
HAL Id: hal-03126571
https://hal.science/hal-03126571

Submitted on 31 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CONSTRAINED MUSIC GENERATION USING
MODEL-CHECKING
Théis Bazin, Shlomo Dubnov

To cite this version:
Théis Bazin, Shlomo Dubnov. CONSTRAINED MUSIC GENERATION USING MODEL-
CHECKING. Journées d’Informatique Musicale, Mar 2016, Albi, France. �hal-03126571�

https://hal.science/hal-03126571
https://hal.archives-ouvertes.fr

CONSTRAINED MUSIC GENERATION USING MODEL-CHECKING

Théis Bazin1,2 and Shlomo Dubnov3

1Département Informatique, ENS Cachan
2IRCAM, UMR STMS 9912 CNRS, Sorbonne Universités UPMC

3CREL, University of California San Diego

ABSTRACT

Numerous works have tackled the problem of style mod-
eling: learn some implicit notion of style from an ensemble
of musical sequences and generate new content resembling
this set of examples. This paper deals with the additional
problem of introducing high-level constraints into such
applications, that is, structured generation: generate new
music in the style of existing musical data, satisfying a
given temporal structure.

We propose an original approach to solve this issue
through the use of model-checking. It is applied here to
the Factor Oracle, an automaton that has already been used
by composers for music generation, but currently lacks
high-level control capacities and therefore structure. FO
captures the sequential structure of symbolic or signal-level
musical inputs. Following an abstraction of the automa-
ton structure, the specifications are converted to temporal-
logic formulae and solutions are efficiently searched for
by means of external model-checking tools. This search is
done in a backward manner, allowing for the retrieval of
optimal solutions.

A Python implementation of the system and musical
examples, e.g. for the extraction of chord sequences from
a piece, are provided.

1. INTRODUCTION

In constraint systems, it sometimes turns out that a little
dose of creativity can go a long way, providing an ability to
come up with unexpected answers to the problem at hand.

Such concerns arise for instance in the field of robotics,
when automatically generating movement schemes for a
surveillance robot. Adding partial improvisation to the
generation mechanism instead of only following the pro-
grammed patterns gives flexibility and robustness with
respect to the outside environment, which might be of
adversarial nature. A practical case of environmental un-
predictability is the management of crisis situations, for
example during an earthquake, when the environment tem-
porarily strongly deviates from its usual conditions, as
described in Kendra and Wachtendorf [13].

These techniques fall under the general problem of con-
trol improvisation: given a system (e.g. the robot) and a
set of commands (e.g. the motion patterns) as given by
an external operator, generate new, valid commands of

the systems. This problem finds a fruitful instantiation
within the field of music informatics, where improvisation
and creativity are at the core of musical composition and
performance, under the generic name of style modeling:
generating new music “in the style” of some given input
material.

The approach applied in the following blends algorithms
and formal language techniques for the automated analysis
of music, through the use of automaton-based systems, a
popular solution in machine-improvisation approaches: the
Factor Oracle (FO) [1] is a compact means of representing
sequential relations within a musical piece and provides
an efficient way of generating new similar pieces based on
given original material. In short, the FO is an automaton, a
variant of suffix automata, recognizing all sub-sequences of
a given input text. Its underlying graph structure makes it
usable to generate new music by moving along its edges in
a non-deterministic way, producing output resembling the
input text use to build the automaton, all thanks to the tight
formal structure of the automaton. An extension of FO
exists, named Variable Markov Oracle (VMO), introduced
by Wang and Dubnov [23], which operates on generic
data-types through a process of symbolization.

The FO has already been applied to the problem of
style modeling within the OMax system by Assayag et al.
[3], but it does not yet constitute a completely satisfactory
answer to the problem of structured improvisation. Indeed,
the VMO’s inherent non-deterministic way of generating
music, using only a local scope, induces a lack of global
structure in its output: no general themes arise, no salient
repetitions or cues occur. . . In other words, the contents
produced by the VMO are locally meaningful and resemble
the original material but, in a test similar to the Turing-
test [2], its lack of global constraints makes it easy for
a human ear to determine that the content was generated
by a machine and not by a musician 1 . For references to
reviews of structure in music, readers are referred to the
book by Nattiez [15] and the article by Deliège [5].

The present work aims at tackling this lack of global
structure by providing means of controlling the oracle’s
output. This is done using a verification-based approach:
the musical output is constrained by adding a logical layer
to the FO (and its extension, the VMO), which is then

1 Currently, an average time of 1 minute has been shown to be neces-
sary for listeners to complete this task

174

model-checked via external tools. To the authors’ knowl-
edge, such a model-checking approach has not yet been
applied to the generation of structured music and therefore
paves the way for future works: the developments of the
theoretical aspects (defining appropriate logics) as well
as the practical tools (leveraging efficient model-checking
engines for these logics). Note that the model-checking
techniques presented in the following are generic and only
very slightly dependent (as will be seen in the development)
on the structure of FO / VMO. Thus, any other automa-
ton for music generation could be plugged into the system
with little effort. FO and VMO are used here because they
experimentally gave good results in prior experiments in
terms of capturing style and creativity [3, 22, 16].

1.1. Related works

Several other approaches exist for the computerized gen-
eration of music, which can be roughly sorted into two
main categories:

Statistical machine-learning approaches

A first group makes use of statistical machine learning
techniques, such as applied within Microsoft Research’s
Songsmith [20]. These approaches are only as good as
the set of examples used is meaningful. Moreover and
more critically, they fail at providing any insights into the
underlying structure of the models built, as is often the
case with pure statistical machine learning approaches. As
such, they don’t shed any light into the structure of the
music they aim at emulating. More recently though, the
project MorpheuS 2 [7] takes on the same approaches with
added elements of harmony theory, using more advanced
machine-learning techniques than those applied for Song-
smith.

