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Abstract
The aim of this paper is to determine the shape of a fixed-bed reactor which maxi-

mizes the conversion rate under the constraints of process model equations (i.e. conti-
nuity, Navier-Stokes, and mass balance equations), energy dissipation, iso-volume, and
manufacturing. Incompressible fluid, laminar flow regime and steady-state conditions
in the reactor are the main assumptions taken into account. The optimization method
developed is based on the adjoint system method and OpenFOAM framework is used
as CFD solver to compute the state vector and its adjoint variables introduced by
the optimization approach. The algorithm developed is then tested on two different
cases, a reactor where a first order homogeneous reaction takes place and another one
involving a surface reaction. The optimization results show a significant reduction of
the performance index by 10% in the first case, and by 20% in the second one. Finally,
initial and optimal shapes are manufactured using a 3D printing technique.

Keywords: Shape optimization, Adjoint system method, Computational fluid dynamics,
OpenFOAM environment, Fixed-bed reactor, Additive manufacturing

1 Introdution

The objective of shape optimization is to deform the outer boundary of an object in order
to minimize or maximize a performances index, while satisfying given constraints. Histor-
ically, shape optimization methods have been used in cutting-edge technologies mainly in
advanced areas such as aerodynamics (Burgreen et al., 1994; Reuther et al., 1999; Hicks
and Henne, 1978). However, they have recently been extended to other engineering areas
where the shape greatly influences the performances. For example, in hydrodynamics, the
shape of a pipe that minimizes the energy dissipated by the fluid due to viscous friction
was analyzed (Tonomura et al., 2010; Henrot and Privat, 2010; Courtais et al., 2019).
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(a) (b) (c)

Figure 1: Maximization of surface area while satisfying perimeter constraint using param-
eter optimization (a), geometry optimization (b), topology optimization (c)

In chemical engineering however, where the shape of unit operations (e.g. reactors,
tanks, stirrers, pipes. . . ) is an important design parameter, the shape optimization has
not been extensively investigated. This important issue deserves therefore to be addressed
and will probably result in a paradigm shift in optimal design and operation of processes.

Shape optimization methods can be grouped into 3 main families illustrated in Fig. 1
which presents an example of two-dimensional optimization where the objective is to max-
imize the surface area under the constraint of the perimeter.

(a) The first family is parameter optimization (Lin et al., 2011; Kundu, 2007) where the
general shape of the object to design is known and the optimization method can
only modify some parameters chosen by the user. This kind of optimization is by far
the most developed in chemical engineering area (Liang and Yuan, 2020; Grundtvig
et al., 2017). However, it does not allow substantial modifications of the shape.

(b) The second one is geometry optimization where the decision variables are no longer
defined by some parameters but by the border of the optimized object (Courtais
et al., 2019; Henrot and Privat, 2010). This kind of family allows a deformation of
the global shape, but, it prevents topology changes. In 2D, it means that the number
of holes or inclusions remains invariable during the optimization process.

(c) The last one is topology optimization which is an extension of geometry optimization
and allows topology changes (Dong and Liu, 2020; Zhou et al., 2018).

The present work is devoted to the development of a geometry optimization algorithm
using the adjoint system method. The resulting algorithm is used in optimal design of
fixed-bed reactors where (i) a first order homogeneous reaction takes place, (ii) a surface
reaction limited by the external mass transfer occurs. The two cases will thereafter be
referred to as HR and SR, respectively. In both cases, the objective is to find the shape of
the packing which minimizes the average concentration of the reactant at the outlet of the
reactor, i.e. maximizes the conversion rate of the reactor. The resulting optimal shapes
will then tested numerically by means of residence time distribution computations.

The paper is organized as follows. First, the optimization problems are defined (Section
2) and their mathematical formulations are presented (Section 3). Section 4 describes the
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implementation of the algorithm within OpenFOAM framework. Finally, Section 5 is
devoted to the presentation of the numerical results and the manufactured optimal shapes.
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x

Figure 2: Initial shape of the reactor used for the optimization process Ω0. A symmetry
axis is located in the reactor center on which symmetry boundary conditions are imposed.

2 Presentation of the optimization problems considered

2.1 Case studies and their modeling

In this work, the process considered is a fixed-bed reactor where a single-phase liquid flows.
The initial structure of the packing consists of elliptical obstacles (whose half axes are 5
mm and 2.5 mm) uniformly distributed in the reactor. Fig. 2 illustrates schematically the
initial configuration of the reactor to be optimized.

The reactor is denoted Ω (see Fig. 2) and is delimited by the union of the fluid inlet (Γin),
outlet (Γout), lateral wall (Γlat) and free (Γ) boundaries. This last boundary represents the
reactor packing and stands for the decision variable of the optimization problem. It is the
only boundary that will evolve during the optimization process.

