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Abstract

A numerical method for the simulation of multiphase flows with phase change on un-
structured grids is presented. Based on the work of Tanguy et al. [31] using a Level
Set/Ghost Fluid Method coupling for two-dimensional axisymmetric cartesian grids, we
extend the method to two- and three-dimensional unstructured grids with the aim of
taking a step towards realistic boiling simulations in industrial context. The mass trans-
fer rate at the interface accounting for phase change is computed as a function of the
liquid and vapor heat fluxes at the interface and of the latent heat of the fluid by means
of a new framework improving the accuracy of differential operators. The mass transfer
rate is then used in the projection method to solve Navier-Stokes equations and in the
advection equation of the Level Set function to account for the interface movement due
to phase change. An immersed Dirichlet boundary condition is imposed at the interface
to ensure that boiling always occurs at saturation temperature. We demonstrate the
accuracy of our method first in the case of a static growing bubble with a fixed constant
mass transfer rate, and second with a mass transfer rate computed from the thermal
fluxes at the interface. In both cases, the bubble radius at final time converges with grid
refinement towards the theoretical value.
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1. Introduction

Boiling is a physical phenomenon which plays an important role in various industrial
processes. It occurs especially in steam cycles of thermal power stations, nuclear power
plants, two-phase loops used in cooling of electronic components and spray cooling pro-
cesses. It is also used in the condenser heat exchangers of every refrigerating machine or
heat pump. The study of boiling proves to be a major stake not only from a theoretical
and academic point of view but also from a technical and industrial point of view, where
any improvement of boiling heat transfer would have a major impact given the number
of applications.

Boiling, and in general phase-changing flows, are a specific case of two-phase flows.
From a computational point of view, two families of approaches exist to simulate two-
phase flows. The first approach consists in using Lagrangian markers to explicitly identify
the position of the interface. Methods belonging to this family are referred to as front-
tracking methods. The second consists in identifying the interface position through the
use of an auxiliary field, that is advected within an Eulerian framework. Methods of
this kind are referred to as front-capturing methods. The two most prominent examples
of front-capturing methods are the Volume Of Fluid method (VOF) [13], based on the
advection of a volume fraction function, and the Level Set method (LS) [25], based on
the advection of a function representing the signed distance function to the interface.

In addition to the method used to locate the interface, numerical methods to compute
two-phase flows can be differentiated on the strategy deployed to handle discontinuities
(both in physical properties of the fluids and boundary conditions) at the interface. A first
approach is to alleviate the discontinuity by spreading the variation through a few cells
across the interface. This eases the numerical solution of the system of PDEs, but may
introduce unphysical spreading of the discontinuity. Methods of this kind are denoted
smooth interface methods. Another approach consists in retaining the discontinuity at
the discretization level. While this seems satisfactory from a modelling point of view,
a certain number of numerical techniques need to be deployed in order to retain the
discontinuity despite solving PDEs that naturally tend to smoothen the solution. Such
methods are denoted sharp interface methods. One of the most prominent realizations
of sharp interface methods is the Ghost Fluid Method (GFM) proposed by Fedkiw et
al. [9]. In the GFM, each physical field is divided in one field per phase, and each field
of each phase is artificially extended beyond the interface in a continuous fashion. The
extended values are called ghost values. They allow the computation of derivatives across
the interface, since the discontinuity is artificially removed for the field of a given phase.

Direct Numerical Simulations (DNS) of boiling flows were pioneered by Welch [35] in
1995. The author developed a two-dimensional, moving-mesh finite-volume method for a
single, weakly deformable bubble. A simple interface model based on surface tension and
surface energy is used. The mass transfer rate at the interface is computed using mov-
ing grid triangles. The computations are performed on interface-dependent triangular
grids. The results showed basic capabilities to track interfaces with phase change. Son
and Dhir [29] used the Continuum Surface Force model [4] to compute the mass transfer
rate and the velocity discontinuity at the interface in the context of nucleate boiling to
investigate bubble release pattern depending on the heat flux. The interface is captured
by a Level Set method [25]. Juric and Tryggvason [16] presented a numerical method to
simulate liquid-vapor phase change in which the interface is followed by a Front-Tracking
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method [34, 15, 32]. Interfacial source terms for surface tension, mass transfer and latent
heat are added as indicator functions of the interface. The authors used finite differ-
ences on cartesian grids to simulate film boiling and bubble departure. Based on the
work of Welch [35], Welch and Wilson [36] presented in 2000 two-dimensional numerical
simulations of incompressible two-phase flows with phase change, using a VOF-based
interface tracking method in conjunction with a mass transfer model and a model for
surface tension. The authors derived a one-dimensional analytical test problem featuring
a thin thermal layer propagating with the moving phase interface. The authors empha-
sized that this test problem isolates the ability of a method to accurately calculate the
thermal layers responsible for driving the mass transfer in boiling flows. In 2007, Tanguy
et al. [30] used a Level Set function to capture the interface coupled to the Ghost Fluid
Method [9] to compute discontinuities at the interface, in order to simulate vaporizing
flows (liquid-to-vapor phase change with multi-component species) in two-dimensional
cartesian grids. The method is validated against various test-cases of vaporizing droplets
yielding good agreement with analytical results. Also in 2007, Gibou et al. [10] used
the same coupling for two-dimensional film boiling simulation, again with good accuracy.
These two references demonstrate the efficiency of the Level Set/Ghost Fluid Method
coupling, and thus mark a milestone in two-phase flow simulations with phase change. In
2014, Tanguy et al. [31] proposed a comparison of different numerical methods suited to
simulations of two-phase flows with phase change. The liquid-vapor interface is captured
using the Level Set method. The accuracies of the Ghost Fluid Method (sharp interface)
and the delta function method (smooth interface) are compared to compute the normal
velocity jump condition. The authors showed that smoothing the velocity jump condi-
tion at the interface could lead to a misleading mass prediction, whereas the Ghost Fluid
Method performed well. Moreover, the authors demonstrated that high-order extrapola-
tion methods on the thermal field allowed performing accurate and robust simulations for
a thermally controlled bubble growth. Simulations of the growth of static and rising bub-
bles are presented. The computations are performed on two-dimensional axisymmetric
cartesian grids.

Based on the work of Tanguy et al. [31], our goal is to present and assess a numerical
method for the simulation of multiphase flows with phase change on unstructured grids.
The numerical developments have been implemented in the YALES2 code, a community-
based code developed by a network of several French labs within the Scientific Interest
Group (GIS) “SUCCESS”. YALES2 is a numerical code whose general purpose is the
solving of fluid mechanics problems. It is designed for three-dimensional unstructured
grids in order to simulate single-phase and two-phase flows in complex geometries. Our
methodology has been designed for unstructured grids, with distributed memory paral-
lelism in order to take advantage of distributed computational power. Our configuration
of interest is a vapor bubble surrounded by a liquid phase. Both the vapor and liquid
phases are of the same chemical composition. We focus on the growth of the bubble
due to the liquid phase heated above the saturation temperature. In addition to the
complexity of the physical phenomena encountered at the interface when phase change
is not considered (action of surface tension and parameter discontinuity, density and
viscosity, as well as pressure discontinuity between the two phases), boiling contributes
to the pressure discontinuity and also implies a velocity discontinuity at the interface
between the liquid and vapor phases. Classical numerical methods for the simulation
of two-phase flows are not designed to take into account a discontinuous velocity field
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whose discontinuity is moreover coupled to the temperature field. Substantial efforts are
then required to extend existing algorithms in order to simulate boiling flows, especially
on unstructured grids. We present these developments along with some promising re-
sults concerning numerical simulations of boiling flows on unstructured grids. Section 2
introduces the physics of boiling, emphasizing the coupling between the Navier-Stokes
equations and the heat equation by means of the velocity and pressure discontinuities
at the interface computed as functions of the mass transfer rate. Section 3 presents
our numerical method for the simulation of multiphase flows without phase change on
unstructured grids in two and three dimensions. Section 4 extends the method to take
into account phase change. Section 5 presents numerical results for the validation of the
method in two and three dimensions, first with a fixed uniform and constant mass trans-
fer rate, and second with a mass transfer rate computed as a function of the heat fluxes
at the interface. Finally, Section 6 concludes this work and highlights some perspectives.

