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RANDOM PROJECTION STREAMS FOR (WEIGHTED) NONNEGATIVE MATRIX
FACTORIZATION

Farouk Yahaya, Matthieu Puigt, Gilles Delmaire, and Gilles Roussel

Univ. Littoral Côte d’Opale, LISIC – EA 4491, F-62228 Calais, France

ABSTRACT
Random projections recently became popular tools to process big
data. When applied to Nonnegative Matrix Factorization (NMF),
it was shown that, in practice, with the same compression level,
structured random projections were more efficient than classical
strategies based on, e.g., Gaussian compression. However, as they
are data-dependent, they remain costly and might not fully benefit
from recent very fast random projection techniques. In this paper,
we thus investigate an alternative framework to structured random
projections—named random projection streams (RPS)—which (i)
are based on classical random compression strategies only—and are
thus data-independent—and (ii) can benefit from the above fast tech-
niques. We experimentally show that, under some mild conditions,
RPS allow the same NMF performance as structured random projec-
tion along iterations. We also show that even a CPU implementation
of Gaussian Compression Streams allows a faster convergence than
structured random projections when applied to weighted NMF.

Index Terms— Random projections, Big data, Nonnegative
Matrix Factorization, Weighted Nonnegative Matrix Factorization,
Compressive learning

1. INTRODUCTION

Dimension reduction techniques are the linchpin for solving prob-
lems involving high dimensional data. They can capture most of the
important features of the underlying high dimensional data while
providing the benefit of mapping onto a much lower dimensional
space, due to their computational intricacies and geometric proper-
ties. Among the numerous existing techniques, those based on ran-
domized linear algebra [1,2] were shown to be particularly efficient.

In particular, they were successfully combined with Nonneg-
ative Matrix Factorization (NMF) [3–8]—and its weighted exten-
sion [9]—under the name of compressive or compressed NMF. More
precisely, it was experimentally shown in [5] that structured ran-
dom compression—based on Randomized Power Iteration (RPI)—
was far more efficient than classical Gaussian Compression (GC)
when applied to NMF, for a similar compression level. Indeed, RPIs
enhance the low-rank structure of the data matrix, which is a major
assumption behind NMF, while GC is data-independent. However,
while several strategies have been proposed to speed-up GC—e.g.,
CountGauss [10] or specific hardware [11]—RPIs still suffer from a
high computational cost because of its data-dependent nature. This
analysis remains true when considering a stable extension of RPIs
named Randomized Subspace Iterations (RSIs) [1] that were com-
bined with NMF in [7]. In this paper, we propose a new paradigm
named Random Projection Streams (RPS) in which we assume the
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data-independent random projection matrices to be of infinite size
and to be processed as streams where only a subset of the random
projection matrices are processed1. In practice, RPS allow a similar
performance as RPIs/RSIs under some mild conditions.

2. ANALYSIS OF COMPRESSED (WEIGHTED) NMF

2.1. Principles of Compressed NMF

NMF is a popular signal and image processing / machine learning
tool which was successfully applied to many fields, e.g., hyperspec-
tral unmixing [13], or environmental data processing [14]. NMF
consists of estimating two n × p and p × m nonnegative matrices
G and F , respectively, from a n × m nonnegative matrix X such
that [15, 16]

X ' G · F. (1)

While several cost functions and additive constraints have been pro-
posed to that end, in its basic form involving the Frobenius norm
||·||F , NMF usually consists of solving alternating subproblems, i.e.,

Ĝ = arg min
G≥0
||X −G · F ||F , (2)

F̂ = arg min
F≥0
||X −G · F ||F , (3)

When X is large, several strategies have been proposed to speed-up
the updates, e.g., distributed [17] or online [12] computations, fast
solvers [18], or randomized techniques [5].

Algorithm 1 Compressed NMF strategy.
Require: initial and compression matrices G, F , L, and R.

