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Optimal design of a structured fixed-bed reactor using geometry optimization and Stratoconception printing process

Introdution

The objective of shape optimization is to deform the outer boundary of an object in order to minimize or maximize a performances index, while satisfying given constraints. Historically, shape optimization methods have been used in cutting-edge technologies mainly in advanced areas such as aerodynamics [START_REF] Burgreen | Improving the efciency of aerodynamic shape optimization[END_REF][START_REF] Reuther | Aerodynamic shape optimization of supersonic aircraft congurations via an adjoint formulation on distributed memory parallel computers[END_REF][START_REF] Hicks | Wing design by numerical optimization[END_REF]. However, they have recently been extended to other engineering areas where the shape greatly inuences the performances. For example, in hydrodynamics, the Figure 1: Example of optimized shapes using (a) parameter optimization -optimization of the angle and the thickness of an agitator blades [START_REF] Hoseini | Impeller shapeoptimization of stirred-tank reactor: Cfd and uid structure interaction analyses[END_REF], (b) geometry optimization -determination of the obstacle shape that minimizes the pressure drops [START_REF] Dapogny | Geometrical shape optimization in uid mechanics using FreeFem++[END_REF] and (c) topology optimization -determination of the optimized topology and shape of a heat exchanger [START_REF] Dong | Multi-objective optimal design of microchannel cooling heat sink using topology optimization method[END_REF].

shape of a pipe that minimizes the energy dissipated by the uid due to viscous friction was analyzed [START_REF] Tonomura | Shape optimization of microchannels using CFD and adjoint method[END_REF][START_REF] Henrot | What is the optimal shape of a pipe?[END_REF][START_REF] Courtais | Adjoint system method in shape optimization of some typical uid ow patterns[END_REF].

In chemical engineering however, where the shape of unit operations (e.g. reactors, tanks, stirrers, pipes. . . ) is an important design parameter, the shape optimization has not been extensively investigated. This important issue deserves therefore to be addressed and will probably result in a paradigm shift in optimal design and operation of processes.

Shape optimization methods can be grouped into 3 main families illustrated in Fig. 1: (a) The rst family is parameter optimization [START_REF] Lin | Optimization for geometric parameters of micro-channel heat sink using inverse problem method[END_REF][START_REF] Kundu | Performance and optimum design analysis of longitudinal and pin ns with simultaneous heat and mass transfer: Unied and comparative investigations[END_REF] where the general shape of the object to design is known and the optimization method can only modify some parameters chosen by the user. Figure 1(a) presents the shape optimization of an agitator where only the thickness and the angle of the blades are the decision variables.

(b) The second one is geometry optimization where the decision variables are no longer dened by some parameters but by the boundary of the optimized object [START_REF] Courtais | Adjoint system method in shape optimization of some typical uid ow patterns[END_REF][START_REF] Henrot | What is the optimal shape of a pipe?[END_REF]. This kind of family allows a deformation of the global shape, but, it prevents topology changes. In 2D, it means that the number of holes or inclusions remains invariable during the optimization process. Figure 1(b) presents the determination of the obstacle shape that minimizes the pressure drops. Since a geometry algorithm is used, the obstacle cannot be removed.

(c) The last one is topology optimization which is an extension of geometry optimization and allows topology changes [START_REF] Dong | Multi-objective optimal design of microchannel cooling heat sink using topology optimization method[END_REF][START_REF] Zhou | Shape morphing and topology optimization of uid channels by explicit boundary tracking[END_REF]. In Fig. 1(c), the two-dimensional topology optimization of a heat exchanger is shown. In this case, the topology is one of the decision variables.

On the one hand, parameter optimization methods are by far the most developed in chemical engineering area since they are the most straightforward to implement, computationally less expensive than the other methods, and the determined shapes are easily manufacturable since the general shape is chosen by the user. However, they do not allow signicant modications of the shape, and consequently lead to poor optimization performances. Indeed, parameter optimization methods consist in reformulating the shape optimization problem as a static optimization problem, and therefore provide limited exibility since the number of decision variables is low. For example, [START_REF] Hoseini | Impeller shapeoptimization of stirred-tank reactor: Cfd and uid structure interaction analyses[END_REF] optimized the shape of an agitator through three geometrical parameters of the blades such as the thickness and the vertical angle (Fig. 1), [START_REF] Liang | Computational shape optimization of microreactors based on cfd simulation and surrogate model driven optimization[END_REF] modied the conguration of a Y-shape microreactor through the position and the width of a sudden contraction of the microreactor section, and [START_REF] Grundtvig | Shape optimization as a tool to design biocatalytic microreactors[END_REF] optimized the conguration of a bio-catalytic microreactor by adapting the position of 140 boundary points and then interpolating to build the outer boundary of the reactor.

On the other hand, topology optimization approaches such as the level-set [START_REF] Kambampati | A discrete adjoint based level set topology optimization method for stress constraints[END_REF] or the homogenization [START_REF] Ozguc | Topology optimization of microchannel heat sinks using a homogenization approach[END_REF] methods are mainly developed for optimal design of structures in mechanical engineering. They allow to explore all possible shapes and topologies during the optimization process, and therefore lead to interesting performance improvements. However, those methods are more CPU time consuming and the optimal geometry could be complex and not straightforward to manufacture [START_REF] Allaire | Structural optimization under overhang constraints imposed by additive manufacturing technologies[END_REF].

Geometry optimization methods oer an adequate compromise between the advantages and drawbacks of topology and parameter approaches. Indeed, they allow the analysis of a wide range of shapes while preserving the manufacturability of the nal shape even if it can be complex in practice. For this purpose, the recent development of additive manufacturing techniques can provide a 3D printing solution since they allow to extend the set of realistic shapes but require to consider some additional constraints. Two of these constraints impose a minimum thickness on the printed solid part and a minimum distance between solid elements. A possible methodology for their treatments can be found in [START_REF] Allaire | Thickness control in structural optimization via a level set method[END_REF], however, in this paper, we provide a simpler alternative well adapted to the application considered.

The present work is devoted to the development of a geometry optimization algorithm using the adjoint system method. The resulting algorithm is used in optimal design of xed-bed reactors where (i) a rst order homogeneous reaction takes place, (HR)

(ii) a surface reaction limited by the external mass transfer occurs.