2. Governing equations and interface conditions

The liquid and vapor phases are assumed non-miscible and both phases are assumed
incompressible. The subscripts ‘liq’ and ‘vap’ are used to name physical properties in the
liquid and vapor phases, respectively. These properties are uniform in each phase but
are usually different from one phase to the other (e.g. density, viscosity...). The Sharp
Interface model is used in which the interface between the two phases is infinitely thin
[21]. Consequently, physical properties admit a discontinuity at the interface denoted by

[A]Γ = Aliq −Avap, (1)

where A is a per-phase uniform physical field and discontinuous at the interface Γ, and
Aliq and Avap are taken in a given infinitesimal neighborhood of the interface.

2.1. Physical model

In each phase, mass conservation, or the incompressibility hypothesis, reads

∇ · u = 0, (2)

where u is the fluid velocity in the given phase. While this hypothesis is very closely
satisfied for the liquid phase, care must be taken when applying it to the vapor phase.
Within the boiling context, we assume that the vapor temperature does not depart sig-
nificantly from the saturation temperature, so that thermal dilatation can be neglected.
Indeed, in the test cases presented in this paper, this is the case.

Following the notations of Nguyen et al. [24] and Gibou et al. [10], we denote the
interface normal velocity by W = Dn, where n is the interface normal vector. Mass
conservation across the interface reads (see also [33])

ṁ = ρliq (uliq · n−D) = ρvap (uvap · n−D) , (3)

where ṁ is the mass transfer rate (mass per unit of time and surface) across the interface
accounting for phase change, ρ is the density and n is the interface normal vector pointing
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to the liquid phase. As a result, the magnitude of the interface normal velocity D is given
by

D = uliq · n−
ṁ

ρliq
= uvap · n−

ṁ

ρvap
, (4)

leading to the discontinuity of the normal velocity at the interface, given by

[u · n]Γ = ṁ

[
1

ρ

]
Γ

. (5)

Moreover, in order to specify that the tangential components of the velocity are contin-
uous across the interface, it is more convenient to rewrite Eq. (5) as [24, 10, 31]

[u]Γ = ṁ

[
1

ρ

]
Γ

n. (6)

In each phase, momentum conservation leads to the Navier-Stokes equations

∂ρu

∂t
= ∇ · (T− ρuu) + f , (7)

where T is the symmetric stress tensor given by

T = −P I + 2µS, (8)

P is the pressure and µ is the dynamic viscosity of the considered phase, I is the identity
tensor, S is the symmetric rate-of-strain tensor given by

S =
1

2

(
∇u + (∇u)

T
)
, (9)

and f is the total body force applied to the fluid particle. Neglecting the gravitational
forces and assuming a uniform surface tension coefficient [33], the total body force reduces
to

f = σκnδΓ, (10)

where σ is the surface tension coefficient, κ is the interface curvature and δΓ is a mul-
tidimensional Dirac distribution localized at the interface [18]. Equations (7) and (10)
constitute the Whole-Domain Formulation of Navier-Stokes equations [31, 18]. Refering
to Fig. 1, we define point P moving at the interface velocity W = Dn, i.e. the relative
velocity of the fluid with respect to P is u − Dn. Rewriting Eq. (7) in the reference
frame moving with point P leads to

∂

∂t
{ρ (u−Dn)} = ∇ · {T− ρ (u−Dn) (u−Dn)}+ σκnδΓ, (11)

where

S =
1

2

{
∇ (u−Dn) + (∇ (u−Dn))

T
}
. (12)

The pressure discontinuity at the interface is obtained by integrating Eq. (11) over the
volume V of thickness δε surrounding point P and taking the limit of the integral when
δε tends to zero. Indeed, since V is a thin band centered on the interface, this limit gives
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Figure 1: The volume V is a thin band of width δε and length δ` centered on the interface Γ moving at
velocity W = Dn, and delimited by the surface S = S1 ∪ · · · ∪ S4. The point P is at rest with respect
to the interface.

the expression of the discontinuity of each volumetric term appearing in Eq. (11). This
demonstration has been given in [33] without phase change. We now extend it to take
phase change into account. In order for the volume V to follow the motion of point P ,
we use the Reynolds transport theorem to integrate the left-hand side of Eq. (11) over
V , i.e.∫

V

∂

∂t
{ρ (u−Dn)} dV =

d

dt

∫
V

ρ (u−Dn) dV −
∮
S

(Dn · nS) ρ (u−Dn) dS. (13)

In the limit δε → 0+, the first term of the right-hand side of Eq. (13) vanishes. The
complete integral of Eq. (11) over V then reads

0 = −
∮
S

ρ (u−Dn) {(u− 2Dn) · nS} dS −
∮
S

PnS dS + 2

∮
S

µSnS dS +

∫
Γ

σκn dγ.

(14)
Moreover, the integrals over S in Eq. (14) reduce to the sum of the integrals over S1 and
S3. Since S1 is located in the liquid phase and S3, in the vapor phase, and since nS1 = n
and nS3

= −n, Eq. (14) is rewritten

0 = − [ρ (u−Dn) (u · n− 2D)]Γ − [P ]Γ n + 2 [µS]Γ n + σκn, (15)

where δ` is taken small enough for κ to be assumed uniform on the portion of the interface
included in V . Taking the normal component of Eq. (15) and simplifying the first term
of the right-hand side by means of Eq. (3) leads to

[P ]Γ = σκ+ 2 [µn · Sn]Γ −
[
ρ (u · n−D)

2
]

Γ
, (16)

where S is initially given by Eq. (12) and can be reduced here to Eq. (9) since n is
uniform on S1 and S3. Finally, using Eqs (3) and (5), the last term of the right-hand
side of Eq. (16) is rewritten [

ρ (u · n−D)
2
]

Γ
= ṁ2

[
1

ρ

]
Γ

, (17)
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leading to the pressure discontinuity at the interface,

[P ]Γ = σκ+
[
µn ·

(
∇u + (∇u)

T
)

n
]

Γ
− ṁ2

[
1

ρ

]
. (18)

In the Whole-Domain Formulation, the contribution of surface tension forces to the
pressure discontinuity at the interface is already taken into account by means of the
total body force f in Eqs. (7) and (10). Moreover, as stated in [18], independently of
the formulation, the contribution of viscous effects is already taken into account when
computing the divergence of the stress tensor T in Eq. (7). Only the contribution of the
mass transfer rate needs to be added separately. The main difficulty of this formulation is
the need of an accurate discretization of subgrid quantities, often leading to the smearing
of the interface [4, 31].

Another formulation of the Navier-Stokes equations for two-phase flows is the Jump-
Condition Formulation [31, 18] in which surface tension forces are not directly included
in the equations. In this formulation, Eq. (7) is rewritten

∂u

∂t
+∇ · (uu) = −∇P

ρ
+

1

ρ
∇ ·
(
µ
(
∇u + (∇u)

T
))

, (19)

where the density is moreover extracted from the derivatives, emphasizing that it is
constant and uniform in each phase. The contributions of surface tension forces and
mass transfer rate to the pressure discontinuity at the interface given by Eq. (18) are
added as external ingredients. In this work, we use the Jump-Condition Formulation for
compatibility with the Sharp Interface model [21].

Energy conservation can be formulated by means of different primitive variables as the
internal energy or the enthalpy. The internal energy is favored to describe thermodynam-
ics phenomena in closed systems, and temperature (or enthaly) is more commonly used
for description of quasi-isobaric phenomena (usually open systems) [31]. In this work,
we focus on simulations of boiling in open systems, we then express energy conservation
with the temperature variable. In each phase, energy conservation reads

∂T

∂t
+ u · ∇T =

1

ρcp
∇ · (λ∇T ) , (20)

where T is the temperature, cp is the heat capacity at constant pressure and λ is the
thermal conductivity of the considered phase. Without phase change, energy conserva-
tion implies that the heat flux at the interface −λ∇T |Γ is entirely transmitted from one
phase to the other, i.e. one has [−λ∇T · n]Γ = 0. When phase change is considered,
a portion of the heat flux, equal to [−λ∇T · n]Γ, is absorbed by the interface neighbor-
hood in order to provide the latent heat Lv required to break liquid molecular bonds
and transform some quantity ṁ of liquid into vapor per interface surface and time units.
The remaining part of the heat flux is transmitted from one phase to the other. This
phenomenon leads to the following power balance,

[−λ∇T · n]Γ = ṁLv, (21)

accounting for the latent heat of vaporization as an energy sink at the interface. Equation
(21) acts as a definition of the mass transfer rate ṁ. Moreover, we make the assumption
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that the temperature is continuous at the interface and that the interface temperature
TΓ is equal to the uniform and constant saturation temperature Tsat of the fluid, i.e.