Formal methods

The second group, to which the methods applied in this
paper belong, leverages formal methods. These require
to some extent a formal model of music and as such are
more capable of providing new insights into the structure
of music and what makes it interesting – or uninteresting!
Within this field, the work on grammatic structures of Ler-
dahl and Jackendoff [14] is significant: their Generative
Theory of Tonal Music introduces a generative grammar
incorporating elements of cognitive science aiming at re-
producing the way a listener unfolds and understands the
musical structure of a work. Such grammars could be used
in a probabilistic way to automatically generate music that
is correct with respect, say, to the rules of Western tonal
harmony, and are a very useful way of automatically evalu-
ating the “well-formedness” of generated music, but they
don’t provide a straightforward way of generating music
following external constraints, e.g. resembling that of a
given composer.

2 Hybrid machine learning – optimization techniques to generate struc-
tured music through morphing and fusion.

The approach proposed in this article has the benefit of
being founded in structure analysis but at the same time
providing a convenient way of generating new content,
drawing from this analysis.

In that sense, models based on probabilistic automata
(e.g. Markov chains) have been developed. Among these,
the works by Pachet and Roy [18] and by Eigenfeldt [9] on
constrained generation using Markov chains can be men-
tioned. Pachet’s approach is based on Elementary Markov
Constraints (EMCs), which incorporate constraints within
the standard Markov chain random-walk algorithm. Their
structures are Markov models which replicate the condi-
tional continuation probabilities of the learned corpus and
simultaneously try to satisfy some additional constraints.
These constraints aim at optimizing a given cost function
such as the generated sequence’s length, and as such are
somewhat complementary to the approach studied in this
paper.

Closer to the techniques applied here, an approach based
on adding control layers on top of the FO has been un-
dertaken by Donze et al. [6], under the name of control
improvisation, but uses parallel products of automata to
add constraints to the transition systems rather than model-
checking them. Both approaches are therefore dual to
some extent: control improvisation enforces correctness
of the generated solutions by discarding unsatisfactory
paths on the FO through parallel products, whilst in the
model-checking framework no transitions are removed and
the modification is on the way the automaton is run on
to generate new content, so that it only generates satisfac-
tory sequences. Indeed, in the parallel product approach
proposed in their article, the constraining is done directly
on the automaton’s very structure, by removing unwanted
transitions. Thus, adding musical content to the FO re-
quires a recalculation of the whole constrained structure,
with a quadratic computation cost. In the model-checking
approach, the constraining is external to the FO, it is done
within a logical layer and an external model-checking tool
is used to run on the FO and check if the requested property
is satisfied. Consequently, if one wishes to add content
to the FO – as is the case when it is built on-line during
a live performance –, then one only needs to update the
model and not the logical layer, which can be done ef-
ficiently on-line (in linear time in the number of states
in the automaton). Note that both methods have already
been studied in conjunction by Ziller and Schneider [24]
outside from the scope of music. The results of this work
could be applied for further developments of the techniques
presented in this paper.

Lastly, recent work on ImproteK by Nika et al. [17]
should be noted. Their approach is based on symbolic
scenarios (e.g. chord progression) which describe the de-
sired long-term evolution of the generated music, as well
as dynamic calls to a reactive engine which allow to use the
generation model in a real-time context. Given such a dy-
namic scenario and a sequential representation of the musi-

175

cal examples, sequences satisfying the scenario are looked
for by means of string matching and forward search, as op-
posed to the backward search inherent to model-checking
algorithms. This makes for a more straightforward exten-
sion to real-time applications in their system, at the cost of
sub-optimality in the generated sequences.

2. RESEARCH BACKGROUND: FROM FO TO
VMO

This paper only offers a very condensed overview of the
underlying tools and interested readers are referred to the
related papers in the references [1, 8, 23, 22].

Figure 1. Example of an oracle structure for sequence
S = “abbcabcdabc”

2.1. Factor Oracle

At the basis of the tools applied in the following, the Fac-
tor Oracle is a variant of suffix automata with an added no-
tion of creativity. It has already been applied with success
in music improvisation contexts. FO focuses on extracting
repeated subsequences within a given symbolic sequence,
and does so in a incremental fashion with an automaton
that can be built on-line in linear time and space – indeed,
the automaton has T + 1 states for an input sequence of
length T . The practical algorithms for building FO are pre-
sented in the paper by Allauzen, Crochemore, and Raffinot
[1], only the most useful and significant properties that are
maintained during this creation are introduced here.

An example of FO is given on Figure 1. In FO, each
state has labelled forward links and a link to its successor.
Querying FO with a sequence of labels is done by follow-
ing the forward links according to the query, which allows
to retrieve the position of a matching sequence from the au-
tomaton. Finally, for each state qk in the automaton, there
is a unique unlabelled link to the state qp with qp < qk such
that the longest repeated suffix of the sequence α1 · αk is
recognized in state qp (or to the initial state in case no such
suffix exists). These links are called suffix links – the dotted
links on Figure 1 – and entail the FO’s creativity: using
these transparent links – recall that they are unlabelled –,
new sequences can be generated from A. For example, the
automaton from figure 1 can generate the sequence aaabb,
which is not a sub-sequence of the original sequence S.

The main problem in using FO is the following: how to
actually turn a general musical data stream, such as an au-
dio file or a complex musical sequence (e.g. a polyphonic
MIDI file) into a symbolic sequence for FO to work with?
This is the purpose of the VMO.

2.2. Variable Markov Oracle

The Variable Markov Oracle can be seen as a tool that pro-
duces a standard Factor Oracle representation of musical
structure with an added layer of symbolization, allowing to
work with completely generic data-types. It is presented in
Wang and Dubnov [23] with an application to 3D-gesture
clustering and query-matching.

The symbolization is done as follows: start from a dis-
cretized sequence of observations O[n] with O : N→ T
and simply suppose provided a distance δ comparing obser-
vations in O, i.e. δ : T × T → R. This is highly generic
and does not only apply to music: for instance O could be
a sequence of colors and δ the Euclidean distance on the
associated RGB vectors. Then, a threshold θ ∈ R?+ is fixed
and the iterative algorithm for the construction of Factor
Oracle is launched on the sequence of observations O[n]
with the added step of turning each observation O[k] into a
symbol α(O[k]), which in turn leads to a new state in the
constructed automaton.