(SR)

These two cases will thereafter be referred to as (HR) and (SR), respectively. In both cases, the objective is to nd the shape of the packing which minimizes the average concentration of the reactant at the outlet of the reactor, i.e. maximizes the conversion rate of the reactor, while meeting the constraints of (i) process model, (ii) iso-volume maintaining the same hydraulic residence time between initial and optimal reactors, (iii) energy dissipation, and (iv) manufacturing. The resulting optimal shapes will then be tested numerically by means of residence time distribution computations.

The paper is organized as follows. First, the optimization problems are dened (Section 2) and their mathematical formulations are presented (Section 3). Section 4 describes the implementation of the algorithm within OpenFOAM framework. Finally, Section 5 is devoted to the presentation of the numerical results and the manufactured optimal shapes. In this work, the process considered is a xed-bed reactor where a single-phase liquid ows.

Symmetry

The initial structure of the packing consists of elliptical obstacles (whose half axes are 5 mm and 2.5 mm) uniformly distributed in the reactor. Fig. 2 illustrates schematically the initial conguration of the reactor to be optimized as well as its dimensions.

The reactor is denoted Ω (see Fig. 2) and is delimited by the union of the uid inlet (Γ in ), outlet (Γ out ), lateral wall (Γ lat ) and free (Γ) boundaries. This last boundary represents the reactor packing and stands for the decision variable of the optimization problem. It is the only boundary that will evolve during the optimization process.

The uid ow in the reactor Ω is modeled by the momentum balance described by the Navier-Stokes and the continuity equations and the associated boundary conditions: (a) no slip condition applied on walls Γ lat and Γ, (b) a ow velocity imposed at the inlet, and (c) the normal stress tensor component imposed equal to zero at the outlet. The system of equations is therefore expressed as:

               -ν∆U + (U • ∇U ) + ∇p = 0 in Ω ∇ • U = 0 in Ω U = U in on Γ in U = 0 on Γ lat ∪ Γ σ(U , p)n = 0 on Γ out (1a) (1b) (1c) (1d) (1e)
where n is the boundary normal vector, ν and p are the kinematic viscosity and p the kinematic pressure (i.e. the absolute pressure divided by the uid density), respectively. According to equations (1a) and (1b), the uid ow is assumed stationary, incompressible, and the relative pressure is imposed equal to zero at the reactor outlet. σ(U , p) is the stress tensor divided by the uid density. It is dened by

σ(U , p) = 2νε(U ) -pI with ε(U ) = 1 2 (∇U + (∇U ) T ) ( 2 
)
where I is the identity matrix.

At the inlet boundary Γ in , the velocity prole is uniform and follows (Oy) direction. It is set to a small value in order to impose low particle Reynolds number (see Eq. ( 3)) ensuring a laminar ow in the reactor.

Re p = ud H ν ( 3 
)
where u is the supercial velocity and d H = 4S P is the hydraulic diameter with S = πab the surface of the elliptical obstacles (a and b are the half axes) and P ≈ π 2(a 2 + b 2 ) their perimeter. In the initial conguration, the particle Reynolds number does not exceed 7 which justies the laminar ow assumption. It will be veried in the optimal shapes of the reactor.

The mass transfer modelling is presented for the two cases (HR) and (SR) in the following subsections.

First case study: homogeneous reaction

The rst reaction considered is of type R → P, homogeneous and of rst order with respect to the reactant. Its kinetics is expressed as:

r = kC (4)
where k is the kinetic constant and C the concentration of the reactant R. In this case, we assume that the reaction only takes place in the uid phase (i.e. in Ω), the packing just acts as a static mixer. Thus, the mass balance on R is described by the following system of PDEs:

         -D∆C + U • ∇C + kC = 0 in Ω C = C in on Γ in ∂C ∂n = 0 on Γ lat ∪ Γ out ∪ Γ (5a) (5b) (5c)
where D is the mass diusion coecient of the reactant R in the solvant.

Second case study: surface reaction

The second reaction is heterogeneous, limited by the external mass transfer and occurs on walls Γ and Γ lat . It is assumed that the packing Γ and the lateral wall Γ lat are both catalyst impregnated and the reaction is very fast at the surface of catalyst leading to null concentration on those boundaries. All these assumptions lead to the following mass balance equations:

             -D∆C + U • ∇C = 0 in Ω C = C in on Γ in C = 0 on Γ lat ∪ Γ ∂C ∂n = 0 on Γ out (6a) (6b) (6c) (6d) 
2.2 Shape optimization problems

The shape optimization problems are dened by: a performance index to be minimized. It is dened by the average concentration of the reactant at the reactor outlet. Such a performance index is relevant since the conversion rate depends on the average concentration of the reactant at the outlet.

It is given by:

J(Ω) = Γout C dσ (7)
where C is the solution of (5) or (6) depending on the case.

decision variables. In a shape optimization problem the decision variable is the shape of the domain described by the free boundary Γ.

a process model. It is described by the Navier-Stokes momentum equations without turbulence model, the continuity Eqs. (1) and the mass balance equations ( 5) or (6).

a set of constraints. Here, four constraints are considered. The rst constraint is an iso-volume constraint dened in order to maintain the same residence time between initial and optimal shapes. The second constraint is an inequality constraint on energy dissipation by the uid due to viscous friction. Such a constraint is relevant since the energy dissipation is proportional to the pressure drop. The two constraints are given by the following relations:

C V (Ω) = V(Ω) -V(Ω 0 ) = 0 (8) C E (Ω) = 2ν Ω |ε(U )| 2 dx -2ν Ω 0 |ε(U )| 2 dx E 0 0 (9) with |ε(U )| 2 = ε(U ) : ε(U ).
The notation '':'' is the double inner product of two tensors dened by A : B = 3 i,j=1 A i,j B i,j . In Eqs. ( 8) and ( 9), V(Ω) represents the volume of Ω and (U ,p) is the solution of Eqs. (1).

The two last constraints take into account the manufacturability of the optimal shape of the object to be designed. These constraints involve a minimum distance between two obstacles and a minimum thickness of obstacles. Since the dierentiation with respect to the domain is a complex task [START_REF] Feppon | A variational formulation for computing shape derivatives of geometric constraints along rays[END_REF], these constraints are not included in the Lagrangian, their treatment is detailed in paragraph 4.1.