The fluid flow in the reactor Ω is modeled by the momentum balance described by the
Navier-Stokes and the continuity equations as:

−ν∆U + (U · ∇U) +∇p = 0 in Ω

∇ ·U = 0 in Ω

U = Uin on Γin

U = 0 on Γlat ∪ Γ

σ(U , p)n = 0 on Γout

(1a)
(1b)
(1c)
(1d)
(1e)

where ν and p are the kinematic viscosity and p the kinematic pressure (i.e. the absolute
pressure divided by the fluid density), respectively. According to equations (1a) and (1b),
the fluid flow is assumed stationary, incompressible, and the relative pressure is imposed
equal to zero at the reactor outlet. σ(U , p) is the stress tensor divided by the fluid density.
It is defined by
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σ(U , p) = 2νε(U)− pI with ε(U) =
1

2
(∇U + (∇U)T ) (2)

where I is the identity matrix.
At the inlet boundary Γin, the velocity profile is uniform and follows (Oy) direction.

It is set to a small value in order to impose low particle Reynolds number (see Eq. (3))
ensuring a laminar flow in the reactor.

Rep =
udH
ν

(3)

where u is the superficial velocity and dH = 4S
P is the hydraulic diameter with S = πab

the surface of the elliptical obstacles (a and b are the half axes) and P ≈ π
√

2(a2 + b2)
their perimeter. In the initial configuration, the particle Reynolds number does not exceed
7 which justifies the laminar flow assumption. It will be verified in the optimal shapes of
the reactor.

The mass transfer modelling is presented for the two cases HR and SR in the following
subsections.

2.1.1 First case study: homogeneous reaction

The first reaction considered is of type R→ P, homogeneous and of first order with respect
to the reactant. Its kinetics is expressed as:

r = kC (4)

where k is the kinetic constant and C the concentration of the reactant R. In this case, we
assume that the reaction only takes place in the fluid phase (i.e. in Ω), the packing just
acts as a static mixer. Thus, the mass balance on R is described by the following system
of PDEs: 

−D∆C + U · ∇C + kC = 0 in Ω

C = Cin on Γin

∂C

∂n
= 0 on Γlat ∪ Γout ∪ Γ

(5a)
(5b)

(5c)

where D is the mass diffusion coefficient of the reactant R in the solvant.

2.1.2 Second case study: surface reaction

The second reaction is heterogeneous, limited by the external mass transfer and occurs
on walls Γ and Γlat. It is assumed that the packing Γ and the lateral wall Γlat are both
catalyst impregnated and the reaction is very fast at the surface of catalyst. All these
assumptions lead to the following mass balance equations:
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−D∆C + U · ∇C = 0 in Ω

C = Cin on Γin

C = 0 on Γlat ∪ Γ

∂C

∂n
= 0 on Γout

(6a)
(6b)
(6c)

(6d)

2.2 Shape optimization problems

The shape optimization problems are defined by:

• a performance index to be minimized. It is defined by the average concentration
of the reactant at the reactor outlet. Such a performance index is relevant since the
conversion rate depends on the average concentration of the reactant at the outlet.
It is given by:

J(Ω) =

∫
Γout

C dσ (7)

where C is the solution of (5) or (6) depending on the case.

• decision variables. In a shape optimization problem the decision variable is the
shape of the domain described by the free boundary Γ.

• a process model. It is described by the Navier-Stokes momentum equations without
turbulence model, the continuity Eqs. (1) and the mass balance equations (5) or (6).

• a set of constraints. Here, four constraints are considered. The first constraint is an
iso-volume constraint defined in order to maintain the same residence time between
initial and optimal shapes. The second constraint is an inequality constraint on
energy dissipation by the fluid due to viscous friction. Such a constraint is relevant
since the energy dissipation is proportional to the pressure drop. The two constraints
are given by the following relations:

CV(Ω) = V(Ω)− V(Ω0) = 0 (8)

CE(Ω) = 2ν

∫
Ω
|ε(U)|2 dx− 2ν

∫
Ω0

|ε(U)|2 dx︸ ︷︷ ︸
E0

6 0 (9)

with |ε(U)|2 = ε(U) : ε(U). The notation ’’:’’ is the double inner product of two
tensors defined by A : B =

∑3
i,j=1Ai,jBi,j . In Eqs. (8) and (9), V(Ω) represents the

volume of Ω and (U ,p) is the solution of Eqs. (1).

The two last constraints take into account the manufacturability of the optimal shape
of the object to be designed. These constraints involve a minimum distance between
two obstacles and a minimum thickness of obstacles. Since the differentiation with
respect to the domain is a complex task (Feppon et al., 2020), these constraints are
not included in the Lagrangian, their treatment is detailed in paragraph 4.1.
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The Lagrangian of the problem which aggregates the performance index, the volume
and energy constraints is defined as:

L(Ω, λV , λE) = KcritJ(Ω) + λVCV(Ω) + λECE(Ω) (10)

where Kcrit is a constant ensuring dimensional consistency of the terms of the Lagrangian
functional, λV and λE are the Lagrange multipliers respectively associated to volume and
energy constraints.

