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ABSTRACT

This article presents an optimization approach for the design of a piping inspection

robot. A rigid bio-inspired piping inspection robot that moves like a caterpillar was designed

and developed at LS2N, France. By the addition of tensegrity mechanisms between the

motor modules, the mobile robot becomes flexible to pass through the bends. However,

the existing motor units prove to be oversized for passing through pipe bends at 90◦. Thus,

three cascading optimization problems are presented in this article to determine the sizing

of robot assembly that can overcome such pipe bends. The first problem deals with the
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identification of design parameters of the tensegrity mechanism based on static stability.

Followed by that, in the second problem, the optimum design parameters of the robot

modules are determined for the robot assembly without the presence of leg mechanisms.

The third problem deals with the determination of the size of the leg mechanism for the

results of the two previous optimization problems. A digital model of the optimized robot

assembly is then realized using CAD software.

NOMENCLATURE

IKP Inverse Kinematic Problem

CG Center of gravity

CLR Center line radius

Rx Rotation matrix in R3 about x-axis

Ry Rotation matrix in R3 about y-axis

η The ‘x’ axis Euler rotation angle of universal joint in R3

φ The ‘y’ axis Euler rotation angle of universal joint in R3

R Resultant Euler angles transformation matrix

Li Distance between base and end-effector of the ith coordinate

L0 Free length of the spring

H Hessian matrix

δi Rotation angle of ith module

l1 Length of motor unit (EC motor+Spindle drive)

w1 Width/diameter of motor unit (EC motor+Spindle drive)

l2 Length of screw of spindle drive

w2 Width/diameter of screw of spindle drive

fun Objective function

g Inequality constraint

h Equality constraint

lb, ub Lower and upper bounds for design variables
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ls1 Length of slot-follower leg mechanism

ls2 Design parameter of leg mechanism

∆x1,∆x2 Horizontal space occupied by leg during declamping & clamping

∆y1,∆y2 Vertical space occupied by leg during declamping & clamping

ρ1, ρ2 Leg stroke lengths during declamping & clamping

INTRODUCTION

Manual intervention of pipelines in Nuclear or Chemical industries is cumbersome and risky

as it not only leads to the loss of human life but also causes long term radiation effects. Piping

inspection robots play an important role in such situations as they can perform a given task with

better accuracy and also ensures safety to human health. Generally, in-pipe inspection robots

can be classified [1] viz: Pig type [2], Wheel type [3], Caterpillar type [4], Wall-press type [5],

Walking type [6], Inchworm type [7] and Screw type [8]. A bio-inspired piping inspection robot

was designed and developed at LS2N, France [9]. This robot accomplishes the locomotion of a

caterpillar in six-steps to move inside a pipeline. Using a slot-follower leg mechanism, the robot

attains static postures to establish contact with pipeline walls. The leg mechanisms are capable of

working between 40–94 mm diameter straight pipelines [10]. However, the robot is a rigid model

and is thus limited to straight pipelines. Also, the spindle drive used in the prototype allows the

robot to move at a very low speed of 0.43 mm/s [11]. By the addition of tensegrity mechanisms

between the motor modules, the robot was made flexible [12]. The dimensions of the existing

motor units are oversized and might restrict the flexible robot to overcome pipe bends or junctions.

In this article, an optimization approach is followed to determine the optimum sizing of the entire

robot assembly inside a pipeline having 90◦ pipe bend where the tensegrity mechanism operates

in a passive mode. Optimization algorithms can be classified into deterministic and heuristic ap-

proaches [13]. The deterministic optimization approach solves problems in a structured manner

that leads to efficient solutions with respect to design variables and constraints. On the other hand,

heuristic/evolutionary algorithms operate on randomness [14]. Based on the complexity of the de-
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sign problem, the heuristic approach requires lesser computational times over the deterministic

approach [15]. However, there are possibilities where both the algorithms can lead to solutions

trapped in a local minimum. While applying such algorithms to real-world engineering problems,

the design engineer can select a local minima through careful definition of constraints or bounds

for the optimization problem. In the field of robotics, optimization techniques are generally em-

ployed for solving problems such as path planning. An interesting example is the research work

of Zhang et al. [16], where a heuristic approach using the Particle Swarm Optimization (PSO) was

employed to determine a collision-free path for the robot. Also, optimization techniques find their

application in the design of parallel robots for determining a robust design with maximum operating

workspace [17] as well as in determining the optimum position for placement of the robot [18].

This article focuses on the optimum design of the flexible piping inspection robot proposed

in [12] through three different problems. The robot assembly is comprised of multiple sub-systems

such as tensegrity mechanisms, motor units and leg mechanisms. Each sub-system is subject to

separate set of constraints and objectives under a given working condition. By the incorporation

of a multi-objective optimization problem for the entire assembly, the complexity of the system in-

creases and the selection of the solution candidate from the Pareto front is more subjective [17].

So, a cascading approach is being implemented through three different sub-problems to identify

an optimal design of the robot assembly. The first optimization problem deals with the determina-

tion of optimal design parameters of the 4-SPS-U tensegrity mechanism [19] by a metaheuristic

approach. Using Genetic Algorithm in MATLAB, the total length of the mechanism and the free

length of the spring are determined by ensuring the static stability of the tensegrity mechanism.

Followed by that the second optimization problem is carried out using the fmincon function in

MATLAB. This problem helps in determining the sizes of motor unit of each module without the

presence of leg mechanisms. From the results of the second optimization problem, the motors

and gear units are identified from catalogue products of Maxon based on dimensions, velocity and

force factors. Also, the second optimization problem permits to set the diameter range of pipelines

for the robot. For studying the area occupied by the leg mechanisms, the third optimization prob-

lem is then carried out which helps in determining the geometry of the slot-follower leg mechanism.

4



An optimal design of a flexible piping inspection robot

The area occupied by the leg mechanism is identified by accommodating the mechanism on the

motor sizing determined from the results of the second optimization problem. By assembling the

tensegrity mechanism, motor modules and the leg mechanisms, the digital model of the optimized

robot design is realized using CATIA software.

The outline of the article is as follows. Initially, the architecture of the bio-inspired robot and

the setup of the optimization test bench are presented. Followed by that, the first optimization

problem, which is associated with the design of tensegrity mechanism is defined and solved. The

subsequent sections deals with the deterministic optimization problems for identifying the optimal

size of motor units and the slot-follower leg mechanism. The article then ends with conclusions.

DEFINITION OF THE CASE STUDY

This section focuses on the presentation of the architecture of the robot assembly with the

presence of tensegrity mechanisms. The dimensions and construction of the optimization test

bench, which will be employed for the second and third optimization problems, are then presented.

