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Abstract

The aim of this paper is to determine the shape of a �xed-bed reactor which maxi-
mizes the conversion rate under the constraints of process model equations (i.e. conti-
nuity, Navier-Stokes, and mass balance equations), energy dissipation, iso-volume, and
manufacturing. Incompressible �uid, laminar �ow regime and steady-state conditions
in the reactor are the main assumptions taken into account. The optimization method
developed is based on the adjoint system method and OpenFOAM framework is used
as CFD solver to compute the state vector and its adjoint variables introduced by
the optimization approach. The algorithm developed is then tested on two di�erent
cases, a reactor where a �rst order homogeneous reaction takes place and another one
involving a surface reaction. The optimization results show a signi�cant improvement
of the conversion rate by 2.7% in the �rst case, and by 16% in the second one. Finally,
initial and optimal shapes are manufactured using a 3D printing technique.

Keywords: Shape optimization, Adjoint system method, Computational �uid dynamics,
OpenFOAM environment, Fixed-bed reactor, Additive manufacturing

1 Introdution

The objective of shape optimization is to deform the outer boundary of an object in order
to minimize or maximize a performances index, while satisfying given constraints. Histor-
ically, shape optimization methods have been used in cutting-edge technologies mainly in
advanced areas such as aerodynamics (Burgreen et al., 1994; Reuther et al., 1999; Hicks
and Henne, 1978). However, they have recently been extended to other engineering areas
where the shape greatly in�uences the performances. For example, in hydrodynamics, the
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Figure 1: Example of optimized shapes using (a) parameter optimization - optimization of
the angle and the thickness of an agitator blades (Hoseini et al., 2020), (b) geometry opti-
mization - determination of the obstacle shape that minimizes the pressure drops (Dapogny
et al., 2018) and (c) topology optimization - determination of the optimized topology and
shape of a heat exchanger (Dong and Liu, 2020).

shape of a pipe that minimizes the energy dissipated by the �uid due to viscous friction
was analyzed (Tonomura et al., 2010; Henrot and Privat, 2010; Courtais et al., 2019).

In chemical engineering however, where the shape of unit operations (e.g. reactors,
tanks, stirrers, pipes. . . ) is an important design parameter, the shape optimization has
not been extensively investigated. This important issue deserves therefore to be addressed
and will probably result in a paradigm shift in optimal design and operation of processes.

Shape optimization methods can be grouped into 3 main families illustrated in Fig. 1:

(a) The �rst family is parameter optimization (Lin et al., 2011; Kundu, 2007) where the
general shape of the object to design is known and the optimization method can
only modify some parameters chosen by the user. Figure 1(a) presents the shape
optimization of an agitator where only the thickness and the angle of the blades are
the decision variables.

(b) The second one is geometry optimization where the decision variables are no longer
de�ned by some parameters but by the boundary of the optimized object (Courtais
et al., 2019; Henrot and Privat, 2010). This kind of family allows a deformation of
the global shape, but, it prevents topology changes. In 2D, it means that the number
of holes or inclusions remains invariable during the optimization process. Figure 1(b)
presents the determination of the obstacle shape that minimizes the pressure drops.
Since a geometry algorithm is used, the obstacle cannot be removed.

(c) The last one is topology optimization which is an extension of geometry optimization
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and allows topology changes (Dong and Liu, 2020; Zhou et al., 2018). In Fig. 1(c),
the two-dimensional topology optimization of a heat exchanger is shown. In this
case, the topology is one of the decision variables.

On the one hand, parameter optimization methods are by far the most developed in
chemical engineering area since they are the most straightforward to implement, compu-
tationally less expensive than the other methods, and the determined shapes are easily
manufacturable since the general shape is chosen by the user. However, they do not allow
signi�cant modi�cations of the shape, and consequently lead to poor optimization per-
formances. Indeed, parameter optimization methods consist in reformulating the shape
optimization problem as a static optimization problem, and therefore provide limited �ex-
ibility since the number of decision variables is low. For example, Hoseini et al. (2020)
optimized the shape of an agitator through three geometrical parameters of the blades
such as the thickness and the vertical angle (Fig. 1), Liang and Yuan (2020) modi�ed the
con�guration of a Y-shape microreactor through the position and the width of a sudden
contraction of the microreactor section, and Grundtvig et al. (2017) optimized the con�g-
uration of a bio-catalytic microreactor by adapting the position of 140 boundary points
and then interpolating to build the outer boundary of the reactor.

On the other hand, topology optimization approaches such as the level-set (Kambam-
pati et al., 2021) or the homogenization (Ozguc et al., 2021) methods are mainly developed
for optimal design of structures in mechanical engineering. They allow to explore all possi-
ble shapes and topologies during the optimization process, and therefore lead to interesting
performance improvements. However, those methods are more CPU time consuming and
the optimal geometry could be complex and not straightforward to manufacture (Allaire
et al., 2017).

Geometry optimization methods o�er an adequate compromise between the advantages
and drawbacks of topology and parameter approaches. Indeed, they allow the analysis of
a wide range of shapes while preserving the manufacturability of the �nal shape even
if it can be complex in practice. For this purpose, the recent development of additive
manufacturing techniques can provide a 3D printing solution since they allow to extend
the set of realistic shapes but require to consider some additional constraints. Two of
these constraints impose a minimum thickness on the printed solid part and a minimum
distance between solid elements. A possible methodology for their treatments can be found
in Allaire et al. (2016), however, in this paper, we provide a simpler alternative well adapted
to the application considered.

The present work is devoted to the development of a geometry optimization algorithm
using the adjoint system method. The resulting algorithm is used in optimal design of
�xed-bed reactors where

(i) a �rst order homogeneous reaction takes place, (HR)

(ii) a surface reaction limited by the external mass transfer occurs. (SR)

These two cases will thereafter be referred to as (HR) and (SR), respectively. In
both cases, the objective is to �nd the shape of the packing which minimizes the average
concentration of the reactant at the outlet of the reactor, i.e. maximizes the conversion
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rate of the reactor, while meeting the constraints of (i) process model, (ii) iso-volume
maintaining the same hydraulic residence time between initial and optimal reactors, (iii)
energy dissipation, and (iv) manufacturing. The resulting optimal shapes will then be
tested numerically by means of residence time distribution computations.

The paper is organized as follows. First, the optimization problems are de�ned (Section
2) and their mathematical formulations are presented (Section 3). Section 4 describes the
implementation of the algorithm within OpenFOAM framework. Finally, Section 5 is
devoted to the presentation of the numerical results and the manufactured optimal shapes.

Symmetry

Γ
Γlat

ΓoutΓin

Ω

O y

x

240 mm

10 mm

45 mm
10 mm

Figure 2: Initial shape of the reactor used for the optimization process Ω0. A symmetry
axis is located in the reactor center on which symmetry boundary conditions are imposed.