In conclusion, the shape optimization problem is formulated as:

min
Ω

J(Ω)

s.t. Ω ∈ C

(U , p) solution of Eqs. (1)
C solution of Eqs. (5) or (6)

(11)

where C represents the set of constraints given by

C := {Ω ⊂ IR2 | CV(Ω) = 0 and CE(Ω) 6 0}. (12)

3 Shape optimization method: adjoint system method

The method developed to solve the formulated shape optimization problem is based on
geometry optimization. It is an iterative method which computes the gradient of the
performance index and the constraints by means of the adjoint system method. Since two
systems of PDEs (i.e. systems of momentum and mass balance equations) are involved in
the model of each case studied, two adjoint systems are therfore introduced.

3.1 Fundamental principle of the Hadamard method

In the field of geometry optimization, the shape of an object is optimized by varying its
boundaries which can be classified into two categories:

• fixed boundaries which will not be distorted during the optimization process. In this
study, the boundaries Γin, Γout and Γlat are fixed.

• free boundaries which are the decision variables of the problem. In our cases, the
free boundary is Γ.

It is interesting to consider the largest possible free boundary in order to increase the degree
of freedom of the optimization method. This will allow to reach a wider range of possible
shapes, which will give better optimization performances. However, it will increase the
number of local minima. The classification of the boundaries is the choice of the engineer
who wants to optimize the object and depends mainly on the process involved (position of
the fluid inlet and outlet, external border of the object, etc.).

The method used in this work is an iterative method that determines, from an initial
shape of an object, a sequence of shapes that improve the performances of the object
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at each iteration by adapting the position of its boundaries. It is based on Hadamard’s
approach (Hadamard, 1907) and relies on the concept of derivative with respect to the
domain, also called derivative in the sense of Hadamard (Allaire and Schoenauer, 2007;
Henrot and Pierre, 2005). It consists in determining at each iteration the sensitivity of the
performance index or the Lagrangian with respect to a small perturbation of the boundaries
∂Ω according to the following relation:

Ωi+1 = (Id + tV )(Ωi) (13)

where Id is the identity operator, t is the method step of the iterative algorithm, i is the
iteration index and V is the vector field standing for the perturbation. Fig. 3 illustrates
the displacement of Ω from an iteration to the next one.

Ωi

Ωi+1

tV (x)

x

Figure 3: Example of an iteration of the shape optimization method. tV (x) is the small
perturbation at point x ∈ ∂Ω, Ωi represents the domain at iteration i.

The approach is based on the recurrence formula (13) and the objective of the method
is to determine, at each iteration, the step t and the vector field V leading to a decrease
of the Lagrangian.

The derivative in the sense of Hadamard is a concept of direction derivative. The
Lagrangian derivative following the direction V is computed with the following formula
(Henrot and Privat, 2010):

L′(Ω, λV , λE)(V ) = lim
t→0

L(Ωt)− L(Ω)

t
(14)

with Ωt = (Id +tV )(Ω).

3.2 Adjoint system method

The derivative in the sense of Hadamard can be decomposed in the same way as usual
derivatives. Thus, the derivative with respect to the domain of a sum is equal to the sum
of the derivatives:
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L′(Ω, λV , λE)(V ) = KcritJ
′(Ω)(V ) + λVC

′
V(Ω)(V ) + λEC

′
E(Ω)(V ) (15)

Usual formulae of differentiation with respect to the domain applied to each term
(Allaire and Schoenauer, 2007; Henrot and Pierre, 2005; Dapogny et al., 2018) yield

J ′(Ω)(V ) =
d

dt

∫
Γout

C dx

∣∣∣∣
t=0

=

∫
Γout

C ′ dσ (16)

C ′V(Ω)(V ) =
d

dt

(∫
Ωt

1 dx

∣∣∣∣∣
t=0

− V(Ω0)

)
=

∫
∂Ω

(V · n)dσ (17)

C ′E(Ω)(V ) =
d

dt

(
2ν

∫
Ωt

|ε(U)|2 dx
∣∣∣∣
t=0

− E(Ω0)

)

= 2ν

∫
∂Ω
|ε(U)|2(V · n) dσ + 4ν

∫
Ω
ε(U) : ε(U ′) dx

(18)

In Eqs. (16), (17) and (18), U ′ describes the sensitivity of U with respect to the
variation of Ω. According to De La Sablonière et al. (2011) and Henrot and Privat (2010),
U ′ is the solution of the following system of equations:

−ν∆U ′ + (U ′ · ∇)U + (U · ∇)U ′ +∇p′ = 0 in Ω

∇ ·U ′ = 0 in Ω

U ′ = 0 on Γin ∪ Γlat

U ′ = −∂U
∂n

(V · n) on Γ

σ(U ′, p′)n = 0 on Γout

(19a)
(19b)
(19c)

(19d)

(19e)

where ∂U
∂n = ∇Un is the partial derivative with respect to the normal n.

Similarly, C ′ represents the sensitivity of the concentration C with respect to the vari-
ation of the domain. For the HR case, C ′ is the solution of the following system of PDEs
(Courtais et al., 2021).