For this symbolization, the following two properties
are maintained, where b(α) denotes the symbolic cluster
associated to symbol α, that is, the set of observations
Oi1 , . . . Oi|b(α)| labelled by symbol α during the process:

1. Any given state shares the same symbol as the state
to which its suffix link points.

2. For any symbol α and for any (if they exist) two ob-
servations O[start] and O[end] in b(α), O[start]
and O[end] can be connected by a path in b(α)
where any two successive states are distant by at
most θ, i.e. O[start] and O[end] are not necessarily
distant by at most θ but can be smoothly connected
within b(α) with respect to δ.

On the level of the automaton, the symbolization step
therefore maps states (or equivalently observations) into
congruence classes up to θ where states sharing the same
symbol all share a common suffix in the observation se-
quence (up to the precision θ). With this property, and
supposing that the chosen distances and thresholds are
meaningful with regards to the actual content of the obser-
vations, the Factor Oracle can then generate improvisation
sequences which make sense on the symbolic level as well
as on the concrete-data level.

Improvising with the VMO Regarding the actual pro-
cess of generating new content from an existing VMO,
previous experiments consisted in launching a purely ran-
dom walk on the automaton and outputting, as is often
done when synthesizing new content from an automaton,
for each symbol α seen on a link during this walk, one
of the observations O[nα] in the set b(α). Note that the
unlabelled suffix links are therefore completely transparent
and allow for silent jumps within a given musical context.

This method is effective, yet inherently randomized and
limited to offering only a local scope, it therefore neces-
sarily lacks a notion of global structure. To tackle this,

176

another control method different from the approach pre-
sented in this article was already proposed for the VMO.
This method is called guided improvisation [22] and oper-
ates by generating a path “resembling” a provided input
example.

Let V a VMO, built on some material of a given data-
type T . Let R a request, i.e. a sequence of data also of
type T . For guided improvisation, the generation is also
done by a walk on the automaton, but instead of a purely
non-deterministic walk, the algorithm also runs through
R in parallel with V and each random choice of a link to
follow is replaced by a choice maximizing the proximity
of the sequence generated with the request R. This first
improvement thus aims at creating output complying with
the VMO’s structure whilst also being close in content to
the input request R. This method can be seen as a low-
level constraining system. This paper instead follows the
opposite road and goes for a higher-level, more flexible
and generic approach, based on logics and abstraction.

Additionally, it should be noted that in guided impro-
visation the “guiding" sequence must be of the same data-
type and have the same temporal granularity as the original
data used to construct the oracle. In the approach proposed
here, the logical specification can be done using different
representations of the sequence, thus capturing different
aspects of music than the one used to derive the oracle
itself (e.g., the oracle can be constructed using melodic
considerations, whilst the logical specification refers to
harmony).

More critically, guided improvisation is a forward, greedy
algorithm, making only local decisions as it progresses
through the request, and as such may fail at extracting the
optimal sequence following a given request. The machine-
learning approach proposed here works in a backwards
way, building the example sequence from the end (e.g. to
generate a sequence starting on the chord C and ending
in G, it starts by looking for G chords, then starting from
those, looks for states with the chord C leading to those G
chords) and returning a result only if a sequence exactly
satisfying the whole request is found (i.e., as will be seen,
if it exists), i.e. an optimal example.

3. TECHNICAL BACKGROUND

Prior to introducing the proposed solution to the problem
of structured music generation using the VMO, the main
logical tool at stake is introduced: CTL, a temporal logic.

3.1. CTL

Only a high-level introduction to CTL is given here, in-
terested readers are referred to the introductory paper by
Emerson and Halpern [10].

Definition 1 (Transition system). A transition system (or
Kripke structure) is a tuple M = (S, T, I,AP, `) such that

• S = {s1, s2, . . . } is a set of states (finite or infinite),

• T ⊆ S × S is a set of transitions,

• I ⊆ S is a set of initial states,

• AP = {p, q, . . . } is a set of atomic propositions,

• ` : S → 2AP is a labeling function.

In the following, only infinite paths are considered, which
is only valid under the assumption that the transition rela-
tion T is non-blocking, ie. ∀s ∈ S, ∃ s′ ∈ S, (s, s′) ∈ T .

Remark. 1. The labeling function can be interpreted as
a truth mapping: for a state s ∈ S and an atomic
property p ∈ AP, p ∈ `(s) if and only if p is true in
the state s.

2. For s, s′ ∈ S, this paper follows standard conven-
tions with the notations s → s′ if (s, s′) ∈ T and
s s′ if there exists a path in M starting from s
and ending in s′.

Definition 2 (Successor). Given a Kripke structure M =
(S, T, I,AP, `) and a state s of M , a successor of s is any
state s′ in S such that s→ s′.

CTL (Computation Tree Logic) is a logic expressing
properties on Kripke structures. Its main characteristic –
and the reason why it was chosen in this paper – is the
ability to quantify existentially and universally on branch-
ing paths, allowing for an extensive characterization of
non-deterministic systems, making it appropriate for the
oracle, an inherently branching system.

Definition 3 (Syntax of CTL). A CTL formula is a formula
derived from the following grammar:

ϕ,ψ ::=> | p | ¬ϕ | ϕ ∨ ψ | EX ϕ | E (ϕ U ψ) | . . .
AX ϕ | A (ϕ U ψ)

where p is an atomic proposition.

Definition 4 (Semantics of CTL, satisfaction relation). Let
M = (S, T, I,AP, `) a Kripke structure and a state s of
M . Let ϕ a CTL property.
The satisfaction relation (�), which states, when applied
as follows:

(M, s � ϕ)

that the Kripke structure M satisfies the property ϕ in
the state s, is inductively defined as indicated on Table 1
(considering only infinite paths).

Remark (Intuitions). The names of the operators in CTL
can be understood as follows:

• E stands for exists,

• A stands for all,

• X stands for next,

• U stands for until.