2 Presentation of the optimization problems considered

2.1 Case studies and their modeling

In this work, the process considered is a �xed-bed reactor where a single-phase liquid �ows.
The initial structure of the packing consists of elliptical obstacles (whose half axes are 5
mm and 2.5 mm) uniformly distributed in the reactor. Fig. 2 illustrates schematically the
initial con�guration of the reactor to be optimized as well as its dimensions.

The reactor is denoted Ω (see Fig. 2) and is delimited by the union of the �uid inlet (Γin),
outlet (Γout), lateral wall (Γlat) and free (Γ) boundaries. This last boundary represents the
reactor packing and stands for the decision variable of the optimization problem. It is the
only boundary that will evolve during the optimization process.

The �uid �ow in the reactor Ω is modeled by the momentum balance described by the
Navier-Stokes and the continuity equations and the associated boundary conditions: (a)
no slip condition applied on walls Γlat and Γ, (b) a �ow velocity imposed at the inlet, and
(c) the normal stress tensor component imposed equal to zero at the outlet. The system
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of equations is therefore expressed as:

−ν∆U + (U · ∇U) +∇p = 0 in Ω

∇ ·U = 0 in Ω

U = Uin on Γin

U = 0 on Γlat ∪ Γ

σ(U , p)n = 0 on Γout

(1a)

(1b)

(1c)

(1d)

(1e)

where n is the boundary normal vector, ν and p are the kinematic viscosity and p the
kinematic pressure (i.e. the absolute pressure divided by the �uid density), respectively.
According to equations (1a) and (1b), the �uid �ow is assumed stationary, incompressible,
and the relative pressure is imposed equal to zero at the reactor outlet. σ(U , p) is the
stress tensor divided by the �uid density. It is de�ned by

σ(U , p) = 2νε(U)− pI with ε(U) =
1

2
(∇U + (∇U)T ) (2)

where I is the identity matrix.
At the inlet boundary Γin, the velocity pro�le is uniform and follows (Oy) direction.

It is set to a small value in order to impose low particle Reynolds number (see Eq. (3))
ensuring a laminar �ow in the reactor.

Rep =
udH
ν

(3)

where u is the super�cial velocity and dH = 4S
P is the hydraulic diameter with S = πab

the surface of the elliptical obstacles (a and b are the half axes) and P ≈ π
√

2(a2 + b2)
their perimeter. In the initial con�guration, the particle Reynolds number does not exceed
7 which justi�es the laminar �ow assumption. It will be veri�ed in the optimal shapes of
the reactor.

The mass transfer modelling is presented for the two cases (HR) and (SR) in the
following subsections.

2.1.1 First case study: homogeneous reaction

The �rst reaction considered is of type R→ P, homogeneous and of �rst order with respect
to the reactant. Its kinetics is expressed as:

r = kC (4)

where k is the kinetic constant and C the concentration of the reactant R. In this case, we
assume that the reaction only takes place in the �uid phase (i.e. in Ω), the packing just
acts as a static mixer. Thus, the mass balance on R is described by the following system
of PDEs: 

−D∆C + U · ∇C + kC = 0 in Ω

C = Cin on Γin

∂C

∂n
= 0 on Γlat ∪ Γout ∪ Γ

(5a)

(5b)

(5c)
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where D is the mass di�usion coe�cient of the reactant R in the solvant.

2.1.2 Second case study: surface reaction

The second reaction is heterogeneous, limited by the external mass transfer and occurs
on walls Γ and Γlat. It is assumed that the packing Γ and the lateral wall Γlat are both
catalyst impregnated and the reaction is very fast at the surface of catalyst leading to
null concentration on those boundaries. All these assumptions lead to the following mass
balance equations: 

−D∆C + U · ∇C = 0 in Ω

C = Cin on Γin

C = 0 on Γlat ∪ Γ

∂C

∂n
= 0 on Γout

(6a)

(6b)

(6c)

(6d)

2.2 Shape optimization problems

The shape optimization problems are de�ned by:

� a performance index to be minimized. It is de�ned by the average concentration
of the reactant at the reactor outlet. Such a performance index is relevant since the
conversion rate depends on the average concentration of the reactant at the outlet.
It is given by:

J(Ω) =

∫
Γout

C dσ (7)

where C is the solution of (5) or (6) depending on the case.

� decision variables. In a shape optimization problem the decision variable is the
shape of the domain described by the free boundary Γ.

� a process model. It is described by the Navier-Stokes momentum equations without
turbulence model, the continuity Eqs. (1) and the mass balance equations (5) or (6).

� a set of constraints. Here, four constraints are considered. The �rst constraint is an
iso-volume constraint de�ned in order to maintain the same residence time between
initial and optimal shapes. The second constraint is an inequality constraint on
energy dissipation by the �uid due to viscous friction. Such a constraint is relevant
since the energy dissipation is proportional to the pressure drop. The two constraints
are given by the following relations:

CV(Ω) = V(Ω)− V(Ω0) = 0 (8)

CE(Ω) = 2ν

∫
Ω
|ε(U)|2 dx− 2ν

∫
Ω0

|ε(U)|2 dx︸ ︷︷ ︸
E0

6 0 (9)
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with |ε(U)|2 = ε(U) : ε(U). The notation '':'' is the double inner product of two
tensors de�ned by A : B =

∑3
i,j=1Ai,jBi,j . In Eqs. (8) and (9), V(Ω) represents the

volume of Ω and (U ,p) is the solution of Eqs. (1).

The two last constraints take into account the manufacturability of the optimal shape
of the object to be designed. These constraints involve a minimum distance between
two obstacles and a minimum thickness of obstacles. Since the di�erentiation with
respect to the domain is a complex task (Feppon et al., 2020), these constraints are
not included in the Lagrangian, their treatment is detailed in paragraph 4.1.

The Lagrangian of the problem which aggregates the performance index, the volume
and energy constraints is de�ned as:

L(Ω, λV , λE) = KcritJ(Ω) + λVCV(Ω) + λECE(Ω) (10)

where Kcrit is a constant ensuring dimensional consistency of the terms of the Lagrangian
functional, λV and λE are the Lagrange multipliers respectively associated to volume and
energy constraints.

In conclusion, the shape optimization problem is formulated as:

min
Ω

J(Ω)

s.t. Ω ∈ C

(U , p) solution of Eqs. (1)

C solution of Eqs. (5) or (6)

(11)

where C represents the set of constraints given by

C := {Ω ⊂ IR2 | CV(Ω) = 0 and CE(Ω) 6 0}. (12)

3 Shape optimization method: adjoint system method

The method developed to solve the formulated shape optimization problem is based on
geometry optimization. It is an iterative method which computes the gradient of the
performance index and the constraints by means of the adjoint system method. Since two
systems of PDEs (i.e. systems of momentum and mass balance equations) are involved in
the model of each case studied, two adjoint systems are therfore introduced.