TΓ = Tsat. (22)

2.2. Interface capturing method

The liquid-vapor interface is captured using the Level Set method [25]. The signed
distance function φ to the interface Γ is defined at time t for x belonging to the compu-
tational domain Ω as

φ (t,x) =


−minxΓ∈Γ(t) ‖x− xΓ‖, if x ∈ vapor phase,

0, if x ∈ Γ(t),

minxΓ∈Γ(t) ‖x− xΓ‖, if x ∈ liquid phase,

(23)

where the set {x ∈ Ω | φ (t,x) = 0} captures the interface at time t. In order to accu-
rately capture the interface throughout the simulation, the signed distance function φ is
advected by the interface velocity uΓ using the standard advection equation

∂φ

∂t
+ uΓ · ∇φ = 0, (24)

where uΓ is equivalently given by [24, 10, 31]

uΓ = uliq −
ṁ

ρliq
n (25)

and

uΓ = uvap −
ṁ

ρvap
n. (26)

Equations (25) and (26) denote that the transport of the interface can be formulated in
both phases. The interface normal vector n is given by

n =
∇φ
‖∇φ‖

(27)

and the interface curvature κ, by
κ = −∇ · n, (28)

which is rewritten in the form given by Goldman [11],

κ =
∇φTH (φ)∇φ− ‖∇φ‖2 Tr (H (φ))

‖∇φ‖3
, (29)

where H (φ) is the hessian matrix of φ and Tr is the trace operator. If one expresses the
interface velocity by means of Eq. (26), then Eq. (24) is rewritten

∂φ

∂t
+ uvap · ∇φ =

ṁ

ρvap
, (30)

assuming that ‖∇φ‖ = 1. In order to solve Eq. (30) on grid nodes, the interface velocity
uΓ, while physically defined only at the subgrid interface, is computed on grid nodes.
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3. Numerical method to simulate multiphase flows without phase change on
unstructured grids

This work is based on YALES2, a library of finite-volume-based solvers developed
for realistic turbulent two-phase flow simulations with low Mach numbers [22]. The
YALES2 solver has been validated for various applications such as combustion [23, 12],
bio-mechanics [5], hydro-electricity [37], or wind energy [2]. It is able to handle efficiently
unstructured meshes with several billions of elements, thus enabling the Large Eddy
Simulation (LES) of laboratory and semi-industrial configurations.

YALES2 uses a level set method to capture the interface motion [8]. The step of time
advection of the level set function does not preserve the profile of the signed distance
function to the interface. After advection of the level set function, the function φ is then
reshaped, or reinitialized, to the signed distance function to the advected interface using
the geometrical approach proposed by Janodet et al. [14]. The interface curvature is
computed using Eq. (29) in which high-order differential operators provided by Bernard
et al. [3] are used.

Another important ingredient of the method is the pressure-velocity coupling. The
incompressible Navier-Stokes equation (19) is solved in both liquid and vapor phases
using the projection method based on fractional time steps developed by Chorin [6] and
improved by Kim and Moin [17]. The methodology is first presented without phase
change. The extension to phase change will be detailed in the next section. Knowing un

and Pn−
1
2 , the first step of the projection method used to define un+1, the velocity field

at next iteration, is the computation of a velocity predictor u∗ given by

u∗ − un

∆t
= −∇ · (unun) +

1

ρn
∇ ·
(
µn
(
∇un + (∇un)

T
))

, (31)

which is a priori not divergence-free. The second step is the resolution of a Poisson
equation to compute the pressure Pn+ 1

2 , given by

∇ ·

(
∇Pn+ 1

2

ρn

)
=
∇ · u∗

∆t
, (32)

where Pn+ 1
2 is the only unknown. The last step is the correction of the velocity predictor

u∗ by means of the updated pressure Pn+ 1
2 to obtain the updated velocity un+1, i.e.

un+1 − u∗

∆t
= −∇P

n+ 1
2

ρn
, (33)

ensuring ∇ · un+1 = 0 by Eq. (32). In Eqs. (31-33), the density and viscosity, despite
being uniform and constant in each phase, are time-dependent on one given grid node
since their values are altered by the passage of the interface. The left-hand side of Eq.
(32) is composed of two differential operators, the gradient operator applied to P and
the divergence operator applied to ∇P/ρ. The computation of a derivative in one phase
should be performed using only the physical quantities defined in the said phase, but
the numerical discretization of the differential operator requires using also grid nodes
located in the other phase. Then the jump of the quantity at the interface has to be
substracted in the discretization. Consequently, one has to compute [P ]Γ and [∇P/ρ]Γ.
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Without phase change, and neglecting the viscous stress tensor jump, the pressure jump
condition at the interface is given by the Laplace pressure, i.e.

[P ]Γ = σκ. (34)

The jump of the quantity ∇P/ρ can be formally defined as[
∇P
ρ

]
Γ

=
1

ρliq
∇P liq

Γ −
1

ρvap
∇P vap

Γ , (35)

where P liq
Γ and P vap

Γ are taken infinitely close to the interface, respectively in the liquid
and vapor phases. Without phase change, Eq. (35) can be simplified using the continuity
of the velocity at the interface. Indeed, by linearity of the jump operator, Eq. (19) implies[

∂u

∂t

]
Γ

+ [∇ · (uu)]Γ =

[
−∇P

ρ

]
Γ

+

[
1

ρ
∇ ·
(
µ
(
∇u + (∇u)

T
))]

Γ

, (36)

where the continuity of the velocity and its derivatives at the interface implies that the
two jumps of the left-hand side are null. Moreover, as stated in [7], the two jumps of the
right-hand side are directed toward the interface normal vector and given by[

n · ∇P
ρ

]
Γ

=

[
µn · ∇2u

ρ

]
Γ

. (37)

Dalmon et al. [7] also emphasize that, similarly to Eq. (18) for the pressure jump, the
contribution of viscous effects to the jump of the pressure gradient is already taken into
account when computing the divergence of the stress tensor T in Eq. (7). Indeed, the
jump of the pressure gradient can be decomposed as[

n · ∇P
ρ

]
Γ

=

[
n · ∇P
ρ

]predictor, Eq. (31)

Γ

+

[
n · ∇P
ρ

]Poisson, Eq. (32)

Γ

, (38)

where the exponents of the right-hand side indicate the step of the projection method in
which the corresponding jump component is imposed. Consequently, provided that the
velocity predictor u∗ is computed by Eq. (31), i.e. with µ inside the divergence, then
the remaining part of the jump of the pressure gradient that has to be enforced in Eq.
(32), i.e. the second term of the right-hand side of Eq. (38), simplifies to [7][

∇P
ρ

]Poisson, Eq. (32)

Γ

= 0. (39)

To detail the numerical implementation, we refer to Fig. 2 representing the control
volume Vp associated to grid node xp crossed by the interface Γ. As a preliminary, we
give the spatial discretization of the divergence of the velocity used in the finite volume
framework of YALES2 to solve Eqs. (31) and (32) at node xp belonging to the liquid
phase. One has

∇ · u|p =
1

Vp

N∑
i=1

up + uqi
2

·Ap,qi , (40)
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p

•
q1

•
q2

•
q3

•
q4

•
q5

+

+

+
+
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◦

◦

◦

◦

◦

Ap,q2

Ap,q3

Ap,q4

Ap,q5

Ap,q1

Γ

Vp

Figure 2: Control volume Vp associated to node p. The neighboring nodes of p are numbered coun-
terclockwise. The barycenter of each element and the middle of each pair of nodes are respectively
represented by the symbols + and ◦. The control volume associated to node p is represented in simple
black dashes. To each pair of nodes are associated two facets of the control volume, each linking the
barycenter of a neighboring element to the middle of the pair. The sum of the fluxes of a physical field
at the two facets is equal to the flux of the same physical field at the “face” linking the two barycenters
of the neighboring elements to the pair, represented in dense red dashes. If this face is denoted Si and
if ni is its outward normal vector to the control volume of p, then the vector Ap,qi represented in red is
equal to Sini. For more clarity, Si and ni are not represented. The interface Γ is represented in blue.

