 ≤ m

(2)
j−1/2 +

1

ν

(
fnj −m

(2)
j−1/2

)
. (14)

Thus the definition of new monotonicity-preserving constraint is deduced as follows

Definition 3.1. For monotonic data, that is fj−2 ≤ fj−1 ≤ fj ≤ fj+1 ≤ fj+2 or fj−2 ≥ fj−1 ≥ fj ≥
fj+1 ≥ fj+2, if the following constraints are verified

1. mj+1/2 ≤ m
(1)
j+1/2,

2. Mj+1/2 ≥M
(1)
j+1/2,

3. m
(2)
j−1/2 + 1

ν (fj −m(2)
j−1/2) ≤ mj−1/2 + 1

ν (fj −mj−1/2),

4. M
(2)
j−1/2 + 1

ν (fj −M (2)
j−1/2) ≥Mj−1/2 + 1

ν (fj −Mj−1/2),

then, the constraint defined in (13)-(14) is Monotonicity-Preserving (MP for short).

Remark 3.1. For increasing data, the MP constraint can also be recast as

max

(
m

(1)
j+1/2,M

(2)
j−1/2 +

1

ν
(fj −M (2)

j−1/2)

)
≥ max

(
mj+1/2,Mj−1/2 +

1

ν
(fj −Mj−1/2)

)
= fj ,
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and

min

(
M

(1)
j+1/2,m

(2)
j−1/2 +

1

ν
(fj −m(2)

j−1/2)

)
≤ min

(
Mj+1/2,mj−1/2 +

1

ν
(fj −mj−1/2)

)
= min(fj+1,Φν,j(fj−1)).

For decreasing data, the MP constraint is equivalent to

max

(
m

(1)
j+1/2,M

(2)
j−1/2 +

1

ν
(fj −M (2)

j−1/2)

)
≥ max (fj+1,Φν,j(fj−1)) ,

and

min

(
M

(1)
j+1/2,m

(2)
j−1/2 +

1

ν
(fj −m(2)

j−1/2)

)
≤ fj .

3.2 Limiter corresponding to right flux

Similarly, one can write down corresponding MP constraints for right flux. However, we shall show a
little bit more the relation between MP constraints for left flux and right flux. For the left formula, we
have

fn+1
i = fnjL − νL

(
fLjL+1/2 − f

L
jL−1/2

)
.

When we use the right formula, we have

fn+1
i = fnjR + νR

(
fRjR+1/2 − f

R
jR−1/2

)
We have xi − v∆t = xjL − νLh and xi − v∆t = xjR + νRh, with jL, jR ∈ Z and νL, νR ∈]0, 1[. So we
get jL − νL = jR + νR = jL − 1 + 1− νL. So, we get jR = jL − 1 and νR = 1− νL. Thus for the right
formula, we have

fn+1
i = fnjL−1 + (1− νL)

(
fRjR+1/2 − f

R
jR−1/2

)
= fnjL + fnjL−1 − f

n
jL + (1− νL)

(
fRjR+1/2 − f

R
jR−1/2

)
,

that is
fn+1
i = fnjL − (fnjL − (1− νL)fRjR+1/2) + fnjL−1 − (1− νL)fRjR−1/2.

From the unicity of the formula, we have

νLf
L
jL+1/2 = fnjL − (1− νL)fRjR+1/2 = fnjL − νRf

R
jR+1/2.

For the limiting, we have m
(1,L)

jL+1/2
≤ fLjL+1/2 ≤M

(1,L)

jL+1/2
together with

M
(2,L)

jL−1/2
+

1

νL

(
fnjL −M

(2,L)

jL−1/2

)
≤ fLjL+1/2 ≤ m

(2,L)

jL−1/2
+

1

νL

(
fnjL −m

(2,L)

jL−1/2

)
, (15)

leading to the limiting

fn,L
jL+1/2

= median
(
fmin,jL , f

L
jL+1/2, fmax,jL

)
with

fmin,jL = max

(
m

(1,L)

jL+1/2
,M

(2,L)

jL−1/2
+

1

νL

(
fnjL −M

(2,L)

jL−1/2

))
,

fmax,jL = min

(
M

(1,L)

jL+1/2
,m

(2,L)

jL−1/2
+

1

νL

(
fnjL −m

(2,L)

jL−1/2

))
.
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The conditions for the right flux is on the other hand m
(1,R)

jR−1/2
≤ fRjR−1/2 ≤M

(1,R)

jR−1/2
together with

M
(2,R)

jR+1/2
+

1

νR

(
fnjR −M

(2,R)

jR+1/2

)
≤ fRjR−1/2 ≤ m

(2,R)

jR+1/2
+

1

νR

(
fnjR −m

(2,R)

jR+1/2

)
, (16)

leading to the limiting

fn,R
jR−1/2

= median
(
fmin,jR , f

R
jR−1/2, fmax,jR

)
with

fmin,jR = max

(
m

(1,R)

jR−1/2
,M

(2,R)

jR+1/2
+

1

νR

(
fnjR −M

(2,R)

jR+1/2

))
,

fmax,jR = min

(
M

(1,R)

jR−1/2
,m

(2,R)

jR+1/2
+

1

νR

(
fnjR −m

(2,R)

jR+1/2

))
.

From (15), we have

νLM
(2,L)

jL−1/2
+
(
fnjL −M

(2,L)

jL−1/2

)
≤ νLfLjL+1/2 ≤ νLm

(2,L)

jL−1/2
+
(
fnjL −m

(2,L)

jL−1/2

)
,

and so

(1− νL)m
(2,L)

jL−1/2
≤ fnjL − νLf

L
jL+1/2 ≤ (1− νL)M

(2,L)

jL−1/2
,

which leads to
m

(2,L)

jL−1/2
≤ fRjR+1/2 ≤M

(2,L)

jL−1/2
.

We have also from m
(1,L)

jL+1/2
≤ fLjL+1/2 ≤M

(1,L)

jL+1/2
, that

νLm
(1,L)

jL+1/2
≤ νLfLjL+1/2 ≤ νLM

(1,L)

jL+1/2
,

leading to

fnjL − νLM
(1,L)

jL+1/2
≤ fnjL − νLf

L
jL+1/2 ≤ f

n
jL − νLm

(1,L)

jL+1/2
,

that is
fnjL − (1− νR)M

(1,L)

jL+1/2
≤ νRfRjR+1/2 ≤ f

n
jL − (1− νR)m

(1,L)

jL+1/2
,

which leads to

M
(1,L)

jL+1/2
+

1

νR
(fnjL −M

(1,L)

jL+1/2
) ≤ fRjR+1/2 ≤ m

(1,L)

jL+1/2
+

1

νR
(fnjL −m

(1,L)

jL+1/2
).

We deduce that when we havem
(1,R)

jR+1/2
= m

(2,L)

jL−1/2
, M

(1,R)

jR+1/2
= M

(2,L)

jL−1/2
andm

(2,R)

jR+1/2
= m

(1,L)

jL−1/2
, M

(2,R)

jR+1/2
=

M
(1,L)

jL−1/2
, then the limiter for right flux is equivalent to the one for left flux.

3.3 Relax the MP constraint (11)

To relax the constraint (11), there are several ways. In the sequel, we will only consider limiter for left
flux.
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3.3.1 Linear extrapolation

We can find guess of maximum/minimum by using linear extrapolation. That is to search maxi-
mum/minimum by extrapolating from fnj−1 and fnj (or fnj and fnj+1) to interval ]xj , xj+1[. Let us define
the following notations:

fFL(α) = fnj + α
(
fnj − fnj−1

)
,

fFR(α) = fnj+1 + (1− α)
(
fnj+1 − fnj+2

)
,

fAV (α) = (1− α)fnj + αfnj+1,

where α ∈ [0, 1]. Let us set

fMD
j+1/2(α) = median(fAV (α), fFL(α), fFR(α)) = (1− α)fj + αfj+1 −minmod(αdj , (1− α)dj+1).