Define XL , L ·X and XR , X ·R
repeat

Define FR , F ·R
Solve (2) by resp. replacing X and F by XR and FR
Define GL , L ·G
Solve (3) by resp. replacing X and G by XL and GL

until a stopping criterion

Actually, several randomized strategies were proposed in the lit-
erature. In [3], the authors assumed that X is low-rank and can be
replaced by a product A · B which helps the NMF factors to be
cheaper to update, and which can be efficiently computed using ran-
domized SVD. In [4], the authors introduced the concept of dual
random compression described in Algorithm 1. The key idea con-
sists of noticing that compressing X by a projection on the left or

1RPS thus significantly differ from classical streaming data processing,
e.g., [12]. Indeed, the latter assumes to see a subset of the data matrix at each
iteration—i.e., the data to process evolve with time—while this not necessar-
ily the case for the former.



the right side still allows to estimate the full matrix F or G, respec-
tively. Compressing X on the left side (resp. right side) is done by
left-multiplying it by a (p+ν)×nmatrix L (resp. right-multiplying
it by am×(p+ν) matrixR), where ν is an oversampling parameter
such that p+ ν � min{n,m}. The difficulty then lies in designing
efficient matrices L and R: the authors in [4] used scaled Gaus-
sian realizations as tentative compression matrices, thus following
the general proof of the Johnson-Lidenstrauss Lemma (JLL) [19] on
which is built the theory of random projections. The authors in [5,6]
then found that adding some structure on the compression matri-
ces allows a much better NMF performance (with different tested
solvers). To that end, they used RPIs [1]. To compute L, RPIs read

L , QR
(

(XXT )q ·X · ΩL
)T

, (4)

where ΩL ∈ Rm×(p+ν) is a scaled Gaussian random matrix—with
ν set to a small value (e.g., ν = 10 in [5])—and q is a small in-
teger (e.g., q = 4 in [5]). L captures the range of the columns of
X . Indeed, when q = 0, L is an orthogonal matrix obtained by a
randomized QR decomposition of X . However, when X is a noisy
low-rank data matrix, its singular values may slowly decay and com-
puting (XXT )q with q > 0 allows to significantly increase their de-
cay, hence enforcing the low-rank structure of X . Combining NMF
with RPIs was further extended in [7] where the authors used RSIs,
i.e., a round-off-error stable alternative to RPIs [1]. Lastly, the au-
thors in [8] assumed to only observe XL. F and GL could then be
estimated from XL. Assuming the columns of G to be sparse w.r.t a
known dictionary, they could then be estimated from GL.

2.2. Analysis of Major Random Compression Techniques

At this stage, it should be noticed that computing random pro-
jections is costly. Indeed, deriving XL in Algorithm 1 requires
m(p+ ν)(2n− 1) operations. Several alternatives to GC have thus
been proposed. For example, (Very) Sparse Random Projections—
(V)SRPs—were proposed in [20] and [21], respectively. They
replace the Gaussian matrix by a random matrix containing three
possible values, i.e., in the case when the compression matrix is L,
each entry lij of L is defined as

lij =
√
s ·

 1 with prob. 1/(2s),
0 with prob. (s− 1)/s,
−1 with prob. 1/(2s),

(5)

where s is set to s = 1, 3 [20] or s� 3 [21]. As most of the entries
of X are multiplied by zero when s ≥ 3 and as the product by

√
s

may be delayed, computing (V)SRP is much less expensive than GC
while being asymptotically equivalent to GC when the dimension of
the data is large [21]. However, to the best of our knowledge, these
projections techniques were never applied to NMF.

Another popular randomized dimension reduction technique is
named CountSketch [22]. Applied to design L in an NMF prob-
lem, it consists of generating a (p+ ν)× n matrix S with only one
randomly-chosen nonzero entry per row, whose value is either +1
or −1 with equal probability. The product S · X provides a sketch
of X which is inexpensive to compute. However, CountSketch re-
quires more samples than GC to reach the same approximation ac-
curacy. It was then combined with GC in [10]—under the name of
CountGauss—to leverage the CountSketch drawback while still be-
ing faster to compute than a standard Gaussian projection. In that
case, applied to NMF, the matrix L reads L = ΩL · S where ΩL
and S have dimensions of size (p+ ν)× (p+ µ) and (p+ µ)× n,
respectively, with µ ≥ ν and (p+ µ) ≤ n.