where N is the number of neighboring nodes of node xp, Ap,qi is the oriented face of the
control volume Vp as illustrated in Fig. 2, and where the phase and temporal indices are
omitted. We also give the spatial discretization of the laplacian of the pressure used to
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solve Eq. (32) at node xp, one has

∇ ·

(
∇Pn+ 1

2

ρn

)∣∣∣∣∣
p

=
1

Vp

N∑
i=1

1

ρnp,qi
∇p,qiPn+ 1

2 ·Ap,qi , (41)

where

ρnp,qi =

{
ρliq if xqi ∈ liquid phase,

ρΓ := θρliq + (1− θ) ρvap otherwise,
(42)

θ ∈ [0; 1] is the distance between xp and the interface along the pair (xp,xqi), relatively

to the length of the pair, and ∇p,qiPn+ 1
2 is the pressure gradient along the pair (xp,xqi)

defined below. We now describe the method used to impose the jumps at the interface
given by Eqs. (34) and (39) in Eq. (41). The only node pair crossed by the interface is
the pair (xp,xq1) where node xp is located in the liquid phase and node xq1 in the vapor
phase. Following the spirit of a sharp interface method, the jumps must be imposed
at the intersection point between this node pair and the interface. In order to do so,
we use the Ghost Fluid Method (GFM) [9], and two pressure fields (one per phase) are
considered. This is only an intermediate step necessary for the derivation. Once the
jumps are applied at the interface, only one pressure field remains in the whole domain,
with liquid pressure values in the liquid phase and vapor pressure values in the vapor
phase (see Eq. (51)). A liquid pressure field, P liq, is defined in the liquid phase and in a
vapor region close to the interface, in order to be able to define differential operators in
the liquid neighborhood of the interface (e.g., at node xp). Similarly, a vapor pressure
field, P vap, is defined in the vapor phase and in a liquid region close to the interface.
Since we discretize the pressure laplacian at node xp which is located in the liquid phase,
we use the liquid pressure field in Eq. (41), even at node xq1 . Consequently, the pressure
jump at node xq1 must be computed and applied in Eq. (41) to remove the (liquid)
pressure discontinuity on the same node in the gradient operator. Equations (35) and
(39) lead to

[∇P ]Γ =
[ρ]Γ
ρliq
∇P liq

Γ . (43)

As a result, the first-order Taylor expansion of the pressure jump at grid node xqi from
the pressure jump at the interface reads

[P ]qi = [P ]Γ + (1− θ)
[ρ]Γ
ρliq

∆xp,qi · ∇P
liq
Γ . (44)

Then the pressure gradient ∇p,qiP liq used in Eq. (41) is given along any node pair
(xp,xqi) located in the liquid phase by

∇p,qiP liq =
P liq
qi − P

liq
p

‖∆xp,qi‖
2 ∆xp,qi , (45)
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and along any node pair crossed by the interface, as for the pair (xp,xq1), by

∇p,q1P liq =
P liq
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 , (46)

=
P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 +

[P ]q1

‖∆xp,q1‖
2 ∆xp,q1 , (47)

=
P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 +

[P ]Γ
‖∆xp,q1‖

2 ∆xp,q1 + (1− θ)
[ρ]Γ
ρliq

∆xp,q1 · ∇P
liq
Γ

‖∆xp,q1‖
2 ∆xp,q1 ,

(48)

where the ’liq’ superscript is added to emphasize that Eq. (41) is solved using only
pressure values compatible with the liquid phase (either physical values in the liquid
phase, or vapor values in the vapor phase to which the pressure jump is substracted),
and where the temporal dependence is removed for clarity. We make the assumption
that the pressure gradient ∇P liq

Γ is directed along node pair (xp,xq1) and is thus equal
to ∇p,q1P liq. Using Eq. (46), Eq. (48) is then rewritten

ρΓ

ρliq

P liq
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 =

P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 +

[P ]Γ
‖∆xp,q1‖

2 ∆xp,q1 . (49)

Multiplying Eq. (49) by Ap,q1/ρΓ and rearranging the terms leads to

1

ρΓ

P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 ·Ap,q1 =

1

ρliq

P liq
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 ·Ap,q1−

1

ρΓ

[P ]Γ
‖∆xp,q1‖

2 ∆xp,q1 ·Ap,q1 ,

(50)
which, by identification of the first term of the right-hand side in Eqs. (32), (40) and
(41), leads to

1

ρΓ

P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 ·Ap,q1 =

1

2

u∗p + u∗q1
∆t

·Ap,q1 −
1

ρΓ

[P ]Γ
‖∆xp,q1‖

2 ∆xp,q1 ·Ap,q1 . (51)

The right-hand side of Eq. (51) is the contribution (multiplied by the control volume Vp)
of node pair (xp,xq1) to the computation of the pressure laplacian at node xp discretized
in Eq. (41) where the pressure jump is computed and applied at the interface. For
node pairs not crossed by the interface, the second term of the right-hand side of Eq.
(51) vanishes. Equation (32) is then solved using the Deflated Pre-Conjugate Gradient
(DPCG) solver [19, 20]. The same methodology is used to apply the pressure jump at
the interface for the computation of the pressure gradient in the correction step of the
velocity predictor given by Eq. (33).

4. Numerical implementation to take into account phase change

The difference between two-phase flow simulations with and without phase change is
the discontinuity of the velocity field at the interface in the case of phase change given
by Eq. (6). Moreover, phase change requires the resolution of the heat equation in order
to compute the mass transfer rate ṁ at the interface.
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4.1. Velocity-pressure coupling

With phase change, the projection method given by Eqs. (31), (32) and (33) is still
applied in each phase. Nevertheless, since the velocity is discontinuous at the interface,
special care has to be taken when differentiating across the interface. In order to overcome
this difficulty, the Ghost Fluid Method (GFM) [9] is again used. The velocity field is
divided into one field per phase. These velocity fields are defined in domains that overlap
at least a few numerical cells around the interface. Both velocity fields are artificially
extended (or extrapolated) beyond the interface with the method detailed below (the
method does not depend on the GFM). Consequently, we define a liquid velocity field
uliq and a vapor velocity field uvap. We define both velocity fields uliq and uvap in the
whole domain. Physical values of the liquid (vapor) velocity are contained in the liquid
(vapor) part of uliq (uvap), and the vapor (liquid) part of uliq (uvap) is used to store the
liquid (vapor) ghost values.

The liquid velocity field is extrapolated across the interface in the direction of the
interface normal vector nΓ solving the constant extrapolation equation given by Aslam
[1],

∂uliq

∂τ
+∇uliq · nΓ = 0, (52)

where τ is a pseudo-time emphasizing that this is purely a numerical step. Equation
(52) is solved only on the vapor nodes of a narrow band around the interface. The same
extrapolation is computed for uvap on the liquid nodes of the narrow band. Once Eq.
(52) is solved for both liquid and vapor phases, the velocity divergence for both phases
can be computed close to the interface in Eqs. (31) and (32). Moreover, the superposition
at one node of the fields of the two phases enables the computation of the jump at this
node.