We write here fMD(α) instead of fMD
j+1/2(α) for brevity. We have fMD(0) = fj , f

MD(1) = fj+1,

fMD(1/2) =
fj+fj+1

2 − 1
2minmod(dj , dj+1).

Using the above notations, we can define the following guess of maximum/minimum:

• Median (MD for short)

mMD
j+1/2 = min

0≤α≤1
fMD(α), MMD

j+1/2 = max
0≤α≤1

fMD(α).

In practice, we take

α = median

(
0, 1,

2fnj+1 − fnj − fnj+2

fnj − fnj−1 + fnj+1 − fnj+2 + ε

)
, (17)

with ε = 10−10.

• Daru-Tenaud (DaTe for short)

mDaTe
j+1/2 = min

α∈{0,1/2,1}
fMD(α), MDaTe

j+1/2 = max
α∈{0,1/2,1}

fMD(α),

• Total variation diminishing (TVD for short)

mTV D
j+1/2 = min

α∈{0,1}
fMD(α), MTV D

j+1/2 = max
α∈{0,1}

fMD(α).

Proposition 3.1. For monotonic data, the constraint defined in (13)-(14) is Monotonicity-Preserving

when substituting m
(1)
j+1/2/M

(1)
j+1/2 by mX

j+1/2/M
X
j+1/2 and m

(2)
j−1/2/M

(2)
j−1/2 by mX

j−1/2/M
X
j−1/2, with X ∈

{TV D,DaTe,MD}.

Proof. We suppose that the data are increasing or decreasing. More precisely, we suppose that we have
fj−2 ≤ fj−1 ≤ fj ≤ fj+1 ≤ fj+2 (or fj−2 ≥ fj−1 ≥ fj ≥ fj+1 ≥ fj+2). For the first case, fMD is
derivable, except maybe on a finite number of points, and the derivative is fj − fj−1 or fj+2 − fj+1 or
fj+1 − fj , which is nonnegative, if as soon as fj−1 ≤ fj ≤ fj+1 ≤ fj+2. So, we get under this condition
(and also under the condition fj−1 ≥ fj ≥ fj+1 ≥ fj+2), that mTV D

j+1/2 ≤ mX
j+1/2 and MX

j+1/2 ≤ MTV D
j+1/2,

for X ∈ {TV D,DaTe,MD}.
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We define Φj,ν(x) = x + 1
ν (fj − x), which is non increasing, as we suppose 0 < ν < 1. We thus get

Φj,ν(mX
j−1/2) ≤ Φj,ν(mTV D

j−1/2), for X ∈ {TV D,DaTe,MD}, as soon as fj−2 ≤ fj−1 ≤ fj ≤ fj+1 (or

fj−2 ≥ fj−1 ≥ fj ≥ fj+1), and similarly Φj,ν(MTV D
j−1/2) ≤ Φj,ν(MX

j−1/2).

On the other hand, by the definition, we always have mTV D
j+1/2 ≥ mX

j+1/2 and MX
j+1/2 ≥ MTV D

j+1/2, for

X ∈ {TV D,DaTe,MD}.
We deduce that, if we have fj−2 ≤ fj−1 ≤ fj ≤ fj+1 ≤ fj+2 (or fj−2 ≥ fj−1 ≥ fj ≥ fj+1 ≥ fj+2),
we get mX

j+1/2 = mTV D
j+1/2, MX

j+1/2 = MTV D
j+1/2, mX

j−1/2 = mTV D
j−1/2, MX

j−1/2 = MTV D
j−1/2, together with

Φj,ν(mX
j−1/2) = Φj,ν(mTV D

j−1/2), Φj,ν(MX
j−1/2) = Φj,ν(MTV D

j−1/2), Φj,ν(mX
j+1/2) = Φj,ν(mTV D

j+1/2), Φj,ν(MX
j+1/2) =

Φj,ν(MTV D
j+1/2).

Remark 3.2. For monotonic data, we also have for X,Y ∈ {TV D,DaTe,MD}

mX
j+1/2 = mTV D

j+1/2,M
X
j+1/2 = MTV D

j+1/2,m
Y
j−1/2 = mTV D

j−1/2,M
Y
j−1/2 = MTV D

j−1/2,

and

Φj,ν(mY
j−1/2) = Φj,ν(mTV D

j−1/2),Φj,ν(MY
j−1/2) = Φj,ν(MTV D

j−1/2),

Φj,ν(mX
j+1/2) = Φj,ν(mTV D

j+1/2),Φj,ν(MX
j+1/2) = Φj,ν(MTV D

j+1/2).

Thus the constraint (13)-(14) is still Monotonicity-Preserving.

3.3.2 Umeda’s method

Umeda [40] (Um for short) has proposed another way to define guess maximum/minimum by linear
extrapolation, that is

mUm
j+1/2 = min(min(fFL(0), fFR(1)),max(fFL(1), fFR(0))).

and
MUm
j+1/2 = max(max(fFL(0), fFR(1)),min(fFL(1), fFR(0))).

Proposition 3.2. For monotonic data, the constraint defined in (13)-(14) is Monotonicity-Preserving

when substituting m
(1)
j+1/2/M

(1)
j+1/2 by mUm

j+1/2/M
Um
j+1/2 and m

(1)
j−1/2/M

(1)
j−1/2 by mUm

j−1/2/M
Um
j−1/2.

Proof. For increasing data, we have

mUm
j+1/2 = min (min(fjfj+1),max(2fj − fj−1, 2fj+1 − fj+2))

= min (fj ,max(fj + (fj − fj−1), 2fj+1 − fj+2)) .

It is clear that fj + (fj−fj−1) ≥ fj , so that max(fj + (fj−fj−1), 2fj+1−fj+2) ≥ fj . Thus mUm
j+1/2 = fj .

On the other hand, we have

MUm
j+1/2 = max (max(fjfj+1),min(2fj − fj−1, 2fj+1 − fj+2))

= max (fj+1,min(2fj − fj−1, fj+1 + (fj+1 − fj+2)))

It is clear that fj+1 + (fj+1 − fj+2) ≤ fj+1, so that min(2fj − fj−1, fj+1 + (fj+1 − fj+2)) ≥ fj+1. Thus
MUm
j+1/2 = fj+1.

Similarly, we have mUm
j−1/2 = fj−1 and MUm

j−1/2 = fj . Therefore, we have the result.
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3.4 Relax the MP constraint (12)

Let us consider the Case 2 of the subsection 3.1. Without loss of generality, we suppose that the solution
is monotone increasing, so the constraint (12) becomes

fnj ≤ fnj+1/2 ≤ f
n
j−1 +

1

ν
(fnj − fnj−1) = fnj +

(
1

ν
− 1

)
(fnj − fnj−1).

In the case fnj = fnj−1, it reduces that fnj+1/2 = fnj . One way to relax the constraint (12) is to replace

fnj − fnj−1 by dj−1/2 = minmod(dj−1, dj), that is fnj +
(

1
ν − 1

)
dj−1/2. For positive dj−1/2, we obviously

gain more space. On the other hand, for increasing data, we always have dj−1/2 ≤ fnj − fnj−1, thus the
monotonicity is preserved.
Now we can reformulate fnj +

(
1
ν − 1

)
dj−1/2 as

fnj +

(
1

ν
− 1

)
dj−1/2 = fLCj− +

1

ν
(fnj − fLCj− ) = Φν,j(f

LC
j− ),

with fLCj− = fnj − dj−1/2. Combining with the limiter introduced in section 3.3, we get

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
≤ fj+1/2 ≤ min

(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
,

forX,Y ∈ {MD,DaTe, TV D,Um}. The following proposition shows that the above limiter is monotonicity-
preserving.

