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Hyperbolic solutions to Bernoulli's free boundary problem

Bernoulli's free boundary problem is an overdetermined problem in which one seeks an annular domain such that the capacitary potential satisfies an extra boundary condition. There exist two different types of solutions called elliptic and hyperbolic solutions. Elliptic solutions are "stable" solutions and tractable by the super and subsolution method, variational methods and the implicit function theorem of Nash-Moser, while hyperbolic solutions are "unstable" solutions of which the qualitative behavior is less known. We introduce a new implicit function theorem based on the parabolic maximal regularity, which is applicable to problems with loss of derivatives. In this approach, the existence of foliated hyperbolic solutions as well as elliptic solutions is reduced to the solvability of a non-local geometric flow, and the latter is established by clarifying the spectral structure of the linearized operator by harmonic analysis.

Introduction

Let Ω be a bounded domain in R n and Q > 0 a given constant. Bernoulli's free boundary problem asks to find an open set A ⊂ Ω for which the following overdetermined problem is solvable:

(1.1)

             -∆u = 0 in Ω \ A, u = 0 on ∂Ω, u = 1 on ∂A, ∂u ∂ν = Q on ∂A,
where ν is the unit outer normal vector with respect to the annular domain Ω \ A.

A physical interpretation of u is the stream function of a stationary irrotational velocity field in the plane of an incompressible inviscid fluid which circulates around a bubble A of air in a given container Ω. The extra boundary condition ∂ ν u = |∇u| = Q is then derived from the Bernoulli's law. Equation (1.1) also arises in a shape optimization problem in which one wants to design the optimal shape of the insulation layer of an electronic cable such that the current leakage 1 is minimized subject to a given amount of insulation material, where u stands for the electrostatic potential and Ω is the cross-section of the cable with the insulation layer Ω \ A. In potential theory, u is called the capacitary potential of A in Ω if the first three equations in (1.1) are satisfied; and thus Bernoulli's free boundary problem is regarded as an inverse problem for the capacitary potential with equi-magnitude of force field on the free boundary ∂A. For other physical backgrounds, see Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] and references therein.

The structure of solutions to Bernoulli's free boundary problem is illustrated by the simplest situation where Ω is the unit ball B = B 1 . Here we denote by B r the ball of radius r > 0 with center at the origin.

Example.

For Ω = B, it is known that solutions A must be concentric balls (see Alessandrini [START_REF] Alessandrini | A symmetry theorem for condensers[END_REF] and Reichel [START_REF] Reichel | Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains. Elliptic and parabolic problems[END_REF]). The capacitary potential u r of B r (0 < r < 1) and its normal derivative at |x| = r are

u r (x) =        log |x| log r (n = 2), |x| 2-n -1 r 2-n -1 (n ≥ 3), ∂u r ∂ν (r) =        - 1 r log r (n = 2), n -2 r(1 -r n-2 ) (n ≥ 3).
Thus, for given Q > 0, we shall find 0 < r < 1 such that Q = Q(r) := ∂ ν u r (r), where Q(r) is convex in 0 < r < 1 and takes its minimum at r = r * := e -1 (n = 2),

(n -1) -1/(n-2) (n ≥ 3).

Therefore, at the critical value Q = Q * := Q(r * ), the problem (1.1) has a unique solution A = B r * ; while for Q > Q * there are two solutions B r 1 (Q) and B r 2 (Q) with r 1 (Q) < r * < r 2 (Q); and no solution for Q < Q * . Moreover, as Q → ∞, B r 1 (Q) shrinks to the single point x = 0, while B r 2 (Q) approaches to Ω = B, and we have the foliation structure

{0} ∪ ∂B r * ∪ Q>Q * ∂B r 1 (Q) ∪ Q>Q * ∂B r 2 (Q) = B.
The shrinking solutions B r 1 (Q) are called hyperbolic and the expanding solutions B r 2 (Q) are called elliptic, as we shall define in Definition 3.4.

One of the interesting questions is whether such a foliation structure of solutions appears for a general convex domain Ω. Acker [START_REF] Acker | On the qualitative theory of parametrized families of free boundaries[END_REF] proved that this is true for elliptic solutions, namely there is a family of expanding solutions {A(Q)} Q>Q 0 for some Q 0 > 0 such that Q>Q 0 ∂A(Q) = Ω \ K for some compact set K ⊂ Ω. In fact, Cardaliaguet and Tahraoui [START_REF] Cardaliaguet | Some uniqueness results for Bernoulli interior free-boundary problems in convex domains[END_REF] proved that K can be chosen as the closure of a solution A(Q * ) with threshold value Q * > 0. The proof is based on the existence of ordered elliptic solutions A(Q) due to the super and subsolution method and the continuous dependence of A(Q) on Q, where the latter is deduced from Borell's inequality in convex geometry. However, these arguments fail for hyperbolic solutions, and it has been open if there exists a family of hyperbolic solutions shrinking to a single point in Ω. In fact, it was conjectured by Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] that such a family exists with a non-degenerate harmonic center of Ω as the limit point. This concentration phenomenon appears in a large class of variational problems for low energy extremals, and we refer to Flucher [START_REF] Flucher | Variational problems with concentration[END_REF], Flucher and Müller [START_REF] Flucher | Concentration of low energy extremals[END_REF], and Flucher, Garroni and Müller [START_REF] Flucher | Concentration of low energy extremals: identification of concentration points[END_REF].

In general, the existence of a solution A for given Ω and Q can be proved by various methods including the super and subsolution method of Beurling [START_REF] Beurling | On free-boundary problems for the Laplace equation[END_REF] and its generalizations by Caffarelli and Spruck [START_REF] Caffarelli | Convexity properties of solutions to some classical variational problems[END_REF] and Henrot and Shahgholian [START_REF] Henrot | Existence of classical solutions to a free boundary problem for the p-Laplace operator. I. The exterior convex case[END_REF][START_REF] Henrot | Existence of classical solutions to a free boundary problem for the p-Laplace operator. II. The interior convex case[END_REF], a variational method by Alt and Caffarelli [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF], with penalty term by Aguilera, Alt and Caffarelli [START_REF] Aguilera | An optimization problem with volume constraint[END_REF], a constrained variational method by Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF], and the inverse function theorem of Nash and Moser by Hamilton [START_REF] Hamilton | The inverse function theorems of Nash and Moser[END_REF].

Most of the results are concerned with a class of "well-ordered" solutions called elliptic solutions, where a solution A to Bernoulli's free boundary problem (1.1) is called elliptic if, roughly speaking, the infinitesimal increase of the value of Q > 0 makes the corresponding solution A to expand (see Definition 3.4). Indeed, the super and subsolution method only allows one to construct elliptic solutions, since the method yields a solution A as the union of all subsolutions, where A sub ⊂ Ω is called a subsolution if the capacitary potential u of A sub satisfies ∂ ν u ≤ Q on ∂A sub ; and hence for Q > Q the corresponding solution à must be larger than A. Thus this method cannot produce another type of solutions called hyperbolic solutions, for which the increase of Q > 0 makes A to shrink.

Variational solutions A = Ω \ {u < 1} with u ∈ H 1 0 (Ω) constructed in [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] as minimizers of the functional

J(u) := Ω |∇u| 2 dx + {u<1} Q 2 dx
are also elliptic, and the argument for their regularity estimate essentially relies on the local minimality of the solutions. Thus the method cannot directly apply to hyperbolic solutions which appear as saddle points.

Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] adopted a constrained variational method in which one minimizes the capacity Cap Ω (A) := Ω\A |∇u| 2 dx among all domains A of equal volume |A| = C, where u is the capacitary potential of A in Ω. The Euler-Lagrange equation is (1.1) with a Lagrange multiplier Q > 0. This method would produce even hyperbolic solutions. However, neither the continuous dependence of solution A on Q > 0, its non-degeneracy nor hyperbolicity is derivable from its construction.