In the projection method, the pressure jump at the interface is given by Eq. (18).
Due to the discontinuity of the velocity at the interface, Eq. (39) does not hold anymore,
and one has

[P ]qi = [P ]Γ + (1− θ)∆xp,qi ·
(
ρvap

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρliq
∇P liq

Γ

)
. (53)

Following the same methodology as in the previous section, Eq. (51) becomes

1

ρΓ

P vap
q1 − P

liq
p

‖∆xp,q1‖
2 ∆xp,q1 ·Ap,q1 =

1

2

u∗,liqp + u∗,liqq1

∆t
·Ap,q1 −

1

ρΓ

[P ]Γ
‖∆xp,q1‖

2 ∆xp,q1 ·Ap,q1

− (1− θ) ρvap

ρΓ

∆xp,q1 ·
[u∗]Γ −

[
un+1

]
Γ

∆t
‖∆xp,q1‖

2 ∆xp,q1 ·Ap,q1 , (54)

where Eq. (33) is used to replace [∇P/ρ]Γ by
(
[u∗]Γ −

[
un+1

]
Γ

)
/∆t. The right-hand

side of Eq. (54) is the contribution (multiplied by the control volume Vp) of node pair
(xp,xq1) to the computation of the pressure laplacian at node xp discretized in Eq. (41)
where the pressure and velocity jumps are computed and applied at the interface in the
case of phase change. For node pairs not crossed by the interface, the second and third
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terms of the right-hand side of Eq. (54) vanish. Moreover, in Eq. (54), the jump of the
velocity predictor, due to the jump of un, is computed as

[u∗]Γ =
[u∗]p + [u∗]q1

2
, (55)

using the physical and ghost values discussed above, whereas the jump of the future
velocity

[
un+1

]
Γ

is computed using Eq. (6) which actually accounts for the phase change
phenomenon by means of the mass transfer rate. The same methodology is used to apply
the pressure and velocity jumps at the interface for the computation of the pressure
gradient in the correction step of the liquid velocity predictor given by Eq. (33). Similarly,
the projecton method is applied in the vapor phase to update the vapor velocity field.

4.2. Heat equation and mass transfer rate

The mass transfer rate ṁ is computed at time n+ 1. Since the mass transfer rate has
physical meaning only at the interface, special care is taken for its computation. The
mass transfer rate defined by Eq. (21) can be expanded to

ṁΓ =
−λliq ∇Tliq|Γ + λvap ∇Tvap|Γ

Lv
· nΓ. (56)

In order to compute ṁΓ precisely at the interface, it is necessary to evaluate accurately
the temperature gradient of each phase at the interface position. The main difficulty is
then to avoid differentiating across the interface. Indeed, the computation at the interface
position or at nodes of the first layer, as xp in Fig. 2, would request informations
from both sides of the interface, which is not possible. In this work, gradients are
extended from nodes of the second layer, xq3 and xq4 in Fig. 2, to the interface location
using Taylor series expansions. These expansions are based on high-order differential
operators introduced in [3]. The computation of the liquid temperature gradient at
the interface location is detailed hereinafter. The procedure is the same for the vapor
phase. First of all, second-order accurate gradient GO2 and first-order accurate Hessian
HO1 are computed at nodes of the second layer, xq3 and xq4 . These operators are
then extrapolated at nodes of the first layer, xp, with second- and first-order accuracy,
respectively, GO2

p,qj (Tliq) = GO2
qj (Tliq) + HO1

qj (Tliq) ·
(
xp − xqj

)
,

HO2
p,qj (Tliq) = HO1

qj (Tliq) .
(57)

Differential operators at node xp are then obtained by averaging Taylor series expansions
from nodes xq3 and xq4 . Once differential operators are known at nodes of the first layer,
another expansion is performed from node xp to the interface location, to determine the
liquid temperature gradient at the interface,

∇Tliq|p,Γ = GO2

Γ,p (Tliq) = GO2
p (Tliq) + HO1

p (Tliq) · (xΓ − xp) . (58)

The same methodology applied in the vapor phase yields ∇Tvap|q1,Γ. The interface
normal vector is computed at the same interface location by

np,q1;Γ = (1− θ) np + θnq1 . (59)
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The mass transfer rate is then computed precisely at the interface location crossing the
node pair (xp,xq1) by

ṁp,q1 =
−λliq ∇Tliq|p,Γ + λvap ∇Tvap|q1,Γ

Lv
· np,q1;Γ. (60)

Finally, since values of ṁ are needed on nodes to solve the level set advection equation
and Navier-Stokes equations, the value of ṁ stored at node xp is computed as the simple
average of the values ṁp,qj computed on node pairs

(
xp,xqj

)
crossing the interface.

The heat equation is solved using the following semi-implicit scheme [10, 31]

ρicp,i
∆t

Tn+1
i −∇ ·

(
λi∇Tn+1

i

)
=
ρicp,i
∆t

Tni − ρicp,iuni · ∇Tni , (61)

where the subscript i denotes the phase. As in [31], we make the assumption that
boiling occurs at a uniform and constant saturation temperature. The immersed Dirichlet
boundary condition given by Eq. (22) is then used at the interface when solving Eq. (61).
In Eq. (61), the advection term ρicp,iu

n
i · ∇Tni is included in the right-hand side as a

source term. The term semi -implicit refers to the fact that the advection term is still
computed explicitly. In order to compute the diffusion term at time n + 1 and at node
xp with the condition at the interface given by Eq. (22), one needs to compute a ghost
liquid temperature value T liq,G

q1 on node xq1 . Consequently, as for the velocity, we define
two temperature fields Tliq and Tvap in order to ease the computation of ghost values by
the GFM. The discretization of the laplacian of liquid temperature is given at node xp
by

∇ · (λliq∇Tliq)|p =
1

Vp
λliq

T liq,G
q1 − T liq

p

‖∆xp,q1‖
2 ∆xp,q1 ·Ap,q1+

1

Vp

5∑
j=2

λliq

T liq
qj − T

liq
p∥∥∆xp,qj
∥∥2 ∆xp,qj ·Ap,qj ,

(62)
where the ghost value T liq,G

q1 is computed by linear extrapolation between the node xp
and the interface whose temperature is set to Tsat, i.e.

T liq,G
q1 = T liq

p +
Tsat − T liq

p

θ
. (63)

The explicit advection term is computed using the standard second-order accurate finite-
volume gradient operator for liquid nodes whose neighboring nodes are all located in the
liquid phase. For liquid nodes which have a neighbor in the vapor phase, such as xp, the
strategy previously presented, based on high-order differential operators from [3], for the
computation of the temperature gradients used to define the mass transfer rate in Eq.
(60), is reused to compute ∇T |liq,np . Finally, in order to compute the temporal derivative,
the high-order differential operators from [3] are used to extrapolate the temperature field
across the interface. This provides nodes that are swept over by the interface between
times n and n+ 1 with valid physical temperature values both at times n and n+ 1 [10].
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The complete linear system used to solve Eq. (61) at node xp is given byρliqcp,liq
∆t

+
1

Vp
λliq

∆xp,q1

θ ‖∆xp,q1‖
2 ·Ap,q1 +

1

Vp

5∑
j=2

λliq
∆xp,q1∥∥∆xp,qj

∥∥2 ·Ap,qj

T liq,n+1
p

− 1

Vp

5∑
j=2

λliq

∆xp,qj∥∥∆xp,qj
∥∥2 ·Ap,qjT

liq,n+1
qj

=
ρliqcp,liq

∆t
T liq,n
p − ρliqcp,liquliq

p · ∇T |
liq,n
p +

1

Vp
λliq

∆xp,q1

θ ‖∆xp,q1‖
2 ·Ap,q1Tsat,

(64)

which is solved using the BiCGStab(2) linear solver [28]. While the relative distance θ
appears in both the left- and right-hand sides of Eq. (64) in denominators, our simula-
tions did not require the use of a threshold on its value for stability. The same method
is used to update the vapor temperature field.

4.3. Remarks on the interface description

Once uvap and ṁ are known, Eq. (30) is used to advect the signed distance function φ
to the interface, in which the mass transfer rate is considered as a source term. As in [31],
the convention stating that the interface is advected by the velocity of the enclosed phase
is used. Since we focus on bubble growth, the liquid-vapor interface is then advected by
the vapor velocity field. Figure 3 presents the actual full algorithm used in our solver.

Moreover, we emphasize here that uvap and (ṁ/ρvap) n are two velocity vectors of
different but dependent physical origins. The vapor velocity is due to the flow dynamics
and the mass transfer rate is due to phase change. The vapor velocity field acts on
the mass transfer rate by means of the vapor temperature field, and the mass transfer
rate intervenes in the projection method used to update the vapor velocity field. As
a result, these two velocity fields are coupled. This emphasizes the need of an overall
accurate numerical method to simulate boiling flows since a small numerical error in the
computation of one quantity can rapidly propagate to others, and eventually lead to an
abnormal deformation of the interface.

5. Numerical results

Our numerical method is assessed on two benchmarks already used in Tanguy et al.
[31] in the case of two-dimensional axisymmetric cartesian grids. These test-cases deal
with bubble growth and give analytical expressions of the bubble radius at any time
of the simulation. The first one consists in the growth of a bubble with a fixed mass
transfer rate (the heat equation is not solved). The second one uses the evolution of the
temperature field to define the mass transfer rate computed at the interface using Eq.
(21), and therefore determine the time-dependent bubble radius.