Proposition 3.3. For increasing data, we have

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
= fj ,

and
min

(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
= min(fj+1,Φν,j(fj−1)).

For decreasing data, we have

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
= max(fj+1, f

UL
j− ),

and
min

(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
= fj .

Proof. For increasing data, we obviously have

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
= max

(
fj ,Φν,j(max(fj , f

LC
j− ))

)
= max

(
fj ,min(fj ,Φν,j(f

LC
j− )

)
= fj .

On the other hand,

min
(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
= min

(
fj+1,Φν,j(min(fj−1, f

LC
j− ))

)
= min

(
fj+1,max(Φν,j(fj−1),Φν,j(f

LC
j− ))

)
.
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We want to prove that, if the data are increasing, then Φν,j(fj−1) ≥ Φν,j(f
LC
j− ), that is fj−1 ≤ fLCj− , that

is
minmod(dj , dj−1) ≤ fj − fj−1

If djdj−1 ≤ 0 or (dj < 0 and dj−1 < 0), this is true, since fj ≥ fj−1. Otherwise dj > 0 and dj−1 > 0,
that is fj−1 − 2fj + fj+1 > 0 and fj−2 − 2fj−1 + fj > 0. Do we have:

fj−2 − 2fj−1 + fj ≤ fj − fj−1?

that is
fj−2 − fj−1 ≤ 0,

which is true.
Now we consider that the date are decreasing, we obviously have

min
(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
= min

(
fj ,Φν,j(min(fj , f

LC
j− ))

)
= min

(
fj ,max(fj ,Φν,j(f

LC
j− ))

)
= fj .

On the other hand,

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
= max

(
fj+1,Φν,j(max(fj−1, f

LC
j− ))

)
= max

(
fj+1,min(Φν,j(fj−1),Φν,j(f

LC
j− ))

)
We want to prove that, if the data is decreasing, then Φν,j(fj−1) ≤ Φν,j(f

LC
j− ), which rewrites fLCj− ≤ fj−1

that is
fj − fj−1 ≤ minmod(dj , dj−1).

If djdj−1 ≤ 0 or (dj > 0 and dj−1 > 0), then it is true, since fj ≤ fj−1. Otherwise, we have dj−1 < 0
and dj < 0, and minmod(dj , dj−1) = −min(−dj ,−dj−1) = max(dj , dj−1). Do we have

fj − fj−1 ≤ fj − 2fj−1 + fj−2?

that is fj−1 ≤ fj−2, which is true.

We now consider the limiter for right flux, by symmetric argument, we have the constraint

max
(
mX
jR+1/2,ΦνR,jR+1(max(MY

jR+3/2, f
LC
j+ ))

)
≤ fRjR+1/2 ≤ min

(
MX
jR+1/2,ΦνR,jR+1(min(mY

jR+3/2, f
LC
j+ ))

)
,

with fLCj+ := fjR+1 −minmod(djR+1, djR+2) = fjL −minmod(djL , djL+1). As shown in section 3.2, we

have m
(2,R)

jR+3/2
= m

(1,L)

jL+1/2
and M

(2,R)

jR+3/2
= M

(1,L)

jL+1/2
, which can also act in left flux as (omitting superscript

”L”)

max
(

min(mX
j+1/2, f

LC
j+ ),Φν,j(M

Y
j−1/2)

)
≤ fj+1/2 ≤ min

(
max(MX

j+1/2, f
LC
j+ ),Φν,j(m

Y
j−1/2)

)
,

for X,Y ∈ {MD,DaTe, TV D,Um}. The next proposition shows that this limiter is also monotonicity-
preserving.
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Proposition 3.4. For increasing data, we have

max
(

min(mX
j+1/2, f

LC
j+ ),Φν,j(M

Y
j−1/2)

)
= fj ,

and
min

(
max(MX

j+1/2, f
LC
j+ ),Φν,j(m

Y
j−1/2)

)
= min(fj+1,Φν,j(fj−1)).

For decreasing data, we have

max
(

min(fj+1, f
LC
j+ ),Φν,j(fj−1))

)
= max(fj+1,Φν,j(fj−1)),

and
min

(
max(fj , f

LC
j+ ), fj

)
= fj .

Proof. For increasing data, we first have

max
(

min(mX
j+1/2, f

LC
j+ ),Φν,j(M

Y
j−1/2)

)
= max

(
min(fj , f

LC
j+ ),Φν,j(fj)

)
= max

(
min(fj , f

LC
j+ ), fj

)
= fj .

We also have

min
(

max(MX
j+1/2, f

LC
j+ ),Φν,j(m

Y
j−1/2)

)
= min

(
max(fj+1, f

LC
j+ ),Φν,j(fj−1)

)
.

We want to prove that, if the data are increasing, then fLCj+ ≤ fj+1, that is fj−minmod(dj , dj+1) ≤ fj+1,

that is fj−fj+1 ≤ minmod(dj , dj+1); this is true, if minmod(dj , dj+1) ≥ 0. Now, if minmod(dj , dj+1) < 0,
we have dj < 0 and dj+1 < 0, that is fj−1 − 2fj + fj+1 < 0 and fj − 2fj+1 + fj+2 < 0. We also have
dj+1 ≤ minmod(dj , dj+1) < 0. So the question is: do we have fj − fj+1 ≤ fj − 2fj+1 + fj+2? this is
equivalent to fj+1 ≤ fj+2 which is true, and we get the result.

For decreasing data, the equality min
(

max(fj , f
LC
j+ ), fj

)
= fj is always true. So, it remains to prove

that, for decreasing data, we have fj+1 ≤ fLCj+ , which writes fj+1 ≤ fj − minmod(dj , dj+1), that is

fj+1− fj ≤ −minmod(dj , dj+1) this is true, if minmod(dj , dj+1) ≤ 0, since we have then fj+1− fj ≤ 0 ≤
−minmod(dj , dj+1). Now, if minmod(dj , dj+1) < 0, we have dj < 0 and dj+1 < 0, that is fj−1 − 2fj +
fj+1 < 0 and fj − 2fj+1 + fj+2 < 0. We also have dj ≤ minmod(dj , dj−1) < 0. So the question is: do
we have fj+1 − fj ≤ fj−1 − 2fj + fj+1? this is equivalent to fj ≤ fj−1 which is true, and we get the
result.

Finally, we conclude that we can propose the following limiting:

fnj+1/2 = median
(
fmin,j , f

L
j+1/2, fmax,j

)
,

with

fmin,j = min
(

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
,max

(
min(mX

j+1/2, f
LC
j+ ),Φν,j(M

Y
j−1/2)

))
and

fmax,j = max
(

min
(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
,min

(
max(MX

j+1/2, f
LC
j+ ),Φν,j(m

Y
j−1/2)

))
,

and such limiting has the property that

fmin,j = max
(
mTV D
j+1/2,Φν,j(M

TV D
j−1/2)

)
, fmax,j = min

(
MTV D
j+1/2,Φν,j(m

TV D
j−1/2)

)
,

for monotonic data, that is, if fj−2 ≤ fj−1 ≤ fj ≤ fj+1 ≤ fj+2 or fj−2 ≥ fj−1 ≥ fj ≥ fj+1 ≥ fj+2, as
we have just proven it.
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3.5 Comparison among monotonicity-preserving limiters

The objective of this subsection is to compare among the proposed MP limiters. More specially, we
will look at which one provide more relaxation space. In this subsection, without loss of generality, we
suppose that fnj−1 ≥ fnj and fnj+1 ≤ fnj+2.
We first study guess minimum/maximum provided by the methods {MD,DaTe, TV D,Um}. Um gives
the most relaxation space. Indeed, we assume fFL(1/2) ≥ fFR(1/2), that is

fnj +
1

2

(
fnj − fnj−1

)
≥ fnj+1 +

1

2

(
fnj+1 − fnj+2

)
.