−D∆C ′+U ·∇C ′+U ′ ·∇C+kC ′= 0 in Ω

C ′ = 0 on Γin

∂C ′

∂n
= K(C,V ) on Γ

∂C ′

∂n
= 0 on Γout∪ Γlat

(20a)
(20b)

(20c)

(20d)

with K(C,V )= −∂C2

∂n2 (V ·n)+∇C ·(∇(V ·n)−(∇(V ·n)·n)n). In the above system, equa-
tion (20b) comes from the usual differentiation formulae, equations (20a) and (20d) from
the differentiation formula of a product and from a clever adaptation of Schwarz theorem
(Henrot and Pierre, 2005, Chapter 5), and equation (20c) is a formula of differentiation
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with respect to the domain for a Neumann-type boundary condition on the free boundary
(Henrot and Pierre, 2005, Chapter 5). For the case SR, C ′ is the solution of the following
system of PDEs (Courtais, 2021):

−D∆C ′ + U · ∇C ′ + U ′ · ∇C = 0 in Ω

C ′ = 0 on Γin ∪ Γlat

C ′ = −∂C
∂n

(V · n) on Γ

∂C ′

∂n
= 0 on Γout

(21a)
(21b)

(21c)

(21d)

Following Eqs. (16), (17) and (18), the derivative of the Lagrangian rewrites as follows:

L′(Ω, λV , λE)(V ) = Kcrit

∫
Γout

C ′ dσ + λV

∫
∂Ω

(V · n)dσ

+ 2νλE

(∫
∂Ω
|ε(U)|2(V · n) dσ + 2

∫
Ω
ε(U) : ε(U ′) dx

) (22)

The above expression is not very usable for practical purposes. Indeed, some terms of
equation (22) do not depend explicitly on the scalar product (V · n). The dependence is
achieved through U ′. Under this form, it is complex to choose an appropriate perturbation
V leading to a decrease of the Lagrangian functional. It is therefore more suitable to express
the Lagrangian derivative in the following form:

L′(Ω, λV , λE)(V ) =

∫
∂Ω
G(Ω, λV , λE)(V · n) (23)

where G(Ω, λV , λE) is the shape gradient, a function defined on the boundary of the
domain ∂Ω that depends on the solution of the Navier-Stokes equations (U ,p) and the
solution of the mass balance system C. To compute the gradient, adjoint system method
is used, based on the introduction of two adjoint states: one associated to the Navier-Stokes
equations (Ua, pa) and the other associated to the mass balance system Ca. Finally, from
the values of the function G(Ω, λV , λE), the mesh displacement leading to a decrease of the
Lagrangian is computed solving the following system (Courtais, 2021):

−γ∆V + V = 0 in Ω

V = 0 on Γin ∪ Γout ∪ Γlat

γ∇V n = −G(Ω, λV , λE)n on Γ

(24a)
(24b)
(24c)

where γ is a positive parameter allowing to diffuse more or less the mesh displacement.
This parameter must be properly chosen. Indeed, if its value is too low, the diffusion of
the mesh will be small and the resulting free boundary surface will not be smooth. On the
other hand, if the value of γ is chosen too large, the displacement of the whole domain will
mainly depend on high shape gradient areas.
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Once the vector field V determined, the mesh is moved according to the discretized
recurrence relation (13) expressed as follows:

Ωi+1 = (X + tV )(Ωi) (25)

where X is the vector field of mesh points coordinates at iteration i.
Finally, all that remains is to determine the shape gradient G(Ω, λV , λE). Since each

case involves a particular model, the expression of the shape gradient and the introduced
adjoint states are presented separately.

3.3 First case: homogeneous reaction

Courtais et al. (2021) have detailed all calculations allowing to express the shape gradient
in the following form:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− λEε(U) : ε(U))− Kcrit

KBC
DCa∆C + λV (26)

where KBC is a constant present in the concentration outlet of the adjoint boundary
conditions (28d) and (30c) allowing to homogenize Eqs. (26), (28d) and (30c). In Eq.
(26), (Ua,pa) is the adjoint state of (U ,p) defined as the solution of the following system:

H(U ,Ua) +∇pa = −Kcrit

KBC
Ca∇C in Ω

∇ ·Ua = 0 in Ω

Ua = 0 on Γin ∪ Γlat ∪ Γ

σ(Ua, pa)n + (U · n)Ua = 4νλEε(U)n on Γout

(27a)

(27b)
(27c)
(27d)

where H(U ,Ua) = −ν∆Ua+ (∇U)TUa−∇UaU +λE2ν∆U and Ca is the concentration
of the adjoint state of C defined as the solution of system:

−D∆Ca −U · ∇Ca + kCa = 0 in Ω

Ca = 0 on Γin

∂Ca
∂n

= 0 on Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(28a)
(28b)

(28c)

(28d)

In this work, KBC is set to 3× 10−3 mol.m−2.s−1 in order to allow the fields C and Ca
having the same order of magnitude.