The inverse (or implicit) function theorem is also, in principle, able to handle hyperbolic solutions, but (1.1) has a regularity issue called "loss of derivatives" and this requires the Nash-Moser method as in [START_REF] Hamilton | The inverse function theorems of Nash and Moser[END_REF], for which one needs quantitative estimates between several function spaces which are only, to the best of our knowledge, available for elliptic solutions. Furthermore, the solutions {A(Q)} |Q-Q 0 |<ε constructed by this method, in general, have lower regularity than the initial state A(Q 0 ). The novelty of this paper is the introduction of an implicit function theorem based on the parabolic maximal regularity, which enables us to handle the loss of derivatives and, in particular, produces a locally foliated family of hyperbolic solutions {A(Q)} Q 0 ≤Q<Q+ε in the same regularity class as the initial state A(Q 0 ), provided that A(Q 0 ) is initially known to be hyperbolic. The corresponding result for elliptic solutions is also true in the backward direction {A(Q)} Q 0 -ε<Q≤Q 0 . In fact, the result holds for variable Q = Q(x, t); and thus one may assume Ω = B if Ω is a planar simply-connected domain, by a conformal mapping f : B → Ω.

To state our main result precisely, we define the little Hölder space h k+α (U ) for a domain U ⊂ R n as the closure of the Schwartz space S(R n ) (restricted to U ) of rapidly decreasing functions in the Hölder space C k+α (U ). In the same manner, h k+α (Γ) for a closed hypersurface Γ is defined through its local coordinates. For a reference domain A 0 ⊂ A 0 ⊂ Ω with smooth boundary ∂A 0 and ρ ∈ h k+α (∂A 0 ) with small norm, we define A ρ as the bounded domain enclosed by

∂A ρ := {ζ + ρ(ζ)ν(ζ) | ζ ∈ ∂A 0 } ,
where ν(ζ) is the unit outer normal vector to ∂A 0 with respect to Ω \ A 0 . We will show the existence of smoothly varying solutions in the sense that 

(1.2) ρ ∈ C([0, T ), h 3+α (∂A 0 )) ∩ C 1 ([0, T ), h 2+α (∂A 0 )). A solution A ρ to (1.1) for Q = Q(x)
A(t) = A ρ(t) for Q(•, t) satisfying (1.2) and ρ(0) = ρ 0 .
Remark 1.2. In both cases, A(t) shrinks as t increases. This one-sided solvability reflects that (1.1) has a parabolic structure, and our method reveals this fact as a spectral property of the linearized operator of an evolution equation.

Remark 1.3. The initial hyperbolic solution A ρ 0 in a slightly perturbed ball Ω can be constructed as a perturbation of the radial hyperbolic solution B r 1 (Q) in B by a homotopy argument: the parameter t now describes the deformation of B to Ω and the same technique developed in the present paper is applicable. In fact, for n = 2, any simply-connected bounded domain Ω is conformally mapped onto the unit disk and the deformation of Ω reduces to that of Q, and thus our method directly applies for the construction of A ρ 0 in Ω.

This paper is organized as follows. In Section 2 we introduce our implicit function theorem in a functional analytic framework, in which a parametrized family of solutions x = x(s) to a functional equation F (x, s) = 0 is characterized as a solution to a certain evolution equation. In Section 3 we formulate (1.1) as F (ρ, t) = 0 and derive the linearized equation, by which we define the non-degeneracy, ellipticity and hyperbolicity of solutions A. Section 4 deals with the corresponding evolution equation for (1.1), which is described as a non-local geometric evolution of hypersurface ∂A(t) for varying Q(•, t). Furthermore, another interesting characterization is given in terms of infinitely many conserved quantities (see Theorem 4.2). Section 5 concerns the solvability of the evolution equation by the spectral analysis of the linearized operator; and thus locally foliated hyperbolic (elliptic) solutions are constructed as stated in Theorem 1.1.

Implicit function theorem

Our approach presented in this paper is based on a parabolic method, that is, we derive and analyze an evolution equation describing the behavior of solutions A = A(t) for varying data Q = Q(•, t). This approach can be formulated as an implicit function theorem applicable to nonlinear problems with structural deficit called loss of derivatives, and thus has a common feature with the implicit function theorem of Nash [START_REF] Nash | The imbedding problem for Riemannian manifolds[END_REF] and Moser [START_REF] Moser | A new technique for the construction of solutions of nonlinear differential equations[END_REF][START_REF] Moser | A rapidly convergent iteration method and non-linear partial differential equations[END_REF][START_REF] Moser | A rapidly convergent iteration method and non-linear partial differential equations[END_REF]. But the parabolic approach has the advantage that the loss of derivatives can be handled with the established theory of semigroups of linear operators, and hence intricate estimates required for the Nash-Moser method are no longer needed, and more importantly the solutions constructed by our method remain in the same regularity class.

Let X, Y, Z be Banach spaces with continuous embedding X → Y and consider the abstract equation

(2.1) F (x, s) = 0 (x ∈ X, s ∈ R),
where

F is a C 1 -mapping from X × R to Z with F (0, 0) = 0. If the Fréchet derivative ∂ x F (0, 0) ∈ L(X, Z)
(the space of bounded operators from X to Z) is invertible, then for each given small data s ∈ R we can find a unique solution x(s) ∈ X in a neighborhood of x = 0 by the classical implicit function theorem. Indeed, the sequence of X-valued curves

(2.2) x 1 (s) := 0, x j+1 (s) := x j (s) -∂ x F (0, 0) -1 F (x j (s), s) (-ε ≤ s ≤ ε)
converges to a C 1 -curve x(s) satisfying x(0) = 0 and F (x(s), s) = 0. However, the argument would fail if we only have the regularity gain

∂ x F (0, 0) -1 ∈ L(Z, Y ), and hence x j+1 (s) is merely Y -valued even if x j (s) is X-valued. This "loss of derivatives" happens when ∂ x F (0, 0) ∈ L(X, Z) is not bijective; but it has a continuous extension to Y denoted again by ∂ x F (0, 0) ∈ L(Y, Z) with bounded inverse ∂ x F (0, 0) -1 ∈ L(Z, Y ).
As we shall see in Section 3, the Bernoulli problem (1.1) has this structure, and one would try to use the Nash-Moser scheme to overcome this regularity issue, namely,

x 1 (s) := 0, x j+1 (s) := x j (s) -S∂ x F (x j (s), s) -1 F (x j (s), s) (-ε ≤ s ≤ ε),
where S : Y → X is a smoothing operator, and the inverse is taken at (x j (s), s) at each different step to accelerate the convergence speed in order to compensate for the deficit coming from the artificial operator S. Here at the compensation, one needs delicate estimates between several function spaces. We, instead, consider the evolution equation

(2.3) x ′ (s) + ∂ x F (x(s), s) -1 ∂ s F (x(s), s) = 0, x(0) = 0 under the assumption that ∂ x F (x, s) has its invertible extension in L(Y, Z) with (2.4) ∂ x F (•, •) ∈ C(U, L(Y, Z)), ∂ x F (x, s) -1 ∈ L(Z, Y ) ((x, s) ∈ U ),
where U ⊂ X × R is a neighborhood of (0, 0). A natural regularity condition on solutions to (2.3) is

(2.5) x(•) ∈ C([0, ε), X) ∩ C 1 ([0, ε), Y ),
since the both sides of (2.3) are balanced in the sense of regularity. Under this mild regularity condition on x, we can characterize solutions to (2.1) by (2.3).