The Lagrangian of the problem which aggregates the performance index, the volume and energy constraints is dened as:

L(Ω, λ V , λ E ) = K crit J(Ω) + λ V C V (Ω) + λ E C E (Ω) (10) 
where K crit is a constant ensuring dimensional consistency of the terms of the Lagrangian functional, λ V and λ E are the Lagrange multipliers respectively associated to volume and energy constraints.

In conclusion, the shape optimization problem is formulated as:

min Ω J(Ω) s.t. Ω ∈ C (U , p) solution of Eqs. (1)
C solution of Eqs. ( 5) or ( 6)

where C represents the set of constraints given by

C := {Ω ⊂ IR 2 | C V (Ω) = 0 and C E (Ω) 0}. ( 12 
)
3 Shape optimization method: adjoint system method

The method developed to solve the formulated shape optimization problem is based on geometry optimization. It is an iterative method which computes the gradient of the performance index and the constraints by means of the adjoint system method. Since two systems of PDEs (i.e. systems of momentum and mass balance equations) are involved in the model of each case studied, two adjoint systems are therfore introduced.

Fundamental principle of the Hadamard method

In the eld of geometry optimization, the shape of an object is optimized by varying its boundaries which can be classied into two categories:

xed boundaries which will not be distorted during the optimization process. In this study, the boundaries Γ in , Γ out and Γ lat are xed.

free boundaries which are the decision variables of the problem. In our cases, the free boundary is Γ.

It is interesting to consider the largest possible free boundary in order to increase the degree of freedom of the optimization method. This will allow to reach a wider range of possible shapes, which will give better optimization performances. However, it will increase the number of local minima. The classication of the boundaries is the choice of the engineer who wants to optimize the object and depends mainly on the process involved (position of the uid inlet and outlet, external boundary of the object, etc.). The method used in this work is an iterative method that determines, from an initial shape of an object, a sequence of shapes that improve the performances of the object at each iteration by adapting the position of its boundaries. It is based on Hadamard's approach [START_REF] Hadamard | Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées[END_REF] and relies on the concept of derivative with respect to the domain, also called derivative in the sense of Hadamard [START_REF] Allaire | Conception optimale de structures[END_REF][START_REF] Henrot | Variation et optimisation de forme[END_REF]. It consists in determining at each iteration the sensitivity of the performance index or the Lagrangian with respect to a small perturbation of the boundaries ∂Ω according to the following relation:

Ω i+1 = (Id + tV )(Ω i ) ( 13 
)
where Id is the identity operator, t is the method step of the iterative algorithm, i is the iteration index and V is the vector eld standing for the perturbation. Fig. 3 illustrates the displacement of Ω during an iteration.

Ω i Ω i+1 tV (x)
x Figure 3: Example of an iteration of the shape optimization method. tV (x) is the small perturbation at point x ∈ ∂Ω, Ω i represents the domain at iteration i.

The approach is based on the recurrence formula ( 13) and the objective of the method is to determine, at each iteration, the step t and the vector eld V leading to a decrease of the Lagrangian.

The derivative in the sense of Hadamard is a concept of direction derivative. The Lagrangian derivative following the direction V is computed with the following formula [START_REF] Henrot | Variation et optimisation de forme[END_REF]:

L (Ω, λ V , λ E )(V ) = lim t→0 L(Ω t , λ V , λ E ) -L(Ω, λ V , λ E ) t ( 14 
)
with Ω t = (Id +tV )(Ω).

Adjoint system method

The derivative in the sense of Hadamard can be decomposed in the same way as standard derivatives. Thus, the dierential with respect to the domain of a sum is equal to the sum of the dierentials:

L (Ω, λ V , λ E )(V ) = K crit J (Ω)(V ) + λ V C V (Ω)(V ) + λ E C E (Ω)(V ) (15) 
Standard dierentiation formulae with respect to the domain applied to each term [START_REF] Allaire | Conception optimale de structures[END_REF][START_REF] Henrot | Variation et optimisation de forme[END_REF][START_REF] Dapogny | Geometrical shape optimization in uid mechanics using FreeFem++[END_REF] yield

J (Ω)(V ) = d dt Γout C dx t=0 = Γout C dσ (16) C V (Ω)(V ) = d dt Ωt 1 dx t=0 -V(Ω 0 ) = ∂Ω (V • n)dσ (17) C E (Ω)(V ) = d dt 2ν Ωt |ε(U )| 2 dx t=0 -E(Ω 0 ) = 2ν ∂Ω |ε(U )| 2 (V • n) dσ + 4ν Ω ε(U ) : ε(U ) dx (18) 
In Eqs. ( 16), ( 17) and ( 18), U describes the sensitivity of U with respect to the variation of Ω. According to De La Sablonière et al. ( 2011) and [START_REF] Henrot | What is the optimal shape of a pipe?[END_REF], U is the solution of the following system of equations:

                   -ν∆U + (U • ∇)U + (U • ∇)U + ∇p = 0 in Ω ∇ • U = 0 in Ω U = 0 on Γ in ∪ Γ lat U = - ∂U ∂n (V • n) on Γ σ(U , p )n = 0 on Γ out (19a) (19b) (19c) (19d) (19e) 
where ∂U ∂n = ∇U n is the partial derivative with respect to the normal n. Similarly, C represents the sensitivity of the concentration C with respect to the variation of the domain. For the (HR) case, C is the solution of the following system of PDEs [START_REF] Courtais | Shape optimization of xed-bed reactors in process engineering[END_REF].