3.4 Second case: heterogeneous reaction

In this case, the same reasoning as in the first case is done and the shape gradient rewrites
in the form:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− λEε(U) : ε(U)) +
Kcrit

KBC
D∂Ca
∂n

∂Cn
∂n

+ λV (29)
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In Eq. (29), Ua is the velocity of the adjoint state (Ua,pa) solution of Eqs. (27) and
Ca is the concentration of the adjoint state of C defined as the solution of the following
system: 

−D∆Ca −U · ∇Ca = 0 in Ω

Ca = 0 on Γin ∪ Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(30a)
(30b)

(30c)

4 Implementation of the shape optimization algorithm

Table 1 presents the optimization algorithm used to determine the optimal shape of the
reactors. It is implemented within OpenFOAM (Weller et al., 1998) which is a free and
open-source platform allowing to solve partial differential equations using C++ program-
ming language and the finite volume method. In order to link iterations to each other, a
python library named pyFoam is used through its mesh utility ’’pyFoamMeshUtilityRun-
ner.py ’’.

Table 1: Shape optimization algorithm.
1 Meshing of the initial shape (see § 4.2);
2 while convergence not achieved (see § 4.5) do
3 Solve Navier-Stokes, mass balance and their adjoint system equations in Ωi

(see § 4.4);
4 Computation of the shape gradient on ∂Ωi;
5 Determination of the vector field V taking into account manufacturing

constraints (see § 4.1);
6 Diffusion of the mesh Ωi+1;
7 Update of Lagrange multipliers λV and λE (see § 4.5);
8 if bad mesh quality (see § 4.3) then
9 Remeshing (see § 4.2)

The next subsections will detail the algorithm and discuss in particular its accuracy.

4.1 Mesh displacement

The manufacturing constraints are treated by post-processing of the vector field V after
its computation.

4.1.1 Obstacle thickness constraint

This first manufacturing constraint is of inequality type and imposes a minimal value on
the local thickness of obstacles (dobstacle > dobstacle

min ). It is treated by a projection method
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tV (x)

tV (x)mod

d(x) <
dobstacle
min

2

x

obstacle

fluid zone
(channel)

Skeleton

Figure 4: Illustration of the obstacle constraint treatment. V (x) and V (x)mod are respec-
tively the mesh displacement vector before and after modification at point x.

in two main steps. The first one consists in determining the local thickness at point x and
the second one in the projection of vector V (x).

The main difficulty of this treatment is to compute the thickness. Its estimation is
trivial to the naked eye, however, its implementation is complex in practice. Indeed,
choosing the right direction to quantify this length is not an easy task. In this work, a
thin solid centered inside the obstacles, called skeleton, is constructed and the thickness of
the obstacle is defined as the double of the distance between its boundary and its skeleton
(Fig. 4). In two dimensions, the skeleton of an obstacle is the curve which is equidistant
from the obstacle on each side (Fig. 5), its mathematical definition is as follows.

Definition 1 The skeleton of an obstacle is defined as the set of centers of the maximal
ball totally included in the obstacle.

Definition 2 A ball B1 included in a set F is maximal if there is no ball B2 also included
in F containing B1 strictly in the sense of inclusion.

In this work, the skeleton construction is based on the work of Attali (1995) who built
the skeleton of a shape from its Voronoi diagram, considering the shape as a discrete
set of points. The Voronoi diagram of a set of points E is determined from the Voronoi
regions. In the 2D case, the Voronoi region of a point x ∈ E is defined as the area where
points belonging to it are closest to point x than all other points of E (Attali, 1995). It is
mathematically defined below.

Definition 3 Let X a subset of IRd and P = {P1,P2, ...,Pn} ⊂ X a set of points. The
Voronoi region Rk of a point Pk is defined as follows

Rk = {x ∈ X | d(x,Pk) < d(x,Pj), ∀j 6= k}

where d(x,Pk) is the distance between Pk and x.
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Figure 5: Schematic illustration of the skeleton of a rectangular object, the blue circles
represent the maximal balls, the black dots their centers and the red line indicates the
skeleton.

Figure 6 illustrates the Voronoi diagram of a 10-point set. This diagram consists of
two main elements, the vertices defined as the intersection of at least three Voronoi regions
and the edges bounded by two vertices and defined as the boundary between two Voronoi
regions. According to Attali (1995), the skeleton can be built from both vertices or edges.
In this work, it is built from edges because this construction allows to obtain directly the
skeleton contrary to the other way which requires a last step of linear interpolation between
the vertices.

Once the Voronoi diagram built (Fig. 7(a)), it is reduced using two steps in order to
obtain the final skeleton:

• Edges which are not completely included in the obstacle are removed (Fig. 7(b)).

• A second simplification is carried out using two criteria. (i) For all Voronoi vertices
s, the first criterion is the minimum distance between s and the obstacle, called r(s).
(ii) As previously mentionned, each point s has at least three projections on the
obstacle, called p1, p2 and p3. The second criterion is defined as follow

α(s) = max(p̂1sp2, p̂1sp3, p̂2sp3) (31)

The minimum values of r(s) and α(s) are respectively 2× 10−4 m and π
2 (Fig. 7(c)).

The second step is carried out by means of a test on the minimum distance d(x)

between the free boundary and the skeleton. If this distance is lower than dobstacle
min

2 and
d(x) > d

(
x + tV (x)

)
then the vector V (x) is modified in order to be parallel to the

skeleton (Fig. 4). The resulting vector is denoted V (x)mod.