5.1. Growth of a static bubble with a constant and uniform mass transfer rate

Our numerical method is evaluated on the case of a 2D static growing water bubble
with a fixed mass transfer rate from [31]. The computational domain is a square of side
length L = 8× 10−3 m. The initial bubble radius is R0 = 1× 10−3 m and the imposed
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Compute φ̃n+1

Eq. (30)

Reinitialize φ̃n+1 → φn+1
[14]

and compute nn+1 and κn+1
[3]

Eqs. (27) and (29)

Compute heat equation advection
terms for Tn+1

liq and Tn+1
vap

Eq. (57)

Solve linear systems for Tn+1
liq and Tn+1

vap

with implicit diffusion imposing TΓ = Tsat

Eq. (64)

Compute ∇Tn+1
liq

∣∣∣
Γ

and ∇Tn+1
vap

∣∣
Γ

Eqs. (57) and (58)

Interpolate nn+1
Γ

Eq. (59)

Compute ṁn+1
Γ and extend

it on the closest nodes
Eq. (60) and comment below

Compute u∗liq and u∗vap

Eq. (31)

Perform constant extrapolation of u∗liq
and u∗vap across the interface along nn+1

Eq. (52)

Solve Poisson equation to compute Pn+ 1
2

imposing [P ]
n+ 1

2
Γ and [u]n+1

Γ at the interface
Eqs. (32), (54), (18), (55) and (6)

Correct u∗liq and u∗vap with ∇Pn+ 1
2

to obtain un+1
liq and un+1

vap

Eq. (33)

Perform constant extrapolation of un+1
liq

and un+1
vap across the interface along nn+1

Eq. (52)

Level Set

Temperature

†
Mass transfer rate

Projection method

Initialization of φ0, T 0
liq, T 0

vap, u0
liq = u0

vap = 0

and computation of ṁ0,†
Γ

Figure 3: Algorithm used in our solver. The computations of the narrow band around the interface
and of the relative distance θ are omitted. They are actually performed at initialization, and twice in
the temporal loop: once after the advection of the Level Set function and once after its reinitialization.
Moreover, the computation of the time step and the exit condition of the temporal loop are also omitted.
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ρliq 1× 103 kg m−3

ρvap 1 kg m−3

σ 7× 10−2 N m−1

µliq 1× 10−3 kg m−1 s−1

µvap 1.78× 10−5 kg m−1 s−1

Table 1: Physical properties used in Section 5.1.

mass transfer rate is ṁ = 1× 10−1 kg m−2 s−1. The theoretical bubble radius Rth(t) is
given at any time t ≥ 0 by

Rth(t) = R0 +
ṁ

ρvap
t. (65)

The simulations are performed until final time t1 = 1× 10−2 s needed for the bubble
radius to double. The other physical parameters of interest are listed in Table 1. The
computations have been performed on the four following grid cell sizes : 4× 10−4 m,
2× 10−4 m, 1× 10−4 m, 5× 10−5 m, where the grid cell size is approximated on unstruc-
tured grids by a commercial meshing software. The coarsest grid used is shown in Fig. 4.
In order to evaluate the accuracy of the method, relative errors on the bubble radius are

Figure 4: Coarsest grid used in two dimensions (∆x = 4× 10−4 m) for the simulation of the growth of
a static bubble with a constant and uniform mass transfer rate. The small circle represents the initial
interface of radius R0 = 1× 10−3 m, whereas the bigger circle represents the final theoretical interface
(the radius is twice the initial one).

plotted at final time. The theoretical bubble radius at final time R1 = Rth(t1) is given
by R1 = 2× 10−3 m. The considered relative errors, ξ2(R) and ξ∞(R), are respectively
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based on Euclidean and infinity norms,

ξ2(R) =

√√√√∑(x1,x2)∈Λ (R (xΓ)−R1)
2∑

(x1,x2)∈ΛR
2
1

(66)

and

ξ∞(R) =
1

R1
max

(x1,x2)∈Λ
|R (xΓ)−R1| . (67)

In these equations, Λ is the set of node pairs crossed by the interface, xΓ is the interface
location interpolated on node pair (x1,x2) ∈ Λ by

xΓ = (1− θx1,x2) x1 + θx1,x2x2, (68)

with θx1,x2 the relative distance involved in Eq. (42), and R (xΓ) is given by

R (xΓ) = ‖xΓ‖ , (69)

since the bubble is centered on the origin of the (ex, ey) frame. Figure 5a shows the
interface location at initial and final times as well as the liquid and vapor velocity fields
at final time, on the finest unstructured grid considered. One can see the excellent
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Figure 5: Two-dimensional simulations on triangular grids. On a, the interface location is shown at initial
and final times on the finest grid considered (∆x = 5× 10−5 m). The initial interface is represented in
blue, the computed interface at final time, in black, and the theoretical interface at final time, in red.
The liquid and vapor velocity fields are also shown at final time. On b, the relative errors, ξ2(R) and
ξ∞(R), with grid refinement are shown at final time.

agreement between the computed and theoretical interfaces at final time. As expected,
the vapor is almost static while the liquid is ejected radially from the interface. Figure 5b
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shows the relative errors, ξ2(R) and ξ∞(R), at final time. The method has a convergence
rate close to one for the final bubble radius with respect to grid refinement for both
relative errors, ξ2(R) and ξ∞(R). On the finest grid, the relative error ξ∞(R) is below
1%.

This test-case has also been performed on three-dimensional unstructured grids. Fig-
ures 6a and 6b show the interface at initial and final times in three dimensions on the
finest grid considered. Figure 6c shows the corresponding relative errors, ξ2(R) and
ξ∞(R), with grid refinement. In three dimensions, the method also has a convergence
order close to one for the final bubble radius with respect to grid refinement for both
relative errors, ξ2(R) and ξ∞(R). We emphasize here the excellent agreement between
the theoretical and numerical results quantified through the stringent error based on the
infinity norm, ξ∞(R).

The proposed numerical method is then able to simulate phase change with high ac-
curacy by means of a fixed mass transfer rate on two- and three-dimensional unstructured
grids. Indeed, the method has demonstrated its ability to accurately model the inter-
face motion and capture the interface location when the mass transfer rate is uniform
and constant. The ability to accurately compute the interface location on unstructured
grids opens the path to numerical simulations of liquid-vapor phase change on complex
geometries.

5.2. Growth of a static bubble in a superheated liquid

The next step is the validation of the coupling between the Navier-Stokes equation
and the heat equation by means of the mass transfer rate computed using Eq. (56)
and the methodology thereafter. This test-case consists in a vapor bubble surrounded
by a superheated liquid [31]. The temperature field is initialized in the vapor phase
at saturation temperature, and is initialized in the liquid phase by means of a radially
symmetric profile whose analytical formulation has been derived in three dimensions by
Scriven [27]. Recently we have derived an analytical formulation in two dimensions for
the same problem [26]. To the best of our knowledge, such two-dimensional derivation
did not exist in the literature. The mathematical demonstrations of both three- and
two-dimensional analytical formulations are detailed in [26] and recalled below. The
temperature gradient is non-zero in the liquid side of the interface, leading to a non-zero
mass transfer rate at the interface. Due to the initially stationary bubble and to the
symmetry of the problem, the liquid-vapor interface motion is then only due to phase
change. The gravitational forces being neglected, the interface is expected to remain
spherical in three dimensions and circular in two dimensions for the whole temporal
evolution. The duration of the simulation is equal to the theoretical duration needed for
the bubble radius to double.