                 -D∆C +U •∇C +U •∇C +kC = 0 in Ω C = 0 on Γ in ∂C ∂n = K(C, V ) on Γ ∂C ∂n = 0 on Γ out ∪ Γ lat (20a) (20b) (20c) (20d) with K(C, V ) = -∂C 2 ∂n 2 (V •n)+∇C •(∇(V •n)-(∇(V •n)•n)n).
In the above system, equation (20b) comes from the usual dierentiation formulae, equations (20a) and (20d) from the dierentiation formula of a product and from a clever adaptation of Schwarz theorem (Henrot and Pierre, 2005, Chapter 5), and equation ( 20c) is a formula of dierentiation with respect to the domain for a Neumann-type boundary condition on the free boundary (Henrot and Pierre, 2005, Chapter 5). For the case SR, C is the solution of the following system of PDEs [START_REF] Courtais | Conceptions optimales de réacteurs à lit xe par fabrication additive[END_REF]:

                 -D∆C + U • ∇C + U • ∇C = 0 in Ω C = 0 on Γ in ∪ Γ lat C = - ∂C ∂n (V • n) on Γ ∂C ∂n = 0 on Γ out (21a) (21b) (21c) (21d) 
Following Eqs. ( 16), ( 17) and ( 18), the derivative of the Lagrangian rewrites as follows:

L (Ω, λ V , λ E )(V ) = K crit Γout C dσ + λ V ∂Ω (V • n)dσ + 2νλ E ∂Ω |ε(U )| 2 (V • n) dσ + 2 Ω ε(U ) : ε(U ) dx (22) 
The above expression is not very usable for practical purposes. Indeed, some terms of equation ( 22) do not depend explicitly on the scalar product (V • n). The dependence is achieved through U . Under this form, it is complex to choose an appropriate perturbation V leading to a decrease of the Lagrangian functional. It is therefore more suitable to express the Lagrangian derivative in the following form:

L (Ω, λ V , λ E )(V ) = ∂Ω G(Ω, λ V , λ E )(V • n) (23)
where G(Ω, λ V , λ E ) is the shape gradient, a function dened on the boundary of the domain ∂Ω that depends on the solution of the Navier-Stokes equations (U ,p) and the solution of the mass balance system C. To compute the gradient, adjoint system method is used, based on the introduction of two adjoint states: one associated to the Navier-Stokes equations (U a , p a ) and the other associated to the mass balance system C a . Finally, from the values of the function G(Ω, λ V , λ E ), the mesh displacement leading to a decrease of the Lagrangian is computed solving the following system [START_REF] Courtais | Conceptions optimales de réacteurs à lit xe par fabrication additive[END_REF]:

     -γ∆V + V = 0 in Ω V = 0 on Γ in ∪ Γ out ∪ Γ lat γ∇V n = -G(Ω, λ V , λ E )n on Γ (24a) (24b) (24c)
where γ is a positive parameter allowing to diuse more or less the mesh displacement. This parameter must be properly chosen. Indeed, if its value is too low, the diusion of the mesh will be small and the resulting free boundary surface will not be smooth. On the other hand, if the value of γ is chosen too large, the displacement of the whole domain will mainly depend on high shape gradient areas.

Once the vector eld V determined, the mesh is moved according to the discretized recurrence relation (13) expressed as follows:

Ω i+1 = (X + tV )(Ω i ) ( 25 
)
where X is the vector eld of mesh points coordinates at iteration i.

Finally, all that remains is to determine the shape gradient G(Ω, λ V , λ E ). Since each case involves a particular model, the expression of the shape gradient and the introduced adjoint states are presented separately.

3.3

First case: homogeneous reaction [START_REF] Courtais | Shape optimization of xed-bed reactors in process engineering[END_REF] have detailed all calculations allowing to express the shape gradient in the following form:

G(Ω, λ V , λ E ) = 2ν(ε(U ) : ε(U a ) -λ E ε(U ) : ε(U )) - K crit K BC DC a ∆C + λ V (26)
where K BC is a constant present in the concentration outlet of the adjoint boundary conditions (28d) and (30c) allowing to homogenize Eqs. ( 26), ( 28d) and (30c). In Eq. ( 26), (U a ,p a ) is the adjoint state of (U ,p) dened as the solution of the following system:

               H(U , U a ) + ∇p a = - K crit K BC C a ∇C in Ω ∇ • U a = 0 in Ω U a = 0 on Γ in ∪ Γ lat ∪ Γ σ(U a , p a )n + (U • n)U a = 4νλ E ε(U )n on Γ out (27a) (27b) (27c) (27d)
where

H(U , U a ) = -ν∆U a + (∇U ) T U a -∇U a U + λ E 2ν∆U
and C a is the concentration of the adjoint state of C dened as the solution of system:

                 -D∆C a -U • ∇C a + kC a = 0 in Ω C a = 0 on Γ in ∂C a ∂n = 0 on Γ lat ∪ Γ C a (U • n) + D ∂C a ∂n = K BC on Γ out (28a) (28b) (28c) (28d) 
In this work, K BC is set to 3 × 10 -3 mol.m -2 .s -1 in order to allow the elds C and C a having the same order of magnitude.

3.4

Second case: heterogeneous reaction In this case, the same reasoning as in the rst case is done and the shape gradient rewrites in the form:

G(Ω, λ V , λ E ) = 2ν(ε(U ) : ε(U a ) -λ E ε(U ) : ε(U )) + K crit K BC D ∂C a ∂n ∂C n ∂n + λ V (29) 
In Eq. ( 29), U a is the velocity of the adjoint state (U a ,p a ) solution of Eqs. ( 27) and C a is the concentration of the adjoint state of C dened as the solution of the following system:

         -D∆C a -U • ∇C a = 0 in Ω C a = 0 on Γ in ∪ Γ lat ∪ Γ C a (U • n) + D ∂C a ∂n = K BC on Γ out (30a) (30b) (30c)
4 Implementation of the shape optimization algorithm

Table 1 presents the optimization algorithm used to determine the optimal shape of the reactors. It is implemented within OpenFOAM [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF] which is a free and open-source platform allowing to solve partial dierential equations using C++ programming language and the nite volume method. In order to link iterations to each other, a python library named pyFoam is used through its mesh utility ''pyFoamMeshUtilityRunner.py''. The next subsections will detail the algorithm and discuss in particular its accuracy.

Mesh displacement

The manufacturing constraints are treated by post-processing of the vector eld V after its computation. ). It is treated by a projection method in two main steps. The rst one consists in determining the local thickness at point x and the second one in the projection of vector V (x).

The main diculty of this treatment is to compute the thickness. Its estimation is trivial to the naked eye, however, its implementation is complex in practice. Indeed, choosing the right direction to quantify this length is not an easy task. In this work, a thin solid centered inside the obstacles, called skeleton, is constructed and the thickness of the obstacle is dened as the double of the distance between its boundary and its skeleton (Fig. 4). In two dimensions, the skeleton of an obstacle is the curve which is equidistant from the obstacle on each side (Fig. 5), its mathematical denition is as follows.