Architecture of the robot

The rigid bio-inspired robot developed at LS2N, France comprises three modules that ensure

clamping and elongation phases for accomplishing the locomotion of a caterpillar. Each module

consists of a DC brushless motor coupled with a spindle drive to convert rotary motion to prismatic

movement [9, 10]. The front and rear modules have 3 sets of slot-follower leg mechanisms each

to have contact with the inner walls of pipelines at all instances of locomotion. The central module

takes care of the elongation and retraction phases1. By the study of design issues viz: Passive

compliance, Active compliance and Tilt limits [12,20], a tensegrity mechanism was proposed and

introduced as an articulation unit for the bio-inspired robot. Through singularity and workspace

analysis, two types of tensegrity mechanisms viz: 3-SPS-U and 4-SPS-U architectures were ana-

lyzed in [19]. These architectures are differentiated by the number of tensions springs employed

where the former employs three springs and the latter employs four springs. Based on the results

of [19], the 3-SPS-U architecture is compatible with addressing the issue of active compliance

1Working principle of the existing rigid prototype : Click here.
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while the 4-SPS-U architecture addresses both compliance issues. As the 4-SPS-U tensegrity

mechanism provides higher tilt limits under passive modes [19], this architecture is coupled along

with the bio-inspired robot to make it flexible. The digital model of the existing bio-inspired robot

and the 4-SPS-U tensegrity mechanisms are assembled using the CATIA software to have a flex-

ible robot assembly and it is represented in Fig. 1. In Fig. 1, T1 and T2 represent the tensegrity

y

z T� T�

Rear module Central module Front module

Fig. 1. 3D model of the existing bio-inspired robot coupled with the tensegrity mechanisms

mechanisms. The CAD model depicted in Fig. 1 is constructed using the motors employed in

the rigid prototype. If this flexible robot is employed within a pipeline having diameters less than

100 mm, the modules can get trapped in the bends or elbows as the dimensions of the motor units

prove to be oversized. For determining the dimensions of tensegrity mechanisms, motors and leg

mechanisms that can overcome such bends, an optimization approach is being followed in this

article.

Setting up the optimization test bench

The optimization problems are solved inside a test pipeline which is constructed using MATLAB

software. The first optimization problem is solved without the test bench. However, the results

coming from this problem are taken as fixed design variables for the two successive problems

which are solved within the test bench. The second problem is solved for diameters of the test

bench ranging from 70 mm to 160 mm. The test bench for the optimization problem consists of

a horizontal pipe section, a 90◦ elbow and a vertical pipe section. The optimal sizing of the robot

modules is determined especially at the bend section wherein collision of modules against the

walls of the pipelines is verified. The test bench for the optimization problem is represented below
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in Fig. 2.
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Fig. 2. Overview of the (a) test bench for optimization and (b) parametrization of the test bench for d = 100 mm

The test pipe represented in Fig. 2a is generally manufactured by Numerical Control (NC)

bending processes using a roller with its origin at o and flexible mandrels [21]. The coordinates of o

are given by [1.5d, 1.5d], where d is the diameter of the pipeline. With respect to o, the trajectories

of the test bench are classified as the inner portion, centerline radius (CLR) and the outer portion.

The bending radius of these trajectories represented in Fig. 2b is given by [r1, r2, r3] = [d, 1.5d, 2d].

The optimization problems are solved for a fixed diameter value at any instant. The values con-

sidered for d are [70, 80, 90, 100, 110, 120, 130, 140, 150, 160] mm. The pipeline geometry is

constructed in MATLAB by sub-dividing into straight and bent cross-sections. The coordinate sys-

tem for the test bench with respect to o for Fig. 2a is given in Table 1. A discretization is carried

Table 1. Coordinates system of pipe geometry for Fig. 2a

Coordinate Inner (t=1) Center (t=2) Outer (t=3)

at r1[0,0.5] r2[0,0] r3[0,-0.25]

bt r1[1.5,0.5] r2[1,0] r3[0.75,-0.25]

ct r1[2.5,1.5] r2[2,1] r3[1.75,0.75]

dt r1[2.5,3] r2[2,2] r3[1.75,1.5]
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out between each coordinate wherein the continuous trajectory is being subdivided into discrete

counterparts. This discretization is being applied to the walls of the pipelines as well as the CLR

and they are represented by blue dotted lines in Fig. 2b. The inner and outer portion discretiza-

tion is employed to check for collision against modules during the locomotion of the robot. The

discretization of the CLR is mainly used to move the robot as well as to rotate each module. The

discretization equations for the straight sections are given by:

m = at + disc(bt − at) (1)

m = ct + disc(dt − ct) (2)

where disc = 0 : 0.01 : 1 and t = 1, 2, 3

In Eqn. (1) and Eqn. (2), m indicates the coordinates of discretized points between the start and

end points of the straight sections. The bend section of pipe with the discretized points between

(bt-ct) is constructed using the equation:

mj =

[
rt sin

(
jπ

40

)
,−rt cos

(
jπ

40

)]
, where j = 0 to 20 and t = 1, 2, 3 (3)

FIRST OPTIMIZATION PROBLEM: DESIGN OF THE TENSEGRITY MECHANISM

During locomotion inside the pipeline, the inspection robot can encounter either an elbow at

90◦ or a junction. In the event of a junction, the tensegrity mechanism is actuated through cables to

tilt the entire assembly along a certain direction. In other words, the mechanism will be controlled

from external motor units to follow a given direction. However, in the case of an elbow at 90◦, the

mechanism operates passively without the influence of external forces to overcome the bend. This

article mainly focuses on the determination of optimal design parameters of the robot assembly

where the tensegrity mechanism operates in a passive mode. From the results of [20], an inverse

pendulum configuration was chosen for the tensegrity mechanism which is by nature an unstable
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configuration. The first optimization problem aims to determine the dimensions of the 4-SPS-U

tensegrity mechanism by ensuring static stability.

Architecture of the tensegrity mechanism and geometric equations

The tensegrity mechanism comprises of a passive universal joint and four tensions springs.

The equations for the mechanism can be generated by correlating to a parallel manipulator of

type 4-SPS-U [19] where S indicates spherical joint, P indicates actuated prismatic joint and U

indicates universal joint. The representation of the tensegrity mechanism and its correlation to a

parallel manipulator at the home-pose is shown in Fig. 3. The tilt angles of the mechanism about
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Fig. 3. Representation of the (a) Tensegrity mechanism at home-pose, (b) 3D view of the correlation to a 4-SPS-U manipulator and

(c) 2D view of the manipulator

the universal joint are given by η and φ. At the home-pose shown in Fig. 3a, the tilt angles are

zero. The coordinate frame of the fixed base has its origin at B0. The mounting points for the

springs are given by Bi (i = 1, 2, 3, 4) and they form an imaginary square whose diagonal length is

given by 2rf . The vector coordinates for the base mounting points are given by:

bi =

[
rf cos

(
iπ

2

)
, rf sin

(
iπ

2

)
,−rfh

]T
, with i = 1, 2, 3, 4 (4)
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In Eqn. (4), h is a constant that can vary between 0.1 to 1. The coordinate frame of the end-effector

has its origin at C0. The spring mounting points on the end-effector are given by Ci (i = 1, 2, 3, 4).