It is also equivalent to
3(fnj+1 − fnj )− (fnj+2 − fnj−1) ≤ 0.

So we have
2fnj+1 − fnj − fnj+2

fnj − fnj−1 + fnj+1 − fnj+2

− 1

2
=

3(fnj+1 − fnj )− (fnj+2 − fnj−1)

2(fnj − fnj−1 + fnj+1 − fnj+2)
≥ 0,

that is

α =
2fnj+1 − fnj − fnj+2

fnj − fnj−1 + fnj+1 − fnj+2

≥ 1

2
,

Therefore,

fFL(α) ≤ fFL(1/2).

This yields also

fFL(1) ≤ fFL(α) ≤ fFL(1/2) ≤ fFL(0).

Finally, by definition, we have

mUm
j+1/2 ≤ m

MD
j+1/2 ≤ m

DaTe
j+1/2 ≤ m

TV D
j+1/2.

Second, we make an assumption that the extrema can be approximately by a convex parabolic curve,
that means the curvature is a constant dj+1/2 = d and this parabolic curve can be expressed as

f(α) = fnj + α(fnj+1 − fnj ) +
α(α− 1)

2
d.

We can thus express fnj−1 and fnj+2 by fnj , fnj+1 and d, i.e.

fnj−1 = 2fnj − fnj+1 + d,

fnj+2 = −fnj + 2fnj+1 + d.

Injecting them into (17), we obtain α = 1
2 , that means mMD

j+1/2 = mDaTe
j+1/2 = 1

2 (fj + fj+1) − 1
2d. On the

other hand, for the method Um, we have

mUm
j+1/2 = min(min(fFL(0), fFR(1)),max(fFL(1), fFR(0))

= min(min(fj , fj+1),max(fj+1 − d, fj − d).
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Without loss generality, we assume that fj ≤ fj+1, thus

mUm
j+1/2 = min(fj , fj+1 − d) = min(fj , fj + (fj − fj−1)) = fj+1 − d.

Taking difference between mMD
j+1/2 and mUm

j+1/2 yields

mMD
j+1/2 −m

Um
j+1/2 =

1

2
(fj − fj+1 + d) =

1

2
(fj−1 − fj) ≥ 0.

Again, we have

mUm
j+1/2 ≤ m

MD
j+1/2 = mDaTe

j+1/2 ≤ m
TV D
j+1/2.

Third, we will focus on the relaxed MP constraint (12). We assume again that the curvature is a constant

dj+1/2 = d. We only consider the guess maximum Φν,j+1(m
(2)
j+1/2) = m

(2)
j+1/2 + 1

ν (fj+1 −m(2)
j+1/2), which

should be large enough, for the case fj−1 ≥ fj and fj ≤ fj+1 ≤ fj+2, to provide enough relaxation space

for flux fj+3/2. As Φν,j+1 is a decreasing function, we search the minimum for m
(2)
j+1/2. According the

last subsection, m
(2)
j+1/2 takes form as

m
(2)
j+1/2 = min(mY

j+1/2, f
LC
j+1−), for Y ∈ {MD,DaTe, TV D,Um}.

It is easy to find that fLCj+1− = fj+1 − d. On the other hand, fj−1 ≥ fj gives d = fj+1 − 2fj + fj−1 ≥
fj+1 − fj , thus

fn
j +fn

j+1

2 − 1
2d ≥ fnj+1 − d, so that mMD

j+1/2 ≥ fLCj+1− . We have previously obtained that

mUm
j+1/2 = max(fj − d, fj+1 − d), thus mUm

j+1/2 ≥ fLCj+1− . As a consequence, we have m
(2)
j+1/2 = fLCj+1− ,

which means the fLC acts the most to provide relaxation space.

3.6 Summary of MP limiter

In this part, we give a summary of MP limiter for left flux, the one corresponding to right flux can be
obtained similarly. We consider a conservative form

fn+1
i = fnj − ν

(
fnj+1/2 − f

n
j−1/2

)
.

We write fj instead of fnj for better readability. We first define dj = fj+1 − 2fj + fj−1.

1. we define

fFL(α) = fj + α (fj − fj−1) ,

fFR(α) = fj+1 + (1− α) (fj+1 − fj+2) ,

fAV (α) = (1− α)fj + αfj+1,

where α ∈ [0, 1]. Let us set

fMD(α) = median(fAV (α), fFL(α), fFR(α)) = (1− α)fj + αfnj+1 −minmod(αdj , (1− α)dj+1).

We have fMD(0) = fj , f
MD(1) = fj+1, fMD(1/2) =

fj+fj+1

2 − 1
2minmod(dj , dj+1).
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We define
mMD
j+1/2 = min

0≤α≤1
fMD(α), MMD

j+1/2 = max
0≤α≤1

fMD(α).

We also define
mDaTe
j+1/2 = min

α∈{0,1/2,1}
fMD(α), MDaTe

j+1/2 = max
α∈{0,1/2,1}

fMD(α),

and
mTV D
j+1/2 = min

α∈{0,1}
fMD(α), MTV D

j+1/2 = max
α∈{0,1}

fMD(α).

DaTe stands for Daru-Tenaud, and TVD for total variation diminishing.

2. We define
mUm
j+1/2 = min(min(fFL(0), fFR(1)),max(fFL(1), fFR(0))).

and
MUm
j+1/2 = max(max(fFL(0), fFR(1)),min(fFL(1), fFR(0))).

Um stands for Umeda.

Now we define X,Y ∈ {MD,DaTe, TV D,Um}, depending on the choice of method we make. We define
also fLCj− = fj −minmod(dj , dj−1) and fLCj+ = fj −minmod(dj , dj+1).

Finally we define the limiter as follows. We start with fLj+1/2, obtained with a given d (high order

unlimited flux value), and define

fnj+1/2 = median
(
fmin,j , f

L
j+1/2, fmax,j

)
,

with

fmin,j = min
(

max
(
mX
j+1/2,Φν,j(max(MY

j−1/2, f
LC
j− ))

)
,max

(
min(mX

j+1/2, f
LC
j+ ),Φν,j(M

Y
j−1/2)

))
and

fmax,j = max
(

min
(
MX
j+1/2,Φν,j(min(mY

j−1/2, f
LC
j− ))

)
,min

(
max(MX

j+1/2, f
LC
j+ ),Φν,j(m

Y
j−1/2)

))
.

4 Numerical results

4.1 Implementation issues

We first give part of an implementation in the langage C of the limiter in Figure 1; we have chosen here
the right flux and take the example of the limiter with Um and LC. We have not tried to fully optimize
the code, but we remark that the limiter has a moderate overhead of computation, thanks to some reuse
of computation, in this flux form. Note that some implementations can lead to large floating point errors
and unsymmetric results; we have tried to limit this, in particular, by avoiding to have 1/ν factors; we
also choose to switch to first order limiter if the difference with it is very small.