5.2.1. Two-dimensional case

In order to avoid the influence of anisotropic control volumes, we first present the
results obtained on two-dimensional grids built only with equilateral triangles, leading
to regular hexagonal control volumes. The computational domain is a rhombus of side
length L = 2.4× 10−2 m of which a portion is shown in Fig. 7. The grids used are listed
in Table 2. The initial bubble radius is R0 = 1× 10−3 m and the simulation is performed
for the physical time prescribed by the analytical solution for doubling the radius. The
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Figure 6: Three-dimensional extension of the simulations illustrated in Fig. 5 to tetrahedral grids. On a,
for the finest grid (∆x = 5× 10−5 m), the initial interface is shown in blue, the theoretical and computed
interfaces are shown at final time in green and yellow, respectively. On b, on the same grid, the complete
computed interface is shown at final time. On c, the relative errors on the bubble radius, ξ2(R) and
ξ∞(R), with grid refinement are shown at final time.

theoretical liquid temperature field is given at any time t by [26]

T (s)− T∞
Tsat − T∞

= exp
(
β2 − s2

)
, (70)
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Figure 7: Coarsest two-dimensional grid (∆x = 9.375× 10−5 m) composed only of equilateral triangles
used is our simulations. The small circle represents the initial interface of radius R0 = 1× 10−3 m,
whereas the bigger circle represents the final theoretical interface (the radius is twice the initial one).

Characteristic grid cell size
∆x (m)

Number of cells N (-)

9.375× 10−5 14 450
4.688× 10−5 57 800
2.344× 10−5 231 200

Table 2: Two-dimensional triangular grids.

where s is the reduced variable defined as

s =
r

2
√
αliqt

, (71)

r =
(
x2 + y2

) 1
2 is the radial variable, αliq = λliq/ (ρliqcp,liq) is the thermal diffusivity of

the liquid phase, T∞ is the temperature in the liquid phase when r → ∞, and β is the
growth rate defined as

β =

(
1− ρvap

ρliq

)− 1
2

. (72)

Equation (70) is used to initialize the liquid temperature field. The theoretical bubble
radius Rth(t) is given, for some initial t0 > 0 which will be computed later, at any time
t ≥ t0 by

Rth(t) = 2β
√
αliqt. (73)

The physical properties of interest corresponding to a water vapor bubble in liquid water
are listed in Table 3 where the heat capacity at constant pressure of the liquid phase
has been decreased by two orders of magnitude with respect to the value used in Tanguy
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ρliq 958 kg m−3

ρvap 0.59 kg m−3

σ 5.9× 10−2 N m−1

µliq 2.82× 10−4 kg m−1 s−1

µvap 1.23× 10−6 kg m−1 s−1

λliq 0.6 W m−1 K−1

λvap 0.026 W m−1 K−1

cp,liq 42.16 J kg−1 K−1

cp,vap 2034 J kg−1 K−1

Lv 2.257× 106 J kg−1

Tsat 373 K

Table 3: Physical properties used in Section 5.2. Only cp,liq differs (by two orders of magnitude) from
the value used in Tanguy et al. [31].

et al. [31] (see discussion in Section 5.2.2). Figure 8 shows the computed interface at
final time and the final temperature, velocity and pressure fields for the finest grid. One
can notice the high accuracy on the bubble shape at final time : the bubble is perfectly
circular and its radius is in excellent agreement with the theoretical one. Figure 9 shows
the relative errors ξ2(R) and ξ∞(R).

5.2.2. Three-dimensional case

Our numerical tests are now extended to three dimensions using tetrahedral unstruc-
tured grids. Note that this test-case is similar to the test-cases performed by Tanguy et
al. [31] on two-dimensional axisymmetric cartesian grids. One noticeable difficulty aris-
ing with such grids is the anisotropy of control volumes. The computational domain is a
cube of side length L = 1.2× 10−2 m. The initial bubble radius is R0 = 1× 10−3 m and
the simulation is performed for the physical time prescribed by the analytical solution
for doubling the radius. The liquid temperature field is initialized by [27, 31, 26]

T (s)− T∞
Tsat − T∞

=
2β3

Ja
exp

(
β2 + 2εβ2

) ∫ +∞

s

x−2 exp
(
−x2 − 2εβ3x−1

)
dx, (74)

where Ja is the Jakob number defined as

Ja =
ρliqcp,liq (T∞ − Tsat)

ρvapLv
, (75)

β is implicitly defined as

Ja = 2β3 exp
(
β2 + 2εβ2

) ∫ +∞

β

x−2 exp
(
−x2 − 2εβ3x−1

)
dx, (76)

and ε = 1 − ρvap/ρliq. The theoretical bubble radius is given by Eq. (73). In Tanguy
et al. [31], the simulations are performed for Jakob numbers ranging from 3 to 10. The
authors have simulated the test-case using different numerical methods. We chose to
compare our method to the variant giving the smallest final relative errors on the bubble
radius for the highest tested Jakob numbers, since increasing the Jakob number decreases
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a b

c d

Figure 8: Results in two dimensions on the finest triangular grid used (∆x = 2.344× 10−5 m). On a,
the initial interface is shown in blue, the final computed interface, in black, and the final theoretical
interface in red. The final liquid and vapor temperature fields are shown on b, the final velocity fields
are shown on c and the final pressure field is shown on d.

the width of the thermal boundary layer at the interface, thus making the mass transfer
rate more challenging to compute on a given grid [31]. We performed our simulations
with Jakob numbers of 3, 5, 7 and 9. Table 4 reproduces the errors given for these Jakob
numbers in Table 6 of [31]. We performed our simulations on the three three-dimensional
unstructured tetrahedral grids listed in Table 5. In order to speed up computations, the
characteristic cell sizes of these grids are multiplied by a factor 1.6 with respect to the
values used in [31] and listed in Table 4. Moreover, the liquid heat capacity at constant
pressure is decreased by two orders of magnitude with respect to the value used in [31]
(see Table 3), with the goal of decreasing the computing time. Indeed, Eq. (75) shows
that if cp,liq decreases, then T∞ increases (all other parameters being unchanged). As
a result, the liquid temperature field, given at time t by Eq. (74), has a steeper initial
slope close to the interface. Consequently, the mass transfer rate ṁ and so the interface

25



2.344×10
-5

4.688×10
-5

9.375×10
-5

Cell size (m)

1×10
-3

5×10
-3

1×10
-2

R
e
la

ti
v

e
 e

rr
o

rs
 (

-)

ξ
∞
(R)

ξ
2
(R)

Figure 9: Relative errors on the final bubble radius, ξ2(R) and ξ∞(R), for the two-dimensional simula-
tions on unstructured grids illustrated in Fig. 8.

∆x (m) Ja=3 Ja=5 Ja=7 Ja=9

9.375× 10−5 9.3% 21.0% 30.5% 36.6%
4.688× 10−5 1.4% 2.8% 7.9% 14.4%
2.344× 10−5 1.0% 1.0% 0.5% 1.0%

Table 4: Relative errors on the bubble radius at final time for different Jakob numbers on three two-
dimensional axi-symmetric cartesian grids extracted from Table 6 of Tanguy et al. [31]. The cell sizes
in the first column have been computed from the number of cells and the size of the domain given by
the authors.

velocity due to phase change (right-hand side of Eq. (30)) are then increased, leading
to faster simulations. Table 6 shows ξ∞(R) on the three grids and for the four Jakob
numbers considered. The relative error ξ∞(R) decreases with grid refinement for all
Jakob numbers except for Ja = 3 on the finest grid. One can indeed observe an error
increase for the smallest Jakob number on the finest grid. This behavior can be related
to the results of Tanguy et al. [31] listed in Table 4 in which the error on the bubble
radius reaches a minimum value on the finest grid and does not clearly converge with grid
refinement below this minimum value. Also, ξ∞(R) increases with the Jakob number.
As stated above and in Tanguy et al. [31], increasing the Jakob number reduces, by
Eq. (74), the width of the thermal boundary layer at the interface. Consequently, the
mass transfer rate and the interface velocity due to phase change are computed with less
accuracy since a lower number of grid nodes are located in the thermal boundary layer at
every iteration. Then, the bubble radius, measured at final time from the signed distance
function advected by the interface velocity due to phase change, is also less accurate. The
convergence of the bubble radius with grid refinement and decrease of the Jakob number
has been obtained by Tanguy et al. [31] on two-dimensional axisymmetric cartesian
grids, as summarized in Table 4. In the present work, this convergence is extended to
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∆x (m) Number of cells N (-)

1.5× 10−4 554 800
7.5× 10−5 1 933 621
3.75× 10−5 9 186 699

Table 5: Three-dimensional tetrahedral grids. The cell sizes correspond to the ones listed in Table 4
multiplied by 1.6. The refined area around the interface is shown in Fig. 10.