The vector coordinates of the end-effector mounting points can be calculated using the XY Euler

rotation angles about the point A of the universal joint. The coordinates are given by:

R = Rx(η)Ry(φ) =


cos(φ) 0 sin(φ)

sin(η) sin(φ) cos(η) − sin(η) cos(φ)

− cos(η) sin(φ) sin(η) cos(η) cos(φ)

 (5)

ci = R
[
rf cos

(
iπ

2

)
, rf sin

(
iπ

2

)
, rfh

]T
, with i = 1, 2, 3, 4 (6)

In Eqn. (5), R ∈ SE(3) represents the spatial transformation matrix obtained from the Euler

angles of universal joint and it is employed to determine the end-effector coordinates. The Inverse

Kinematic Problem (IKP) which provides the distance between the base and end-effector of the

mechanism is calculated by the equation:

Li =
√

(bix − cix)2 + (biy − ciy)2 + (biz − ciz)2 , with i = 1, 2, 3, 4 (7)

Objective functions and constraint equations

Singularity and workspace analysis of the 4-SPS-U tensegrity mechanism was carried out

in [19] for h= 1 and the tilt limits were found to be ±5π/18 radians. However, the static stability

of the mechanism under this configuration was not studied. According to Lagrange, for a moving

system, the equation of motion [22] is given by:

τ =
d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂U

∂q
where q = [η, φ]T (8)
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In Eqn. (8), T and U are the kinetic and potential energies of the system. τ represents the

generalized torques on the system. Under static modes, the velocity of the system is zero and

there exists no kinetic energies. The potential energy of the tensegrity mechanism is contributed

mainly by the springs and by the cables that pass through these springs. The total potential energy

of the mechanism is given by the equation:

U = Ucable + Uspring =
4∑
i=1

FiLi +
4∑
i=1

k

2
(Li − L0)

2 (9)

In Eq. (9), Fi is the magnitude of applied force along the cable passing through spring i. The

parameter k represents the spring stiffness and L0 indicates the free length of each spring. Based

on the dimensions of the flange used in the existing prototype, the value of rf is considered as

11 mm [9] for the spring mounting positions. The spring stiffness k is considered as 0.75 N/mm

which is close to the standard sizes available at LS2N. As the optimization problems will be solved

for passive modes through a 90◦ pipe bend, the applied forces (Fi) are taken as zero as there will

be no cable actuation. Thus, the total potential energy of the system can be written as:

U =
(
363h2 cos (φ)− 181.5

)
cos (η)− 181.5 cos (φ) + 1.5L0

2 + 363(h2 + 1) (10)

From Eqn. (10), it is observed that the total potential energy of the system has dependencies on

the tilt angles, the parameter h and the free length of the spring L0. As the tensegrity mechanism

has dependencies on both tilt angles, the following steps are carried out for the stability analysis:

• Generation of the Hessian matrix or the mechanism stiffness

• Estimation of the determinant value of the Hessian matrix

• Estimation of the value of the second-order derivative of total potential energy with respect to

one of the tilt angles
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The Hessian matrix and its determinant are given by:

H =

 ∂2U
∂η2

∂2U
∂η∂φ

∂2U
∂η∂φ

∂2U
∂φ2

 =

f11 f12
f21 f22

 (11)

det(H) = f11f22 − f212 (12)

As the total potential energy is a function of the two pose variables, the following conditions

are possible [23]:

1. The total potential energy has a relative maximum when det(H) > 0 and f11 (resp. f22) < 0

2. The total potential energy has a relative minimum when det(H) > 0 and f11 (resp. f22) > 0

Thus, to have a stable configuration the second condition must be satisfied. The optimal

design parameters of the tensegrity mechanism are identified at the home-pose where the tilt

angles are zero. The objective function of the first optimization will aim to maximize the second-

order derivative of the potential energy with respect to one of the tilt angles and it is given by:

fun1 = f11 = 77
(
L0h

2 − 22h2 + 11
)

(13)

This function is subject to two inequality constraints, which ensure that the determinant value

of the Hessian matrix and the value of the objective function remains a positive value during each

iteration. The constraint equations are given by:

det(H) =
(
16.5L0 h− 363h3 + 181.5h

)2 (14)

g1 : det(H) ≥ 0 , g2 : fun1 ≥ 0 (15)
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Problem statement and results of optimization

Using the objective function and the constraint equations, the first optimization problem can be

stated as:

Maximize: fun1(x)

subject to theconstraints: g1, g2

where x = [h, L0]
T

The optimization problem can be solved using a gradient-descent approach. However, this ap-

proach leads to only one solution based on the bounds set for the problem. In order to have

multiple solutions distributed over a domain, a metaheuristic approach [24] using Genetic Algo-

rithm is carried out in MATLAB with the help of Eqn. (13) and Eqn. (15). The lower and upper

bounds for h are set between 0.4 and 1 while the bounds for the free length of the spring are

set as 4 mm and 10 mm respectively. The results of solutions obtained by Genetic Algorithm are

represented by crossed points on the objective function and it is shown in Fig. 4a. From the re-
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Fig. 4. (a) Solutions for optimization problem obtained by Genetic Algorithm and (b) Plot of total potential energy versus the tilt angles

η and φ for [h, L0] = [0.83 , 6 mm] (flat surface) and [0.8 , 6 mm] (inverted bell-curve) at the home-pose of the tensegrity mechanism

sults, a value of L0 = 6 mm is chosen as it corresponds to the free length of the spring available

at LS2N. For this value of L0, the corresponding value of h from Fig. 4a is 0.83. This solution is

represented by a black cross in Fig. 4a. At [h, L0] = [0.83,6], the value of the objective function f11

is close to zero. In other words, it can be said that for these values, a flat plane is obtained for the
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total potential energy against the tilt angles and it is represented by the flat surface in Fig. 4b. The

mechanism is in a stable configuration if h is less than 0.83, and it is in an unstable configuration if

h is greater than 0.83 for L0 = 6 mm. Thus, in order to have a stable configuration, a value of h =

0.8 is considered for L0 = 6 mm. Under these design parameters, the total potential energy of the

mechanism is plotted against the tilt angles at the home-pose and it is represented in Fig. 4b. It

could be observed that under the home-pose, a stable configuration of the mechanism is obtained.