4.1.2 Constraint on channel width

The other manufacturing constraint imposes a minimal value on the width of fluid channels.
It is also treated in two main steps by a projection method. For each boundary point x,
the local channel width is first computed by looping over all boundary points belonging
to another obstacle. The closest point belonging to another boundary is denoted xnear.
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Figure 6: Voronoi diagram of a 10-point set.

The second step consists in computing the inner product of vectors xxnear and V (x). If
this scalar product is positive and d(x) = ||xxnear|| < dchannel

min , then the vector V (x) is
modified in order to be orthogonal to xxnear. Figure 8 shows an illustration of the channel
constraint treatment.

4.2 Meshing and remeshing of the domain

OpenFOAM solves the PDEs using the finite volume method which requires a mesh gen-
eration in order to discretize the governing equations. The meshing step is important
because the quality of the solution depends strongly on the mesh quality. In this work,
the meshing and the remeshing are carried out using cfMesh, an open-source library for
automatic mesh generation. Then, the mesh quality is improved using snappyHexMesh, a
mesh generator utility supplied by OpenFOAM. The resulting mesh is composed of 50,000
to 120,000 meshes depending on the case.

The shape gradient is a function defined on the free boundary Γ and involves first
and second order derivatives of the different variables (see Eqs. (26) and (29)). Thus,
the neighborhood of the boundary has to be modeled with accuracy, therefore, two layer
meshes are added at boundary Γ for the homogeneous reaction case. For the SR case, 5
layer meshes are added at the reaction boundaries in order to improve the modeling of
mass transfer diffusion in the near-wall region.

Figure 9(a) illustrates the configuration that obstacles may present during the opti-
mization process. According to the figure, ’’tails’’ may appear at the obstacle ends. This
phenomenon was expected for the heterogeneous reaction case since the ’’tails’’ appearance
allows to increase the reactive surface without much change in reactor volume. However,
those ’’tails’’ are not manufacturable using Stratoconception® printing process due to their
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(a) Obstacle Voronoi diagram (b) First simplification (c) Second simplification: skele-
ton

Figure 7: Simplification of the Voronoi diagram into the skeleton: green points denote
obstacle points and red lines denote Voronoi diagram (a) and the simplified skeleton (b)
and (c).

small local thickness. The projection treatment of manufacturing constraints (section 4.1)
does not prevent the formation of these ’’tails’’ illustrated in Fig. 9(b). In order to ensure
the manufacturability of the object, the ’’tails’’ formed during the optimization process
are removed during the remeshing step.

4.3 Mesh quality

At each iteration, the mesh quality is checked to know whether the volume discretization
will impact the quality of the PDEs solution. This quality verification is carried out through
three criteria often used in CFD area. Those criteria, illustrated in Fig. 10, are (Holzinger,
2015):

• The aspect ratio, defined in two dimensions as the ratio of the biggest to the smallest
length of a cell. It is expressed by the ratio l

s (Fig. 10).

• The mesh non-orthogonality, defined as the angle between the vector connecting the
cell centers of two adjacent cells and the normal of the common face. In Fig. 10, it
is defined by angle α = arccos( Ai·Ci

|Ai||Ci|).

• The face skewness, defined by the ratio |di|
|Ci| (see Fig. 10), where |di| is the distance

between the intersection of the line connecting the adjacent cell centers and their
common face, and the center of this face, |Ci| is the distance between the centers of
considered cells.
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xnear

d(x) < dchannel
min

x
tV (x)

tV (x)mod

obstacle

obstaclefluid zone
(channel)

Figure 8: Illustration of the treatment of the constraint on the channel width. V (x) and
V (x)mod are, respectively, the mesh displacement vector before and after modification at
point x.

(a) Example of obstacles configuration dur-
ing the optimization process

Γi

Γi+1

tV (x)

(b) Formation of tails at free boundary ends

Figure 9: Illustration of (a) the potential configuration of some obstacles, (b) the formation
process of tails at free boundary ends.

If the maximum value of the aspect ratio is higher than 20, the mesh non-orthogonality
is higher than 65◦ or the face skewness is higher than 3.8, the shape is remeshed. Those
upper bounds have been chosen because OpenFOAM checks the mesh quality computing
(among others) the maximal values of the face skewness and the non-orthogonality of the
mesh. If those values are respectively higher than 4 and 70◦, the mesh quality is not
validated. Slightly lower values have been chosen for the mesh non-orthogonality and the
face skewness to ensure that the maximum values defined by OpenFOAM are not exceeded
after each mesh displacement. The choice of the upper bound for the aspect ratio is based
on its values in the initial shapes. Depending on the case, the maximum aspect ratio in the
initial mesh is between 8 and 15, therefore the upper bound for this criterion has been set
to 20. However, this choice is not critical because the majority of the remeshing process
launches is due to a violation of the criteria on non-orthogonality and skewness of the faces.
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Ci

diα
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s

Figure 10: Illustration of the mesh quality criteria.