Denition 1 The skeleton of an obstacle is dened as the set of centers of the maximal ball totally included in the obstacle.

Denition 2 A ball B 1 included in a set F is maximal if there is no ball B 2 also included in F containing B 1 strictly in the sense of inclusion.

In this work, the skeleton construction is based on the work of [START_REF] Attali | Squelettes et graphes de Voronoï 2D et 3D[END_REF] who built the skeleton of a shape from its Voronoi diagram, considering the shape as a discrete set of points. The Voronoi diagram of a set of points E is determined from the Voronoi regions. In the 2D case, the Voronoi region of a point x ∈ E is dened as the area where points belonging to it are closest to point x than all other points of E [START_REF] Attali | Squelettes et graphes de Voronoï 2D et 3D[END_REF]. It is mathematically dened below.

Denition 3 Let X a subset of IR d and P = {P 1 , P 2 , ..., P n } ⊂ X a set of points. The Voronoi region R k of a point P k is dened as follows Figure 6 illustrates the Voronoi diagram of a 10-point set. This diagram consists of two main elements, the vertices dened as the intersection of at least three Voronoi regions and the edges bounded by two vertices and dened as the boundary between two Voronoi regions. According to [START_REF] Attali | Squelettes et graphes de Voronoï 2D et 3D[END_REF], the skeleton can be built from both vertices or edges. In this work, it is built from edges because this construction allows to obtain directly the skeleton contrary to the other way which requires a last step of linear interpolation between the vertices.

R k = {x ∈ X | d(x, P k ) < d(x, P j ), ∀j = k}
Once the Voronoi diagram built (Fig. 7(a)), it is reduced using two steps in order to obtain the nal skeleton: Edges which are not completely included in the obstacle are removed (Fig. 7

(b)).

A second simplication is carried out using two criteria. (i) For all Voronoi vertices s, the rst criterion is the minimum distance between s and the obstacle, called r(s). between the free boundary and the skeleton. If this distance is lower than d obstacle min 2 and d(x) > d x + tV (x) then the vector V (x) is modied in order to be parallel to the skeleton (Fig. 4). The resulting vector is denoted V (x) mod .

Constraint on channel width

The other manufacturing constraint imposes a minimal value on the width of uid channels. It is also treated in two main steps by a projection method. For each boundary point x, the local channel width is rst computed by looping over all boundary points belonging to another obstacle. The closest point belonging to another boundary is denoted x near . The second step consists in computing the inner product of vectors xx near and V (x). If this scalar product is positive and d(x) = ||xx near || < d channel min , then the vector V (x) is modied in order to be orthogonal to xx near . Figure 8 shows an illustration of the channel constraint treatment. Figure 8: Illustration of the treatment of the constraint on the channel width. V (x) and V (x) mod are, respectively, the mesh displacement vector before and after modication at point x.

4.2

Meshing and remeshing of the domain OpenFOAM solves the PDEs using the nite volume method which requires a mesh generation in order to discretize the governing equations. The meshing step is important because the quality of the solution depends strongly on the mesh quality. In this work, the meshing and the remeshing are carried out using cfMesh, an open-source library for automatic mesh generation. Then, the mesh quality is improved using snappyHexMesh, a mesh generator utility supplied by OpenFOAM. The resulting mesh is composed of 50,000 to 120,000 computational cells depending on the case. Figure 9 presents the grid independence test carried out for both cases. It shows the evolution of the outlet concentration of the reactant versus the number of cells in the mesh and validates the independence of the computed solution with respect to the used mesh density.

(a) (HR) case (b) (SR) case The shape gradient is a function dened on the free boundary Γ and involves rst and second order derivatives of the dierent variables (see Eqs. ( 26) and ( 29)). Thus, the neighborhood of the boundary has to be modeled with accuracy, therefore, two layer meshes are added at boundary Γ for the homogeneous reaction case. For the (SR) case, 5 layer meshes are added at the reaction boundaries in order to improve the modeling of mass transfer diusion in the near-wall region.

Figure 10(a) illustrates the conguration that obstacles may present during the optimization process. According to the gure, ''tails'' may appear at the obstacle ends. This phenomenon was expected for the heterogeneous reaction case since the ''tails'' appearance allows to increase the reactive surface without much change in reactor volume. However, those ''tails'' are not manufacturable using Stratoconception ® printing process due to their small local thickness. The projection treatment of manufacturing constraints (section 4.1) does not prevent the formation of these ''tails '' illustrated in Fig. 10(b). In order to ensure the manufacturability of the object, the ''tails'' formed during the optimization process are removed by moving, once detected, all boundary points belonging to the ''tails'' at the center of their extreme points just before performing the remeshing step.

Mesh quality

At each iteration, the mesh quality is checked to know whether the volume discretization will impact the quality of the PDEs solution. This quality verication is carried out through three criteria often used in CFD area. Those criteria, illustrated in Fig. 11, are [START_REF] Holzinger | OpenFOAM: A little User-Manual[END_REF]:

The aspect ratio, dened in two dimensions as the ratio of the biggest to the smallest length of a cell. It is expressed by the ratio l s (Fig. 11). The mesh non-orthogonality, dened as the angle between the vector connecting the cell centers of two adjacent cells and the normal of the common face. In Fig. 11, it is dened by angle α = arccos(

A i •C i |A i ||C i | ).
The face skewness, dened by the ratio |d i | |C i | (see Fig. 11), where |d i | is the distance between the intersection of the line connecting the adjacent cell centers and their common face, and the center of this face, |C i | is the distance between the centers of considered cells.

If the maximum value of the aspect ratio is higher than 20, the mesh non-orthogonality is higher than 65 • or the face skewness is higher than 3.8, the shape is remeshed. Those upper bounds have been chosen because OpenFOAM checks the mesh quality computing (among others) the maximal values of the face skewness and the non-orthogonality of the mesh. If those values are respectively higher than 4 and 70 • , the mesh quality is not validated. Slightly lower values have been chosen for the mesh non-orthogonality and the face skewness to ensure that the maximum values dened by OpenFOAM are not exceeded after each mesh displacement. The choice of the upper bound for the aspect ratio is based on its values in the initial shapes. Depending on the case, the maximum aspect ratio in the initial mesh is between 8 and 15, therefore the upper bound for this criterion has been set to 20. However, this choice is not critical because the majority of the remeshing process launches is due to a violation of the criteria on non-orthogonality and skewness of the faces. 