Using these results of optimization, the singularity and workspace analysis of the tensegrity mech-

anism is carried out using the Cylindrical Algebraic Decomposition (CAD) in Maple as investigated

in [19]. Under passive modes, tilt limits of ±π/4 radians were obtained for the mechanism within

the singularity free workspace. As this mechanism will be coupled along with the piping inspec-

tion robot to pass through pipe bends, at any instance of locomotion, the orientation of mechanism

about the z-axis is unknown. Thus, for further analysis of the robot assembly inside the test bench,

the extreme tilt posture of the tensegrity mechanism will be considered. A configuration similar to

Fig. 3c is considered where the mounting distance between two springs is given by 2rf . In this

posture, when one of the tilt angles reaches a maximum of ±π/4 radians with the other tilt angle

at 0 radians, one of the four prismatic springs reaches a limit of 7.8 mm, while the opposing spring

reaches 24.6 mm. The remaining two springs have the same values of 16.3 mm. This orientation

of the mechanism will be considered for further analysis to determine the optimal sizing of the

robot modules. The 2D representation of the tensegrity mechanism at this condition is shown in

Fig. 5.

SECOND OPTIMIZATION PROBLEM: DETERMINATION OF MOTOR SIZING

The second optimization problem aims to determine the sizing of motor modules of the inspec-

tion robot inside the test bench without the presence of leg mechanisms. The optimization problem

is tested for pipeline diameters ranging from 70 to 160 mm. From the results of optimization, a

suitable motor-spindle combination unit is identified from the catalogue of Maxon. Apart from the

motor sizing, the existing bio-inspired robot has issues associated with velocities and cable man-

agement. Based on results obtained from the second optimization problem, the Maxon motors are
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Fig. 5. Representation of the (a) posture considered for the 4-SPS-U mechanism in optimization problem and (b) associated design

parameters of the mechanism

identified in such a way that the following factors are also addressed:

1. Velocity: An alternate spindle drive unit with a lower gear reduction ratio compared to the

existing prototype (455:1) to accomplish faster displacements during locomotion

2. Hall sensors: A DC-motor coupled with Hall sensor units which will be useful for the control

phase of the robot while working inside an unknown environment [25]

Once the optimal motor unit is identified, the third problem is carried out for the results of the

second optimization problem to determine the size of the slot-follower leg mechanism.

Modeling of robot and design variables

The robot is modeled as multi-body planar blocks with a tensegrity mechanism between each

module in MATLAB. Each module comprises a Maxon brushless DC-motor coupled with a spindle

drive. The digital model of a module is shown in Fig. 6a. The robot geometry considered for the

optimization problem is represented in Fig. 6b and each module is constructed using the geomet-

rical equations of a rectangle. In Fig. 6b, the design variables for optimization are considered in

the following way:

• [lk1, wk1]: The length and width of motor and spindle drive unit (without the screw) for module

k

• [lk2, wk2]: The length and width of output screw drive of spindle unit for module k

Here k indicates a module and it assumes values from 1 to 3. The spindle screw length is one
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Fig. 6. Representation of the (a) Maxon brushless DC-motor and its spindle drive and (b) robot assembly with various design param-

eters for the second optimization problem

of the main factors that hinder the existing bio-inspired robot to overcome a pipe bend. This is the

reason why the screw unit and motor-spindle unit are considered as separate design variables.

Also, it is possible to have spindle drive units with reduced screw length apart from standard sizes

at Maxon [26]. The dimensions of the tensegrity mechanism are taken from the results of the

first optimization problem. The fixed design variables of the tensegrity mechanism are given by

[1.6rf , 2rf ] as shown in Fig. 5b with rf = 11 mm. In Fig. 6b, the reference frame of the robot
∑

0

is fixed at the center of gravity (CG) position of the central module. The local coordinate frames

of Module-1 and Module-3 are given by
∑

1 and
∑

2. The rotation of modules about the x-axis

are given by δ1, δ0 and δ3 for Modules-1,2,3. The central module is rotated about
∑

0 whereas, for

the leg modules, the rotation is carried out about the tensegrity mechanisms. The movement of

the robot is simulated in MATLAB by displacing the CG of the reference frame to each discretized

point on the CLR. For any position of the robot on a given discretized point on the CLR, the rotation

angle is applied to each module as well as to the tensegrity mechanisms to accomplish the rotation

while passing through pipe bends. The rotation of modules during locomotion inside the test bench

is accomplished in MATLAB as described in Algorithm 1.
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Algorithm 1 Rotation of modules at a given position of CLR
Inputs: Discretized CLR coordinates, Robot design parameters
Outputs: Rotation angles of modules (δ0, δ1, δ2)

1: Initialization
2: for i = 1− n do . n indicates the end point of CLR
3: Placing reference frame

∑
0 at point i of CLR

4: Extract the coordinates (zi & yi) of CLR point i coinciding with frame
∑

0

5: Apply rotation angle δ0 to Module-2 by δ0 = arctan
(
yi
zi

)
6: Extract the coordinates of CLR point i closer to frame

∑
1.

7: Calculate rotation angle δ1 from the coordinates of point extracted in Step-6
8: Apply rotation angle δ1 to tensegrity mechanism coupled between Modules-1 and 2.
9: Extract the coordinates of CLR point i closer to frame

∑
2.

10: Calculate rotation angle δ2 from the coordinates of point extracted in Step-9
11: Apply rotation angle δ2 to tensegrity mechanism coupled between Modules-2 and 3.
12: end for

Objective function

A mono-objective optimization problem subject to constraints is solved using MATLAB. The

objective function of the problem aims at maximizing the area of the motor units. Since the dimen-

sions of the tensegrity mechanism are fixed, their areas are not taken into account. As the central

module takes care of elongation and retraction phases, it is assumed for the computation that this

module remains in a fully extended phase at all instances of the simulation. The area of the robot

at a given position of CLR is given by:

fun2 =

3∑
k=1

(lk1wk1 + lk2wk2) , where k indicates the module (16)

The area of motor units is estimated as per Eqn. (16). The global sum of fun2 from Eqn. (16) is

calculated throughout the discretized points of the CLR and this will be maximized.

Constraint equations

For each position of the robot on the CLR, the collision of modules is checked against the

pipeline walls. Inequality constraints are defined in the optimization problem, which will ensure

17



An optimal design of a flexible piping inspection robot

that the modules avoid collision during movement inside the test bench, especially at the bends.