177

M, s � > always
M, s � p if p ∈ `(s)
M, s � ¬ϕ if M, s 2 ϕ
M, s � ϕ ∨ ψ if either M, s � ϕ or M, s � ψ

M, s � EX ϕ if there exists a successor s′ of s such that (M, s′ � ϕ)

M, s � E (ϕ U ψ)

if there exists a path s0, s1, . . . in M with (s = s0)
such that one of the following holds:

• there exists k in N such that:
(M, sk � ψ) and ∀ 0 ≤ i < k : (M, si � ϕ)

or
• for all i in N: (M, si � ϕ)

M, s � AX ϕ if for all successor s′ of s in M , (M, s′ � ϕ)

M, s � A (ϕ U ψ)

if for all path s0, s1, . . . in M with (s = s0),
one of the following holds:

• there exists k in N such that:
(M, sk � ψ) and ∀ 0 ≤ i < k : (M, si � ϕ)

or
• for all i in N: (M, si � ϕ)

Table 1. Semantics of CTL

Definition 5 (CTL model-checking). CTL model-checking
can be considered at two-levels: the state level and the
global, system-wide level:

• The model-checking of a property ϕ on the model
M in the state s is the evaluation of the satisfaction
relation M, s � ϕ.

• The global model-checking of a property ϕ on a
model M = (S, T, I,AP, `), denoted as the satis-
faction problem M � ϕ is the conjunction of the
model-checking over all initial states of the struc-
ture: ∧

si∈I
(M, si � ϕ)

The model-checking problem M � ϕ is in P: it can
be solved in time O(|M | · |ϕ|). The basic techniques
for model-checking use standard reachability algorithms,
but optimized model-checkers use more advanced tech-
niques to reduce the memory and time costs of the model-
checking.

Remark (Additional CTL syntax). Some useful symbols
can be defined on top of CTL’s core syntax, with seman-
tics directly inferred from definition 4. These additional
symbols include:

• EF, standing for exists finally, with the following
equivalence:

∀M, s, ∀ ϕ, (M, s � EF ϕ) ⇐⇒
(M, s � E (> U ϕ))

• EG, standing for exists globally, with the following

equivalence:

∀M, s, ∀ ϕ, (M, s � EG ϕ) ⇐⇒
(M, s � E (ϕ U⊥))

The universal counterparts to those operators (AF and AG)
exist and are also being employed.

• CTL also entails a notion of causality, and the asso-
ciated leadsto operator leadsto can be defined as
follows:

∀M, s,∀ ϕ, ψ,(M, s � ϕ leadsto ψ) ⇐⇒
(M, s � AG (ϕ⇒ AF ψ))

where the implication⇒ is defined in CTL as it is
in boolean logic:

(a⇒ b) ⇐⇒ (¬a ∨ b)

4. PROPOSED SOLUTION: MODEL-CHECKING
THE VMO

In order to tackle the lack of structure of the VMO’s
native random output, the use of model-checking tech-
niques is proposed. The approach abstracts the oracle
into a Kripke structure replicating the automaton’s graph-
structure. The atomic properties used currently describe
the harmonic content of the fragments held in each state.

Because each state in the VMO (except the last) has
at least two distinct successors – reached using either the
direct link to its successor or the link to its associated
suffix state –, the transition system obtained has an inherent
branching nature. In order to correctly capture this, CTL
model-checking is applied to the models yielded by the
transcription and obtain properties on the VMO from there.

178

First, the current, fairly simple logic used to express
properties on the music being generated by the VMO is
presented. An application of this logic is also introduced,
which provides a means of morphing two distinct music
pieces via a CTL formula (think extracting an aria of Han-
del’s La Resurrezione from Bach’s Mass in B minor). Then
the way in which the VMO is abstracted into a transition
system is described – a straightforward process given the
automaton structure of the oracle. Finally, a note on the
associated implementation is made and the model-checker
currently under use for the application is mentioned as well
as some reasons for this choice.

4.1. A logic of music

This section introduces the way in which musical properties
on the oracle are expressed.

4.1.1. From tonal theory to CTL formulae: atomic formu-
lae

As illustrated by the numerous works mentioned in the
introduction trying to provide precise formal models of
music, describing musical content and its perception by a
listener is no easy task. In order to be able to prototype
the system and in an Occam’s Razor-approach, the logic
currently used is only a very rough description of the musi-
cal properties of the system. The general ideas underlying
this logic are as follows: as usual with temporal logics,
the atomic properties in the logic have a local scope and
CTL is used to extend those to properties with a global
scope. In order to be able to control the harmonic content
of the music generated, a local descriptor of harmony is
therefore required. A possibility is to use tonal roots to
abstract chords, with the tonal roots estimated by detecting
for a given chord the pitch within it which holds the most
thirds stacked on it, a simple yet often on point method 3 .

The possibility to express constraints on melodic motion
between consecutive fragments is also included within the
logic language. It is a simple yet effective addition to the
expressiveness and constraining power of the logic and is
done via a variable called motion.

In more details, the systems considered are composed
of a number of frames of music, each frame holding an ar-
bitrary musical content (rhythms, pitches, harmony. . . are
not constrained), with the only restriction that they should
be of finite duration. Each frame is then abstracted into a
single pitch obtained by agglomerating all notes within it
into a single chord (discarding their individual durations)
and taking the root of this chord, using the simple algo-
rithm described before. This root roughly describes the
tonal harmony within the frame 4 .

3 This method is used by default in the Python library music21which
is used for the high-level representation of music streams in the proposed
implementation.

4 As is the case in Fourier analysis, a long frame size will often have
a smoothing effect, detecting only general harmonic regions. On the
opposite, a very short frame size will mistake melody for harmony: each
single note will be seen as an harmonic region in itself, leading to very
frequent harmonic changes, and loosing continuity.

The actual representation of the notes in the system is
done via the MIDI standard, allowing to work in a bounded
integer interval. Using this integer representation, testing
for melodic motion reduces to an integer comparison be-
tween the current value and the next possible value of the
variable pitchRoot 5 .