Proposition 2.1. Let F ∈ C 1 (U, Z) satisfy F (0, 0) = 0 and assume (2.4), (2.5) and (x(s), s) ∈ U . Then, the following are equivalent:

(i) F (x(s), s) = 0 for 0 ≤ s < ε and x(0) = 0;

(ii) x = x(s) solves (2.3).
Proof. Under (2.4) and (2.5), one can verify

F (x(•), •) ∈ C 1 ([0, ε), Z) and d ds (F (x(s), s)) = ∂ x F (x(s), s)[x ′ (s)] + ∂ s F (x(s), s). Indeed, since x := x(s + h) -x(s) = o X (1) = x ′ (s)h + o Y (h) as h → 0, we have F (x(s + h), s + h) -F (x(s), s) = ∂ s F (x(s) + x, s) [h] + o Z (h) + 1 0 ∂ x F (x(s) + θ x, s) [ x] dθ = ∂ s F (x(s), s) [h] + ∂ x F (x(s), s) [x ′ (s)h] + o Z (h),
where o W (h j ) W h -j → 0 as h → 0 for W = X, Y, Z and j = 0, 1. It is now easy to check the equivalency of the two conditions.

The original problem (2.1) now reduces to the solvability of (2.3) in the regularity class (2.5). The latter is then established if X, Y are continuous interpolation spaces and (2.3) is "parabolic", i.e., the linearized operator generates a strongly continuous analytic semigroup, due to the maximal regularity theory of Da Prato and Grisvard [START_REF] Da Prato | Equations d'évolution abstraites non linéaires de type parabolique[END_REF]. The following result can be proved by slightly modifying the proof of Angenent [START_REF] Angenent | Nonlinear analytic semiflows[END_REF]Theorem 2.7] to treat non-autonomous equations with sufficiently small ε > 0. Here Hol(X, Y ) denotes the set of all E ∈ L(X, Y ) such that -E, as an unbounded operator in Y , generates a strongly continuous analytic semigroup on Y . For E ∈ Hol( X, Ỹ ), X → Ỹ and 0 < γ < 1, the continuous interpolation spaces ( X, Ỹ ) 1+γ ⊂ X ⊂ ( X, Ỹ ) γ ⊂ Ỹ are defined by

( X, Ỹ ) γ := {x ∈ Ỹ | lim s→+0 s 1-γ Ee -sE x Ỹ = 0}, ( X, Ỹ ) 1+γ := {x ∈ X | Ex ∈ ( X, Ỹ ) γ }.
Note that this definition is independent of the choice of E (see Lunardi [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]). Proposition 2.2. Suppose that the assumptions in Proposition 2.1 hold and

Φ(x, s) := ∂ x F (x, s) -1 ∂ s F (x, s) ∈ C 1 (U, Y ). If ∂ x Φ(x, s) ∈ L(X, Y ) is a restriction to X of E ∈ Hol( X, Ỹ ), X = ( X, Ỹ ) 1+γ and Y = ( X, Ỹ ) γ for some X → Ỹ and 0 < γ < 1, then (2.3) is uniquely solvable in (2.5) for some ε > 0.
We carry out this program for Bernoulli's problem (1.1) through Sections 3-5 and prove Theorem 1.1. It is noteworthy that (2.3) for (1.1) is solvable only in one direction s ≥ 0. This reflects the fact that the spectrum of ∂ x Φ(0, 0) is unbounded in the right half plane of C and thus it merely generates a semigroup but a group. This spectrum structure clarifies the reasoning why the classical implicit function theorem fails, or at least loses the regularity of solutions to (1.1), if one considers a full neighborhood

Q 0 -ε < Q < Q 0 + ε.

Linearized problem

We begin with formulating Bernoulli's free boundary problem (1.1) as a functional equation of the form (2.1). Here, Ω is a bounded domain with h 2+α -boundary ∂Ω and Q(x, t) ∈ h 2+α (Ω × [0, ∞)). Let us choose a reference domain A 0 ⊂ A 0 ⊂ Ω with smooth boundary ∂A 0 , say of class h 4+α , and identify ρ ∈ U γ ⊂ h 3+α (∂A 0 ) with the perturbed domain A ρ enclosed by h 3+α -boundary

(3.1) ∂A ρ = {ζ + ρ(ζ)ν 0 (ζ) | ζ ∈ ∂A 0 } ,
where ν 0 = ν 0 (ζ) is the unit outer normal vector to ∂A 0 with respect to Ω \ A 0 and

U γ := {ρ ∈ h 3+α (∂A 0 ) | ρ h 3+α (∂A 0 ) < γ}, γ ≤ a/4,
with 0 < a < dist (∂A 0 , ∂Ω) taken to be small such that θ(ζ, r) := ζ + rν 0 (ζ) defines a diffeomorphism from ∂A 0 × (-a, a) to its image. Denoting by ζ and r the components of the inverse map θ -1 , i.e., θ -1 (x) = (ζ(x), r(x)), we see that The diffeomorphism θ ρ induces the pull-back and push-forward operators

θ ρ (x) := θ (ζ(x), r(x) + η(r(x))ρ(ζ(x))) if x ∈ θ(∂A 0 × (-a, a)), x otherwise, defines an h 2+α -diffeomorphism from Ω \ A 0 to Ω \ A ρ ,
θ * ρ u := u • θ ρ , θ ρ * v := v • θ -1 ρ for u ∈ h k+α (Ω \ A ρ ) and v ∈ h k+α (Ω \ A 0 ) (0 ≤ k ≤ 2)
. For a given ρ ∈ U γ , the first three equations in (1.1) with A = A ρ comprise the Dirichlet problem and thus always have a unique solution u ρ ∈ h 2+α (Ω \ A ρ ). Hence if we define

(3.3) F (ρ, t) := θ * ρ ∂u ρ ∂ν ρ -Q(x, t) ∈ h 1+α (∂A 0 )
with the unit outer normal vector ν ρ to ∂A ρ , then A ρ is a solution to (1.1) for

Q = Q(x, t) if and only if F (ρ, t) = 0.
Note that so far we only used the regularity ∂A 0 ∈ h 3+α and ∂A ρ ∈ h 2+α , but for the differentiation of F at ρ = 0, we choose A ρ as a new reference domain and thus require ∂A 0 ∈ h 4+α and ∂A ρ ∈ h 3+α . To see the effect of a change of reference domains, we define F ρ 0 (ρ, t) by (3.3) with reference domain A ρ 0 , and we extend the definitions of ∂A ρ , θ ρ and F ρ 0 (ρ, t) to allow general vectorial perturbations ρ :

∂A ρ 0 → R n , i.e., ∂A ρ = {ζ + ρ(ζ) | ζ ∈ ∂A ρ 0 } and θ(ζ, ρ) = ζ + ρ. Then, (3.4) F (ρ 0 + ρ, t) = θ * ρ 0 F ρ 0 θ ρ 0 * ρ |∇N ρ 0 | ν ρ 0 + (θ ρ 0 * ρ)τ ρ 0 , t holds for ρ 0 , ρ ∈ U γ , where N ρ 0 (x) := r(x) -ρ 0 (ζ(x)) for x ∈ θ(∂A 0 × (-a, a))
and τ ρ 0 := θ ρ 0 * ν 0 -|∇N ρ 0 | -1 ν ρ 0 is a tangential vector field on ∂A ρ 0 . Indeed, N ρ 0 defines ∂A ρ 0 as its level set and thus

ν ρ 0 (θ ρ 0 (ζ)) • ν 0 (ζ) = ∇N ρ 0 (θ ρ 0 (ζ)) |∇N ρ 0 (θ ρ 0 (ζ))| • ∇N 0 (ζ) |∇N 0 (ζ)| = 1 |∇N ρ 0 (θ ρ 0 (ζ))| . Proposition 3.1. Let ∂Ω ∈ h 2+α and Q = Q(x, t) ∈ h 2+α (Ω × [0, ∞)). Then, (i) F ∈ C 1 (U γ × [0, ∞), h 1+α (∂A 0 )).
(ii) The Fréchet derivative of F with respect to ρ is given by, for ρ ∈ h 3+α (∂A 0 ),

∂ ρ F (ρ, t)[ρ] = θ * ρ Hp + ∂p ∂ν ρ - ∂Q ∂ν ρ θ ρ * ρ |∇N ρ | + ∂ ∂τ ρ ∂u ρ ∂ν ρ -Q(x, t) θ ρ * ρ ,
where H = H ∂Aρ ∈ h 1+α is the mean curvature of ∂A ρ normalized in such a way that H = 1 -n if A ρ = B, and p is a unique solution to

(3.5)          -∆p = 0 in Ω \ A ρ , p = 0 on ∂Ω, p = - ∂u ρ ∂ν ρ θ ρ * ρ |∇N ρ | on ∂A ρ .