4.2 Free transport equation

We first consider the classical constant advection equation ∂tf + ∂xf = 0 with initial condition f(t =
0, x) = f0(x) on the periodic domain [−1, 1] and for t ∈ [0, T ], with T ∈ R+, the final time. Spatial mesh
is xi = −1 + ih, i = 0, . . . , N , with spatial step h = 2

N , and N ∈ N∗ is the number of cells. The time
step is ∆t = T/M ≥ 0, with M ∈ N∗, the number of time steps.
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flux2 = 0.;

for (ii=-d;ii<=d;ii++) flux2+=w[ii]*q[ii];

flux2 = nu*flux2;

//TVD

fmin[1] = DMIN(q[0],q[1]);

fmax[1] = DMAX(q[0],q[1]);

fmin[0] = DMIN(q[-1],q[0]);

fmax[0] = DMAX(q[-1],q[0]);

//Um

fmin[1] = DMIN(fmin[1],DMAX(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmax[1] = DMAX(fmax[1],DMIN(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmin[0] = DMIN(fmin[0],DMAX(2.*q[-1]-q[-2],2.*q[0]-q[1]));

fmax[0] = DMAX(fmax[0],DMIN(2.*q[-1]-q[-2],2.*q[0]-q[1]));

//fLC

dj = minmod(q[-1]-2.*q[0]+q[1],q[0]-2.*q[1]+q[2]);

fmin2[1] = DMIN(fmin[1],q[0]-dj);

fmax2[1] = DMAX(fmax[1],q[0]-dj);

fmin3[0] = DMIN(fmin[0],q[0]-minmod(q[-1]-2*q[0]+q[1],q[-2]-2*q[-1]+q[0]));

fmax3[0] = DMAX(fmax[0],q[0]-minmod(q[-1]-2*q[0]+q[1],q[-2]-2*q[-1]+q[0]));

bound0 = DMAX(nu*fmin3[0],q[0]-(1.-nu)*fmax[1]);

bound0 = DMIN(bound0,DMAX(nu*fmin[0],q[0]-(1.-nu)*fmax2[1]));

bound1 = DMIN(nu*fmax3[0],q[0]-(1.-nu)*fmin[1]);

bound1 = DMAX(bound1,DMIN(nu*fmax[0],q[0]-(1.-nu)*fmin2[1]));

flux2 = DMIN(flux2,bound1);

flux2 = DMAX(bound0,flux2);

for(i=0;i<N;i++){

flux1 = flux2;

q++;

flux2 = 0.;

for (ii=-d;ii<=d;ii++)flux2+=w[ii]*q[ii];

flux2 = nu*flux2;

//TVD

fmin[0] = fmin[1];

fmax[0] = fmax[1];

fmin[1] = DMIN(q[0],q[1]);

fmax[1] = DMAX(q[0],q[1]);

//Um

fmin[1] = DMIN(fmin[1],DMAX(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmax[1] = DMAX(fmax[1],DMIN(2.*q[0]-q[-1],2.*q[1]-q[2]));

//fLC

fmin3[0] = DMIN(fmin[0],q[0]-dj);

fmax3[0] = DMAX(fmax[0],q[0]-dj);

dj = minmod(q[-1]-2.*q[0]+q[1],q[0]-2.*q[1]+q[2]);

fmin2[1] = DMIN(fmin[1],q[0]-dj);

fmax2[1] = DMAX(fmax[1],q[0]-dj);

bound0 = DMAX(nu*fmin3[0],q[0]-(1.-nu)*fmax[1]);

bound0 = DMIN(bound0,DMAX(nu*fmin[0],q[0]-(1.-nu)*fmax2[1]));

bound1 = DMIN(nu*fmax3[0],q[0]-(1.-nu)*fmin[1]);

bound1 = DMAX(bound1,DMIN(nu*fmax[0],q[0]-(1.-nu)*fmin2[1]));

flux2 = DMIN(flux2,bound1);

flux2 = DMAX(bound0,flux2);

if(fabs(flux2-nu*q[0])<1.e-16) flux2 = nu*q[0];

p[i] = q[-1]-(flux1-flux2);

}

Figure 1: Implementation of the limiter
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4.2.1 Square wave

The initial condition is f0(x) = 1, if x ∈ [−0.75, 0.25] and f0(x) = 0, if x ∈ [−1,−0.75[∪]0.25, 1]. We
represent here on Table 2, the error in L1, L2 norm, its order (in L1 and L2 norm), and the error in
total variation (TV) (defined here as the total variation minus 2), for CFL = 2.5, 0.25 and 0.025, for
SLWENO5 [33], cubic splines, d = 2 and d = 8 with and without limiter. We remark that the schemes
with and without limiter converge in L1 and L2 norm, with the same order. This is also the case for
d = 1, 3, . . . , 7, where we have found that the order in L1 is around 0.75, 0.86, 0.89, 0.90, 0.91, 0.92
and half for the L2 norm. Note that the theoretical order for the unlimited scheme is 2d+1

2d+2 in L1 and the

half value in L2, and the numerical results reproduce rather faithfully the theoretical ones. The L1 error
is almost always better for the limited scheme. For the L2 norm, the situation changes: for d = 2, it is
slightly better, but for d = 8 it is worser. The total variation error (TV) is increasing (in absolute value)
with the degree for the unlimited scheme. On the contrary, for the limited scheme, the total variation
is very well preserved, but we can observe some little degradation for the small value of CFL = 0.025
and when N is small. This can be due to diffusion (negative value of TV), or it can be that the diffusion
smooths the solution and then the scheme finds smooth extremas and relax the limiter at such places,
and this is not in contraction with the theoretical property proven. We did in fact sometimes encounter
situations where new extrema were found, but this was due to the propagation of round off errors, which
has lead us to do a dedicated modification previously explained. For the SLWENO5 scheme, we observe
that the total variation error is also small, even if it is not as well preserved, but the L1 and L2 errors
are quite big, and there is no clear order of convergence. For cubic splines, the order of accuracy is 3/4,
for CFL = 2.5 and improves for small CFL, which is linked to the fact that the cubic splines derivatives
have a higher order of accuracy. Concerning the total variation error, it is at the level of d = 1 (without
limiter) which is around 0.47, but goes higher when the CFL is small (for comparison, the total variation
error is around 1 for d = 3 and around 1.2 for d = 4).
On Table 3 (top), we have compared the limiter (lim=Um+LC), with other combinations: DaTe,Um and
Date+LC, when N = 25, CFL = 0.25 and d = 3, 6 and 8. We have also tested MD instead of Um which
generally gives very similar results to Um. For this test, for d = 3, Um seems to act favorably w.r.t DaTe;
for d = 6, we see that LC is useful; for d = 8, DaTe seems however to behave better (note that the total
variation error is positive for lim, as shown on the previous Table). For other tests, in particular with
more points, the limiters are less distinguishable.

4.2.2 Sinusöıdal wave

The initial condition is f0(x) = sin(πx). We represent here on Table 3 (middle), the error in L1, L2

norm, its order r (in L1 and L2 norm) for CFL = 2.5. for SLWENO5, cubic splines, d = 1, . . . , 4 with
limiter. In fact for this test, the solution with and without limiter is the same. In order to see differences,
we have to take N smaller (typically less than 10). We note that this is not true for SLWENO5 which
shows effectively the 5th order of convergence, but not with the full stencil corresponding to d = 2.