4.1.2. From tonal theory to CTL properties: an applica-
tion

Now an application of the atomic formulae described in
the previous section is presented, allowing to extract chord
progressions (or cadences) from a VMO’s content. This
is done by first turning the chord progression into a CTL
formula stating its existence, then turning the VMO into
a Kripke structure (as defined in section 3.1) reflecting its
automaton structure, following a process which will be
described in section 4.3, in order to finally model-check
the generated CTL property on the Kripke structure and
return the result to the user – in the form of an example
of a path following the requested chord progression if it
actually exists.

The ability to constrain chord progressions shows very
useful when trying to add structure to musical content, as
demonstrated in the following use cases.

Examples of usage One use of cadences arises in the
case of a musical dialogue between an improvising VMO
and a live musician: if the musician wishes at any time
to move on to a different tonality than the one he is cur-
rently using, he could with this tool request the oracle to
find a way of reaching said goal tonality from its current
state with a smooth transition, in order to avoid breaking
the continuity of the music, allowing to have a common
movement between human and machine.

Another possible use of these harmonic constraints is
the morphing of musical streams: for this problem, given
two music pieces, A and B, one wishes to extract an inter-
pretation ofA fromB. This can be done by readingA with
a given frame size and extracting the root for each of the
successive frames, thus turning A into a chord progression,
then using a VMO built onB and the model-checking tools
to extract this cadence from A.

This morphing feature has been implemented in the
proposed package (using degree progressions for added
flexibility) and has been tested to work on various exam-
ples. Still, requesting the complete degree progression
fromA is asking a lot, and it is not sure that all of it will ap-
pear in B. Such a strong constraint may not be satisfiable

A frame size that corresponds in terms of its time scale to the analyzed
track’s time-signature is often a reasonable choice (ie. between one
measure and one quarter note), allowing a trade-off between smoothness
and precision.
The same remark applies in the following to the slicing of music streams
before turning them into a VMO.

5 If melodic motions are unused, it is also possible to discard octave
values and work solely on pitch classes, thus reducing the possible values
for pitchRoot to only 12 different pitch classes (using the chromatic
scale) and improving the efficiency of the model-checking.

179

and this would currently lead to the system not returning
anything. In order for the system to be really usable as
a generation tool (e.g. in a live context), it will therefore
be necessary to add within the system a mechanism of
constraint relaxation. Such a process would operate as
follows:

• If the generation of a path satisfying property P is
not possible,

• Then try and generate a generalization P̃ of P , i.e.
a weaker, less constraining property than P on the
logical point of view, in the hope that some path on
the structure may satisfy P̃ ,

• Iterate this relaxation until a path satisfying some
generalization of P is satisfied, with the last possibil-
ity being a completely random path, if the generation
of a meaningful path has failed.

Such a relaxation mechanism should be application-
specific and for instance, in the case of chord progression
extraction, a first step of relaxation would be to allow
substitutions of a tonic with its fifth, then, if this did not
succeed, replacements with thirds and so forth, making use
of tonal (or jazz) theory.

4.2. Algorithms

The algorithms used for the chord progression extraction
feature can now be described. To begin with, consider how
this extraction is made possible by the previously presented
tools: the local constraints given by the variable pitchRoot
allow for the step-by-step constraining of the chords used,
and the existential capacities of CTL allow for the choice of
branches satisfying the successive requirements, effectively
extending the local constraints to a global one, the chord
progression.

A key element in this process is the transcription func-
tion MAKE_PROG_PROP, which converts a chord progres-
sion into a CTL formula. Below are some examples of the
expected behavior:

Example. This first example expresses the reachability of
a sequence of frames of length at least zero with harmony
in C:

MAKE_PROG_PROP([C]) =

EF
(

(pitchRoot = C) ∧
E (pitchRoot = C U>)

)
This property is to be understood as follows: one even-

tually (as expressed by the EF) reaches a frame with har-
mony in C (pitchRoot = C) from which a path (possibly
reduced to this single state) departs (E (· U ·)) going only
through frames in C before reaching any other state (>).

A second, more involved example, with several notes
and melodic motion constraints, in the form of plus (mean-
ing the motion reaching this note should be ascending) or
minus (for descending motions) signs:

Let prog = [C,+G,−F], then:

MAKE_PROG_PROP(prog) =

EF


(pitchRoot = C ∧ E (pitchRoot = C U . . .

. . . motion = ascending ∧ pitchRoot = G

∧ E (pitchRoot = G U . . .

. . . motion = descending ∧ pitchRoot = F

∧ E (pitchRoot = F U >)))


This formula states the existence of a path on the model

eventually reaching the beginning of this chord progression
and thereafter following it chord by chord.

The code for the recursive function MAKE_PROG_PROP
is displayed in Algorithm 1. It converts its input sequence
prog of pitch classes into a CTL property prop. The
version displayed does not account for motions, for sake of
brevity, though the actual implementation recognizes those.
Note that the actual implementation is also more generic
in that it supports minor scales and could very easily be
upgraded to support arbitrary scales.

Finally, the durations in this version are not constrained:
the consecutive degrees can each be held for an arbitrary
time, as long as they each last for at least one frame. The
implementation actually supports time-constraints, allow-
ing to set a duration for each of the chord intervals to
extract, in an interval fashion: the user inputs the minimum
and maximum acceptable durations for the given degree
and the system in turns only considers paths satisfying
these added constraints. This is done using real-time CTL
model-checking, as introduced by Emerson et al. [11], a
straightforward extension of CTL with time quantifica-
tions.

Definition 6 (Real-time CTL). Let ϕ and ψ two CTL prop-
erties and (tmin, tmax) a pair of integers. In real-time CTL,
the “exists until” operator application E (ϕ U ψ) becomes
the following “bounded-until existential”:

E (ϕ BUtmin≤t<tmax ψ)

This property expresses the fact that: “There exists a path
(starting from the current state) such that:

• Property ψ holds at a time instant tψ (counted in
number of steps from the beginning of the path) with
tmin ≤ tψ < tmax,

• And property ϕ holds for all time instants t such that
tmin ≤ t < tψ”.