3.1 Fundamental principle of the Hadamard method

In the �eld of geometry optimization, the shape of an object is optimized by varying its
boundaries which can be classi�ed into two categories:

� �xed boundaries which will not be distorted during the optimization process. In this
study, the boundaries Γin, Γout and Γlat are �xed.

� free boundaries which are the decision variables of the problem. In our cases, the
free boundary is Γ.

7



It is interesting to consider the largest possible free boundary in order to increase the degree
of freedom of the optimization method. This will allow to reach a wider range of possible
shapes, which will give better optimization performances. However, it will increase the
number of local minima. The classi�cation of the boundaries is the choice of the engineer
who wants to optimize the object and depends mainly on the process involved (position of
the �uid inlet and outlet, external boundary of the object, etc.).

The method used in this work is an iterative method that determines, from an initial
shape of an object, a sequence of shapes that improve the performances of the object
at each iteration by adapting the position of its boundaries. It is based on Hadamard's
approach (Hadamard, 1908) and relies on the concept of derivative with respect to the
domain, also called derivative in the sense of Hadamard (Allaire and Schoenauer, 2007;
Henrot and Pierre, 2005). It consists in determining at each iteration the sensitivity of the
performance index or the Lagrangian with respect to a small perturbation of the boundaries
∂Ω according to the following relation:

Ωi+1 = (Id + tV )(Ωi) (13)

where Id is the identity operator, t is the method step of the iterative algorithm, i is the
iteration index and V is the vector �eld standing for the perturbation. Fig. 3 illustrates
the displacement of Ω during an iteration.

Ωi

Ωi+1

tV (x)

x

Figure 3: Example of an iteration of the shape optimization method. tV (x) is the small
perturbation at point x ∈ ∂Ω, Ωi represents the domain at iteration i.

The approach is based on the recurrence formula (13) and the objective of the method
is to determine, at each iteration, the step t and the vector �eld V leading to a decrease
of the Lagrangian.

The derivative in the sense of Hadamard is a concept of direction derivative. The
Lagrangian derivative following the direction V is computed with the following formula
(Henrot and Pierre, 2005):

L′(Ω, λV , λE)(V ) = lim
t→0

L(Ωt, λV , λE)− L(Ω, λV , λE)

t
(14)
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with Ωt = (Id +tV )(Ω).

3.2 Adjoint system method

The derivative in the sense of Hadamard can be decomposed in the same way as standard
derivatives. Thus, the di�erential with respect to the domain of a sum is equal to the sum
of the di�erentials:

L′(Ω, λV , λE)(V ) = KcritJ
′(Ω)(V ) + λVC

′
V(Ω)(V ) + λEC

′
E(Ω)(V ) (15)

Standard di�erentiation formulae with respect to the domain applied to each term
(Allaire and Schoenauer, 2007; Henrot and Pierre, 2005; Dapogny et al., 2018) yield

J ′(Ω)(V ) =
d

dt

∫
Γout

C dx

∣∣∣∣
t=0

=

∫
Γout

C ′ dσ (16)

C ′V(Ω)(V ) =
d

dt

(∫
Ωt

1 dx

∣∣∣∣∣
t=0

− V(Ω0)

)
=

∫
∂Ω

(V · n)dσ (17)

C ′E(Ω)(V ) =
d

dt

(
2ν

∫
Ωt

|ε(U)|2 dx
∣∣∣∣
t=0

− E(Ω0)

)

= 2ν

∫
∂Ω
|ε(U)|2(V · n) dσ + 4ν

∫
Ω
ε(U) : ε(U ′) dx

(18)

In Eqs. (16), (17) and (18), U ′ describes the sensitivity of U with respect to the
variation of Ω. According to De La Sablonière et al. (2011) and Henrot and Privat (2010),
U ′ is the solution of the following system of equations:

−ν∆U ′ + (U ′ · ∇)U + (U · ∇)U ′ +∇p′ = 0 in Ω

∇ ·U ′ = 0 in Ω

U ′ = 0 on Γin ∪ Γlat

U ′ = −∂U
∂n

(V · n) on Γ

σ(U ′, p′)n = 0 on Γout

(19a)

(19b)

(19c)

(19d)

(19e)

where ∂U
∂n = ∇Un is the partial derivative with respect to the normal n.

Similarly, C ′ represents the sensitivity of the concentration C with respect to the vari-
ation of the domain. For the (HR) case, C ′ is the solution of the following system of PDEs
(Courtais et al., 2021).

−D∆C ′+U ·∇C ′+U ′ ·∇C+kC ′= 0 in Ω

C ′ = 0 on Γin

∂C ′

∂n
= K(C,V ) on Γ

∂C ′

∂n
= 0 on Γout∪ Γlat

(20a)

(20b)

(20c)

(20d)
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withK(C,V )= −∂C2

∂n2 (V ·n)+∇C ·(∇(V ·n)−(∇(V ·n)·n)n). In the above system, equa-
tion (20b) comes from the usual di�erentiation formulae, equations (20a) and (20d) from
the di�erentiation formula of a product and from a clever adaptation of Schwarz theorem
(Henrot and Pierre, 2005, Chapter 5), and equation (20c) is a formula of di�erentiation
with respect to the domain for a Neumann-type boundary condition on the free boundary
(Henrot and Pierre, 2005, Chapter 5). For the case SR, C ′ is the solution of the following
system of PDEs (Courtais, 2021):

−D∆C ′ + U · ∇C ′ + U ′ · ∇C = 0 in Ω

C ′ = 0 on Γin ∪ Γlat

C ′ = −∂C
∂n

(V · n) on Γ

∂C ′

∂n
= 0 on Γout

(21a)

(21b)

(21c)

(21d)

Following Eqs. (16), (17) and (18), the derivative of the Lagrangian rewrites as follows:

L′(Ω, λV , λE)(V ) = Kcrit

∫
Γout

C ′ dσ + λV

∫
∂Ω

(V · n)dσ

+ 2νλE

(∫
∂Ω
|ε(U)|2(V · n) dσ + 2

∫
Ω
ε(U) : ε(U ′) dx

) (22)

The above expression is not very usable for practical purposes. Indeed, some terms of
equation (22) do not depend explicitly on the scalar product (V · n). The dependence is
achieved through U ′. Under this form, it is complex to choose an appropriate perturbation
V leading to a decrease of the Lagrangian functional. It is therefore more suitable to express
the Lagrangian derivative in the following form:

L′(Ω, λV , λE)(V ) =

∫
∂Ω
G(Ω, λV , λE)(V · n) (23)

where G(Ω, λV , λE) is the shape gradient, a function de�ned on the boundary of the
domain ∂Ω that depends on the solution of the Navier-Stokes equations (U ,p) and the
solution of the mass balance system C. To compute the gradient, adjoint system method
is used, based on the introduction of two adjoint states: one associated to the Navier-Stokes
equations (Ua, pa) and the other associated to the mass balance system Ca. Finally, from
the values of the function G(Ω, λV , λE), the mesh displacement leading to a decrease of the
Lagrangian is computed solving the following system (Courtais, 2021):

−γ∆V + V = 0 in Ω

V = 0 on Γin ∪ Γout ∪ Γlat

γ∇V n = −G(Ω, λV , λE)n on Γ

(24a)

(24b)

(24c)

where γ is a positive parameter allowing to di�use more or less the mesh displacement.
This parameter must be properly chosen. Indeed, if its value is too low, the di�usion of
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the mesh will be small and the resulting free boundary surface will not be smooth. On the
other hand, if the value of γ is chosen too large, the displacement of the whole domain will
mainly depend on high shape gradient areas.