Note that the capacitary potential u

ρ of A ρ in Ω satisfies ∂ νρ u ρ ∈ h 2+α (∂A ρ ).
(iii) ∂ ρ F (ρ, t) has its extension in L (h 2+α (∂A 0 ), h 1+α (∂A 0 )) and

∂ ρ F ∈ C U γ × [0, ∞), L h 2+α (∂A 0 ) , h 1+α (∂A 0 ) .
Proof. Let us first consider the differentiability of F at ρ = 0. Substituting ρ = ερ and the formal expansion

u ρ = u 0 + εp + o(ε) into      -∆u ρ = 0 in Ω \ A ρ , u ρ = 0 on ∂Ω, u ρ = 1 on ∂A ρ , we obtain 0 = -∆u ρ (x) = -ε∆p(x) + o(ε) for x ∈ Ω \ A 0 , 0 = u ρ (x) = εp(x) + o(ε) for x ∈ ∂Ω, 1 = u ρ (x + ερν 0 ) = u 0 (x) + ε ∂u 0 ∂ν 0 (x)ρ + εp(x) + o(ε) = 1 + ε ∂u 0 ∂ν 0 (x)ρ + εp(x) + o(ε) for x ∈ ∂A 0 .
Thus, letting ε → 0, we see that p satisfies (3.5). Moreover, for x ∈ ∂A 0 ,

F (ρ, t) = ∂u ρ ∂ν ρ (x + ερν 0 ) -Q(x + ερν 0 , t) = ∂u ρ ∂ν 0 (x + ερν 0 ) + ε ∂u ρ ∂τ (x + ερν 0 ) -Q(x + ερν 0 , t) + o(ε) = ∂u 0 ∂ν 0 (x) + ε ∂ 2 u 0 ∂ν 2 0 (x)ρ + ε ∂p ∂ν 0 (x) + ε ∂u 0 ∂τ (x) -Q(x, t) -ε ∂Q ∂ν 0 (x, t)ρ + o(ε) = F (0, t) -εH ∂u 0 ∂ν 0 (x)ρ + ε ∂p ∂ν 0 (x) -ε ∂Q ∂ν 0 (x, t)ρ + o(ε),
where we have used the fact that ν ρ and ∂ 2 u 0 /∂ν 2 0 can be represented by a tangent vector τ to ∂A 0 and the Laplace-Beltrami operator ∆ ∂A 0 on ∂A 0 as

ν ρ = ν 0 + ετ + o(ε), 0 = ∆u 0 = ∆ ∂A 0 u 0 + ∂ 2 u 0 ∂ν 2 0 + H ∂u 0 ∂ν 0 = ∂ 2 u 0 ∂ν 2 0 + H ∂u 0 ∂ν 0 .
This shows (ii) for ρ = 0 by letting ε → 0. The above argument can be justified by estimating the corresponding norms of the error terms. In view of (3.4), the same procedure with A ρ chosen to be the reference domain yields the differentiability of F and the formula in (ii) for any ρ; and thus (i) follows. Finally, the formula in (ii) still makes sense for ρ ∈ h 2+α (∂A 0 ) and this gives the extension in (iii).

Suppose that F (ρ, t) = 0, i.e., A ρ is a solution to (1.1) for

Q = Q(•, t) > 0. The extended operator ∂ ρ F (ρ, t) in Proposition 3.1 (iii) has the bounded inverse ∂ ρ F (ρ, t) -1 ∈ L(h 1+α (∂A 0 ), h 2+α (∂A 0 )) if the boundary value problem (3.6)          -∆p = 0 in Ω \ A, p = 0 on ∂Ω, ∂p ∂ν + H + ∂ ν Q Q p = ϕ on ∂A with A = A ρ is uniquely solvable for ϕ ∈ h 1+α (∂A ρ ), since the tangential deriva- tive in the formula of ∂ ρ F (ρ, t) vanishes. Moreover, (3.7) θ ρ * ∂ ρ F (ρ, t) -1 [θ * ρ ϕ] = - p Q |∇N ρ | ∈ h 2+α (∂A ρ ).
We shall now introduce some notions for solutions A to (1.1) in terms of the linearized equation (3.6). Furthermore, a classification of solutions A in terms of the behavior of solutions p to (3.6) was introduced by Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] as an extension of Beurling's original definition in [START_REF] Beurling | On free-boundary problems for the Laplace equation[END_REF]. Otherwise, A is called parabolic. Moreover, an elliptic (hyperbolic) solution A is said to be monotone if p > 0 (< 0) holds everywhere on ∂A. Remark 3.5. Elliptic (hyperbolic) solutions are interpreted as volume-increasing (decreasing) solutions for an infinitesimal increase of Q. Indeed, let A = A 0 , for simplicity, be an elliptic (hyperbolic) solution to (1.1) for Q = Q 0 (x) > 0, and suppose

Definition 3.2 (Non-degeneracy).

F (ρ(t), t) = 0 for Q(x, t) = Q 0 (x) + t. Since one needs to have ∂ ρ F (0, 0)[ρ ′ (0)] = -∂ t F (0, 0) = 1, from (3.7) it follows that d dt A ρ(t) dx t=0 = - ∂A 0 ρ ′ (0) dσ = ∂A 0 p Q 0 dσ > 0 (< 0).
The monotonicity implies that A ρ(t) increases (decreases) in the sense of set inclusion, which is nothing but Beurling's original definition.

In Example in Section 1, B r * is parabolic and degenerate with one dimensional kernel and B r 1 (Q) (B r 2 (Q) ) is non-degenerate, hyperbolic (elliptic) and monotone (see [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF]Proposition 6]). In particular, the non-degeneracy, ellipticity and monotonicity of B r 2 (Q) easily follows from the following useful criterion which is a slight generalization of Acker [START_REF] Acker | On the qualitative theory of parametrized families of free boundaries[END_REF] and Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] to variable Q(x).

Proposition 3.6. If a solution A (with C 2 -boundary ∂A) to (1.1) satisfies H + Q + Q -1 ∂ ν Q > 0 on ∂A, then A is non-degenerate, elliptic and monotone.
Proof. The proof is based on the maximum principle applied to w := p-mu with m := min ∂A p. Since u, p respectively satisfy (1.1), (3.6), w satisfies

             -∆w = 0 in Ω \ A, w = 0 on ∂Ω, w ≥ 0 on ∂A, ∂w ∂ν + H + ∂ ν Q Q w = ϕ -m H + Q + ∂ ν Q Q on ∂A.
Hence, ϕ ≥ 0 implies w ≡ 0 or m > 0; otherwise the last boundary condition is violated at minima x 0 ∈ ∂A of w. In particular, m > 0 if ϕ ≡ 1. Moreover, for ϕ ≡ 0, both alternatives imply m ≥ 0; and similarly M := max ∂A p ≤ 0 by applying the same argument to w := p -M u, and hence p ≡ 0.

No such simple criterion is known for hyperbolic solutions. Only a perturbation result is available. Hereafter, Definitions 3.2 and 3.4 are extended to any domain A. The proof is postponed to Section 5 (see Lemma 5.3).

Proposition 3.7.

If A ρ 0 is non-degenerate, hyperbolic (elliptic) and monotone, then so is A ρ for ρ ∈ h 3+α (∂A 0 ) provided ρ -ρ 0 h 3+α (∂A 0 ) is sufficiently small.