In this specification, the first tmin − 1 steps in the path
bear no constraint at all.

Once the conversion is done, the chosen external model-
checking engine is called with the generated property and
the model. This is achieved by a function EXISTS_PROG,
presented in Algorithm 2. Given a chord progression P =
(d0, . . . , dk) with di ∈ {I, . . . ,VII} for i ∈ [[0, k]] and

180

Algorithm 1 Function MAKE_PROG_PROP

Require: prog is a sequence of pitch classes
1: function MAKE_PROG_PROP(prog)
2: function MAKE_AUX(prog)
3: if ISEMPTY(prog) then

4:
. An empty progression trivially
exists on any structure
return >

5: else
6: root :: roots← prog

7:

. Recursively build remaining
CTL property,
combine both afterwards
using CTL’s compositionality

8: next_prop← MAKE_AUX(roots)

9:

. Constrain the next harmonic
content to be of root root
until the machine reaches
the following chord in the progression

10: return (pitchRoot = root ∧
E (pitchRoot = root U

next_prop)
11: end if
12: end function

13:
. The EF · operator relaxes the constraints
on the first steps in the machine
return (EF MAKE_AUX(prog))

14: end function

a tonal Kripke structure M , EXISTS_PROG iteratively tests
for the existence of an instantiation Ptonic of P on M with
tonic chosen in the set {C,C], . . . , B[,B}.

Note that the model-checker, called via the function
MODEL_CHECK, operates on the negation of the chosen
specification: in order to generate an example of path a sat-
isfying the requested existential constraint, the algorithm
attempts to generate a counter-example to the universal
property stating that no such path exists, a strictly equiva-
lent problem in classical logic 6 .

4.3. Abstracting the VMO

In this section, the way the VMO can be turned into a
Kripke structure is introduced, a procedure made straight-
forward by the VMO’s automaton structure – with a con-
ceptual difficulty overcome by using the FO’s specificity.

6 This approach may seem unnecessarily complicated but is due to the
fact that – up to the author’s knowledge – model-checking tools do not
offer example generation to existential properties but rather (though not
all even do so) counter-example generation to universal properties. This
most probably lies in the fact that the primary industrial intent of these
tools is to check universal properties of the form: “for all execution of
the system, it does not go wrong”, and to return an counter-example to
this safety property in case it is not verified. A more appropriate tool for
the application presented in this article would therefore be the dual of a
model-checker (if such a tool exists, in an implementation as efficient as
model-checkers): a path-finding engine working under constraints.

Algorithm 2 Function EXISTS_PROG

Require: P is a sequence of integers between 1 and 7, M
1: function EXISTS_PROG(P, M)
2: result← F alse
3: i← 0
4: while (i ≤ 12) ∧ (result = F alse) do
5: tonic← i
6: prog← INSTANTIATE_PROG(P, tonic)
7: prop← MAKE_PROG_PROP(prog)
8: result← MODEL_CHECK(¬ prop, M)
9: i← i + 1

10: end while
11: return result
12: end function

Consider a VMO V built by slicing an original musical
stream S into frames of a given frame size fs, i.e. the i-th
state of V holds the i-th frame of duration fs of S.

The goal is to build a Kripke structure

MV = (S, T, I,AP, `)

modeling V and such that a path on MV can be immedi-
ately and unambiguously transcribed into a new musical
stream. Indeed, the labelled or unlabelled nature of the
links in V will be lost when turning it into a Kripke struc-
ture, thus potentially leading to ambiguities. It is therefore
necessary to create a Kripke structure such that each step
in the Kripke structure implies the generation of a new
frame of output, that is, a Kripke structure extracted from
the VMO were all ε-transitions have been suppressed.

The set of atomic propositions AP thus consists of
the propositions (pitchRoot = p) for p in [[0, 127]] ,
to constrain tonal roots, and (motion = m) for m in
{ascending, descending}, in order to constrain melodic
motion. Plus, for each variable a special “None” value
for the empty, initial state and for silent frames (frames
containing no musical content).

Because of the notion of memory implied by the use
of motions (one has to know the pitch root of the previ-
ous , the set of states S requires a bit more work: each
state in V has two copies in S. Both copies are labelled
with (pitchRoot = p), where p is the root obtained as
presented before by turning all the content of the frame as-
sociated to the state into a single chord. One of the copies
is labelled with (motion = ascending), the other with
(motion = descending). When building a transition in
the structure to a given state, the choice of either of its
copies as destination will then depend on the pitch root of
the transition’s origin.

Now, regarding the set of transitions T , as stated before,
the distinction between labelled and ε-transitions (the suffix
links) is lost when going from automaton to Kripke struc-
ture, and the reconstruction could suffer from this. This
could be fixed by determinizing the automaton, but with
an exponential cost in both time and space, which would
greatly impact the model-generation and model-checking

181

performances, making it hardly usable in real-time appli-
cations. It is thus necessary to remove all ε-transitions
without having the state space explode.

Thankfully, the VMO allows just that: as presented in
section 2.2, the structure keeps tracks of all symbol clusters
and these clusters can equivalently be seen as reachability
classes via undirected suffix links. Therefore, the states
reachable via a uniquely labelled path – thus effectively
generating a symbol – from a given state s are the follow-
ing: ⋃

s′ ∈ cluster(s)

{s′′ | ∃ a forward link (s′, s′′) in V }

These states are reachable via a (possibly empty) succes-
sion of suffix links and a final, labelled, forward link. They
bear the label of this final link, i.e. the symbol of the final
state of the path.

Using these precomputed clusters, it is possible to build
a model bypassing all suffix links and producing an unam-
biguous symbol at each step. These transitions, along with
the specification given previously regarding motions, are
reported in T . Combining these specifications, we obtain a
complete definition for the Kripke structure associated to
V , built in time and space linear with respect to |V |, thus
completing the construction.

Remark. If one were to apply the techniques presented in
this paper to another type of automaton than the VMO,
these clusters would therefore have to be computed. Apart
from this, the model-checking procedure is essentially the
same.