Once the vector �eld V determined, the mesh is moved according to the discretized
recurrence relation (13) expressed as follows:

Ωi+1 = (X + tV )(Ωi) (25)

where X is the vector �eld of mesh points coordinates at iteration i.
Finally, all that remains is to determine the shape gradient G(Ω, λV , λE). Since each

case involves a particular model, the expression of the shape gradient and the introduced
adjoint states are presented separately.

3.3 First case: homogeneous reaction

Courtais et al. (2021) have detailed all calculations allowing to express the shape gradient
in the following form:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− λEε(U) : ε(U))− Kcrit

KBC
DCa∆C + λV (26)

where KBC is a constant present in the concentration outlet of the adjoint boundary
conditions (28d) and (30c) allowing to homogenize Eqs. (26), (28d) and (30c). In Eq.
(26), (Ua,pa) is the adjoint state of (U ,p) de�ned as the solution of the following system:

H(U ,Ua) +∇pa = −Kcrit

KBC
Ca∇C in Ω

∇ ·Ua = 0 in Ω

Ua = 0 on Γin ∪ Γlat ∪ Γ

σ(Ua, pa)n + (U · n)Ua = 4νλEε(U)n on Γout

(27a)

(27b)

(27c)

(27d)

where H(U ,Ua) = −ν∆Ua+ (∇U)TUa−∇UaU +λE2ν∆U and Ca is the concentration
of the adjoint state of C de�ned as the solution of system:

−D∆Ca −U · ∇Ca + kCa = 0 in Ω

Ca = 0 on Γin

∂Ca
∂n

= 0 on Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(28a)

(28b)

(28c)

(28d)

In this work, KBC is set to 3× 10−3 mol.m−2.s−1 in order to allow the �elds C and Ca
having the same order of magnitude.
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3.4 Second case: heterogeneous reaction

In this case, the same reasoning as in the �rst case is done and the shape gradient rewrites
in the form:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− λEε(U) : ε(U)) +
Kcrit

KBC
D∂Ca
∂n

∂Cn
∂n

+ λV (29)

In Eq. (29), Ua is the velocity of the adjoint state (Ua,pa) solution of Eqs. (27) and
Ca is the concentration of the adjoint state of C de�ned as the solution of the following
system: 

−D∆Ca −U · ∇Ca = 0 in Ω

Ca = 0 on Γin ∪ Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(30a)

(30b)

(30c)

4 Implementation of the shape optimization algorithm

Table 1 presents the optimization algorithm used to determine the optimal shape of the
reactors. It is implemented within OpenFOAM (Weller et al., 1998) which is a free and
open-source platform allowing to solve partial di�erential equations using C++ program-
ming language and the �nite volume method. In order to link iterations to each other, a
python library named pyFoam is used through its mesh utility ''pyFoamMeshUtilityRun-

ner.py ''.

Table 1: Shape optimization algorithm.

1 Meshing of the initial shape (see � 4.2);
2 while convergence not achieved (see � 4.5) do
3 Solve Navier-Stokes, mass balance and their adjoint system equations in Ωi

(see � 4.4);
4 Computation of the shape gradient on ∂Ωi;
5 Determination of the vector �eld V taking into account manufacturing

constraints (see � 4.1);
6 Di�usion of the mesh Ωi+1;
7 Update of Lagrange multipliers λV and λE (see � 4.5);
8 if bad mesh quality (see � 4.3) then
9 Remeshing (see � 4.2)

The next subsections will detail the algorithm and discuss in particular its accuracy.

4.1 Mesh displacement

The manufacturing constraints are treated by post-processing of the vector �eld V after
its computation.
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tV (x)

tV (x)mod

d(x) <
dobstaclemin

2

x

obstacle

�uid zone
(channel)

Skeleton

Figure 4: Illustration of the obstacle constraint treatment. V (x) and V (x)mod are respec-
tively the mesh displacement vector before and after modi�cation at point x.

4.1.1 Obstacle thickness constraint

This �rst manufacturing constraint is of inequality type and imposes a minimal value on
the local thickness of obstacles (dobstacle > dobstaclemin ). It is treated by a projection method
in two main steps. The �rst one consists in determining the local thickness at point x and
the second one in the projection of vector V (x).

The main di�culty of this treatment is to compute the thickness. Its estimation is
trivial to the naked eye, however, its implementation is complex in practice. Indeed,
choosing the right direction to quantify this length is not an easy task. In this work, a
thin solid centered inside the obstacles, called skeleton, is constructed and the thickness of
the obstacle is de�ned as the double of the distance between its boundary and its skeleton
(Fig. 4). In two dimensions, the skeleton of an obstacle is the curve which is equidistant
from the obstacle on each side (Fig. 5), its mathematical de�nition is as follows.

De�nition 1 The skeleton of an obstacle is de�ned as the set of centers of the maximal

ball totally included in the obstacle.

De�nition 2 A ball B1 included in a set F is maximal if there is no ball B2 also included

in F containing B1 strictly in the sense of inclusion.

In this work, the skeleton construction is based on the work of Attali (1995) who built
the skeleton of a shape from its Voronoi diagram, considering the shape as a discrete
set of points. The Voronoi diagram of a set of points E is determined from the Voronoi
regions. In the 2D case, the Voronoi region of a point x ∈ E is de�ned as the area where
points belonging to it are closest to point x than all other points of E (Attali, 1995). It is
mathematically de�ned below.

De�nition 3 Let X a subset of IRd and P = {P1,P2, ...,Pn} ⊂ X a set of points. The

Voronoi region Rk of a point Pk is de�ned as follows

Rk = {x ∈ X | d(x,Pk) < d(x,Pj), ∀j 6= k}
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Figure 5: Schematic illustration of the skeleton of a rectangular object, the blue circles
represent the maximal balls, the black dots their centers and the red line indicates the
skeleton.

where d(x,Pk) is the distance between Pk and x.

Figure 6: Voronoi diagram of a 10-point set.