4.2.3 Quartic sine function

The initial condition is f0(x) = sin4(4πx). Numerical results are shown on Table 3 (bottom). For N = 25,
the mesh is coarse to discretize a function with 8 sin-like maxima and 8 more flat minima. In that case, the
method with and without limiter differ only for the L1 norm whose value is 0.654 without limiter (instead
of 0.655 or 0.656), but then on refined meshes it is no more the case. Note that the maximum principle is
here typically not satisfied and a further study enforcing global maximum principle would be worth to be
added, but is not tackled here, in order to already see the sole influence of the monotonicity preserving
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CFL=2.5
SLWENO5 cubic splines

N L1 order L2 order TV
25 0.339 0.321 0.129
50 0.216 0.65 0.245 0.39 0.000164
100 0.123 0.81 0.183 0.42 0.00065
200 0.0744 0.73 0.138 0.4 0.000256
400 0.065 0.19 0.138 0.0063 0.00499
800 0.0575 0.18 0.132 0.061 0.00117

N L1 order L2 order TV
25 0.329 0.302 0.415
50 0.201 0.71 0.231 0.38 0.417
100 0.124 0.69 0.179 0.37 0.486
200 0.0738 0.75 0.138 0.37 0.486
400 0.0437 0.75 0.107 0.37 0.483
800 0.026 0.75 0.0821 0.37 0.479

d = 2 with limiter d = 2 without limiter

N L1 order L2 order TV
25 0.26 0.279 0
50 0.146 0.83 0.21 0.41 0
100 0.0825 0.83 0.158 0.41 0
200 0.0464 0.83 0.119 0.41 0
400 0.0261 0.83 0.0891 0.41 0
800 0.0147 0.83 0.0669 0.41 4.44e-16

N L1 order L2 order TV
25 0.326 0.298 0.493
50 0.194 0.75 0.214 0.48 0.766
100 0.108 0.84 0.159 0.43 0.784
200 0.0614 0.82 0.12 0.41 0.799
400 0.0344 0.84 0.0899 0.41 0.801
800 0.0194 0.83 0.0674 0.41 0.8

d = 8 with limiter d = 8 without limiter

N L1 order L2 order TV
25 0.133 0.191 0
50 0.07 0.92 0.14 0.45 0
100 0.0371 0.92 0.102 0.45 0
200 0.0196 0.92 0.0743 0.46 0
400 0.0103 0.92 0.0541 0.46 4.44e-16
800 0.00543 0.93 0.0393 0.46 0

N L1 order L2 order TV
25 0.159 0.163 1.19
50 0.083 0.94 0.119 0.45 1.41
100 0.0476 0.8 0.0878 0.44 1.63
200 0.0246 0.95 0.064 0.46 1.64
400 0.0129 0.93 0.0466 0.46 1.66
800 0.0069 0.91 0.0339 0.46 1.66

CFL=0.25
SLWENO5 cubic splines

N L1 order L2 order TV
25 0.436 0.364 -0.233
50 0.331 0.4 0.296 0.3 -0.201
100 0.437 -0.4 0.375 -0.34 -0.0354
200 0.323 0.43 0.315 0.25 0.00369
400 0.234 0.46 0.265 0.25 0.00564
800 0.161 0.55 0.22 0.27 0.00806

N L1 order L2 order TV
25 0.364 0.334 0.00555
50 0.318 0.19 0.297 0.17 0.41
100 0.189 0.75 0.223 0.41 0.482
200 0.114 0.73 0.172 0.38 0.483
400 0.0674 0.75 0.132 0.38 0.484
800 0.04 0.75 0.102 0.38 0.481

d = 2 with limiter d = 2 without limiter

N L1 order L2 order TV
25 0.338 0.32 0.146
50 0.205 0.72 0.25 0.36 4.44e-16
100 0.116 0.83 0.188 0.41 4.44e-16
200 0.0649 0.83 0.141 0.41 0
400 0.0365 0.83 0.106 0.42 4.44e-16
800 0.0205 0.83 0.0791 0.42 -2.22e-16

N L1 order L2 order TV
25 0.337 0.306 0.451
50 0.237 0.51 0.25 0.29 0.256
100 0.146 0.7 0.189 0.4 0.721
200 0.0858 0.77 0.142 0.41 0.802
400 0.0482 0.83 0.106 0.42 0.803
800 0.0271 0.83 0.0798 0.42 0.805

d = 8 with limiter d = 8 without limiter

N L1 order L2 order TV
25 0.165 0.213 0.0389
50 0.0824 1 0.152 0.48 0
100 0.0433 0.93 0.111 0.46 4.44e-16
200 0.0227 0.93 0.0805 0.46 4.44e-16
400 0.0119 0.93 0.0584 0.46 0
800 0.00624 0.93 0.0424 0.46 -2.22e-16

N L1 order L2 order TV
25 0.145 0.173 0.95
50 0.101 0.52 0.132 0.39 1.62
100 0.0544 0.89 0.0956 0.47 1.64
200 0.0292 0.9 0.0695 0.46 1.69
400 0.0152 0.94 0.0505 0.46 1.65
800 0.00807 0.91 0.0366 0.46 1.56

CFL=0.025
SLWENO5 cubic splines

N L1 order L2 order TV
25 0.457 0.373 -0.296
50 0.351 0.38 0.307 0.28 -0.193
100 0.326 0.11 0.306 0.0029 -0.0316
200 0.279 0.23 0.303 0.016 0.00122
400 0.204 0.45 0.253 0.26 0.00482
800 0.145 0.49 0.212 0.26 0.00805

N L1 order L2 order TV
25 0.341 0.311 0.456
50 0.285 0.26 0.272 0.19 0.635
100 0.183 0.64 0.208 0.39 1.23
200 0.111 0.72 0.158 0.4 1.31
400 0.0625 0.83 0.119 0.4 1.22
800 0.035 0.84 0.0903 0.4 1.09

d = 2 with limiter d = 2 without limiter

N L1 order L2 order TV
25 0.342 0.323 0.12
50 0.211 0.69 0.253 0.35 -1.73e-06
100 0.119 0.83 0.19 0.41 -9.9e-13
200 0.0667 0.83 0.143 0.41 -4e-14
400 0.0375 0.83 0.107 0.42 -4.06e-14
800 0.021 0.83 0.0802 0.42 -4.15e-14

N L1 order L2 order TV
25 0.337 0.306 0.437
50 0.249 0.44 0.256 0.26 0.266
100 0.149 0.74 0.191 0.42 0.681
200 0.0883 0.76 0.144 0.41 0.806
400 0.0496 0.83 0.108 0.42 0.81
800 0.0278 0.83 0.0809 0.42 0.805

d = 8 with limiter d = 8 without limiter

N L1 order L2 order TV
25 0.216 0.22 -0.165
50 0.107 1 0.165 0.42 -0.000688
100 0.0565 0.92 0.121 0.45 6.8e-10
200 0.0294 0.94 0.0872 0.47 1.27e-06
400 0.0154 0.94 0.0628 0.47 5.68e-09
800 0.00809 0.92 0.0458 0.46 3.41e-09

N L1 order L2 order TV
25 0.149 0.175 0.958
50 0.103 0.53 0.133 0.39 1.66
100 0.0562 0.88 0.0965 0.47 1.72
200 0.0303 0.89 0.0701 0.46 1.78
400 0.0158 0.94 0.0509 0.46 1.72
800 0.00839 0.91 0.0369 0.46 1.68

Table 2: Error for square wave at T = 800
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sinusöıdal wave

SLWENO5 cubic splines d = 1

N L1 r L2 r
25 0.0393 0.0301
50 0.00138 4.8 0.00106 4.8
100 4.29e-05 5 3.36e-05 5
200 1.34e-06 5 1.05e-06 5
400 4.17e-08 5 3.29e-08 5
800 1.29e-09 5 1.03e-09 5

L1 r L2 r
0.0526 0.0413
0.00661 3 0.0052 3
0.000827 3 0.00065 3
0.000103 3 8.12e-05 3
1.29e-05 3 1.01e-05 3
1.61e-06 3 1.27e-06 3

L1 r L2 r
0.395 0.311
0.058 2.8 0.0456 2.8

0.00741 3 0.00583 3
0.00093 3 0.00073 3
0.000116 3 9.13e-05 3
1.45e-05 3 1.14e-05 3

d = 2 d = 3 d = 4

L1 r L2 r
0.00618 0.00486
0.000195 5 0.000153 5
6.11e-06 5 4.8e-06 5
1.91e-07 5 1.5e-07 5
5.98e-09 5 4.69e-09 5
1.87e-10 5 1.47e-10 5