Another faster way to compute GC consists of using a dedicated
hardware, e.g., Optical Process Unit (OPU) [11]. OPUs optically
perform random projections, so that they can process very large
matrices in a very short time. Still, all these alternatives are data-
independent techniques and provide a similar performance to GC.
As a consequence, their use in NMF should be less accurate than us-
ing RPIs/RSIs which are—on the contrary to the above methods—
data-dependent compression techniques.

When RPIs are used in Compressed NMF, computing L in
Eq. (4) requires—using the Householder QR decomposition [23]—
(2q + 1)nm(p + ν) + 2n(p + ν)2 − 2/3(p + ν)3 operations. In
practice, the computation of (XXT )q in Eq. (4)—and of (XTX)q

to derive R in RPIs—are done in a loop. RSIs follow the same
procedure, except that they add intermediate QR decompositions.
As a consequence, both randomized methods are equivalent in
theory but RSIs are less sensitive to round-off errors [1] and
are more computational demanding. In particular—assuming the
use of the Householder QR decomposition—deriving L requires
(2q+1)nm(p+ν)+2(p+ν)2 ((q + 1)n+ qm)− 2

3
(2q+1)(p+ν)3

operations. It should be noticed that (V)SRPs, CountSketch, Count-
Gauss, or an OPU only allow to speed-up the computation ofX ·ΩL
and ΩR · X . If one aims to use these alternatives to GC in the
RPI/RSI computation, this has a limited impact on the global com-
putational cost of the latter. This motivates the need to propose new
paradigms for random projections.

2.3. Case of Random Projections Applied to Weighted NMF

Weighted NMF (WNMF) is an extension of NMF in which a specific
confidence measure is associated to each entry of X . WNMF thus
allows to process the case of missing entries in X . The weighted
extension of Eq. (1) then reads

W ◦X 'W ◦ (G · F ), (6)

whereW is the above matrix of weights and ◦ denotes the Hadamard
product. As for NMF, WNMF aims to alternatingly solve both
weighted extensions of Subproblems (2) and (3). WNMF is usu-
ally solved using one of the following strategies: (i) keeping W in
the update rules [24], (ii) using a stochastic gradient descend if W
is binary [25], or (iii) removing the Hadamard product in Eq. (6)
within an Expectation-Maximization (EM) technique [26]. The lat-
ter assumes the entries of W to be between2 0 and 1. Noticing that
the best estimate of the unknown entries of X are obtained from the
product G · F and denoting 1n,m as the n ×m matrix of ones, the
E-step consists of computing

Xcomp = W ◦X + (1n,m −W ) ◦ (G · F ). (7)

Then, one may apply any standard NMF update rules to Xcomp in
order to derive G and F in the M-step. Once NMF converged to
a given solution [26] or after a given number MaxOutIter of iterations
[27],Xcomp is updated in another E-step using the last estimates ofG
and F in Eq. (7). In practice, the EM strategy was shown to be well-
suited to fast NMF solvers such as Nesterov gradient [27]. In [9], we
proposed a compressed extension of WNMF which is based on the
same EM strategy [26] and which consists of applying Algorithm 1
at each M-step during MaxOutIter iterations.

It should be noticed that the above computational analysis of
Compressed NMF is slightly different in the weighted setting. In-
deed, as Xcomp is updated at each E-step, its compressed versions

2Such an assumption is not an issue, as it is possible to scale any non-null
matrix W so that its maximum value is 1.



Xcomp
L andXcomp

R must be regularly recomputed. Even worse, if RPIs
or RSIs are applied, the matrices L and R must also be reestimated,
which is particularly costly. This was shown to be the bottleneck of
the proposed technique in [9]. However, by choosing a large-enough
number MaxOutIter of iterations in the M-step, randomized WNMF
was shown to still outperform its uncompressed version.