Figure 6 illustrates the Voronoi diagram of a 10-point set. This diagram consists of
two main elements, the vertices de�ned as the intersection of at least three Voronoi regions
and the edges bounded by two vertices and de�ned as the boundary between two Voronoi
regions. According to Attali (1995), the skeleton can be built from both vertices or edges.
In this work, it is built from edges because this construction allows to obtain directly the
skeleton contrary to the other way which requires a last step of linear interpolation between
the vertices.

Once the Voronoi diagram built (Fig. 7(a)), it is reduced using two steps in order to
obtain the �nal skeleton:

� Edges which are not completely included in the obstacle are removed (Fig. 7(b)).

� A second simpli�cation is carried out using two criteria. (i) For all Voronoi vertices
s, the �rst criterion is the minimum distance between s and the obstacle, called r(s).
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(ii) As previously mentionned, each point s has at least three projections on the
obstacle, called p1, p2 and p3. The second criterion is de�ned as follow

α(s) = max(p̂1sp2, p̂1sp3, p̂2sp3) (31)

The minimum values of r(s) and α(s) are respectively 2× 10−4 m and π
2 (Fig. 7(c)).

(a) Obstacle Voronoi diagram (b) First simpli�cation (c) Second simpli�cation: skele-
ton

Figure 7: Simpli�cation of the Voronoi diagram into the skeleton: green points denote
obstacle points and red lines denote Voronoi diagram (a) and the simpli�ed skeleton (b)
and (c).

The second step is carried out by means of a test on the minimum distance d(x)

between the free boundary and the skeleton. If this distance is lower than
dobstacle
min

2 and
d(x) > d

(
x + tV (x)

)
then the vector V (x) is modi�ed in order to be parallel to the

skeleton (Fig. 4). The resulting vector is denoted V (x)mod.

4.1.2 Constraint on channel width

The other manufacturing constraint imposes a minimal value on the width of �uid channels.
It is also treated in two main steps by a projection method. For each boundary point x,
the local channel width is �rst computed by looping over all boundary points belonging
to another obstacle. The closest point belonging to another boundary is denoted xnear.
The second step consists in computing the inner product of vectors xxnear and V (x). If
this scalar product is positive and d(x) = ||xxnear|| < dchannelmin , then the vector V (x) is
modi�ed in order to be orthogonal to xxnear. Figure 8 shows an illustration of the channel
constraint treatment.
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xnear

d(x) < dchannelmin

x
tV (x)

tV (x)mod

obstacle

obstacle�uid zone

(channel)

Figure 8: Illustration of the treatment of the constraint on the channel width. V (x) and
V (x)mod are, respectively, the mesh displacement vector before and after modi�cation at
point x.

4.2 Meshing and remeshing of the domain

OpenFOAM solves the PDEs using the �nite volume method which requires a mesh gen-
eration in order to discretize the governing equations. The meshing step is important
because the quality of the solution depends strongly on the mesh quality. In this work,
the meshing and the remeshing are carried out using cfMesh, an open-source library for
automatic mesh generation. Then, the mesh quality is improved using snappyHexMesh, a
mesh generator utility supplied by OpenFOAM. The resulting mesh is composed of 50,000
to 120,000 computational cells depending on the case. Figure 9 presents the grid indepen-
dence test carried out for both cases. It shows the evolution of the outlet concentration of
the reactant versus the number of cells in the mesh and validates the independence of the
computed solution with respect to the used mesh density.

(a) (HR) case (b) (SR) case

Figure 9: Grid independence test - Outlet reactant concentration versus the number of
cells in the mesh.

The shape gradient is a function de�ned on the free boundary Γ and involves �rst
and second order derivatives of the di�erent variables (see Eqs. (26) and (29)). Thus,
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(a) Example of obstacles con�guration dur-
ing the optimization process

Γi

Γi+1

tV (x)

(b) Formation of tails at free boundary ends

Figure 10: Illustration of (a) the potential con�guration of some obstacles, (b) the forma-
tion process of tails at free boundary ends.

the neighborhood of the boundary has to be modeled with accuracy, therefore, two layer
meshes are added at boundary Γ for the homogeneous reaction case. For the (SR) case,
5 layer meshes are added at the reaction boundaries in order to improve the modeling of
mass transfer di�usion in the near-wall region.

Figure 10(a) illustrates the con�guration that obstacles may present during the opti-
mization process. According to the �gure, ''tails'' may appear at the obstacle ends. This
phenomenon was expected for the heterogeneous reaction case since the ''tails'' appearance
allows to increase the reactive surface without much change in reactor volume. However,
those ''tails'' are not manufacturable using Stratoconception® printing process due to their
small local thickness. The projection treatment of manufacturing constraints (section 4.1)
does not prevent the formation of these ''tails'' illustrated in Fig. 10(b). In order to ensure
the manufacturability of the object, the ''tails'' formed during the optimization process
are removed by moving, once detected, all boundary points belonging to the ''tails'' at the
center of their extreme points just before performing the remeshing step.

4.3 Mesh quality

At each iteration, the mesh quality is checked to know whether the volume discretization
will impact the quality of the PDEs solution. This quality veri�cation is carried out through
three criteria often used in CFD area. Those criteria, illustrated in Fig. 11, are (Holzinger,
2015):

� The aspect ratio, de�ned in two dimensions as the ratio of the biggest to the smallest
length of a cell. It is expressed by the ratio l

s (Fig. 11).

� The mesh non-orthogonality, de�ned as the angle between the vector connecting the
cell centers of two adjacent cells and the normal of the common face. In Fig. 11, it
is de�ned by angle α = arccos( Ai·Ci

|Ai||Ci|).
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� The face skewness, de�ned by the ratio |di|
|Ci| (see Fig. 11), where |di| is the distance

between the intersection of the line connecting the adjacent cell centers and their
common face, and the center of this face, |Ci| is the distance between the centers of
considered cells.

If the maximum value of the aspect ratio is higher than 20, the mesh non-orthogonality
is higher than 65◦ or the face skewness is higher than 3.8, the shape is remeshed. Those
upper bounds have been chosen because OpenFOAM checks the mesh quality computing
(among others) the maximal values of the face skewness and the non-orthogonality of the
mesh. If those values are respectively higher than 4 and 70◦, the mesh quality is not
validated. Slightly lower values have been chosen for the mesh non-orthogonality and the
face skewness to ensure that the maximum values de�ned by OpenFOAM are not exceeded
after each mesh displacement. The choice of the upper bound for the aspect ratio is based
on its values in the initial shapes. Depending on the case, the maximum aspect ratio in the
initial mesh is between 8 and 15, therefore the upper bound for this criterion has been set
to 20. However, this choice is not critical because the majority of the remeshing process
launches is due to a violation of the criteria on non-orthogonality and skewness of the faces.

× ×

Ai

Ci

diα

l

s

Figure 11: Illustration of the mesh quality criteria.