4.4. The model-checker: nuXmv

In this section, some key aspects of nuXmv, the actual
model-checking engine currently used in the proposed im-
plementation, developed by Cavada et al. [4], are presented.

Amongst the pros for this model-checker, compared
to other considered options like Prism and UPPAAL, is
its support for the whole of CTL for the specifications
and the support for real-time CTL model-checking, when
some other CTL model-checker actually only support a
subset of the core logic. It also offers counter-example
generation, a must for the considered application, since
those are needed to actually generate paths satisfying the
requested constraints.

Nonetheless, some potentially useful features are lack-
ing. For instance, the counter-example generation engine
currently only generates one counter-example and there is
therefore no way to generate different paths satisfying the
same constraint, which could be interesting in a composi-
tion context, as it would give the composer the ability to
choose between different, logically fitting solutions. It also
lacks support for reward-based model-checking. Dispos-
ing of a model-checker aiming at satisfying a constraint
whilst maximizing a given reward measure would allow for
even finer control of the output, for instance by trying to
maximize the diversity within the generated music by maxi-
mizing the number of different states visited during the run.

For now, the authors did not read about a model-checker
for CTL working with reward constraints.

5. EXPERIMENTAL RESULTS

Some example runs of the system are presented in this
section, extracting chord progressions from MIDI Jazz
piano transcriptions.

The configuration used is the following: the pieces are
from the Omnibook 7 , a set of transcriptions of recordings
by Charlie Parker. The distance used to create the oracle
is the Tonnetz-distance – as presented in Harte, Sandler,
and Gasser [12] –, a music-theoretic distance on chroma
vectors. The threshold θ is fixed by hand at 0.2, a value
giving reasonable clustering of the harmonic content with
respect to the Tonnetz-distance.

Four pieces were chosen: Blues for Alice, Ornithology,
Now’s The Time, Marmaduke. The two degree progressions
used as request are: I-IV-VII-III-VI-VII-III-VI and I-IV-II-
V-I-VI-II-V.

These progressions were analyzed in a paper by Pachet
and Dubnov [19]. The characterization there was done
by applying Lempel-Ziv parsing, building a continuation
tree of symbols for compression purposes. This method
was the basis for several improvisation systems. The two
sequences presented here were characterized as expected
(first) and containing surprising transitions (second). The
criteria for surprise is not considered here but briefly it is
related to the number and length of continuations found
in the data. It would be interesting to see the relationship
between statistical and logic based methods in the future.

For each piece, an oracle is created with the selected
settings, then the algorithm EXISTS_PROG is launched on
this oracle with each of the two proposed degree progres-
sions – the tonality of the transcriptions is therefore not a
meaningful parameter, since EXISTS_PROG works modulo
transpositions. The results – in the form of instantiation
of the tonic for the actually extracted chord progressions –
are displayed on Table 2. Resulting MIDI files along with
an iPython notebook detailing the experiment are available
in the GitHub repository linked to in Appendix.

Because the second progression cannot be extracted on
some of the pieces, it is suggested to concatenate all of
the four pieces, building a small corpus of works and then
try and generate the progression with this added musical
diversity. This indeed succeeds and the progression can be
extracted from this corpus (note that this is expected, since
it is a superset of some pieces, some of which satisfy the
request).

The code for the current implementation of the tools
introduced in this article is available on the cited GitHub
repository [21], along with the code used to generate these
examples. It extends on an initial implementation of the
VMO by Cheng-i Wang.

7 http://tostud.free.fr/Parkeromnibookmidi.html

182

http://tostud.free.fr/Parkeromnibookmidi.html

Progression 1 Progression 2
Blues for Alice C ∅
Marmaduke C C
Now’s the Time E[∅
Ornithology C C

Concatenation C C

Table 2. Chosen tonic for extracted chord progressions
from the Omnibook

6. CONCLUSION AND PERSPECTIVES

An original extension has been introduced to a system
already being used for the generation of music, the VMO.
The extension, making use of CTL model-checking, offers
fine control of the content generated by the system, and ex-
tends on previous, lower-level techniques to constrain this
output. It should be furthermore noted that both the VMO
and this extension are highly generic and could work on
any type of data, up to the definition of appropriate atomic
propositions to describe properties on this data-type. In
this purpose, the implementation of all tools was done with
a focus on genericity and extendability: integrating a new
logic or a new model-checker should be straightforward.
An example of future use of this genericity considered by
the authors is the generation of graphic patterns following
live music, a form of automated Video Jockey.

Future possible works include an extensive testing of the
tools in musical contexts, to obtain a more satisfactory vali-
dation of the methods employed, for instance via statistical
experiments with listeners judging the quality of the output.
Further development of the – for now rather simplistic –
logic used to express musical properties is also required,
in the form of new, meaningful atomic propositions – e.g.,
rhythmic constraints. Great improvements regarding the
model-checking engine used in the back-end are possible
as well: support for reward-based model-checking, mul-
tiple counter-example generation. . . Finding a tool with
these capacities would represent a valuable improvement
to the control capacities offered by the proposed system.

Finally, the system should be tested in real-time contexts:
for now, due to the apparent inability of nuXmv to access,
store and modify the models in-place, in order to use the
model-checking capacities in real-time situations with the
VMO, one must make a new, complete call to the model-
checking engine and rebuild the whole system whenever
new states were added. This could become a problem
with large systems and requires attention. Nevertheless,
provided that such an in-place implementation existed, an
online application of the tools presented in this article
would then be possible, where one would receive new data
and grow the underlying Kripke structure accordingly in
real-time, given a fixed logical specification. This could
indeed be done by updating the structures online and in-
place and making periodic calls to the model-checking
engine, thus refreshing the current optimal path for the

requested specification, starting from the current state and
based on the most up-to-date Kripke structure.

Furthermore, as mentioned earlier, in order to make
the system really usable in live contexts, a procedure to
meaningfully and automatically relax the requested proper-
ties when the generation failed with the stronger property
should be implemented. This would avoid leaving the user
with no other option than random generation in critical
cases!