3. RANDOM PROJECTION STREAMS

We now introduce our proposed RPS concept, that we firstly illus-
trate with GC, hence its name GC Stream (GCS). Let us first re-
call the JLL which states that [19] given 0 < ε < 1, a set X of
n points in Rm, and a number k > 8 log(n)/ε2, there is a linear
map f : Rm → Rk such that ∀u, v ∈ X , (1 − ε)‖u − v‖2 ≤
‖f(u) − f(v)‖2 ≤ (1 + ε)‖u − v‖2. Interestingly, the dimension
k of the low-dimensional space only depends on the number n of
points in the original high dimensional space and on a distortion pa-
rameter ε. Applied to NMF, the linear mapping f is a compression
matrix, i.e., L or R. In [5], the authors chose k , p + ν where ν
was set to a small value, i.e., ν = 10. This led to a poor NMF per-
formance. However, the JLL implies that by increasing k (or ν), we
can reduce the distortion parameter ε, as we less compress the data,
at the price of a reduced computation speed-up.

Our proposed strategy thus reads as follows. We assume that
ν is extremely large (or even infinite), so that L and R—which are
drawn according to a scaled Gaussian distribution in GC—cannot
fit in memory. We thus assume these matrices to be observed in a
streaming fashion, i.e., during an NMF iteration, we only observe
two (p+νi)×n andm× (p+νi) submatrices of L andR, denoted
L(i) and R(i), respectively. As a consequence, along the NMF iter-
ations, the updates of G and F are done using different compressed
matrices X(i)

R and X(i)
L , respectively. In practice, L(i) and R(i) are

updated every ω iterations, where ω is the user-defined number of
passes of the NMF algorithm using the same compression matri-
ces in the streams. Using such a simple framework, one can use
any of the data-independent random projection techniques described
in Subsect. 2.2—i.e., (V)SRPs, CountSketch, or CountGauss—to
derive their Streaming extension, hence their respective names or
(V)SRPS, CountSketchS, and CountGaussS.

RPS can also be applied to WNMF: in that case, we assume
to observe new compression submatrices L(i) and R(i) every ω E-
steps. This technique is also investigated in the next section.

Algorithm 2 Proposed compressed NMF strategy with RPS.
Require: initial matrices G, F , i = 0

repeat
Update i = i+ 1 and get L(i) and R(i)

Define X(i)
R , X ·R(i) and X(i)

L , L(i) ·X
for counter = 1 to ω do

Define F (i)
R , F ·R(i) and G(i)

L , L(i) ·G
Solve (2) by resp. replacing X and F by X(i)

R and F (i)
L

Solve (3) by resp. replacing X and G by X(i)
L and G(i)

L

end for
until a stopping criterion

4. EXPERIMENTS

We empirically validate the enhancement provided by our proposed
method for both NMF and WNMF. In both cases, we consider two

different NMF solvers, i.e., Active Set (AS-NMF) [28] and Nes-
terov gradient (NeNMF) [18]. Further, we consider two state-of-the-
art compression strategies—i.e., RSIs and GC—through which the
NMF performance is assessed when compared with our proposed
RPS and their vanilla (i.e., uncompressed) versions. In both experi-
mental settings, we consider 15 simulations where we draw random
nonnegative matrices Gtheo and F theo such that n = m = 10000 and
p = 5. As a consequence, their product X theo is a 10000 × 10000
rank-5 matrix. The performance criterion used in this paper is a Rel-
ative Reconstruction Error (RRE) defined as

RRE ,
∣∣∣∣∣∣X theo −G · F

∣∣∣∣∣∣2
F
/
∣∣∣∣∣∣X theo

∣∣∣∣∣∣2
F
. (8)

In each simulation, we consider the same random initialization for
each tested method. All the experiments are conducted using Matlab
R2018b on a computer equipped with 2.5 GHz Intel Xeon E5-2620.

4.1. Standard NMF

We firstly investigate the performance achieved by our proposed
GCS strategy when combined to NMF. Figure 1 provides the me-
dian performance reached by both AS-NMF and NeNMF when com-
bined with GCS for different values of the parameters used in Algo-
rithm 1, i.e., νi = 10, 50, 100, or 150, and ω = 1, 2, 5, 10, or
∞ (in the last case, GCS reduces to GC). These plots show sev-
eral interesting results. First of all, GC is not stable when combined
with AS-NMF or NeNMF: the RRE is not always decreasing along
iterations. This is particularly visible when νi = 10 and 100. How-
ever, the global NMF performance reached with GCS after 100 iter-
ations significantly decreases when νi increases. Such a result was
expected as GC follows the proof of the JLL. Then, GCS always out-
performs GC, even for high values of νi. When νi = 10, the plotted
RREs are not always decreasing along iterations, which means that
the methods are not always stable. However, this effect is reduced
(or cancelled) by increasing νi. Lastly, we can see that over all the
considered values of νi, setting ω to 1 appears to be a good trade-
off. A similar behavior—not shown for space consideration—was
also found with the other data-independent random projection tech-
niques considered in this paper.