4.4 Boundary conditions approximation

The pressure-velocity couplings present in the Navier-Stokes Eqs. (1) and its adjoint system
equations (27) are numerically solved using SIMPLE algorithm (Patankar, 1980).

The three outlet boundary conditions of the adjoint systems ((28d), (30c) and (27d))
are not usual boundary conditions and must be implemented within OpenFOAM using the
following approximations:

(∇Ua)Tn ≈ Ua
patch −Ua

intern

δ
(32)

∇Can ≈
Cpatch
a − C intern

a

δ
(33)

which allows to rewrite the boundary conditions as follows:

Ua
patch≈ νδ

−1Ua
intern+ 4νλEε(U)n + pan−ν∇Uan

νδ−1 + (U · n)
(34)
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Table 2: Simulation parameters.

Parameters Values Units Equations

ν 10−6 m2.s−1 (1a), (26), (27) and (29)
Uin 10−2 m.s−1 (1c)
D 10−9 m2.s−1 (26), (28a), (29) and (30a)
k 10−2 s−1 (5a)
γ 10−4 m−2 (24a) and (24c)

KBC 3× 10−3 mol.m−2.s−1 (26), (27d), (28d), (29) and (30c)
Kcrit 3× 10−5 m6.s−3.mol−1 (10), (26) and (29)

Cpatch
a ≈ νδ−1C intern

a +KBC

νδ−1 + (U · n)
(35)

where δ is the distance between the boundary and the internal adjacent cell center, Ua
patch

and Cpatch
a represent respectively the adjoint velocity and the adjoint concentration at the

boundary, and Ua
intern and C intern

a their values in the internal adjacent cell center. The
implementation of these boundary conditions within OpenFOAM is presented with further
details in Courtais (2021).

4.5 Lagrange multipliers update and convergence of the algorithm

In this work, the optimization algorithm used is based on the Uzawa method which consists
in the determination of the mesh displacement at each iteration considering the Lagrange
multipliers λV and λE constant. Once the mesh di�usion done, the Lagrange multipliers
are updated according the following equations:

λk+1
V = λkV + βVCV(Ω) (36)

λk+1
E = max

(
0, λkE + βECE(Ω)

)
(37)

where βV and βE are small positive parameters. The formulation of relations (36) and (37)
are di�erent because the volume constraint is of equality type while the energy constraint
is an inequality one (see Karush-Kuhn-Tucker's dual feasibility condition (Karush, 2014;
Kuhn and Tucker, 2014)). This explains why λV may be negative while λE cannot.

Finally, the convergence of the algorithm is carried out through the computation of the
coe�cient of variation (or relative standard deviation) of the last 100 Lagrangian values.
If this ratio is lower than 10−4, the convergence is achieved.

5 Main results

This section is devoted to the presentation of numerical results obtained using the algorithm
described in the previous section. It consists of two subsections where the optimization
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Figure 12: Homogenous reaction case: initial design of the �xed-bed reactor (a), opti-
mized shape without manufacturing constraint (b), optimized shape with manufacturing
constraint (c), optimal shape manufactured by means of Stratoconception® process (d).

results for the cases (HR) and (SR) are presented. Except for the kinetic constant k, the
simulation parameters are the same for both cases and are shown in Table 2.

5.1 Homogeneous reaction

Figures 12(a) and 12(b) show the concentration pro�les of the reactant in the initial design
and in the optimal shape (without considering the manufacturing constraints) of the reac-
tor. As can be seen, a stagnation zone appears at the inlet of the initial shape (light area in
Figure 12(a)). It corresponds to a region of the reactor where the reactant concentration is
low resulting in low reaction rates. Consequently, this stagnation volume is almost useless
for the conversion. In the optimal shape without manufacturing constraints, the stagnation
zone has disappeared. However, this reactor con�guration cannot be manufactured using
Stratoconception® process due to too thin obstacles and some very small channel widths.

The optimization is then carried out taking into account the manufacturing constraints
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(a) (b)

(c) (d)

Figure 13: Performances of the optimization process of the reactor satisfying the manu-
facturing constraints (Fig. 12(c)), (a) ratio J

J0
, (b) conversion rate, (c) volume constraint,

(d) energy dissipation constraint, versus iterations.

and the resulting shape is displayed in Fig. 12(c). Similarly, the stagnation zone present
in the initial shape has disappeared and the size of obstacles and channels of the opti-
mized shape are such that they can be built by means of Stratoconception® process. The
manufactured optimal shape of the reactor is shown in Figure 12(d).

Figure 13 shows the convergence history of the optimization process. The energy and
volume constraints are both satis�ed at convergence and it is interesting to note that the
inequality constraint on the energy dissipated is active. It may therefore be interesting
either to increase the maximum value associated to this constraint in order to obtain a
better conversion rate, or to perform multi-objective optimization of the reactor considering
two criteria (i) the conversion rate and (ii) the energy dissipation. Figure 13 also shows a
decrease of almost 10% in the reactant concentration at the reactor outlet, which leads to
an improvement in the conversion rate of 2.7% (71.5% versus 74.2%). This improvement
can be explained by two main reasons. The �rst one is the disappearance of the stagnation
zone and the second one is the better homogeneity of the liquid �ow in the reactor. This
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Figure 14: Residence time distribution of initial and optimal reactors.

better homogeneity is shown by the residence time distributions (RTDs) presented in Fig.
14. These RTDs have been determined numerically by imposing a concentration pulse at
the inlet boundary once the �uid �ow is developed. The reactor response to this pulse is
then examined by determining the variation of the concentration at the outlet over time.
The RTDs exploitation is then carried out by means of the method of moments which
consists of determining the zeroth (i = 0), �rst (i = 1) and second (i = 2) order moments
given by (Levenspiel, 1999):

µi =

∫ ∞
0

tiE(t)dt (38)

where E(t) is the RTD function. The standard deviation of the RTDs is 3.5 times lower
in the optimized reactor than in the initial one (Table 3) which is mainly explained by the
disappearance of the stagnation zone. Indeed, Fig. 14 shows that the RTD function hits
almost zero in the optimal shape after 250 s which is not the case in the initial shape. The
disappearance of the stagnation zone is also highlighted regarding the �rst order moment
since the mean residence time is slightly lower for initial reactor shape.

Table 3: RTDs parameters - (HR) case.

Reactor Moment of order Standard deviation
shape Zero One (mean) Two (σ =

√
µ2 − µ2

1)

Initial 1 134 s 23284 s2 73 s
Optimal 1 139 s 19868 s2 21 s

The deviation of the optimized reactor performances from the ideal plug �ow reactor
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is then analyzed. Indeed, the conversion rate in a steady-state plug �ow reactor where a
�rst order homogeneous reaction occurs is given by (Villermaux, 1993):

XA = 1− e−kτ (39)

where τ = V(Ω0)
Q is the hydraulic residence time with Q representing the �uid �ow rate. In

this case, the deviation from the �ug �ow reactor is small since the conversion rate of the
ideal reactor is 74.6% (versus 74.2% for the optimized reactor). Thus, this validates the
performance of the optimization procedure since it minimizes the deviation from the ideal
reactor. In this case, the packing acts as a static mixer and the optimization procedure
aims at improving the homogeneity of the �uid �ow in order to reduce the deviation of the
reactor from the ideal plug �ow reactor.