× × A i C i d i α l s

Boundary conditions approximation

The pressure-velocity couplings present in the Navier-Stokes Eqs. (1) and its adjoint system equations ( 27) are numerically solved using SIMPLE algorithm [START_REF] Patankar | Numerical heat transfer and uid ow[END_REF]. The three outlet boundary conditions of the adjoint systems ((28d), (30c) and (27d)) are not usual boundary conditions and must be implemented within OpenFOAM using the following approximations:

(∇U a ) T n ≈ U a patch -U a intern δ ( 32 
)
∇C a n ≈ C patch a -C intern a δ ( 33 
)
which allows to rewrite the boundary conditions as follows: 26), ( 27) and ( 29) 28a), ( 29) and (30a) k 10 -2 s -1 (5a) γ 10 -4 m -2 (24a) and (24c) K BC 3 × 10 -3 mol.m -2 .s -1 (26), ( 27d), ( 28d), ( 29) and (30c) K crit 3 × 10 -5 m 6 .s -3 .mol -1 (10), ( 26) and ( 29)

U a patch ≈ νδ -1 U a intern + 4νλ E ε(U )n + p a n-ν∇U a n νδ -1 + (U • n) (34)
U in 10 -2 m.s -1 (1c) D 10 -9 m 2 .s -1 (26), (
C patch a ≈ νδ -1 C intern a + K BC νδ -1 + (U • n) ( 35 
)
where δ is the distance between the boundary and the internal adjacent cell center, U a patch and C patch a represent respectively the adjoint velocity and the adjoint concentration at the boundary, and U a intern and C intern a their values in the internal adjacent cell center. The implementation of these boundary conditions within OpenFOAM is presented with further details in Courtais (2021).

4.5

Lagrange multipliers update and convergence of the algorithm

In this work, the optimization algorithm used is based on the Uzawa method which consists in the determination of the mesh displacement at each iteration considering the Lagrange multipliers λ V and λ E constant. Once the mesh diusion done, the Lagrange multipliers are updated according the following equations:

λ k+1 V = λ k V + β V C V (Ω) (36) 
λ k+1 E = max 0, λ k E + β E C E (Ω) (37) 
where β V and β E are small positive parameters. The formulation of relations ( 36) and ( 37) are dierent because the volume constraint is of equality type while the energy constraint is an inequality one (see Karush-Kuhn-Tucker's dual feasibility condition [START_REF] Karush | Minima of functions of several variables with inequalities as side conditions[END_REF][START_REF] Kuhn | Nonlinear programming[END_REF]). This explains why λ V may be negative while λ E cannot. Finally, the convergence of the algorithm is carried out through the computation of the coecient of variation (or relative standard deviation) of the last 100 Lagrangian values. If this ratio is lower than 10 -4 , the convergence is achieved.

Main results

This section is devoted to the presentation of numerical results obtained using the algorithm described in the previous section. It consists of two subsections where the optimization results for the cases (HR) and (SR) are presented. Except for the kinetic constant k, the simulation parameters are the same for both cases and are shown in Table 2.

Homogeneous reaction

Figures 12(a) and 12(b) show the concentration proles of the reactant in the initial design and in the optimal shape (without considering the manufacturing constraints) of the reactor. As can be seen, a stagnation zone appears at the inlet of the initial shape (light area in Figure 12(a)). It corresponds to a region of the reactor where the reactant concentration is low resulting in low reaction rates. Consequently, this stagnation volume is almost useless for the conversion. In the optimal shape without manufacturing constraints, the stagnation zone has disappeared. However, this reactor conguration cannot be manufactured using Stratoconception ® process due to too thin obstacles and some very small channel widths.

The optimization is then carried out taking into account the manufacturing constraints and the resulting shape is displayed in Fig. 12(c). Similarly, the stagnation zone present in the initial shape has disappeared and the size of obstacles and channels of the optimized shape are such that they can be built by means of Stratoconception ® process. The manufactured optimal shape of the reactor is shown in Figure 12(d).

Figure 13 shows the convergence history of the optimization process. The energy and volume constraints are both satised at convergence and it is interesting to note that the inequality constraint on the energy dissipated is active. It may therefore be interesting either to increase the maximum value associated to this constraint in order to obtain a better conversion rate, or to perform multi-objective optimization of the reactor considering two criteria (i) the conversion rate and (ii) the energy dissipation. Figure 13 also shows a decrease of almost 10% in the reactant concentration at the reactor outlet, which leads to an improvement in the conversion rate of 2.7% (71.5% versus 74.2%). This improvement can be explained by two main reasons. The rst one is the disappearance of the stagnation zone and the second one is the better homogeneity of the liquid ow in the reactor. This better homogeneity is shown by the residence time distributions (RTDs) presented in Fig. 14. These RTDs have been determined numerically by imposing a concentration pulse at the inlet boundary once the uid ow is developed. The reactor response to this pulse is then examined by determining the variation of the concentration at the outlet over time. The RTDs exploitation is then carried out by means of the method of moments which consists of determining the zeroth (i = 0), rst (i = 1) and second (i = 2) order moments given by [START_REF] Levenspiel | Chemical reaction engineering[END_REF]:

µ i = ∞ 0 t i E(t)dt (38) 
where E(t) is the RTD function. The standard deviation of the RTDs is 3.5 times lower in the optimized reactor than in the initial one (Table 3) which is mainly explained by the disappearance of the stagnation zone. Indeed, Fig. 14 shows that the RTD function hits almost zero in the optimal shape after 250 s which is not the case in the initial shape. The disappearance of the stagnation zone is also highlighted regarding the rst order moment since the mean residence time is slightly lower for initial reactor shape. The deviation of the optimized reactor performances from the ideal plug ow reactor Here, the optimization allows a decrease of the performance index of almost 6% which results in 4.7% improvement in the reactor conversion rate (19.6% versus 24.3%). It is mainly explained by the 50% increase of the reaction surface (Fig. 19(a)). However, the conguration (b) of the reactor presents poor homogeneity in the liquid ow. Indeed, the wall surface increase leads to an increase of the energy dissipation due to wall shear stress. Thus, the reactor exhibits channeling in its center (close to the axis of symmetry) in order to satisfy the energy constraint. Two more optimizations with and without energy constraint are carried out. In the case with constraint, the upper bound of the constraint is multiplied by a factor of 1.4 to analyze its eect on the uid homogeneity in the reactor. The resulting optimal shapes are displayed in Figs. 18(c) and 18(d). They show that the higher the upper bound of energy constraint is, the more homogeneous the uid ow becomes and the more the channeling in the reactor reduces. The improvement of the uid homogeneity, the increase of the reactive surface area (Figs. 19(b) and 19(c)) and the disappearance of the channeling lead to an increase in the performances of optimal reactors. Indeed, the reactant concentration at the reactor outlet has decreased by 8% and 20% for the shapes 18(c) and 18(d), respectively, which improves the conversion rate by 6.4% and 16%. However, these improvements of the conversion rate inevitably lead to an increase of the pressure drops in both reactors by a factor of 1.4 and 7 respectively (Fig. 20). Figure 21 presents the RTDs of the three optimal reactors (with their associated description numbers gathered in Table 4) and shows the reduction of the channeling in the reactor when the upper bound of the energy constraint is increased. The distribution associated to the optimization with iso-energy constraint exhibits two peaks, the rst of which corresponds to the channeling. The distribution associated to shape 18(c) presents also two peaks but the one referring to the channeling is less important than for the shape 18(b). In the reactor 18(d), the RTD shows that the channeling has disappeared. To summarize, in this case, the optimization procedure aims at increasing as much as possible the reactive surface (Fig. 19) and at improving the uid ow homogeneity under pressure drops constraint.

For the three optimal reactors, channel Reynolds numbers have been computed and do not exceed 67, 48 and 17, respectively, for shapes 18(b), 18(c) and 18(d) which validates the assumption of the ow regime.

The sensitivity of the optimal shape with respect to the inlet ow velocity is nally investigated for the (SR) case. Two additional optimizations have been performed when the inlet ow velocity is reduced (a) by a factor of 2, and (b) by a factor of 10 (Fig. 22). As can be seen, the optimized shapes are signicantly dierent from each other and from the one displayed on Fig. 18(b) leading to the conclusion that the optimized shape of the reactor may depend on the operating conditions such as the inlet ow rate. Table 5 presents the conversion rate of these three reactors depending on the inlet ow velocity imposed, and it supports the stated conclusion. Indeed, for U in = 0.001 m.s -1 (second column of the table), the reactor that leads to the highest conversion rate is the one displayed on as inlet boundary condition). The same conclusion is stated for U in = 0.005 m.s -1 (third column), and for U in = 0.01 m.s -1 (fourth column), the shape displayed on Fig. 22(b) has the highest conversion rate but does not satisfy the energy constraint. Consequently, the reactor meeting the set of constraints with the highest conversion rate for U in = 0.01 m.s -1 results from the shape optimization with U in = 0.01 m.s -1 .

Conclusion

A geometry optimization based on the adjoint system method is developed for shape optimization of xed-bed reactors. The corresponding algorithm is implemented within Open-FOAM software in order to determine the optimal shape of the packing where a surface reaction or an homogeneous rst order reaction takes place. In both cases, the objective is to minimize the average concentration of the reactant at the reactor outlet. The optimization problem is subjected to constraints involving Navier-Stokes and mass balance equations, an iso-volume and energy constraints, and to two manufacturing constraints. The optimized packing of the reactor allows a signicant improvement of the conversion rate, i.e. 2.7% for the (HR) case and 4.7% for the (SR) case (under iso-energy constraint). However, the developed optimization approach shows some weaknesses that need to be adressed. The rst one concerns the width constraints treatment which is performed by post-treatment of the mesh displacement. It suers from excessive strictness and does not allow the constraints violation during the optimization process as opposed to a constraint directly included in the Lagrangian functional. It might be possible to improve this issue by treating the width constraints using penalization functions [START_REF] Allaire | Thickness control in structural optimization via a level set method[END_REF]. The second weakness is related to the computational load of a single optimization and particularly in the surface reaction case. Indeed, the optimization process takes between 7 and 10 days to converge on a 3.7GHz Xeon Dell Computer 5810 (and 2-3 days for the homogeneous case). The most CPU time consuming step is the resolution of the PDEs by OpenFOAM.

In our case, the computational time could not be decreased using parallel computing because the optimization method is iterative and the number of cells is between 50,000 and 120,000. However, it could be improved by modifying some numerical schemes (e.g. the use of SIMPLER algorithm instead of SIMPLE one) but the saved time would be marginal.

Another way to reduce the CPU time required for CFD resolution could involve the use of surrogate models [START_REF] Rabhi | Surrogate-based modeling in otation processes[END_REF] which approximate the CFD solution needed by the shape optimization algorithm. The convergence of the iteration algorithm could also be accelerated using a line search method to determine the optimal step t instead of using a xed value for this parameter. This would limit the number of iterations required to achieve the convergence and consequently the number of PDEs resolutions. Finally, the use of a geometry optimization algorithm may not be appropriate since it preserves the topology of the reactor and the initial topology could not be the optimal topology. Therefore, it could be interesting to optimize the reactor using a topology optimization approach rst and then rene the resulting shape using geometry optimization. 

Nomenclature

Figure 2 :

 2 Figure 2: Initial shape of the reactor used for the optimization process Ω 0 . A symmetry axis is located in the reactor center on which symmetry boundary conditions are imposed.

Figure 4 :

 4 Figure4: Illustration of the obstacle constraint treatment. V (x) and V (x) mod are respectively the mesh displacement vector before and after modication at point x.

Figure 5 :

 5 Figure 5: Schematic illustration of the skeleton of a rectangular object, the blue circles represent the maximal balls, the black dots their centers and the red line indicates the skeleton.