A complete discretization of each module is performed. The discretization equation is similar to

Eqn. (1) and Eqn. (2). The discretized robot modules inside the test bench are represented below

in Fig. 7a.

o
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u
k

s
k

v
k

(a) (b)

Fig. 7. Representation of the (a) discretized robot assembly and (b) extraction of coordinates from the discretized model for defining

constraints

For each position of reference frame
∑

0 on the discretized CLR trajectory, the coordinates

of points closer and farther on each module from o are extracted. These points can be extracted

using the min and max function of MATLAB. The representation of the coordinates closer (sk) and

farther (qk) from o on a module is shown in Fig. 7b. Followed by that, the coordinate vk on the inner

portion closer to sk and the coordinate uk on the outer portion closer to qk are extracted using the

min function. With the extracted set of coordinates, the inequality constraints are defined which

ensures that there exist no collisions between the modules and the pipeline walls. The constraint

equations for the position of the robot assembly on a discretized CLR point are thus defined by:

gk : ‖o− qk‖ ≤ ‖o− uk‖ (17)

gk+1 : ‖o− sk‖ ≥ ‖o− vk‖ , where k = 1, 2, 3 (18)
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Throughout the locomotion sequence, the collision of each module against pipeline walls is checked

using Eqn. (17) and Eqn. (18). The pseudo-code for the constraint function and its working in MAT-

LAB is provided in Algorithm 2.

Algorithm 2 Definition of constraint equations for the second optimization problem
Inputs: Discretized CLR coordinates, Robot design parameters
Outputs: Inequality constraint equations (g1,g2,g3,g4,g5,g6)

1: Initialization
2: for i = 1− n do . n indicates the end point of CLR
3: for k = 1− 3 do . k indicates the module number
4: for j = 0 : 0.01 : 1 do . Discretization
5: Discretize each face of each module
6: end for
7: Extract the coordinate (sik) on module k closer to o using min
8: Extract the coordinate (qik) on module k farther to o using max
9: for l = 1− n do . For each discretized point on inner & outer portions

10: Calculate ‖ul − qik‖
11: Calculate ‖vl − sik‖
12: end for
13: Extract the coordinate from uik on outer portion closer to qik
14: Extract the coordinate from vik on inner portion closer to sik
15: Check inequality constraints (gk): ‖o− qik‖ ≤ ‖o− uik‖
16: Check inequality constraints (gk+1): ‖o− sik‖ ≥ ‖o− vik‖
17: end for
18: end for

Problem statement

With the objective function and constraint equations being defined, the second optimization

problem can be stated as:

maximize:
n∑
i=1

fun2(y)

subject to the constraints: g1, g2, g3, g4, g5, g6

where y = [l1, w1, l2, w2]
T , i = 1..n indicates the discretized CLR points

The design variables for each module which were considered as [lk1, wk1, lk2, wk2], resulting in 12

variables are reduced to 4 variables which are given by [l1, w1, l2, w2]. This is because an identical

Maxon motor-spindle drive unit will be employed in the three modules. The objective function and
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the constraint equations are solved using the fmincon function in MATLAB. The design variables

are subject to lower and upper bounds to have a closer interpretation of the catalogue parts of

Maxon. The existing prototype uses a brushless DC-motor of diameter 16 mm coupled with a

spindle drive GP 16 S. The overall length of the motor-spindle unit is 58 mm with a screw length

of 102 mm. The advantage of using brushless motors is that they offer Hall sensors that can be

useful in the control phase of the robot to determine pipeline diameters inside an unknown/closed

environment [25]. The lower (lb) and upper bounds (ub) for the design variables of the optimization

problem are set as follows:

1. Parameter l1: This parameter corresponds to the length of the motor-spindle unit employed in

each module. The lower bound is set at 40 mm and the upper bound is set at 60 mm.

2. Parameter w1: This parameter corresponds to the diameter of the motor-spindle unit. Since

Maxon offers DC-Motors with Hall sensors starting from 16 mm, the lower bound is set at

10 mm while the upper bound is fixed at 16 mm. Values higher than 16 mm series are not

considered as this may affect the length parameters of the motor-spindle drive or the screw

length.

3. Parameter l2: This corresponds to the length of the screw coming from the spindle drive.

This is an essential parameter as it not only plays a vital role in avoiding collisions but also

accommodates the slot-follower leg mechanism. The lower bound is set at 20 mm while the

upper bound is set at 102 mm which is the maximum length offered by Maxon spindle drives.

4. Parameter w2: This corresponds to the diameter of the screw. The lower bound is set at 2 mm

and the upper bound is set at 5 mm inline with the catalogue of Maxon [26].

Thus, the lower and upper bounds for the second optimization problem are given by lb = [40, 10,

20, 2] and ub = [60, 16, 102, 5]. Spindle drives of Maxon offer lead screws and ball screws. The

existing prototype uses a ball screw type as it has a higher load carrying capacities and this could

be useful when the leg mechanisms are coupled along with the drive. The optimization algorithm

is executed with a constant value of diameter throughout the section depicted in Fig. 2a. The

algorithm will be evaluated one after the other for pipe diameters starting from 70 mm to 160 mm.

For faster convergence of the problem and also to satisfy bounds at all iterations, the Sequential

20



An optimal design of a flexible piping inspection robot

Quadratic Programming (SQP) algorithm [27] is employed within fmincon. The tolerance value of

the guess variables and the objective function is set at 10−9 for the optimization problem.

Results and discussions

As the definition of objective function and constraint equations appear simpler, a faster con-

vergence is obtained. The dimensions of motor units obtained from the optimization algorithm for

the various pipe diameters are provided below in Table 2.

Table 2. Results obtained for the second optimization problem in MATLAB

Pipe diameter d l1 w1 l2 w2

(mm) (mm) (mm) (mm) (mm)

70 41.4 12.7 20 2

80 47.44 14 24.7 2

90 50.95 16 32 5

100 52.72 16 45.17 5

110 55.02 16 58.25 5

120 58.21 16 67.33 5

130 60 16 84.4 5

140 60 16 86.54 5

150 60 16 98.8 5

160 60 16 102 5

From the results of the optimization provided in Table 2, a gradual increase in all design pa-

rameters could be observed with the increase in pipe diameter. During the simulation of the

robot in MATLAB, the minimum and maximum lengths of the tensegrity mechanism were found

to be 11.5 mm and 17.6 mm. These limits are well within the estimated numerical values of the

tensegrity mechanism at ±π/4 radians. Thus, a stacked model is not necessary for performing the

simulations with a modified design of the robot assembly. Based on the results obtained in Table 2,

a list of possible motors that match with the dimensions are identified from the catalogue of Maxon

and it is provided in Table 3. The results obtained for 70–80 mm diameter pipe ranges provide

the least possible motor sizing. The nearest catalogue part for this series is the RE 8 DC-Motor
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Table 3. Identification of motor-spindle series from catalogue of Maxon [26] based on results of optimization where OV indicates

over-sizing, OP indicates optimal sizing and UN indicates under-sizing

Type Series
l1 w1 l2 w2

D70 D80 D90 D100 D110 D120 D130 D140 D150 D160
(mm) (mm) (mm) (mm)