The assumption of laminar �ow is checked computing the channel Reynolds number.
In this case, the particle Reynolds number is meaningless because obstacles have di�erent
dimensions. The channel Reynolds number is expressed by the following equation:

Rec =
ud

ν
(40)

where u is the �uid average velocity which �ows inside the channel, d the channel width
and ν the �uid kinematic viscosity. In the optimized con�guration 12(c) the Reynolds
number Rec does not exceed 16 which validates the assumption of laminar �ow.

The presence of local minima is analyzed by starting the optimization procedure from
a slightly modi�ed initial shape. Fig. 15 presents the optimal reactor shapes determined
when: (a) the initial obstacles are enlarged (i.e. the semi-axes are increased by 0.5 mm),
and (b) the obstacles are translated by 3 mm towards the reactor inlet. As can be seen,
the optimized reactors are slightly di�erent from each other and from the one displayed
in Fig. 12(c) showing the presence of local minima. However, since the conversion rate is
improved in the same proportions (by 2.4 % for the three optimal shapes), these 3 optimal
reactors are in the same level of performance.

The impact of the kinetic constant on the determined optimized shape is then studied.
Two additional optimizations when the kinetic constant is equal to (a) 5 × 10−2 s−1,
and to (b) 2 × 10−3 s−1 have been carried out (Fig. 16). Both optimal shapes are not
signi�cantly di�erent from the optimized shapes presented on Figs. 12(c) and 15. It was
expected because, as previously pointed out for the (HR) case, the aim of the optimization
procedure is to �nd the con�guration of the packing which improves as much as possible
the �uid �ow homogeneity in the reactor. Therefore, since the kinetic constant does not
in�uence the �uid �ow in the reactor, it has no impact on the optimized con�gurations of
the reactor. In the present case, the optimal shapes (Fig. 16) are slightly di�erent since
the algorithm converged towards di�erent local minima.

Another optimization has been carried out by increasing the �uid kinematic viscosity
by a factor of 10 in order to study the sensitivity of the optimal shape with respect to
Reynolds number. The hydrodynamics in the reactor is therefore modi�ed and the initial
and optimal shapes of the reactor are shown on Fig. 17. The stagnation zone present in
the initial shape of the reactor (a) is much less pronounced in this case due to the viscosity
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Figure 15: Optimal reactors when initial shape is slightly perturbed: (a) the semi-axes of
initial obstacles are increased by 0.5 mm and (b) the obstacles are translated by 3 mm
towards the reactor inlet

(a)

(b)
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Figure 16: Optimal reactors when the kinetic constant is: (a) multiplied by 5 and (b)
divided by 5.

(a)

(b)

O y

x

Figure 17: Initial (a) and optimized (b) reactors when the �uid kinematic viscosity is
multiplied by 10.
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Figure 18: Surface reaction case: initial design of the �xed-bed reactor (a), optimized
shapes subjected to iso-energy constraint (b), subjected to 1.4 times initial energy con-
straint (c) and without energy constraint (d).

increase. Therefore, the optimization process does not modify the packing structure in
order to break/remove this stagnation zone in contrast to the previous optimizations.
Consequently, as we can see, the optimal shape displayed on Fig 17(b) is quite di�erent
from the others presented on Figs. 12, 15 and 16. Finally, the optimization performances
are similar to the previous ones since the conversion rate of the optimized reactor (b) is
about 74.2% under manufacturing, volume and energy constraints.

5.2 Heterogeneous reaction

Figure 18 presents the numerical results of the reactor optimization. In particular, �g-
ures 18(a) and 18(b) illustrate the concentration pro�les in the initial and optimal shapes.
Here, the optimization allows a decrease of the performance index of almost 6% which
results in 4.7% improvement in the reactor conversion rate (19.6% versus 24.3%). It is
mainly explained by the 50% increase of the reaction surface (Fig. 19(a)). However, the
con�guration (b) of the reactor presents poor homogeneity in the liquid �ow. Indeed, the
wall surface increase leads to an increase of the energy dissipation due to wall shear stress.
Thus, the reactor exhibits channeling in its center (close to the axis of symmetry) in order
to satisfy the energy constraint.

Two more optimizations with and without energy constraint are carried out. In the
case with constraint, the upper bound of the constraint is multiplied by a factor of 1.4 to
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(a) (b) (c)

Figure 19: Evolution of the speci�c surface area over iterations: optimization under iso-
energy constraint (a), optimization under energy constraint (1.4 times initial energy losses)
(b), and optimization without energy constraint (c).

(a) (b) (c)

Figure 20: Evolution of the pressure drops in the reactor over iterations: optimization
under iso-energy constraint (a), optimization under energy constraint (1.4 times initial
energy losses) (b), and optimization without energy constraint (c).

analyze its e�ect on the �uid homogeneity in the reactor. The resulting optimal shapes are
displayed in Figs. 18(c) and 18(d). They show that the higher the upper bound of energy
constraint is, the more homogeneous the �uid �ow becomes and the more the channeling in
the reactor reduces. The improvement of the �uid homogeneity, the increase of the reactive
surface area (Figs. 19(b) and 19(c)) and the disappearance of the channeling lead to an
increase in the performances of optimal reactors. Indeed, the reactant concentration at the
reactor outlet has decreased by 8% and 20% for the shapes 18(c) and 18(d), respectively,
which improves the conversion rate by 6.4% and 16%. However, these improvements of the
conversion rate inevitably lead to an increase of the pressure drops in both reactors by a
factor of 1.4 and 7 respectively (Fig. 20). Figure 21 presents the RTDs of the three optimal
reactors (with their associated description numbers gathered in Table 4) and shows the
reduction of the channeling in the reactor when the upper bound of the energy constraint
is increased. The distribution associated to the optimization with iso-energy constraint
exhibits two peaks, the �rst of which corresponds to the channeling. The distribution
associated to shape 18(c) presents also two peaks but the one referring to the channeling
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Figure 21: Residence time distribution of optimized reactors.

Table 4: RTDs parameters - (SR) case.

Optimal Order moment Standard deviation
shape Zeroth First (mean) Second (σ =

√
µ2 − µ2

1)

Iso-energy constraint 1 139 s 32209 s2 114 s
1.4 times initial energy 1 138 s 26023 s2 84 s
No energy constraint 1 138 s 25902 s2 83 s

is less important than for the shape 18(b). In the reactor 18(d), the RTD shows that the
channeling has disappeared. To summarize, in this case, the optimization procedure aims
at increasing as much as possible the reactive surface (Fig. 19) and at improving the �uid
�ow homogeneity under pressure drops constraint.