Characterization by an evolution equation

If F (ρ 0 , t 0 ) = 0 and A ρ 0 is non-degenerate, one would proceed to the successive approximation procedure as (2.2) in order to construct a solution ρ to F (ρ, t) = 0 for t = t 0 ; but this would generally fail because of the loss of derivatives ∂ ρ F (ρ 0 , t 0 ) -1 F (ρ, t) ∈ h 2+α (∂A 0 ) for ρ ∈ h 3+α (∂A 0 ) as presented in Section 2. We can overcome this regularity issue by the parabolic approach, and by Proposition 2.1 it reduces to the solvability of (4.1)

ρ ′ (t) + ∂ ρ F (ρ(t), t) -1 ∂ t F (ρ(t), t) = 0
with ρ(0) = ρ 0 under the regularity condition (1.2). If F (ρ(t), t) = 0 is known, Proposition 3.1 and (3.7) show that, for A(t) = A ρ(t) , (4.1) is represented by

(4.2) V = - p Q on ∂A(t), with          -∆p = 0 in Ω \ A(t), p = 0 on ∂Ω, ∂p ∂ν + H + 1 Q ∂Q ∂ν p = ∂Q ∂t on ∂A(t),
where V is the speed of moving surface ∂A(t) in the outer normal direction ν with respect to Ω \ A(t) and is represented by 

V = θ ρ(t) * ρ ′ (t) |∇N ρ(t

Q(x, t)h(x) dσ

for each h ∈ H ∂Ω (Ω\A(t)), where, for nested domains A ⊂ Ω, H ∂Ω (Ω\A) denotes the space of all harmonic functions h in a neighborhood of Ω\A, continuous up to ∂Ω and satisfying h = 0 on ∂Ω. As in the previous section, Ω denotes a bounded domain and A 0 ⊂ A 0 ⊂ Ω is a smooth reference domain.

Theorem 4.2. Let

∂Ω ∈ h 2+α and Q = Q(x, t) ∈ h 2+α (Ω × [0, ∞)) with Q > 0, and let A(0) = A ρ(0) with ρ(0) ∈ h 3+α (∂A 0 ) be a solution to (1.1) for Q(•, 0). If (1.2) holds, A(t) = A ρ(t)
are non-degenerate, elliptic (hyperbolic) and monotone and ∂ t Q(x, t) < 0 (> 0), then the following are equivalent:

(i) Each A(t) is a solution to (1.1) for Q(•, t); (ii) {A(t)} 0≤t<T is a solution to (4.2); (iii) m ′ h (t) = 0 for all h ∈ H ∂Ω (Ω \ A(t)).
Proof. The implication (i) ⇒ (ii) directly follows from the derivation of (4.2). For (ii) ⇒ (iii), suppose that {A(t)} solves (4.2). Then, for h

∈ H ∂Ω (Ω \ A(t)), m ′ h (t) = ∂A(t) ∂Q ∂t h dσ + ∂A(t) ∂Q ∂ν h + Q ∂h ∂ν V dσ + ∂A(t)
QhHV dσ

= ∂A(t) ∂Q ∂t h - 1 Q ∂Q ∂ν + H ph - ∂h ∂ν p dσ = ∂A(t) ∂Q ∂t - 1 Q ∂Q ∂ν + H p - ∂p ∂ν h dσ = 0.
On the other hand, for (iii) ⇒ (ii), assume that m ′ h (t) = 0, i.e., 

∂A(t)

∂Q ∂t h dσ + ∂A(t) ∂Q ∂ν h + Q ∂h ∂ν + QhH V dσ = 0 holds for h ∈ H ∂Ω (Ω \ A(t)),
∂p ∂ν + H + 1 Q ∂Q ∂ν p h dσ = ∂A(t) Q ∂h ∂ν + QhH + ∂Q ∂ν h p Q dσ.
Combining these two equalities, we get

∂A(t) ∂Q ∂ν h + Q ∂h ∂ν + QhH V + p Q dσ = 0.
Thus, the desired conclusion V = -p/Q on ∂A(t) will be obtained if there exists h ∈ H ∂Ω (Ω \ A(t)) satisfying

∂h ∂ν + H + 1 Q ∂Q ∂ν h = V + p Q on ∂A(t),
or at least if there exists a sequence of

h k ∈ H ∂Ω (Ω \ A(t)) satisfying (4.3) sup x∈∂A(t) ∂h k ∂ν + H + 1 Q ∂Q ∂ν h k -V + p Q → 0 (k → ∞).
Note that, the existence of such an h is almost equivalent to the non-degeneracy of A(t), but additionally h needs to be harmonic in a neighborhood of ∂A(t). In order to construct h k , we take a sequence of bounded domains

A k ⊂ A k ⊂ A(t) such that ∂A k approximates ∂A(t) in the h 3+α sense as k → ∞.
Denoting the mean curvature of ∂A k by H k and setting f as an h 1+α -extension of the function

V + p/Q on ∂A(t) to R n , i.e., f | ∂A(t) = V + p/Q, we define h k as a solution to          -∆h k = 0 in Ω \ A k , h k = 0 on ∂Ω, ∂h k ∂ν + H k + 1 Q ∂Q ∂ν h k = f on ∂A k .
Then, since A(t) is non-degenerate and this non-degeneracy is preserved under a small deformation (see Lemma 5.3), we see that A k are non-degenerate and there is a uniform (in k) constant C > 0 such that

h k h 2+α (Ω\A k ) ≤ C f h 1+α (Ω\A k ) ≤ C f h 1+α (R n ) . Now (4.
3) follows from this uniform estimate and the mean value theorem. Note that, so far, we did not use the ellipticity or hyperbolicity condition. The proof of the remaining assertion (iii) ⇒ (i) is postponed until the end of this section.

In the special case Ω = B, a special set of conserved quantities are enough for the characterization. Let H k be the vector space of all homogeneous harmonic polynomials of degree

k ∈ N ∪ {0} on R n . The dimension d (n) k of H k is given by d (n) 0 = 1, d (n) 1 = n and d (n) k = k + n -1 k - k + n -3 k -2 (k ≥ 2).
We recall that, for h 1 ∈ H k 1 and h 2 ∈ H k 2 with k 1 = k 2 , h 1 and h 2 are orthogonal to each other with respect to the L 2 (∂B) inner product, i.e.,

h 1 , h 2 L 2 := ∂B h 1 h 2 dσ = 0.

Moreover, by choosing an orthonormal basis {h

k,1 , h k,2 , . . . , h k,d (n) k } of H k , it is known that ∞ k=0 {h k,1 , h k,2 , . . . , h k,d (n) k }
forms an orthonormal basis of L 2 (∂B). Now we define the weighted moments m k,l (t) of ∂A(t) for k ∈ N ∪ {0} and l = 1, 2, . . . , d

(n) k by m k,l (t) := ∂A(t) Q(x, t)H k,l (x) dσ, H k,l (x) := 1 -|x| 2-n-2k h k,l (x) (k ≥ 1), H 0,1 (x) := log |x| (n = 2), 1 -|x| 2-n (n ≥ 3).
Note that H k,l is the difference between h k,l and its Kelvin transform; and thus harmonic in R n \ {0} and H k,l ∈ H ∂B (B \ {0}).

Corollary 4.3.