L1 r L2 r
8.52e-05 6.7e-05
6.73e-07 7 5.29e-07 7
5.28e-09 7 4.15e-09 7
4.13e-11 7 3.24e-11 7
1.14e-13 8.5 1.03e-13 8.3
1.14e-13 0.0056 1.03e-13 0.00083

L1 r L2 r
1.21e-06 9.48e-07
2.39e-09 9 1.88e-09 9
4.67e-12 9 3.69e-12 9
1.14e-13 5.4 1.03e-13 5.2
1.14e-13 0.00058 1.03e-13 0.00018
1.14e-13 0.0055 1.03e-13 0.00064

quartic sine function

SLWENO5 cubic splines d = 1 with limiter

N L1 r L2 r
25 0.657 0.515
50 0.654 0.0052 0.515 0.00016
100 0.652 0.0046 0.514 0.0046
200 0.219 1.6 0.184 1.5
400 0.208 0.075 0.169 0.12
800 0.0625 1.7 0.0645 1.4

L1 r L2 r
0.654 0.515
0.654 2.1e-12 0.515 2.2e-12
0.619 0.081 0.487 0.082
0.227 1.4 0.19 1.4
0.0802 1.5 0.0647 1.6
0.013 2.6 0.0103 2.6

L1 order L2 order
0.655 0.515
0.654 0.00051 0.515 2.2e-06
0.654 8.7e-11 0.515 8.8e-11
0.623 0.07 0.491 0.071
0.241 1.4 0.2 1.3
0.0863 1.5 0.0696 1.5

d = 2 with limiter d = 4 with limiter d = 5 with limiter

L1 r L2 r
0.655 0.515
0.654 0.0013 0.515 1e-05
0.474 0.47 0.373 0.47
0.145 1.7 0.116 1.7
0.0119 3.6 0.0094 3.6

0.000391 4.9 0.000307 4.9

L1 r L2 r
0.654 0.515
0.516 0.34 0.406 0.35
0.151 1.8 0.118 1.8

0.00116 7 0.000911 7
2.41e-06 8.9 1.9e-06 8.9
4.79e-09 9 3.76e-09 9

L1 r L2 r
0.656 0.515
0.218 1.6 0.184 1.5
0.0745 1.6 0.0585 1.7

6.61e-05 10 5.19e-05 10
3.48e-08 11 2.73e-08 11
1.7e-11 11 1.35e-11 11

Table 3: On top: square wave, T = 800, N = 25, CFL = 0.25 (left, d = 3, center, d = 6 and right
d = 8); then, error for sinusöıdal wave and quartic sine function, CFL = 2.5, T = 800
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Figure 2: Shu test case, T = 800, N = 200, CFL = 2.5
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property. We also note that, in contrary to the previous case, we do not attain machine precision error,
and the right order of convergence is seen only when the grid is fine enough, with enhanced results when
the order of the method gets higher. For the SLWENO5 method, the mesh is not fine enough to get the
right order of convergence and is not as accurate as cubic splines. On the other hand, the method with
d = 2 shows better results than cubic splines. The method with d = 1 is less accurate than SLWENO5,
especially for N = 200, but for N = 400 (or even 800) it is not so different; in fact, it is almost of the
accuracy of cubic splines (little less accurate) with twice less points.

4.2.4 Shu test case

The initial condition is given by

f0(x) =


1
6 (G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) , x ∈ [−0.8,−0.6]
1, x ∈ [−0.4,−0.2]
1− |10(x− 0.1)|, x ∈ [0, 0.2]
1
6 (F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)) , x ∈ [0.4, 0.6]
0, x ∈ [−1,−0.8] ∪ [−0.2, 0] ∪ [0.2, 0.4] ∪ [0.6, 1],

with G(x, β, z) = e−β(x−z)2 and F (x, α, a) =
√

max(1− α2(x− a)2, 0), and a = 0.5, z = −0.7, δ =

0.005, α = 10 and β = ln(2)
36δ2 . Numerical results are given on Figure 2. We observe that SLWENO5 gives

a quite diffusive behavior, except for the last bump. The cubic splines method is also diffusive, and has
more oscillations; the last bump is also well captured. We see oscillations for the scheme without limiter
which are amplified for d = 8. On the other hand, the monotonicity is well preserved for the scheme with
limiter. The results are less diffusive and we see that the high order interpolation is useful; the last bump
is resolved with lower accuracy for d = 2, but the results are improved going to d = 8; it seems that here
the DaTe limiter behaves better for the last bump. We also remark that for the rectangular function, the
result is not symmetric, but this could be changed by just shifting the grid of h/2.

4.3 Vlasov-Poisson system

We solve the Vlasov equation ∂tf + v∂xf + E∂vf = 0, coupled with the Poisson equation; E = −∂xφ
and −∂2

xφ = ρ − 1, using Strang splitting. We also have an initial condition f(t = 0, x, v) = f0(x, v).
We can either first do the advection in x: ∂tf + v∂xf or the advection in v: Poisson equation and
then ∂tf + E∂vf = 0. In the numerical results we consider to do at each time step the advection in x
for ∆t/2, the advection in v for ∆t and then again the advection in v for ∆t/2. Then unknowns are
fni,j ' f(tn, xi, vj), with tn = n∆t. The phase-space domain is [0, L] × [−vmax, vmax], and we have xi =
i∆x, i = 0, . . . , Nx, with ∆x = L/Nx and vj = −vmax + j∆v, j = 0, . . . , Nv, with ∆v = 2vmax/Nv, with
Nx, Nv ∈ N∗. We also have t ∈ [0, T ], with T ∈ R+, the final time, and the time step is ∆t = T/M ≥ 0,
with M ∈ N∗, the number of time steps.

4.3.1 Bump on tail [15]

Initial condition is f0(x, v) = (1 + ε cos(kx))( 0.9√
2π
e−v

2/2 + 0.1
vth
√

2π
e−(v−u)2/(2v2th)), with u = 4.5, ε =

0.04, vth = 0.5 and k = 0.3. The domain is [0, 3 2π
k ] × [−vmax, vmax], with vmax = 9. We use ∆t = 0.1

and final time T = 400. Numerical results are given on Figure 3 and 4.
In this test, we have three small vortices. In order to discretize them well in space, we use a number of
points in x that is a multiple of 3; otherwise, the method with limiter is not able to keep the three vortices
and some merging appears leading also to a break in electric energy, as observed in [15] for some methods.
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On Figure 3, we represent the time evolution of the electric energy. Time step is fixed to ∆t = 0.1. As
reference solution, we use d = 2 with limiter on 1023 × 1024 grid (similar results are obtained without
limiter), and we compare it to SLWENO5, cubic splines, d = 2, d = 6 with limiter, without limiter and
with DaTe limiter, on 63 × 64 and 129 × 128 grid. We see that the limiter damps the electric energy
and this makes the convergence slower to the reference solution, and on the other hand the solution has
less oscillations in time. Increasing the degree permits to damp less on 63× 64 grid, but this seems not
to remain true on the finer grid 129 × 128, which might be surprising at first sight. This is confirmed
looking at time evolution of the L2 norm on Figure 4. First it is better preserved using the higher order,
but then it is no more the case, maybe because the solution has more details and this can lead to more
diffusion in later times. Concerning the L1 norm, we clearly see the effect of the limiter which does the
job of better conserving it, and this is improved when using a higher degree. The total energy is however
generally better conserved without limiter. The DaTe limiter is more diffusive, as we can see it on the
electric energy and the L2 norm, and on the other hand the L1 norm can be better preserved. For the
total energy, there is an effect, but no clear winner. The comparison with SLWENO5 confirms that the
monotonicity preserving schemes are much less diffusive; the L1 norm is better preserved than for d = 2,
but worser than for d = 6. Even if the convergence is not as fast as the method without limiter and high
degree, the method with limiter is quite comparable to the cubic splines method. In particular, the L2

norm is in the same range, or sometimes even better.