For the three optimal reactors, channel Reynolds numbers have been computed and do
not exceed 67, 48 and 17, respectively, for shapes 18(b), 18(c) and 18(d) which validates
the assumption of the �ow regime.

The sensitivity of the optimal shape with respect to the inlet �ow velocity is �nally
investigated for the (SR) case. Two additional optimizations have been performed when
the inlet �ow velocity is reduced (a) by a factor of 2, and (b) by a factor of 10 (Fig. 22).
As can be seen, the optimized shapes are signi�cantly di�erent from each other and from
the one displayed on Fig. 18(b) leading to the conclusion that the optimized shape of the
reactor may depend on the operating conditions such as the inlet �ow rate. Table 5 presents
the conversion rate of these three reactors depending on the inlet �ow velocity imposed,
and it supports the stated conclusion. Indeed, for Uin = 0.001 m.s−1 (second column of
the table), the reactor that leads to the highest conversion rate is the one displayed on
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Figure 22: Surface reaction case: optimized design of the �xed-bed reactor when the inlet
�ow velocity is (a) Uin = 0.005 m.s−1, (b) Uin = 0.001 m.s−1.

Table 5: Conversion rate of optimal shapes depending on the inlet �ow velocity (expressed
in m.s−1) - (SR) case.

Uin = 0.001 Uin = 0.005 Uin = 0.01

Optimal shape for Uin = 0.001 (Fig. 22(b)) 71.6% 35.5%* 25.2%*
Optimal shape for Uin = 0.005 (Fig. 22(a)) 65.1% 36.3% 22.6%
Optimal shape for Uin = 0.01 (Fig. 18(b)) 62.3% 34.4% 24.3%
*does not meet the energy constraint

Fig. 22(b) (i.e. the one resulting from the optimization procedure with Uin = 0.001 m.s−1

as inlet boundary condition). The same conclusion is stated for Uin = 0.005 m.s−1 (third
column), and for Uin = 0.01 m.s−1 (fourth column), the shape displayed on Fig. 22(b) has
the highest conversion rate but does not satisfy the energy constraint. Consequently, the
reactor meeting the set of constraints with the highest conversion rate for Uin = 0.01 m.s−1

results from the shape optimization with Uin = 0.01 m.s−1.

6 Conclusion

A geometry optimization based on the adjoint system method is developed for shape opti-
mization of �xed-bed reactors. The corresponding algorithm is implemented within Open-
FOAM software in order to determine the optimal shape of the packing where a surface
reaction or an homogeneous �rst order reaction takes place. In both cases, the objective
is to minimize the average concentration of the reactant at the reactor outlet. The op-
timization problem is subjected to constraints involving Navier-Stokes and mass balance
equations, an iso-volume and energy constraints, and to two manufacturing constraints.
The optimized packing of the reactor allows a signi�cant improvement of the conversion
rate, i.e. 2.7% for the (HR) case and 4.7% for the (SR) case (under iso-energy constraint).

However, the developed optimization approach shows some weaknesses that need to be
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adressed. The �rst one concerns the width constraints treatment which is performed by
post-treatment of the mesh displacement. It su�ers from excessive strictness and does not
allow the constraints violation during the optimization process as opposed to a constraint
directly included in the Lagrangian functional. It might be possible to improve this issue
by treating the width constraints using penalization functions (Allaire et al., 2016). The
second weakness is related to the computational load of a single optimization and particu-
larly in the surface reaction case. Indeed, the optimization process takes between 7 and 10
days to converge on a 3.7GHz Xeon Dell Computer 5810 (and 2-3 days for the homogeneous
case). The most CPU time consuming step is the resolution of the PDEs by OpenFOAM.
In our case, the computational time could not be decreased using parallel computing be-
cause the optimization method is iterative and the number of cells is between 50,000 and
120,000. However, it could be improved by modifying some numerical schemes (e.g. the
use of SIMPLER algorithm instead of SIMPLE one) but the saved time would be marginal.
Another way to reduce the CPU time required for CFD resolution could involve the use
of surrogate models (Rabhi et al., 2018) which approximate the CFD solution needed by
the shape optimization algorithm. The convergence of the iteration algorithm could also
be accelerated using a line search method to determine the optimal step t instead of using
a �xed value for this parameter. This would limit the number of iterations required to
achieve the convergence and consequently the number of PDEs resolutions. Finally, the
use of a geometry optimization algorithm may not be appropriate since it preserves the
topology of the reactor and the initial topology could not be the optimal topology. There-
fore, it could be interesting to optimize the reactor using a topology optimization approach
�rst and then re�ne the resulting shape using geometry optimization.
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Nomenclature

Latin symbols

C concentration �eld of the reactant mol.m−3

C set of constraints of the optimization problem -
C ′ sensitivity of C with respect to the variation of Ω mol.m−4

Ca adjoint state of C mol.m−3

CE energy dissipation constraint m5.s.3

Cin reactant inlet concentration mol.m−3

CV iso-volume constraint m3

D di�usion coe�cient of the reactant in the solvent m2.s−1

dchannelmin minimal width of channels m
dobstaclemin minimal thickness of obstacles m
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G shape gradient -
J performance index -
k kinetic constant s−1

L Lagrangian of the optimization problem -
n boundary normal vector -
p kinematic pressure �eld Pa.m3.kg−1

p′ sensitivity of p with respect to the variation of Ω Pa.m2.kg−1

pa pressure of the adjoint state to (U , p) Pa.m3.kg−1

Q inlet �ow rate m3.s−1

s.t. subject to -
t step of the optimization method -
U �uid �ow velocity m.s−1

U ′ sensitivity of U with respect to the variation of Ω s−1

Ua velocity of the adjoint state to (U , p) m.s−1

Uin �uid velocity pro�le imposed at the reactor inlet m.s−1

V vector �eld representing the displacement of the mesh m
V(Ω) volume of Ω m2

Symboles grecs

βV volume constraint update parameter -
βE energy constraint update parameter -
γ parameter allowing to adjust the di�usion of the mesh when

moving it
m2

Γ free boundary of the domain Ω -
Γin �uid inlet of Ω -
Γout �uid outlet of Ω -
Γlat lateral wall of Ω -
δ distance between the boundary Γout and the center of the ad-

jacent cell
m

∂Ω union of the boundaries of Ω -
ε0 energy dissipation of the initial shape m5.s3

λE Lagrange multiplier associated to the energy constraint -
λV Lagrange multiplier associated to the volume constraint -
ν �uid kinematic viscosity m2.s−1

Ω studied domain -

Indice

i iteration of the shape optimization algorithm
a refer to an adjoint state
in refer to reactor inlet Ω
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