Acknowledgment

The authors would like to thank IdEx - Université de Bor-
deaux for partially funding this work. The authors also
extend their thanks to Jérôme Nika and the anonymous
reviewers, whose helpful remarks helped improve the final
version of this paper.

References
[1] Allauzen, C., Crochemore, M., and Raffinot, M.

“Factor oracle : a new structure for pattern match-
ing”. In: 26th Seminar on Current Trends in The-
ory and Practice of Informatics (SOFSEM’99). Ed.
by Jan, P., Gerard, T., and Miroslav, B. Vol. 1725.
LNCS. Milovy, Czech Republic, Czech Republic:
Springer-Verlag, Nov. 1999, pp. 291–306.

[2] Ariza, C. “The Interrogator As Critic: The Turing
Test and the Evaluation of Generative Music Sys-
tems”. In: Comput. Music J. 33.2 (June 2009), pp. 48–
70. ISSN: 0148-9267.

[3] Assayag, G. et al. “OMAX Brothers: A Dynamic
Topology of Agents for Improvisation Learning”.
In: ACM Multimedia Workshop on Audio and Music
Computing for Multimedia. Santa Barbara, United
States: Santa Barbara, 2006.

[4] Cavada, R. et al. “The nuXmv Symbolic Model
Checker”. In: CAV. 2014, pp. 334–342.

[5] Deliège, I. “Similarity Perception↔ Categorization
↔ Cue Abstraction”. In: Music Perception: An In-
terdisciplinary Journal 18.3 (2001), pp. 233–243.
ISSN: 07307829, 15338312.

[6] Donze, A. et al. Control Improvisation with Appli-
cation to Music. Tech. rep. UCB/EECS-2013-183.
EECS Department, University of California, Berke-
ley, Nov. 2013.

[7] Dorien, H. and Kenneth, S. “Composing first species
counterpoint with a variable neighbourhood search
algorithm”. In: Journal of Mathematics and the Arts
6.4 (2012), pp. 169–189.

[8] Dubnov, S., Assayag, G., and Cont, A. “Audio Ora-
cle Analysis of Musical Information Rate”. In: Se-
mantic Computing (ICSC), 2011 Fifth IEEE Inter-
national Conference on. Sept. 2011, pp. 567–571.

183

[9] Eigenfeldt, A. “Realtime Generation of Harmonic
Progressions Using Controlled Markov Selection”.
In: 2010.

[10] Emerson, E. A. and Halpern, J. Y. “Decision pro-
cedures and expressiveness in the temporal logic
of branching time”. In: Journal of Computer and
System Sciences 30.1 (1985), pp. 1–24. ISSN: 0022-
0000.

[11] Emerson, E. A. et al. “Quantitative Temporal Rea-
soning”. In: Proceedings of the 2Nd International
Workshop on Computer Aided Verification. CAV ’90.
London, UK, UK: Springer-Verlag, 1991, pp. 136–
145. ISBN: 3-540-54477-1.

[12] Harte, C., Sandler, M., and Gasser, M. “Detecting
Harmonic Change in Musical Audio”. In: Proceed-
ings of the 1st ACM Workshop on Audio and Mu-
sic Computing Multimedia. AMCMM ’06. Santa
Barbara, California, USA: ACM, 2006, pp. 21–26.
ISBN: 1-59593-501-0.

[13] Kendra, J. and Wachtendorf, T. “Improvisation, cre-
ativity, and the art of emergency management”. In:
From Understanding and Responding to Terrorism.
Ed. by Durmaz, H. et al. IOS Press, 2007, pp. 324–
335.

[14] Lerdahl, F. and Jackendoff, R. A generative theory
of tonal music. Cambridge. MA: The MIT Press,
1983. ISBN: 0262120941.

[15] Nattiez, J.-J. Fondements d’une sémiologie de la
musique. French. "10/18". Paris Union générale d’é-
ditions, 1975. ISBN: 2264000031.

[16] Nika, J., Chemillier, M., and Assayag, G. “Impro-
teK: Introducing Scenarios into Human-Computer
Music Improvisation”. In: ACM Computers in En-
tertainment, Special issue on Musical Metacreation
(2016). (To appear).

[17] Nika, J. et al. “Guided improvisation as dynamic
calls to an offline model”. In: Sound and Music
Computing (SMC). Maynooth, Ireland, July 2015.

[18] Pachet, F. and Roy, P. “Markov constraints: steerable
generation of Markov sequences”. In: Constraints
16.2 (Mar. 2011), pp. 148–172.

[19] Pachet, F. and Dubnov, S. “Surprising harmonies”.
In: International Journal of Computing Anticipatory
Systems 4 (1999), pp. 139–161.

[20] Simon, I., Morris, D., and Sumit, B. “Automatic Ac-
companiment Generation for Vocal Melodies”. In:
Proceedings of ACM CHI 2008 (the 26th SIGCHI
Conference on Human Factors in Computing Sys-
tems). 2008, pp. 725–724.

[21] Wang, C.-i. and Bazin, T. vmo - Python Variable
Markov Oracle Library. GitHub repository. 2015.
URL: https : / / github . com / wangsix /
vmo.

[22] Wang, C.-i. and Dubnov, S. “Guided Music Synthe-
sis with Variable Markov Oracle”. In: Tenth Artifi-
cial Intelligence and Interactive Digital Entertain-
ment Conference. 2014.

[23] Wang, C.-i. and Dubnov, S. “Variable Markov Or-
acle: A Novel Sequential Data Points Clustering
Algorithm with Application to 3D Gesture Query-
Matching”. In: Multimedia (ISM), 2014 IEEE Inter-
national Symposium on. Dec. 2014, pp. 215–222.

[24] Ziller, R. and Schneider, K. “Combining Supervisor
Synthesis and Model Checking”. In: ACM Trans.
Embed. Comput. Syst. 4.2 (May 2005), pp. 331–362.
ISSN: 1539-9087.

184

https://github.com/wangsix/vmo
https://github.com/wangsix/vmo