Figure 2 shows the evolution of the median RREs with no com-
pression, RSIs, and RPS—i.e., GCS, CountSketchS, CountGaussS,
SRPS with s = 3—when ω = 1 and νi = 150. The RPS techniques
provide a similar or a better enhancement than the other strategies,
which shows the relevance of the proposed approach.

However, it should be emphasized that in these experiments, the
tested RPS implementations need more CPU time than RSIs—even
if SRPS seems faster than the other techniques—because of the too
high number of NMF iterations. Let us recall that such an issue
might be solved by efficient implementations or a specific hardware
dedicated to random projections [11].

4.2. Weighted NMF

We now investigate the enhancement provided by GCS in WNMF.
We consider 15 simulations with random 10000×10000 rank-5 ma-
trices X theo that we randomly sample with a sampling rate varying
from 10 to 90% with a step-size of 20%. As explained above, we
consider two solvers, i.e., AS-NMF and NeNMF that we eventually
combine with RSIs, GC, or GCS and that we compare with their
vanilla counterparts. However, as we showed above that GCS al-
lowed a similar or better enhancement than RSIs along NMF iter-
ations, we consider a slightly different experimental setting in this
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Fig. 1. NMF performance for different parameters of the GCS strategy.
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Fig. 2. NMF performance with respect to compression techniques.

subsection. Indeed and as in [9], we let the methods run during 60 s
and we only compute the final RREs obtained after this limit. This
setting is harder than above as we also take into consideration the
computational cost of each method. One key parameter to select in
the approach in [9] is the number MaxOutIter of iterations in the M-
step. We found in [9] that this value should be set to 50 and we keep
it in this paper. We also set the value of ω in GCS to ω = 1. Lastly,
we found in preliminary results that a high value of νi allowed a
better enhancement than a moderate one. As a consequence and for
the sake of readability on the plots, we only show the RREs reached
when ν (for GC) or νi (for GCS) are equal to 50, 100, or 150.

Figure 3 shows the RREs obtained in these different conditions.
First of all and as for standard NMF, (i) increasing ν for GC pro-
vides a better performance and (ii) GCS always outperforms GC.
However, the behaviour of GCS is different from the previous re-
sults. When the proportion of missing values in X is high, we find
in these experiments that the value of νi has a very limited influence
on the WNMF performance. However, when this proportion is low,
then a higher value of νi allows a better WNMF performance. In
particular, when νi = 100 or 150, the performance reached with
GCS is quite similar to the one reached with RSI (and even slightly
better when the missing value proportion is between 40% and 70%).
Let us recall that such results are obtained while GCS is computed
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Fig. 3. WNMF performance vs the missing value proportion.

with ω = 1, which is the most computational demanding scenario.
Still, GCS allows a similar performance as RSIs within a limited
amount of time. Moreover and as explained above, using another
RPS method should speed-up WNMF.

5. CONCLUSION

In this paper, we proposed an alternative to structured random pro-
jections which is only based on data-independent random projec-
tions. Our strategy is built on the Johnson-Lidenstrauss Lemma and
can be seen as a streamed random projection. RPS then allow a simi-
lar NMF or WNMF performance when compared to data-dependent
RPIs/RSIs. Even if its computational cost may remain expensive on
a CPU implementation—as compression matrices are updated each
ω iterations—RPS should significantly benefit from new strategies to
compute random projections—e.g., from specific hardwares—while
structured random projections techniques should not. This is what
we aim to investigate in the future, for compressed NMF and other
compressive learning methods. We will also extend these techniques
to an informed NMF framework in order to apply them to, e.g., air
quality monitoring [29] or mobile sensor calibration [30, 31].
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