Let Ω = B and assume that A 0 is connected and 0 ∈ 0≤s<T A(s). Under the same assumption in Theorem 4.2, the conditions (i)-(iii) in Theorem 4.2 are also equivalent to

(iv) m k,l (t) = m k,l (0) for all k ∈ N ∪ {0} and l = 1, . . . , d (n) k .
Proof. It suffices to prove that h ∈ H ∂B (B \ A(t)) can be approximated uniformly on ∂A(t) by a linear combination of H k,l 's. Since A(t) is topologically equivalent to A 0 , Runge's theorem (see Armitage and Gardiner [7, Theorem 2.6.4] for a higher dimensional version) deduces that, for any ε > 0, |h -H| < ε holds on B\A(t) for some harmonic function H in R n \{0}. Adding a harmonic function H in B with H = -H on ∂B, we see that H + H ∈ H ∂B (B\{0}) and |H + H -h| < 2ε on B \ A(t). Moreover, H + H is harmonically extended to R n \ {0} by the Kelvin transform and the Schwarz reflection principle; and thus it has a unique Laurent expansion of the form

H + H = ∞ k=0 d (n) k l=1 α k,l h k,l + ∞ k=0 d (n) k l=1 β k,l |x| 2-n-2k h k,l (n ≥ 3).
Here, H + H = 0 on ∂B implies α k,l + β k,l = 0. Thus,

K k=0 d (n) k l=1 α k,l H k,l -h ≤ 3ε on ∂A(t)
for sufficiently large K. The case n = 2 is similar, with a logarithmic term. Characterization (iv) can be thought of as a quadrature identity or moment conservation law and it leads to an interesting connection to integrable systems as the Hele-Shaw flow (see Sakai [START_REF] Sakai | Quadrature Domains[END_REF], Gustafsson and Shapiro [START_REF] Gustafsson | What is a quadrature domain?, Quadrature domains and their applications[END_REF]). In fact, as we shall state below, we can also give a characterization of solution A to the "stationary" problem (1.1) itself by a quadrature identity. Moreover, if one of the conditions above holds, the solution u to (1.1) is given by

(4.5) u(x) = ∂A Q(y)G Ω (x, y) dσ(y),
where G Ω denotes the Green's function of Ω for the Dirichlet-Laplacian.

Proof. The assertion (a) ⇒ (b) follows from integration by parts:

∂A Qh dσ = ∂A ∂u ∂ν h dσ = ∂A ∂h ∂ν dσ.
For (b) ⇒ (a), it suffices to check that u defined by (4.5) solves (1.1). Since

-∆u = QH n-1 ∂A in Ω, u = 0 on Ω,
where H n-1 ∂A is the (n -1)-dimensional Hausdorff measure restricted to ∂A, and this singular measure causes the derivative jump

lim z / ∈A,z→x ∂u ∂ν (z) -lim z∈A,z→x ∂u ∂ν (z) = Q(x) (x ∈ ∂A),
it remains to show that u = 1 on ∂A (which implies u = 1 on A). But this can be checked by choosing h(y) = G Ω (z, y) with z ∈ A in (4.4) and then taking the limit z → x ∈ ∂A.

The proof of Theorem 4.2 is now completed, since the ellipticity or hyperbolicity condition leads to A(t) ⊂ A(0), and hence

h ∈ H ∂Ω (Ω \ A(t)) implies h ∈ H ∂Ω (Ω \ A(0)) and ∂A(t) ∂h ∂ν dσ - ∂A(0) ∂h ∂ν dσ = A(0)\A(t)
∆h dx = 0.

Therefore, (iii) implies

∂A(t) Q(x, t)h dσ - ∂A(t) ∂h ∂ν dσ = ∂A(0) Q(x, 0)h dσ - ∂A(0)
∂h ∂ν dσ = 0, and thus (i) is deduced from Proposition 4.4.

Remark 4.5. All of the preceding arguments also work for C k+α instead of h k+α .

Existence of foliated solutions

We shall complete our program in Section 2 for Bernoulli's problem (1.1) and thus prove Theorem 1.1. By Theorem 4.2, the remaining task is to prove the local-in-time solvability of evolution equation (4.2) in the regularity class (1.2). Since h k+α (∂A 0 ) is a continuous interpolation space between h k+1+β (∂A 0 ) and

h k+β (∂A 0 ) for 0 < β < α < 1, it suffices to check that (5.1) Φ(ρ, t) := ∂ ρ F (ρ, t) -1 ∂ t F (ρ, t)
meets the other required conditions in Proposition 2.2. Thus Theorem 1.1 is obtained as a consequence of the following proposition, in which

U ε (ρ 0 ) := ρ ∈ U γ | ρ -ρ 0 h 3+α (∂A 0 ) < ε .
Note that we require the higher regularity Q ∈ h 3+α as compared to the previous section to ensure that Φ ∈ C 1 .

Proposition 5.1.

Let ∂Ω ∈ h 2+α , Q ∈ h 3+α (Ω × [0, ∞)), Q > 0 and ρ 0 ∈ U γ .
Then, for sufficiently small ε > 0, Φ ∈ C 1 (U ε (ρ 0 ) × [0, ε), h 2+α (∂A 0 )) and

∂ ρ Φ(ρ, t) ∈ Hol(h 3+α (∂A 0 ), h 2+α (∂A 0 ))
if one of the following conditions holds true:

(A) A ρ 0 is non-degenerate, hyperbolic and monotone for Q(•, 0), and ∂ t Q > 0;

(B) A ρ 0 is non-degenerate, elliptic and monotone for Q(•, 0), and ∂ t Q < 0.

Remark 5.2. Depending on the hyperbolicity/ellipticity of A ρ , the linearized operator has the opposite sign, which reflects in

∂ t Q ≷ 0.
In order to prove Proposition 5.1, it is more convenient to use a functional analytic representation of (4.1) than the geometric representation (4.2). Let A 0 ⊂ A 0 ⊂ Ω be a smooth reference domain and define U γ , A ρ , θ ρ and N ρ as in Section 3. Using the pull-back and push-forward operators θ * ρ , θ ρ * , we define 

L(ρ)v := θ * ρ (-∆)θ ρ * v ∈ h α (Ω \ A 0 ), B(ρ, t)v := θ * ρ ∇θ ρ * v | ∂A 0 , ν ρ + M v H(ρ) + M v(θ * ρ Q) -1 θ * ρ ∇Q | ∂A 0 , ν ρ , v| ∂Ω ∈ h 1+α (∂A 0 ) × h 2+α (∂Ω), S(ρ, t)f := (L(ρ), B(ρ, t)) -1 (f, 0, 0) ∈ h 2+α (Ω \ A 0 ), T (ρ, t)ϕ := (L(ρ), B(ρ, t)) -1 (0, ϕ, 0) ∈ h 2+α (Ω \ A 0 ) for v ∈ h 2+α (Ω \ A 0 ), f ∈ h α (Ω \ A 0 )
ν ρ (ζ) := ∇N ρ (θ ρ (ζ)) |∇N ρ (θ ρ (ζ))| (ζ ∈ ∂A 0 ).
The following lemma shows that the solution operators S(ρ, t), T (ρ, t) are welldefined whenever A ρ is non-degenerate, and moreover under the condition in Proposition 5.1, Φ(ρ, t) is defined in

U ε (ρ 0 ) × [0, ε) for small ε > 0. Lemma 5.3. Let ρ, ρ 0 ∈ U γ . Then, (i) (L(ρ), B(ρ, t)) ∈ L(h 2+α (Ω \ A 0 ), h α (Ω \ A 0 ) × h 1+α (∂A 0 ) × h 2+α (∂Ω)) is invertible if and only if A ρ is non-degenerate for Q(•, t).
(ii) If A ρ 0 is non-degenerate, hyperbolic (elliptic) and monotone for Q(•, 0), then so is A ρ for Q(•, t), if ρ ∈ U ε (ρ 0 ) and 0 ≤ t < ε for some small ε > 0.