4.3.2 Two stream instability [15]

Initial condition is f0(x, v) = (1 + ε cos(kx))( 1
2vth
√

2π
e−(v−u)2/(2v2th) + 1

2vth
√

2π
e−(v+u)2/(2v2th)), with ε =

0.05, u = 0.99, vth = 0.3 and k = 1. The domain is [0, 26π] × [−5, 5]. Numerical results are given on
Figure 5, 6, 7 and 8. We use ∆t = 0.1.
We first look at the solution at time T = 1000, on Figure 5. We see that on a 128×128 grid, two remaining
holes as in [15]. One exception is for the DaTe limiter where the centered hole has disappeared, for d = 2.
We note also that the solution with limiter is less oscillatory and that the SLWENO5 method is more
diffusive, almost as the method with d = 1. Looking for finer grid leads however to different behaviors:
the holes are not always at the same place and the number of holes can differ. We remark also that
the limiter removes oscillations. Comparing the solution with 6-th order scheme in time (o6) [7] leads
to different results, indicating that the solution is not converged at that time (both in phase space and
time). On the other hand, we see the convergence on 128 × 128 grid until T ' 30 and on 1024 × 1024
until T ' 55, looking at the plots of the electric energy (bottom of Figure 6). At time T = 70, the
solution seems to be converged, as the o6 scheme or Strang scheme with or without limiter give very
similar results; note that there is no merging at that time for the converged solution, and this might be
true also at time T = 1000, but the convergence seems to be unreachable; if the way to converge is the
same, we would need more than 2200 points per direction to converge (computed on the basis that we can
gain 8 in time by multiplying the grid per direction by 2). Note that the current biggest simulations are
on 1286 = 242 grid which is still far from 2200. We see on such test case, that more oscillations appear
when there is no limiter (see Figure 7). For d = 2 with limiter, there is also more oscillations, but we
see that the L1 norm is also worse conserved, which is not true for the DaTe limiter, that acts more. We
see that the L1 norm is better preserved with the limiter, and the situation even improves when using a
higher degree, which is less the case for the solution without limiter.
Concerning the total energy, on a 128 × 128 grid, it is conserved up to 0.5% for cubic splines, 2% for
d = 2 and 3% for d = 4 (with limiter). Without limiter, the energy can be better preserved (0.3% for
d = 2 and 0.1% for d = 4).
Note also that the results can even be improved with the order 6 scheme (see [7]).
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Figure 3: Electric energy for bump on tail test case 63× 64 (left) and 129× 128 (right) grid
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Figure 4: Time evolution of L2 norm, L1 norm and total energy for bump on tail test case
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On Figure 8, we observe convergence of the methods at time T = 70: the methods with or without
limiter and with Strang or o6 scheme on 4096× 4096 grids are almost undistinguishable, which confirms
the result seen on the electric energy (Figure 6).

4.3.3 Beam test case [46]

Initial condition is f0(x, v) = 4√
2πα

χ(x)e−v
2/(2α), with χ(x) = 1

2erf(x+1.2
0.3 ) − 1

2erf(x−1.2
0.3 ) and α = 0.2.

Also we do not solve exactly the previous Vlasov-Poisson system, but ∂tf + v
ε∂xf + (E − x

ε )∂vf = 0,
together with electric field E satisfying 1

x∂x(xE) =
∫
fdv, on [0, L/2] and imposing that E is odd

function. E is given by E = 1
x

∫ x
0
sρ(t, s)dx and we use a trapezoidal formula for the approximation of

the integral. We choose ε = 0.7 and the domain is [−L/2, L/2]× [−vmax, vmax], with L = 8 and vmax = 4.
Numerical results are given on Figure 9, 10, 11 and 12. As reference solution, we use d = 4 with limiter
on 4096× 4096 grid; we take ∆t = 0.1. We see that the limiter permits again to better preserve the L1

norm. The L2 norm is better preserved increasing the degree on the coarse mesh 64 × 64 and for short
time on 256 × 256 grid, but then it is the contrary. On the other hand, we see that the solution with
d = 8 is little less diffused than with cubic splines; the most diffused solution is again SLWENO5.

Conclusion and perspectives

We have revisited the monotonicity preserving schemes for semi-Lagrangian schemes based on odd order
Lagrange interpolation. A detailed numerical study is performed for 1d constant advection and Vlasov-
Poisson simulations. The new scheme has a proven monotonicity preserving property and controls in
particular the L1 norm, with some limited degradation of the L2 norm. Comparison with cubic splines
and SLWENO5 is made to show the accuracy of our method. One natural extension of this work is to add
global maximum principle (in particular positivity), that we have here not added, permitting to measure
the L1 norm conservation as indicator of the well behavior of the scheme (if positivity is ensured, in
our conservative setting, the L1 norm automatically exactly satisfied). For this, we can follow the works
[44, 38]. One other more demanding extension is to consider the non constant advection. For this, we
can work as in [15] on the splitted conservative form, but this has the disadvantage of breaking of the
conservation of constant states at the level of the equations [28]. Another more common and popular
method is to work on the 2D unsplit advective form [35, 46, 28]. However, the conservation of mass
is lost, and this is generally amplified when using the limiters [46, 28]. A dual way is to work with
the more involved and technical 2D unsplit conservative form [12], which has been later developed in a
Semi-Lagrangian Discontinuous Galerkin context [5, 6].
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Figure 5: Two stream instability: from left to right: d = 1, 2, 3, 4; from top to bottom: lim, no lim, DaTe,
Um, DaTe+LC, on 128 × 128 grid; 6th row: SLWENO5 and splines: 128 × 128 grid; then 1024 × 1024
grid; 7th row: d = 2 lim and no lim; then d = 4 lim and no lim, all on 1024× 1024 grid; last row: d = 4
lim, d = 4 no lim; d = 4 lim (o6), d = 4 no lim (o6) on 4096× 4096 grid.
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Figure 6: Time evolution of electric energy for two stream instability test case (top: until T = 1000,
bottom until T = 70)
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Figure 7: Time evolution of L2 norm (top), L1 norm (middle) and total energy (bottom) for two stream
instability test case
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Figure 8: Two stream instability:at time T = 70 with d = 4, ∆t = 0.1 on 4096× 4096 grid; top: lim with
order 6 splitting; then zoom of the two left holes: top/bottom: no lim/lim with order 6/Strang splitting
(left/right)
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Figure 9: Time evolution of kinetic energy for beam test case; top, 64 × 64 grid and ∆t = 0.1, middle
256 × 256 grid and ∆t = 0.1 bottom 256 × 256 grid and ∆t = 0.01; from left to right: without limiter,
with limiter and cubic splines/SLWENO5
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Figure 10: Time evolution of L1 norm for beam test case; top, 64×64 grid and ∆t = 0.1, middle 256×256
grid and ∆t = 0.1 bottom 256×256 grid and ∆t = 0.01; left without limiter; right with limiter; reference
is d = 4 with limiter on 4096× 4096 grid
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Figure 11: Time evolution of L2 norm for beam test case; top, 64×64 grid and ∆t = 0.1, middle 256×256
grid and ∆t = 0.1 bottom 256× 256 grid and ∆t = 0.01; left without limiter; right with limiter
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Figure 12: Beam test case: distribution fonction at time T = 100 with d = 8, ∆t = 0.1. From top to
bottom and left to right: d = 8 lim, d = 8 no lim, SLWENO5, cubic splines all on 256× 256 grid; no lim
on 4096× 4096 grid, lim on 4096× 4096 grid
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