Motor 463223
31.9 8 20 3 OP OP UN UN UN UN UN UN UN UN

Spindle 473645

Motor 320178
50.4 16 32 5 OV OV OP OP OP UN UN UN UN UN

Spindle 424731

Motor 283828
46.4 16 32 5 OV OV OP OP OP UN UN UN UN UN

Spindle 424731

Motor 283828
51.5 16 45 5 OV OV OV OP OP OP UN UN UN UN

Spindle 424744

Motor 283828
62.4 16 70 5 OV OV OV OV OV OP OP OP OP UN

Spindle 424745

(463223) coupled with an 8 mm diameter spindle drive (473645) with a maximum screw length of

56 mm. This combination is not compatible with the other diametrical ranges as they prove to be

undersized. Also, this DC-Motor does not have Hall sensors and they require an additional en-

coder for having a position control algorithm. Apart from that the efficiencies and feed force factors

for this series are significantly low [26] and this might be an issue when the leg mechanisms are

accommodated. Thus, the results of 70–80 mm diameter pipelines are not considered for further

analysis. For the 90–120 mm diameter range pipelines, two possible motor-spindle combinations

are identified. The first solution is the combination of 320178 RE 16 DC-Motor coupled with a

424731 16 mm diameter spindle drive. Another combination uses the 283828 EC-Motor coupled

along with the 424731 spindle series. The first solution offers a DC-Motor with a higher velocity

however, the disadvantage of employing the 320178 series motor is that it requires an additional

encoder if a position control algorithm is incorporated. It has to be noted that the screw length

obtained for the 90 mm diameter pipe is 32 mm. This length might not be sufficient enough to

accommodate the slot-follower leg mechanism, however, this can only be verified in the third op-

timization problem. For the 100–120 mm diameter pipeline, the 283828 EC-Motor coupled with

424744 spindle drive is identified. A screw length of 45 mm is chosen for this combination. This

combination, however, appears to be undersized for the 130–160 mm diameter pipes. Another

combination that uses the 283828 EC-motor along with the 424745 spindle drive with a screw

length of 70 mm is identified, which is optimal for the 120–150 mm diameter pipes. From the list

provided in Table 3, the last three motor-spindle combinations can be potentially accommodated
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for 90–160 mm diameter pipes provided the screw length is modified. For the 160 mm diameter

pipe, all the combinations prove to be undersized. However, a motor-spindle combination with

90 mm screw length can be compatible for 150–160 mm diameter pipes. In order to have an opti-

mal result that can be suitable for a smaller diameter pipeline ranges, the results of 100–120 mm

range is considered. The screw length is thus fixed at 45 mm. The last three solutions from Table 3

are ideal for this diameter range. The feed force, gear ratio and efficiencies of these motor-spindle

combinations are provided below in Table 4.

Table 4. Technical specifications of motors from Table 3 for the results of 100 to 160 mm diameter pipes

Type Series Gear ratio
Feed force Efficiency Length (Motor+Spindle)

(N) (%) (mm)

Motor 283828
5.4:1 189 87 46.4

Spindle 424731

Motor 283828
29:1 331 79 51.5

Spindle 424744

Motor 283828
104:1 403 71 55.1

Spindle 424745

The EC-motor series 283828 is chosen for all these combinations. The 424731 spindle drive

offers the highest velocity. However, the feed force offered by this series is low. This might pose

a problem during static phases, especially when the leg mechanisms are coupled with the screw

drive. The 424744 and 424745 series, on the other hand, offers better feed forces. The 424745

series offers a feed force similar to the 424749 series which is used in the existing prototype.

The 424744 series, on the other hand, offers a lesser feed force but this factor will be sufficient

to accommodate the leg mechanisms based on experiments conducted on the existing prototype
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[9]. Also, the velocity offered by 424744 series is higher than 424745. This will address the

issue of low velocity that is associated with the existing prototype [11]. Taking into account the

length, efficiency and velocity factors, the 283282 EC-motor coupled with 424744 spindle drive

within a working diametre range of 100–120 mm is considered for further analysis. For ensuring a

simpler procedure for the control sequence of the prototype, the same motor-spindle combination

is chosen for all three modules.

THIRD OPTIMIZATION PROBLEM: DESIGN OF THE SLOT-FOLLOWER LEG MECHANISM

With the optimal motor sizing determined from the second optimization problem, the next step

is to determine the geometry of leg mechanisms that could be accommodated within the screw

length. The ratio of screw length to the pipe diameter has a greater influence on the geometry of

the leg mechanisms. The geometry of the slot-follower leg mechanism and its assembly on the

existing robot is represented in Fig. 8 2. By using the inverse kinematic model, the dimensions

AP : Slot follower leg

AC : Active prismatic link

A : Passive rotary joint

B : Passive prismatic joint

O : Origin point of mechanism

  

A

B

P

C

O

(a) (b)

Fig. 8. Representation of the (a) geometry of slot-follower leg mechanism and (b) assembly of the mechanism on the existing

prototype [9,10]

for the leg mechanism were identified in [10] by a multi-objective optimization approach. In this

article, a simple mono-objective optimization problem is solved wherein the dimensions of the

leg mechanisms are identified through a geometrical approach. The maximization of the area

occupied by the space of leg mechanism is carried out for determining the leg length that can

work inside 100–120 mm diameter pipelines.

2Digital model simulation of the leg mechanism on the existing rigid prototype in CATIA : Click here
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Modeling of the leg mechanisms and design variables

The front and rear module assembly comprise three legs assembled at 120◦ with respect to

each other [9]. These legs ensure tight contact during static and dynamic phases of the robot.

For a given locomotion instance, the orientation of the robot about the z-axis is unknown. As the

optimization problem is solved within a planar test bench, two-dimensional projections of the leg

mechanisms at two extremities are possible and these projections are represented in Fig. 9. In the
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Fig. 9. Representation of the front and side views of the two possible orientations of the leg mechanism at the extremities caused by

the rotation of the robot about z-axis

first possible extremity, the 2D projection of the robot yields a view where the distance between

the central axis of the robot and the contact point of one of the legs is equal to the radius r of

the pipeline. This representation is shown in Fig. 9a and Fig. 9b. The second possible extremity

occurs when the 2D projection of the robot yields a view where two sets of legs establish contact
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with the walls of the pipeline. In this scenario, the distance between the central axis of the robot

and the contact point with the pipeline wall is given by r cos(θ), where θ is the angle between the

leg and y− z plane. This representation is shown in Fig. 9c and Fig. 9d. For the third optimization

problem, a geometry similar to Fig. 9c is considered such that collision will be verified on either

side against the pipeline walls. For the computation, it is considered that r cos(θ) is equal to r.