Figure 6 :

 6 Figure 6: Voronoi diagram of a 10-point set.

(

  Figure 7: Simplication of the Voronoi diagram into the skeleton: green points denote obstacle points and red lines denote Voronoi diagram (a) and the simplied skeleton (b) and (c). The second step is carried out by means of a test on the minimum distance d(x)

Figure 9 :

 9 Figure 9: Grid independence test -Outlet reactant concentration versus the number of cells in the mesh.

  Figure 10: Illustration of (a) the potential conguration of some obstacles, (b) the formation process of tails at free boundary ends.

Figure 11 :

 11 Figure 11: Illustration of the mesh quality criteria.

Figure 12 :

 12 Figure 12: Homogenous reaction case: initial design of the xed-bed reactor (a), optimized shape without manufacturing constraint (b), optimized shape with manufacturing constraint (c), optimal shape manufactured by means of Stratoconception ® process (d).

Figure 13 :

 13 Figure 13: Performances of the optimization process of the reactor satisfying the manufacturing constraints (Fig. 12(c)), (a) ratio J J 0 , (b) conversion rate, (c) volume constraint, (d) energy dissipation constraint, versus iterations.

Figure 14 :

 14 Figure 14: Residence time distribution of initial and optimal reactors.
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 151618 Figure 15: Optimal reactors when initial shape is slightly perturbed: (a) the semi-axes of initial obstacles are increased by 0.5 mm and (b) the obstacles are translated by 3 mm towards the reactor inlet

Figure 19 :

 19 Figure 19: Evolution of the specic surface area over iterations: optimization under isoenergy constraint (a), optimization under energy constraint (1.4 times initial energy losses) (b), and optimization without energy constraint (c).

Figure 20 :

 20 Figure 20: Evolution of the pressure drops in the reactor over iterations: optimization under iso-energy constraint (a), optimization under energy constraint (1.4 times initial energy losses) (b), and optimization without energy constraint (c).

Figure 21 :

 21 Figure 21: Residence time distribution of optimized reactors.

Figure 22 :

 22 Figure 22: Surface reaction case: optimized design of the xed-bed reactor when the inlet ow velocity is (a) U in = 0.005 m.s -1 , (b) U in = 0.001 m.s -1 .

Table 1 :

 1 Shape optimization algorithm.

	8	if bad mesh quality (see 4.3) then
	9	Remeshing (see 4.2)

1 Meshing of the initial shape (see 4.2); 2 while convergence not achieved (see 4.5) do 3 Solve Navier-Stokes, mass balance and their adjoint system equations in Ω i (see 4.4); 4 Computation of the shape gradient on ∂Ω i ; 5 Determination of the vector eld V taking into account manufacturing constraints (see 4.1); 6 Diusion of the mesh Ω i+1 ; 7 Update of Lagrange multipliers λ V and λ E (see 4.5);

Table 2 :

 2 Simulation parameters.

	Parameters	Values	Units	Equations
	ν	10 -6	m 2 .s -1	(1a), (

Table 3 :

 3 RTDs parameters -(HR) case.

	Reactor		Moment of order	Standard deviation
	shape	Zero One (mean)	Two	(σ = µ 2 -µ 2 1 )
	Initial	1	134 s	23284 s 2	73 s
	Optimal	1	139 s	19868 s 2	21 s

Table 4 :

 4 RTDs parameters -(SR) case.

	Optimal		Order moment		Standard deviation
	shape	Zeroth First (mean) Second	(σ = µ 2 -µ 2 1 )
	Iso-energy constraint	1	139 s	32209 s 2	114 s
	1.4 times initial energy	1	138 s	26023 s 2	84 s
	No energy constraint	1	138 s	25902 s 2	83 s
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is then analyzed. Indeed, the conversion rate in a steady-state plug ow reactor where a rst order homogeneous reaction occurs is given by [START_REF] Villermaux | Génie de la réaction chimique[END_REF]:

where τ = V(Ω 0 ) Q is the hydraulic residence time with Q representing the uid ow rate. In this case, the deviation from the ug ow reactor is small since the conversion rate of the ideal reactor is 74.6% (versus 74.2% for the optimized reactor). Thus, this validates the performance of the optimization procedure since it minimizes the deviation from the ideal reactor. In this case, the packing acts as a static mixer and the optimization procedure aims at improving the homogeneity of the uid ow in order to reduce the deviation of the reactor from the ideal plug ow reactor.

The assumption of laminar ow is checked computing the channel Reynolds number. In this case, the particle Reynolds number is meaningless because obstacles have dierent dimensions. The channel Reynolds number is expressed by the following equation:

where u is the uid average velocity which ows inside the channel, d the channel width and ν the uid kinematic viscosity. In the optimized conguration 12(c) the Reynolds number Re c does not exceed 16 which validates the assumption of laminar ow. The presence of local minima is analyzed by starting the optimization procedure from a slightly modied initial shape. Fig. 15 presents the optimal reactor shapes determined when: (a) the initial obstacles are enlarged (i.e. the semi-axes are increased by 0.5 mm), and (b) the obstacles are translated by 3 mm towards the reactor inlet. As can be seen, the optimized reactors are slightly dierent from each other and from the one displayed in Fig. 12(c) showing the presence of local minima. However, since the conversion rate is improved in the same proportions (by 2.4 % for the three optimal shapes), these 3 optimal reactors are in the same level of performance.

The impact of the kinetic constant on the determined optimized shape is then studied. Two additional optimizations when the kinetic constant is equal to (a) 5 × 10 -2 s -1 , and to (b) 2 × 10 -3 s -1 have been carried out (Fig. 16). Both optimal shapes are not signicantly dierent from the optimized shapes presented on Figs. 12(c) and 15. It was expected because, as previously pointed out for the (HR) case, the aim of the optimization procedure is to nd the conguration of the packing which improves as much as possible the uid ow homogeneity in the reactor. Therefore, since the kinetic constant does not inuence the uid ow in the reactor, it has no impact on the optimized congurations of the reactor. In the present case, the optimal shapes (Fig. 16) are slightly dierent since the algorithm converged towards dierent local minima.

Another optimization has been carried out by increasing the uid kinematic viscosity by a factor of 10 in order to study the sensitivity of the optimal shape with respect to Reynolds number. The hydrodynamics in the reactor is therefore modied and the initial and optimal shapes of the reactor are shown on Fig. 17. The stagnation zone present in the initial shape of the reactor (a) is much less pronounced in this case due to the viscosity