∆x (m) Ja=3 Ja=5 Ja=7 Ja=9

1.5× 10−4 6.8% 20% 34% 47%
7.5× 10−5 0.8% 1.7% 7.9% 16%
3.75× 10−5 1.7% 0.6% 1.0% 1.9%

Table 6: Relative error on the bubble radius at final time, ξ∞(R), for different unstructured grids and
Jakob numbers in three dimensions.

three-dimensional unstructured grids with comparable accuracy: in our simulations, the
bubble radius at final time is generally slightly more accurate for low Jakob numbers (3
and 5) and slightly less accurate for high Jakob numbers (7 and 9) than the one obtained
by Tanguy et al. [31]. Since our grid cells are larger than the ones used in Tanguy et
al. [31] by a factor 1.6, and since our grids are three-dimensional, which implies that
the sizes of the tetrahedra mentioned in Table 5 are only approximated by the meshing
software, further comparison would not be relevant. Table 6 is then considered as the
validation of our solver for the growth of static bubbles.

For a Jakob number of 5, Eq. (76) gives β = 5.304, Eq. (73) gives the initial time
t0 = 5.98× 10−4 s and the final time t1 = 2.39× 10−3 s and Eq. (75) gives T∞ = 538 K.
For illustrative purposes, Fig. 10 shows a portion of the coarsest grid used to validate
this test-case in three dimensions. Figure 11 shows the initial interface and the final
computed and theoretical interfaces for the finest grid, as well as the relative errors on
the final bubble radius, ξ2(R) and ξ∞(R), for the three grids used. The final bubble
radius converges with grid refinement for both relative errors, ξ2(R) and ξ∞(R). We
emphasize here the excellent agreement between the theoretical and numerical results
for the finest grid, whereas, for ξ∞(R), one single inaccurate nodal value can lead to a
high relative error. This is a very stringent criterion constituting a severe test for the
numerical accuracy. On the finest grid, the relative error ξ∞(R) is equal to 0.6%, as
reported in Table 6. Figure 12 shows the radial temperature at initialization and final
time. As expected, the liquid temperature is very close to T∞ in all the liquid phase,
except in a region close to the interface, the thermal boundary layer, where a steep
gradient responsible for the interface movement is observed. In this area, the liquid
temperature decreases from T∞ = 538 K in the liquid phase to Tsat = 373 K at the
interface, showing that the immersed Dirichlet boundary condition given by Eq. (22) is
satisfied throughout the simulation. Indeed, the use of an implicit algorithm to impose
saturation temperature at the subgrid position of the interface does not allow for a direct
verification of the respect of such constraint. Figure 13 shows the liquid temperature and
velocity fields at final time on the finest grid. One can see the small thickness of the
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Figure 10: Refined three-dimensional cubic grid used in our simulations. The small circle represents
the initial interface location of radius R0 = 1× 10−3 m, the bigger circle represents the final theoretical
interface location (the radius is twice the initial one). The grid is refined only in an area englobing a
narrow band around the interface in order to speed up computations. This grid has a characteristic cell
size around the interface of ∆x = 1.5× 10−4 m and counts 554 800 grid cells. This is the coarsest grid
used in our 3D tests.

boundary layer, compared to the bubble diameter, which requires a fine enough grid to
be captured. As expected, the liquid is ejected from the interface and the liquid velocity
field is thus aligned with the interface normal vector. The velocity jump at the interface
due to phase change is responsible for the liquid motion which can exit the domain thanks
to the outlet boundary conditions used on all six faces of the cubic domain.

Our solver is able to maintain the spherical shape of the bubble throughout the
simulation as expected from the theoretical solution. Since this test-case is very severe
relatively to the accuracy of the interface capturing or tracking method used, especially
on unstructured grids, we believe that the present results have a strong interest for further
simulations of two-phase flows with phase change on unstructured grids.

6. Conclusion and perspectives

In this work, a numerical method for simulations of two-phase flows with phase
change due to heat transfer (boiling) on unstructured grids has been developed within
the YALES2 code and assessed in two and three dimensions. The method has first been
validated on the test-case of a static growing bubble with a fixed uniform and constant
mass transfer rate, in two- and three-dimensional unstructured grids. Compared to the
analytical solution, the bubble radius at final time is first-order accurate with grid re-
finement in the L∞ sense. The ability to accurately compute the interface location on
unstructured grids opens the path to numerical simulations of liquid-vapor phase change
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Figure 11: Three-dimensional extension of the simulations illustrated in Fig. 8 to tetrahedral grids. On
a, for the finest grid (∆x = 3.75× 10−5 m), the initial interface is shown in blue, the theoretical and
computed interfaces are shown at final time in green and yellow, respectively. On b, on the same grid,
the complete computed interface is shown at final time. On c, the relative errors on the bubble radius,
ξ2(R) and ξ∞(R), with grid refinement are shown at final time. Local errors in the interface position,
as shown in red on b, strongly affect the value of ξ∞(R) whereas their effect on ξ2(R) is more limited,
as shown in c.

on complex geometries. The method has then been extended to take into account the
computation of the mass transfer rate at the interface from the thermal fluxes on both
sides of the interface. To this purpose, the heat equation is solved in both phases and
two temperature fields are used to take into account the discontinuity of the heat flux at
the interface. An immersed Dirichlet boundary condition is imposed at the interface in
order to ensure that boiling always occurs at saturation temperature. The mass transfer
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Figure 12: Radial profile of the three-dimensional temperature field shown at a initialization (R0 =
1× 10−3 m) and b final time (R1 = 2× 10−3 m) for ∆x = 3.75× 10−5 m.

a b

Figure 13: Results in three dimensions on the finest tetrahedral grid used (R1/∆x = 53). The three-
dimensional interface is represented together with a two-dimensional slice of the computational domain.
On a, the liquid temperature field is shown at final time. On b, the liquid velocity field is shown at final
time. These fields correspond to the simulation illustrated in Fig. 11b.

rate is computed using a new framework to extrapolate the liquid temperature gradient
from the liquid phase to the interface, and the vapor temperature gradient from the
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vapor phase to the interface, in order to compute the mass transfer rate precisely at
the interface. The overall implementation has been validated against the test-case of a
bubble at rest growing in a superheated liquid, in two and three dimensions. Excellent
agreement with the theoretical bubble radius has been obtained at final time on two-
and three-dimensional unstructured grids. Moreover, the bubble radius converges with
grid refinement in all cases. In three dimensions, the relative L∞-norm of the error on
the bubble radius is below 2% on the finest grid considered. These results demonstrate
the ability of our numerical method to accurately simulate two-phase flows with phase
change where the mass transfer rate is computed from the thermal fluxes at the inter-
face, thus taking a step towards realistic boiling simulations in industrial context. To the
best of our knowledge, this work has provided the first numerical simulations of bubble
growth in three dimensions with a bubble radius converging with grid refinement in the
L∞-norm sense. The L∞ convergence of the radius implies that the position of the bub-
ble surface converges to the exact solution at every surface point. It is then considered
as an important ingredient for predictive numerical simulations.

The natural extension of this work is the simulation of nucleate boiling, a mode
of heat transfer widely used in industrial applications, occurring when a liquid is in
contact with a solid whose temperature is above the liquid boiling point, leading to
the formation of vapor bubbles on the solid surface. Numerical simulations of nucleate
boiling require a methodology to take the motion of the contact line (where the solid,
liquid and vapor phases meet) into account, as well as the contact angle existing between
the solid surface and the liquid-vapor interface. The numerical simulation of nucleate
boiling on unstructured grids is currently under development as an extension of this
work. The inclusion of the contact line and contact angle in our method is expected to
enable predictive three-dimensional direct numerical simulations of nucleate boiling at
the bubble scale in the coming years.

Acknowledgments

This work has been supported by the LabEx Tec21 (Investissements d’Avenir-Grant
Agreement No. ANR-11-LABX-0030). The authors would like to thank Patrick Bégou
for support on algorithms implementation, Geoffroy Vaudor and Romain Janodet for
their help on the use of the geometrical approach for the reinitialization of the Level
Set function, Bruno Voisin for his help on some mathematical derivations, and Savinien
Pertant for various fruitful discussions on the numerical method and its implementation.

31



References

[1] T. D. Aslam. A partial differential equation approach to multidimensional extrapolation. J. Comput.
Phys., 193(1):349 – 355, 2004.
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