The geometry of the leg mechanisms that will be assembled on the robot is represented below

in Fig. 10. For the third optimization problem, the central module dimensions are carried over

S
1

S
0

d
0

x
m3

x
m1

Module-3
Module-2

Module-1

S
2

d
1

z
 

y
 

z
!

y
!

z
"

y
"

e
21

e
22

e
23

f
21

f
22

f
23

f
12

f
13 f

11

e
11

e
12

e
13

d
2

Fig. 10. Representation of the geometry of the slot-follower leg mechanism on the motor modules

from the results of the second optimization problem and are considered fixed. This is because

the central module has no leg masses attached to them. The reference frame for the robot is

fixed at
∑

0 in the central module. The tip of each leg mechanism is referenced from the frame∑
0 through a distance xm1 for Module-1 and xm3 for Module-3. The design parameters of the

slot-follower leg mechanism during declamped and clamped phases are represented below in

Fig. 11a and Fig. 11b. The parameters of the leg mechanism from Fig. 11a are the lengths ls1, ls2,

the offsets o1, o2, the stroke lengths ρ1, ρ2 and the horizontal and vertical space vectors ∆x and

∆y [9,10]. The horizontal and vertical space vectors of the leg mechanism are given by:

∆x = [∆x1,∆x2]
T , ∆y = [∆y1,∆y2]

T (19)
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Fig. 11. Representation of the design parameters of the leg mechanism during (a) declamped and (b) clamped phases

During locomotion of robot inside the pipeline, at least one set of leg mechanisms establish contact

with pipeline walls. However, this sequence will be time-consuming to construct in MATLAB. In

order to have faster convergence and a simpler model, it is assumed that at all positions of CLR,

the leg mechanisms in both the modules remain in the declamped phase during the simulation.

The design variables for the optimization problem are given by [∆x1,∆y1, ls2]. The offsets o1 and o2

are retained as 11 mm and 7 mm, from the existing prototype as these values correspond to offsets

caused by the EC-Motor unit (o1) and spacers (o2) used for assembly of the leg mechanisms. The

parameter ls2 represents the vertical distance of the hinge point of the leg mechanism. This

parameter plays an essential role to determine the leg length ls1 for a given diameter range of

pipelines.

Objective function

The objective function of the third optimization problem aims to maximize the space occupied

by the leg mechanisms. The geometry can be split into triangular and rectangular areas which is

represented in Fig. 10. The area of the leg mechanisms used in the robot at a given discretized

CLR point can be calculated by:
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fun3 =
2∑

k=1

(
‖ek1 − ek3‖ ‖ek3 − ek2‖

2
+
‖fk1 − fk3‖ ‖fk3 − fk2‖

2
+ ‖ek1 − ek3‖ ‖ek1 − fk1‖

)
(20)

where k = 1, 2 indicates Module-1 and Module-3

As only two modules are being considered, the index k goes from 1 to 2, which corresponds

to Modules 1 and 3. Similar to Eqn. (16), the global sum of fun3 for Eqn. (20) is estimated and it

will be maximized.

Constraint equations

Similar to the second optimization problem, the collision of the geometry of leg mechanisms

is verified against the pipeline walls at each position of the CLR. A complete discretization of

the leg mechanism geometry is performed using an equation similar to Eqn. (1) and Eqn. (2).

The representation of the discretized leg mechanism assembled along with the optimized robot

modules is shown below in Fig. 12a.
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Fig. 12. Representation of the (a) discretized leg mechanism on the motor modules and (b) extraction of coordinates from a dis-

cretized leg mechanism for defining the constraints
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For a given CLR position, the coordinates of the points closer and farther on each leg mech-

anism from the point o are extracted. This is done using the min and max functions of MATLAB.

The representation of the coordinates closer (mk) and farther (nk) on the rear leg mechanism

from central coordinate o is shown in Fig. 12b. The coordinates of the point pk on the inner por-

tion which is closer to mk and the coordinates of the point rk on the outer portion which is closer

to nk are extracted using the min function. With these extracted points, four inequality constraints

are defined in MATLAB which are given by:

gk : ‖o− nk‖ ≤ ‖o− rk‖ (21)

gk+1 : ‖o−mk‖ ≥ ‖o− pk‖ , where k = 1, 2 indicates Module-1 and Module-3 (22)

In addition to the inequality constraints, two equality constraints are defined for the third op-

timization problem. As the simulation is performed for fully declamped phase, the length of leg

mechanism ls1 can be calculated from Fig. 10 by the Pythagoras theorem and it is given by:

ls1(d) =
√

(‖fk1 − fk3‖)2 + (‖fk2 − fk3‖)2 , where k = 1, 2 indicates Module-1 and Module-3 (23)

In Eqn. (23), ls1(d) indicates the leg length during the declamped phase. During the clamped

phase, the length ls1 can be calculated using ∆x2, ∆y2 and o1 by the Pythagoras theorem from

Fig. 11b. The equation is given by:

ls1(c) =
√

∆x22 + (∆y2 − o1)2 (24)

In Eqn. (24), ls1(c) is the length of the leg during clamped phase. During the initialization

sequence of the optimization algorithm, the design variable ls2 is calculated and set as a function

of the variables ∆x1, ∆y1 during the declamped phase by similar triangles. From Fig. 11a, the
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value of ls2 can be calculated by:

ls2
ρ1

=
∆y1 − o1

∆x1
(25)

The dimensions of the motor units from the results of second optimization problem for the

100 mm diameter pipe from Table 3 is given by [l1, w1, l2, w2] = [51.5, 16, 45, 5] mm. The stroke

lengths ρ1 and ρ2 are set as 32 mm and 7 mm with reference to the 45 mm screw length of the

motor unit. The reduction in stroke length is caused by the flanges and fasteners that will be used

in the robot assembly. The two equality constraints for the third optimization problem are thus

given by:

hk1 : ρ1 = 32 (26)

hk2 : ls1(d) = ls1(c) , where k = 1, 2 indicates Module-1 and Module-3 (27)

The pseudo-code of the constraint function for the third optimization problem in MATLAB is pro-

vided in Algorithm 3.