Proof. Let us first observe that (L(ρ), B µ (ρ, t)) is invertible for large µ > 0, where

(5.2) B µ (ρ, t)v := B(ρ, t)v + (µv| ∂A 0 , 0).
Indeed, this corresponds to the unique solvability of (5.3)

         -∆p = f in Ω \ A ρ , p = ϕ 1 on ∂Ω, ∂p ∂ν + H + 1 Q ∂Q ∂ν + µ p = ϕ 2 on ∂A ρ in h 2+α (Ω \ A ρ )
, and this follows if

H + Q -1 ∂ ν Q + µ > 0 on ∂A ρ ,
since the complementing boundary condition of Agmon, Douglis and Nirenberg [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF] is satisfied (see also Gilbarg and Trudinger [20,Theorem 6.31]). Now take any p ∈ h 2+α (Ω \ A 0 ) and set v := (L(ρ), B µ (ρ, t)) -1 (L(ρ), B(ρ, t))p and subtract the corresponding equations as (5.3) satisfied by p and v to find that

(L(ρ), B µ (ρ, t)) -1 (L(ρ), B(ρ, t)) -I p = -µ (B(ρ), B µ (ρ, t)) -1 (0, p, 0) =: Kp,
where I is the identity and K is a compact operator on h 2+α (Ω \ A 0 ). Hence (i) follows from the Fredholm alternative applied to

I + K = (L(ρ), B µ (ρ, t)) -1 (L(ρ), B(ρ, t)) :
the operator (L(ρ), B(ρ, t)) is bijective if and only if it is injective, i.e., if A ρ is non-degenerate. The non-degeneracy statement in (ii) readily follows from the fact that the set of invertible operators is open in the space of bounded operators with the operator norm topology, since (ρ, t) → (L(ρ), B(ρ, t)) is continuous. The hyperbolicity (ellipticity) and monotonicity then follow from the continuity of (ρ, t) → T (ρ, t) [START_REF] Acker | On the qualitative theory of parametrized families of free boundaries[END_REF].

Remark 5.4. The solvability of (5.3) can also be seen from the corresponding bilinear form

B(p, φ) := Ω\Aρ ∇p • ∇φ dx + ∂Aρ H + 1 Q ∂Q ∂ν + µ pφ dσ,
where we assume ϕ 1 ≡ 0 for simplicity (but the general case reduces to this case). Indeed, B(p, φ) is coercive in the Sobolev space

H 1 0 (Ω) (restricted to Ω \ A ρ ) if H + Q -1 ∂ ν Q + µ > 0.
Using the above notations, we can rewrite (5.1) as

Φ(ρ, t) = M |θ * ρ (∇Nρ)|(θ * ρ Q) -1 T (ρ, t)θ * ρ ∂ t Q. Note that the regularity of Φ depends on that of Q, namely, Φ ∈ C l (U ε (ρ 0 ) × [0, ε), h 2+α (∂A 0 )) if Q ∈ h l+2+α (Ω × [0, ∞)), where l ∈ N, l = ∞ or l = ω.
Proof of Proposition 5.1. Step 1. In the following proof, we write ∂ for ∂ ρ and h k+α for h k+α (∂A 0 ) for brevity. Let us first derive a representation of ∂Φ(ρ, t). For this purpose, we recall that the mean curvature operator H(ρ) has a quasilinear structure (see Escher and Simonett [14, Lemma 3.1]) as

H(ρ) = P (ρ)ρ + K(ρ) with P ∈ C ω (V, L(h 3+α , h 1+α )) and K ∈ C ω (V, h 1+α ), where V := {ρ ∈ h 2+α (∂A 0 ) | ρ C 1 (∂A 0 ) < a/4}. Hence, (5.4) ∂B(ρ, t)[ρ]v = ∂ (B(ρ, t)v) [ρ] = (M v P (ρ)ρ + L 1 ρ, 0) ,
where the linear operator L 1 = L 1 (ρ, t, v) is of lower-order in the sense that L 1 ∈ L(h 2+α , h 1+α ). By differentiating the identity

(L(ρ)T (ρ, t)ϕ, B(ρ, t)T (ρ, t)ϕ) = (0, ϕ, 0) ϕ ∈ h 1+α
with respect to ρ ∈ U γ and using (5.4), we see that

L(ρ)∂T (ρ, t)[ρ]ϕ = -∂L(ρ)[ρ]T (ρ, t)ϕ, B(ρ, t)∂T (ρ, t)[ρ]ϕ = -∂B(ρ, t)[ρ]T (ρ, t)ϕ = -M T (ρ,t)φ P (ρ)ρ -L 1 ρ, 0 .
Hence, using the solution operators S(ρ, t) and T (ρ, t), we find the representation

∂T (ρ, t)[ρ]ϕ = -S(ρ, t)∂L(ρ)[ρ]T (ρ, t)ϕ -T (ρ, t)M T (ρ,t)φ P (ρ)ρ -T (ρ, t)L 1 ρ = -T (ρ, t)M T (ρ,t)φ P (ρ)ρ + L 2 ρ
for ϕ = θ * ρ q ∈ h 1+α with a lower-order operator L 2 = L 2 (ρ, t) ∈ L(h 2+α , h 2+α ). Therefore, we deduce that

∂Φ(ρ, t)[ρ] = -M 1 (ρ, t)T (ρ, t)M 2 (ρ, t)P (ρ)ρ + L 3 ρ + L 4 ρ + L 5 ρ + L 6 ρ, where M 1 (ρ, t) := M |θ * ρ (∇Nρ)|(θ * ρ Q) -1 ∈ L h 2+α , h 2+α , M 2 (ρ, t) := M T (ρ,t)θ * ρ ∂tQ ∈ L h 1+α , h 1+α , L 3 = L 3 (ρ, t) := M 1 (ρ, t)L 2 (ρ, t) ∈ L h 2+α , h 2+α , L 4 = L 4 (ρ, t) := ∂M |θ * ρ (∇Nρ)| [•]M (θ * ρ Q) -1 T (ρ, t)θ * ρ ∂ t Q ∈ L h 3+α , h 2+α , L 5 = L 5 (ρ, t) := M |θ * ρ (∇Nρ)| ∂M (θ * ρ Q) -1 [•]T (ρ, t)θ * ρ ∂ t Q ∈ L h 2+α , h 2+α , L 6 = L 6 (ρ, t) := M 1 (ρ, t)T (ρ, t)∂(θ * ρ ∂ t Q)[•] ∈ L h 2+α , h 2+α .
Here, L 3 , L 5 , L 6 are lower-order operators as compared to the principal part

(5.5) Π(ρ, t) := -M 1 (ρ 1 , t)T (ρ, t)M 2 (ρ, t)P (ρ) ∈ L(h 3+α , h 2+α ).
Moreover, L 4 can also be regarded as a negligible perturbation if γ is sufficiently small, since a direct computation shows that

L 4 ρ h 2+α ≤ δ(γ) ρ h 3+α + C ρ C 3 (ρ ∈ U γ )
holds with δ(γ) → 0 as γ → 0. The required smallness of γ apparently depends on ρ 0 ; but we can choose a new smooth reference domain A 0 arbitrarily close to A ρ 0 in the h 3+α sense and thus γ can be independently chosen. Since Hol(h 3+α , h 2+α ) is open in L(h 3+α , h 2+α ) and the operator norms of L 3 , L 4 , L 5 , L 6 are arbitrarily small, it suffices to prove that Π(ρ 0 , 0) ∈ Hol(h 3+α , h 2+α ).

Moreover, we may replace T (ρ 0 , 0) in (5.5) by

T (ρ 0 , 0) := (L(ρ 0 ), B µ (ρ 0 , 0)) -1 (0, •, 0) with a large constant µ > 0 such that H + Q -1 ∂ ν Q + µ > 0 on ∂A ρ 0 (see (5.
2) for the definition of B µ ). Indeed, T (ρ 0 , 0) is well-defined and the elliptic regularity estimate applied to (T (ρ 0 , 0) -T (ρ 0 , 0))ϕ = µT (ρ 0 , 0) T (ρ 0 , 0)ϕ yields

(5.6) (T (ρ 0 , 0) -T (ρ 0 , 0))ϕ h 2+α ≤ Cµ T (ρ 0 , 0)ϕ h 1+α ≤ Cµ T (ρ 0 , 0)ϕ h 2+β ≤ Cµ ϕ h 1+β
with 0 < β < α < 1; and thus the difference

Π(ρ 0 , 0) + M 1 (ρ 0 , 0) T (ρ 0 , 0)M 2 (ρ 0 , 0)P (ρ 0 ) = M 1 (ρ 0 , 0) T (ρ 0 , 0) -T (ρ 0 , 0) M 2 (ρ 0 , 0)P (ρ 0 ) ∈ L(h 3+β , h 2+α )
is of lower-order. We are now led to prove that (5.7) Π(ρ 0 , 0) := -M 1 (ρ 0 , 0) T (ρ 0 , 0)M 2 (ρ 0 , 0)P (ρ 0 ) ∈ Hol(h 3+α , h 2+α ).