4.4 Boundary conditions approximation

The pressure-velocity couplings present in the Navier-Stokes Eqs. (1) and its adjoint system
equations (27) are numerically solved using SIMPLE algorithm (Patankar, 1980).

The three outlet boundary conditions of the adjoint systems ((28d), (30c) and (27d))
are not usual boundary conditions and must be implemented within OpenFOAM using the
following approximations:

(∇Ua)Tn ≈ Ua
patch −Ua

intern

δ
(32)

∇Can ≈
Cpatch
a − C intern

a

δ
(33)

which allows to rewrite the boundary conditions as follows:

Ua
patch≈ νδ

−1Ua
intern+ 4νλEε(U)n + pan−ν∇Uan

νδ−1 + (U · n)
(34)

Cpatch
a ≈ νδ−1C intern

a +KBC

νδ−1 + (U · n)
(35)

where δ is the distance between the boundary and the internal adjacent cell center, Ua
patch

and Cpatch
a represent respectively the adjoint velocity and the adjoint concentration at the

boundary, and Ua
intern and C intern

a their values in the internal adjacent cell center.

4.5 Lagrange multipliers update and convergence of the algorithm

In this work, the optimization algorithm used is based on the Uzawa method which consists
in the determination of the mesh displacement at each iteration considering the Lagrange
multipliers λV and λE constant. Once the mesh diffusion done, the Lagrange multipliers
are updated according the following equations:

λk+1
V = λkV + βVCV(Ω) (36)

λk+1
E = max

(
0, λkE + βECE(Ω)

)
(37)
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where βV and βE are small positive parameters. The formulation of relations (36) and (37)
are different because the volume constraint is of equality type while the energy constraint
is an inequality one (see Karush-Kuhn-Tucker’s dual feasibility condition (Karush, 2014;
Kuhn and Tucker, 2014)). This explains why λV may be negative while λE cannot.

Finally, the convergence of the algorithm is carried out through the computation of the
coefficient of variation (or relative standard deviation) of the last 100 Lagrangian values.
If this ratio is lower than 10−4, the convergence is achieved.

5 Main results

This section is devoted to the presentation of numerical results obtained using the algorithm
described in the previous section. It consists of two subsections where the optimization
results for the cases HR and SR are presented. Except for the kinetic constant k, the
simulation parameters are the same for both cases and are shown in Table 2.

Table 2: Simulation parameters.
Parameters Values Units Equations

ν 10−6 m2.s−1 (1a), (26), (27) and (29)
Uin 10−2 m.s−1 (1c)
D 10−9 m2.s−1 (26), (28a), (29) and (30a)
k 10−2 s−1 (5b)
γ 10−4 m−2 (24a) and (24c)

KBC 3× 10−3 mol.m−2.s−1 (26), (27d), (28d), (29) and (30c)
Kcrit 3× 10−5 m6.s−3.mol−1 (10), (26) and (29)

5.1 Homogeneous reaction

Figures 11(a) and 11(b) show the concentration profiles of the reactant in the initial de-
sign and in the optimal shape (without considering the manufacturing constraints) of the
reactor. As can be seen, a dead zone appears at the inlet of the initial shape (light area in
Figure 11(a)). It corresponds to a region of the reactor where the reactant concentration
is low resulting in low reaction rates. Consequently, this dead volume is almost useless
for the conversion. In the optimal shape without manufacturing constraints, the dead
zone has disappeared. However, this reactor configuration cannot be manufactured using
Stratoconception® printing process due to too thin obstacles and some very small channel
widths.

The optimization is then carried out taking into account the manufacturing constraints
and the resulting shape is displayed in Fig. 11(c). Similarly, the dead zone present in the
initial shape has disappeared and the size of obstacles and channels of the optimal shape
can be printed by means of Stratoconception® process. The manufactured optimal shape
of the reactor is shown in Figure 11(d).

18



(a)

(b)

(c)

O y

x

(d)

Figure 11: Homogenous reaction case: initial design of the fixed-bed reactor (a), opti-
mized shape without manufacturing constraint (b), optimized shape with manufacturing
constraint (c), optimal shape manufactured by means of Stratoconception® process (d).

Figure 12 shows the convergence history of the optimization process. The energy and
volume constraints are both satisfied at convergence and it is interesting to note that the
inequality constraint on the energy dissipated is active. It may therefore be interesting
either to increase the maximum value associated to this constraint in order to obtain a
better conversion rate, or to perform multi-objective optimization of the reactor considering
two criteria (i) the conversion rate and (ii) the energy dissipation. Figure 12 also shows a
decrease of almost 10% in the reactant concentration at the reactor outlet, which leads to
an improvement in the conversion rate of 2.7% (71.5% versus 74.2%). This improvement
can be explained by two main reasons. The first one is the disappearance of the dead zone
and the second one is the better homogeneity of the liquid flow in the reactor. This better
homogeneity is shown by the residence time distributions (RTDs) presented in Fig. 13.
The standard deviation of the RTDs is 3.5 times lower in the optimized reactor than in
the initial one (21 versus 73 s) which is mainly explained by the disappearance of the dead
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zone. Indeed, Fig. 13 shows that the RTD function hits almost zero in the optimal shape
after 250 s which is not the case in the initial shape.