Problem statement

For the third optimization problem, the diameter d of the pipeline is fixed as 100 mm. The third

optimization problem which is used to estimate the size of the leg mechanism is defined by:

maximize
n∑
i=1

fun3(z)

subject to constraints: g1, g2, g3, g4, h1, h2

where z = [∆x1,∆y1, ls2]
T , i = 1..n indicates the discretized CLR positions

The lower and upper bounds of the design parameters for the simulation are given by lb =

[40, 20, 5] , ub = [65, 40, 12]. The upper bounds for the design parameters ∆x and ∆y are set

by considering a factor, which is 60% of the pipeline diameter. A value higher than 60% leads to
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Algorithm 3 Definition of constraint equations for the third optimization problem
Inputs: Discretized CLR coordinates, Leg mechanism design parameters, Motor dimensions
for 100 mm diameter pipe
Outputs: Inequality constraint equations (g1,g2,g3,g4), Equality constraint equations (h1,h2)

1: Initialization
2: for i = 1− n do . n indicates the end point of CLR
3: for k = 1− 2 do . k indicates the module number
4: for j = 0 : 0.01 : 1 do . Discretization
5: Discretize each face of leg mechanism on each module
6: end for
7: Extract the coordinate (mik) on module k closer to o using min
8: Extract the coordinate (nik) on module k farther to o using max
9: for l = 1− n do . For each discretized point on inner & outer portions

10: Calculate ‖rl − nik‖
11: Calculate ‖pl −mik‖
12: end for
13: Extract discretized coordinate from rik on outer portion closer to nik
14: Extract discretized coordinate from pik on inner portion closer to mik

15: Check inequality constraints (gk): ‖o− nik‖ ≤ ‖o− rik‖
16: Check inequality constraints (gk+1): ‖o−mik‖ ≥ ‖o− pik‖
17: Calculate ls1(d) using Eqn. (23) and ls1(c) using Eqn. (24)
18: Check equality constraints: hk1 as per Eqn. (26) and hk2 as per Eqn. (27)
19: end for
20: end for

convergence issues for a screw length of 45 mm. The bounds for the design parameter ls2 are

set in line with the dimension of the existing prototype [11, 20]. Using the fmincon function with

the SQP algorithm, the third optimization problem is solved to determine the geometry of the leg

mechanism.

Results and discussions

The dimensions of the slot-follower leg mechanism obtained after optimization are provided

below in Table 5. Compared to the existing prototype, the parameters ls1 and ls2 are increased

from 57 mm and 7 mm to 62.7 mm and 9.7 mm respectively. In the event of a straight pipeline

with no bends, the slot-follower leg mechanism is capable of adjusting its size between 58.6 mm

(2∆y1) to 124 mm (2∆y2) diameter range. When the robot is moving inside a pipeline with bends,

the modules are capable of passing through such bends, provided the diameter of pipelines is

strictly between 100 to 120 mm. The video link for the simulation of the robot inside 100–120 mm
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Table 5. Results obtained for the third optimization problem in MATLAB

Parameters Dimensions (mm)

∆x1 60

∆y1 29.3

∆y2 62

ls1 62.7

ls2 9.7

diameter pipelines in MATLAB is provided at the bottom of this page3. By assembling the tenseg-

rity mechanism, the EC-motor with spindle drive unit identified from the catalogue of Maxon, the

optimized slot-follower leg mechanism and standard fasteners such as circlips, bolts, etc., the en-

tire robot is realized in CAD software. The positions of the robot inside a 100 mm diameter during

its locomotion are rendered in CATIA and the sequences are represented in Fig. 13a to Fig. 13e.

The flexible robot resembles an “Elephant trunk” during a passive mode and it is demonstrated in

Fig. 13f.

CONCLUSIONS

This article mainly focused on the design of a flexible piping inspection robot by an optimization

approach. Three optimization problems were defined and solved to arrive at the design of a flexible

robot assembly which can work inside pipelines having straight and bent profiles. The first opti-

mization problem dealt with the determination of design parameters of the tensegrity mechanism

by ensuring static stability. As the mechanism was proposed to be tested inside a pipeline having

90◦ pipe bend, the design parameter h and the free length of the spring L0 were identified under

passive mode by a metaheuristic approach in MATLAB. Followed by that, the second optimiza-

tion problem was defined and solved by a deterministic approach to identify the sizing of motor

modules without the presence of leg mechanisms. This problem was carried out inside a test

bench with various pipe diameters. From the results of the second optimization problem, a series

of motor-spindle combinations were identified from the catalogue of Maxon motors. Based on the

3Simulation of the robot assembly in MATLAB : Click here.
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(a) Clamped legs and 

retracted central module,

horizontal positon of robot

(b) Clamped legs and 

extended central module,

robot passage into bend section

(c) Front leg declamping, rear leg clamping

 and extended central module,

intermediate position in bend

(d) Rear leg declamping, front leg clamping

 and retracted central module,

exit from pipe bend

(e) Clamped legs and retracted 

central module,

vertical positon of robot

(f) Resemblance of Elephant 

trunk posture of the robot

Fig. 13. Locomotion sequence of the optimized bio-inspired robot inside a 100 mm diameter pipe from (a) to (e) and correlation of

the robot to an “Elephant trunk” in (f)
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results obtained, an intermediate-range that holds good for 100–120 mm diameter pipe was cho-

sen. The selection of the motor-spindle unit was done based on dimensions, velocity, feed force

and efficiency factors, which were not considered in the design of the initial prototype [9, 10, 11].

The third optimization problem was then carried out to determine the sizing of the leg mechanisms

that could be accommodated for the results of the second optimization problem. The dimensions

of the slot-follower leg mechanism were found to be increased when compared to the existing pro-

totype. However, with the modified architecture, the robot is capable of working inside 100–120

mm diameter pipeline range that can have straight sections and bends at 90◦. The presence of

leg mechanisms and tensegrity mechanism permits to have a flexible “Elephant trunk” model that

allows the robot to pass through pipe bends in the event of passive compliance. By assembling

the tensegrity mechanisms, motor modules and the leg mechanisms, the 3D model of the flexible

robot was realized in CATIA software.

In future works, the optimization algorithm can be modified to accommodate a relation between

screw length and pipeline diameter thereby eliminating the need for fixing the pipeline diameters

for each computation. This modification might probably lead to the definition of another objective

and a metaheuristic approach will be implemented to solve this problem. With the 3D model being

assembled using catalog parts, the static force model developed in [9] can be extended to the

flexible robot. This model can help in determining the forces on the tensegrity mechanisms and

the clamping forces which can be useful for performing experiments. A simulation of the robot

will be performed using Adams software to validate the locomotion procedure followed by which

prototyping of the flexible robot will be realized. For the real-time application, suitable control units

and a camera will be accommodated on the robot to perform an inspection of pipelines. Based

on simulation trails, an investigation will also be done to replace the central module with a spindle

drive having higher velocity for accomplishing faster displacements.
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