Under the assumption that (A) or (B) holds (see Definition 3.4), we have

T (ρ 0 , 0)θ * ρ 0 ∂ t Q < 0.
Thus M 1 (ρ 0 , 0) and -M 2 (ρ 0 , 0) are multiplication operators with uniformly positive functions on ∂A 0 .

Step 2. In order to prove (5.7), it is sufficient to prove the resolvent estimate Step 3. The last step is to derive (5.8) from the local estimate (5.10) by showing that Π(ρ 0 , 0) can be indeed approximated by Π(ρ 0 , 0, ζ) in a small neighborhood U ζ of ζ ∈ ∂A 0 . At this point, ∆ in the definition of T 0 and ∆ R n-1 should have been replaced respectively by constant coefficient elliptic operators

L 0 := n j,k=1 a jk ∂ 2 ∂x j ∂x k , P 0 := n-1 j,k=1
p jk ∂ 2 ∂x j ∂x k unless ∂A 0 is flat near ζ ∈ ∂A 0 ; but still a similar representation as (5.9) can be obtained by an algebraic consideration (see Onodera [START_REF] Onodera | Geometric flows for quadrature identities[END_REF]Section 3.4] for the details). As in the proof of [START_REF] Onodera | Geometric flows for quadrature identities[END_REF]Lemma 6], we can prove that, for any ε > 0, there exist an atlas {(U ζ l , ψ l )} m l=1 of the tubular domain θ(∂A 0 , (-d, 0]) with small d > 0 and an associated partition of unity {φ l } m l=1 such that supp φ l ⊂ U ζ l , m l=1 φ l = 1 on θ(∂A 0 , (-d/2, 0]) and (5.11) 

ψ * l M ϕ l Π(ρ 0 , 0)ρ -Π(ρ 0 , 0, ζ l )ψ * l M ϕ l ρ 2+α ≤ ε ψ * l M ϕ l ρ 3+α + C ρ h 3+β
holds for ρ ∈ h 3+α , 1 ≤ l ≤ m and 0 < β < α < 1. This commutator estimate is essentially based on Leibniz' rule and the smallness of d > 0, where the latter improves the accuracy of the approximations by constant coefficient operators. The difference between our operator Π(ρ 0 , 0) and -W (ρ) studied in [START_REF] Onodera | Geometric flows for quadrature identities[END_REF] is the presence of the Dirichlet boundary condition on ∂Ω in the definition of T (ρ 0 , 0). But, this does not affect the derivation of (5.11), since it is the homogeneous condition v| ∂Ω ≡ 0. Now we combine (5.10) and (5.11) 

Remark 3 . 3 .

 33 A solution A to (1.1) is called non-degenerate if the linearized problem (3.6) with ϕ = 0 has only the trivial solution p = 0. The non-degeneracy of A, in fact, guarantees the unique solvability of (3.6) for any ϕ by the Fredholm theory (see Lemma 5.3).

Definition 3 . 4 (

 34 Elliptic, hyperbolic and parabolic solutions). A solution A to (1.1) is called elliptic (hyperbolic) if (3.6) has a solution p for ϕ ≡ 1 and all solutions p satisfy ∂A p dσ > 0 (< 0).

Proposition 4 . 4 .

 44 Let Q(x) ∈ h 1+α (Ω) and ∂Ω, ∂A ∈ h 2+α . Then, the following are equivalent: (a) A is a solution to Bernoulli's free boundary problem (1.1); (b) For any h ∈ H ∂Ω (Ω \ A),

  and ϕ ∈ h 1+α (∂A 0 ), where •, • denotes the inner product in R n , M ψ is the pointwise multiplication operator defined by(M φ ψ)(ζ) := ϕ(ζ)ψ(ζ) (ζ ∈ ∂A 0 ), H(ρ) ∈ h 1+α (∂A 0 ) assigns the mean curvature of ∂A ρ at θ ρ (ζ) to each ζ ∈ ∂A 0 ,and ν ρ ∈ h 2+α (∂A 0 , R n ) denotes the outer normal vector field represented by

(5. 8 )∂ 2

 82 |λ| ρ h 2+α + ρ h 3+α ≤ C (λ + Π(ρ 0 , 0))ρ h 2+α for ρ ∈ h 3+α and λ ∈ {z ∈ C | Re z ≥ λ * } for some λ * > 0. We begin with the analysis of a localized version of the operator Π(ρ 0 , 0) at each point ζ ∈ ∂A 0 , i.e.,Π(ρ 0 , 0, ζ) := -m 1 m 2 T 0 (-∆ R n-1 + 1) ∈ L(h 3+α (R n-1 ), h 2+α (R n-1 )),wherem 1 := M 1 (ρ 0 , 0)(ζ) > 0, m 2 := M 2 (ρ 0 , 0)(ζ) < 0, ∆ R n-1 is the (n -1)dimensional Laplace operator, and T 0 ∈ L(h 1+α (R n-1 ), h 2+α (R n-1 )) maps ϕ ∈ h 1+α (R n-1 ) to (the trace of) a unique solution v = T 0 ϕ ∈ h 2+α (R n-1 ) to    -∆v = 0 in R n + := {(x ′ , x n ) ∈ R n | x n > 0}, -∂v ∂n + µ ζ v = ϕ on R n-1 = ∂R n + ,with a positive constantµ ζ := H(ρ 0 )(ζ) + θ * ρ 0 (Q -1 ∂ ν Q)(ζ) + µ. Applying the (partial) Fourier transformation F on R n-1 , we have  Fv ∂n 2 = 0 for (ξ, x n ) ∈ R n + , -∂Fv ∂n + µ ζ Fv = Fϕ for ξ ∈ R n-1 .For fixed ξ ∈ R n-1 , this is a second-order ordinary differential equation and one can easily obtain the explicit formulaFv(ξ, 0) = 1 |ξ| + µ ζ Fϕ(ξ). 0 , 0, ζ) = -m 1 m 2 F -1 |ξ| 2 + 1 |ξ| + µ ζ Fwith -m 1 m 2 > 0. This representation combined with a Mikhlin-type multiplier theorem for the little Hölder spaces allows one to obtain (5.10) |λ| ρ 2+α + ρ 3+α ≤ C (λ + Π(ρ 0 , 0, ζ))ρ 2+α for ρ ∈ h 3+α (R n-1 ) and λ ∈ {z ∈ C | Re z > 0}, where • k+α := • h k+α (R n-1 ) .

  where V is the speed of moving boundary ∂A(t) in the outer normal direction with respect to Ω \ A(t). The unique solution p to the boundary value problem in (4.2) satisfies

	∂A(t)	∂Q ∂t	h dσ =	∂A(t)

  with small ε > 0 to obtain|λ| ψ * l M ϕ l ρ 2+α + ψ * l M ϕ l ρ 3+α ≤ C ψ * l M ϕ l (λ + Π(ρ 0 , 0))ρ 2+α + ρ h 3+β for ρ ∈ h 3+α , λ ∈ {z ∈ C | Re z > 0} and 1 ≤ l ≤ m. Since ρ → max 1≤l≤m ψ * l M ϕ l ρ k+αdefines an equivalent norm on h k+α , the above inequality implies|λ| ρ h 2+α + ρ h 3+α ≤ C (λ + Π(ρ 0 , 0))ρ h 2+α + ρ h 3+β .Therefore, (5.8) follows from this inequality and the interpolation inequalityρ h 3+β ≤ ρ h 3+α + C ρ h 2+αby choosing a sufficiently large λ

* > 0.
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