(a) (b)

(c) (d)

Figure 12: Performances of the optimization process, (a) ratio J
J0
, (b) conversion rate, (c)

volume constraint, (d) energy dissipation constraint, versus iterations.

The assumption of laminar flow is checked computing the channel Reynolds number.
In this case, the particle Reynolds number is meaningless because obstacles have different
dimensions. The channel Reynolds number is expressed by the following equation:

Rec =
ud

ν
(38)

where u is the fluid average velocity which flows inside the channel, d the channel width
and ν the fluid kinematic viscosity. In the optimized configuration 11(c) the Reynolds
number Rec does not exceed 16 which validates the assumption of laminar flow.

5.2 Heterogeneous reaction

Figure 14 presents the numerical results of the reactor optimization. In particular, fig-
ures 14(a) and 14(b) illustrate the concentration profiles in the initial and optimal shapes.
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Figure 13: Residence time distribution of initial and optimal reactors.

Here, the optimization allows a decrease of the performance index of almost 6% which
results in 4.7% improvement in the reactor conversion rate (19.6% versus 24.3%). It is
mainly explained by the 50% increase of the reaction surface. However, the configuration
(b) of the reactor presents poor homogeneity in the liquid flow. Indeed, the wall surface
increase leads to an increase of the energy dissipation due to wall shear stress. Thus, the
reactor exhibits channeling in its center (close to the axis of symmetry) in order to satisfy
the energy constraint.

Two more optimizations with and without energy constraint are carried out. In the
case with constraint, the upper bound of the constraint is multiplied by a factor of 1.4 to
analyze its effect on the fluid homogeneity in the reactor. The resulting optimal shapes are
displayed in Figs. 14(c) and 14(d). They show that the higher the upper bound of energy
constraint is, the more homogeneous the fluid flow becomes and the more the channeling
in the reactor reduces. The improvement of the fluid homogeneity and the disappearance
of the channeling lead to an increase in the performances of optimal reactors. Indeed,
the reactant concentration at the reactor outlet has decreased by 8% and 20% for the
shapes 14(c) and 14(d), respectively, which improves the conversion rate by 6.4% and 16%.
Figure 15 presents the RTDs of the three optimal reactors and shows the reduction of the
channeling in the reactor when the upper bound of the energy constraint is increased. The
distribution associated to the optimization with iso-energy constraint exhibits two peaks,
the first of which corresponds to the channeling. The distribution associated to shape 14(c)
presents also two peaks but the one referring to the channeling is less important than for
the shape 14(b). In the reactor 14(d), the RTD shows that the channeling has disappeared.

For the three optimal reactors, channel Reynolds numbers have been computed and do
not exceed 67, 48 and 17, respectively, for shapes 14(b), 14(c) and 14(d) which validates
the assumption of the flow regime.
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(a)

(b)

(c)

(d)

O y

x

Figure 14: Surface reaction case: initial design of the fixed-bed reactor (a), optimized
shapes subjected to iso-energy constraint (b), subjected to 1.4 time initial energy constraint
(c) and without energy constraint (d).

Figure 15: Residence time distribution of optimized reactors.
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6 Conclusion

A geometry optimization based on the adjoint system method is developed for shape opti-
mization of fixed-bed reactors. The corresponding algorithm is implemented within Open-
FOAM software in order to determine the optimal shape of the packing where a surface
reaction or an homogeneous first order reaction takes place. In both cases, the objective
is to minimize the average concentration of the reactant at the reactor outlet. The op-
timization problem is subjected to constraints involving Navier-Stokes and mass balance
equations, an iso-volume and energy constraints, and to two manufacturing constraints.
The optimized packing of the reactor allows a significant improvement of the conversion
rate, i.e. 2.7% for the HR case and 4.7% for the SR case (under iso-energy constraint).

However, the developed optimization approach shows some weaknesses that need to
be adressed. The first one concerns the width constraints treatment which is performed
by post-treatment of the mesh displacement. It suffers from excessive strictness and does
not allow the constraints violation during the optimization process as opposed to a con-
straint directly included in the Lagrangian functional. It might be possible to improve this
issue by treating the width constraints using penalization functions (Allaire et al., 2016).
The second weakness is related to the computational load of a single optimization and
particularly in the surface reaction case. Indeed, the optimization process takes between
7 and 10 days to converge on a 3.7GHz Xeon Dell Computer 5810 (and 2-3 days for the
homogeneous case). In our case, the computational time could not be decreased using
parallel computing because the optimization method is iterative and the number of cells is
between 50,000 and 120,000. However, it could be improved by modifying some numerical
schemes (e.g. the use of SIMPLER algorithm instead of SIMPLE one) but the saved time
would be marginal. Finally, the use of a geometry optimization algorithm may not be ap-
propriate since it preserves the topology of the reactor and the initial topology could not
be the optimal topology. Therefore, it could be interesting to optimize the reactor using
a topology optimization approach first and then refine the resulting shape using geometry
optimization.
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