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ABSTRACT

In this paper, we assume a set of mobile geolocalized sensor arrays
observing an area over time. Each of these arrays consists of het-
erogeneous and cross-sensitive sensors, i.e., the sensor readings pro-
vided by one of such sensors also depends on the readings of the
other sensors in the array. We further assume that such arrays are
possibly-uncalibrated and we aim to propose an in situ calibration
method—i.e., a data-driven technique—for such arrays. The novelty
of this paper is twofold: we first revisit in situ calibration of mobile
cross-sensitive sensors as an informed factorization of a partially ob-
served non-negative matrix. A fast informed (semi-)NMF approach
is then proposed and found to be well-suited for the considered prob-
lem.

Index Terms— Sensor calibration, Mobile sensor array net-
work, Informed non-negative matrix factorization, Missing values,
Expectation maximization, Nesterov accelerated gradient

1. INTRODUCTION

Air quality is recognized as a public health issue and is usually
monitored using a few highly reliable sensors deployed over a de-
sired area. However, such sensors are costly, bulky, and often static.
Hence, their drawbacks are a low spatial sampling rate and their in-
ability to sense many local phenomena. The recent emergence of
low-cost mobile sensors is a promising change of paradigm con-
cerning sensor networks [1]. Adding these mobile sensors in a static
network is currently a highly investigated scheme to increase the
quantity of measurements and the spatial coverage. However, their
low-cost aspect is an issue when it comes to the quality of accu-
racy. In [2], comparisons with reliable monitoring sensors indicate
that low-cost sensors (LCS) are not ready for high accuracy usage,
in particular because of both calibration and lack of repeatability is-
sues. Precisely mapping the output delivered by a sensor to the mea-
sured physical quantity consists of performing a calibration. Pre-
deployment calibration is an option to reduce the error of LCS but—
as LCS cannot maintain a stable response over time [3]—a regular
post-deployment calibration seems mandatory to maintain the LCS
accuracy. Since regularly calibrating numerous LCS in a laboratory
is not a reasonable solution, several in situ calibration methods have
been proposed [4, 5]. They can be grouped into three main families,
i.e., macro-calibration, micro-calibration, and transfer calibration.
Macro-calibration consists of uniformizing the measurements over
the whole sensor network. Micro-calibration consists of exploiting
the spatio-temporal vicinity between a reference—or a recently cal-
ibrated sensor—and an uncalibrated sensor in order to calibrate the
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latter. Transfer calibration consists of using a master sensor and non-
master sensors: the raw data of the latter are standardized according
to those of the former through (robust) linear regression. When the
master sensor is calibrated, e.g., by training a nonlinear calibration
model to fit with the target phenomenon, it transfers its calibration
to the standardized non-master sensors. For more details about the
different calibration methods, we refer the reader to [4, 5].

Studies with LCS indicate that they are sensitive to their envi-
ronment and that they can be cross-sensitive. The latter means that
the target measurement can also depend on one or several physical
variables that are not intended to be measured. For instance in [6]
the NO2 sensors are also sensitive to the concentration of O3. A
common solution consists of deploying sensor arrays—composed
for instance of both a NO2 and a O3 sensors—and considering the
concentration of O3 in the calibration model of the NO2 sensor (and
vice versa).

Independently from the above studies, in [7–9], in situ calibra-
tion of non-cross-sensitive sensors with affine or polynomial sensor
responses were revisited as informed (semi-) Non-negative Matrix
Factorization (NMF). These methods consider a micro-calibration
hypothesis in a macro-calibration scheme to free itself from any
structural assumptions in the sensor network. Such a strategy was
found to be particularly interesting according to some recent sur-
veys [4] but it is not able to calibrate heterogeneous sensor arrays.
In this paper, we propose to extend the formalism of [7] to sensor
arrays. We also design a new fast informed (Semi-)NMF method to
solve in situ calibration of cross-sensitive sensors.

The remainder of the paper reads as follows. Section 2 intro-
duces the sensor array calibration problem. We then propose an in
situ calibration method in Section 3 and we investigate its perfor-
mance in Section 4. We lastly conclude and discuss about future
work in Section 5.

2. PROBLEM STATEMENT, DEFINITIONS AND
ASSUMPTIONS

In this paper, we assume that a set of < mobile geolocalized and
time-stamped sensor arrays are observing an area over time. Each
of these arrays consists of ? sensors which are cross-sensitive [6],
i.e., the output—denoted G: hereafter—of a given sensor, say Sensor
: , depends on various physical phenomena—denoted 61, . . . , 6?—
according to

G: ≈ 5 :0 +
?∑
8=1

5 :8 · 68 , (1)

where 5 :0 represents the offset parameter and 5 :
8

represents the 8-th
gain parameter of the :-th sensor of the sensor array, 68 represents
the 8-th sensed physical variable. Please note that if we assume that



∀8 ≠ :, 5 :
8

= 0, this model reduces to a simpler affine calibration
model as proposed in [7]. We also assume to get the outputs of
fixed reference instruments sensing the same phenomena as the mo-
bile sensors. Following the same strategy as in [7], we model these
fixed sensor arrays as the (< + 1)-th one of the network. We lastly
assume that all the sensor arrays are able to send their geolocalized
and time-stamped sensor readings to a unique trusted server, which
is a common strategy in environmental mobile crowdsensing [9,10].

We now introduce some definitions needed to explain the pro-
posed approach.

Definition 1 ( [11]). A rendez-vous is a spatio-temporal vicinity
between two sensors.

A rendez-vous is thus characterized by a distance ∆3 and a du-
ration ∆) . When two sensors make a rendez-vous, the fluctuations
of the phenomenon between two locations closer than ∆3 during a
time interval of duration ∆) are negligible. However, both highly
depend on the sensed physical phenomenon [11]. As an example, if
one observes the variations of temperature and of carbon monoxyde
concentrations, the values of ∆3 and ∆) for the latter will be much
lower than for the former [11].

As a consequence, in our considered network, each sensor of
the array is associated with its own rendez-vous parameters, denoted
∆3: and ∆): for Sensor : . We then introduce the definition of a
sensor array rendezvous.

Definition 2. Two sensor arrays make a rendez-vous if ∀: ∈ J1, ?K,
their respective :-th sensors make a rendez-vous.

In practice, two sensor arrays thus make a rendez-vous if their
distance is below1 ∆3 = min1≤:≤?∆3: and the duration between
their measurements is below ∆) = min1≤:≤?∆): .

A rendez-vous can occur between a mobile sensor (respectively,
a mobile sensor array) and a fixed or a mobile sensor (respectively,
a fixed or a mobile sensor array). Multi-hop calibration for instance
considers recently calibrated mobile sensors as virtual references.
When an uncalibrated sensor makes a rendez-vous with a virtual ref-
erence, it is calibrated according to this virtual reference and then
becomes a virtual reference for another uncalibrated sensor, hence
the risk of error propagation along the multi-hop path. On the con-
trary, the model in [7] takes advantage of every kind of rendez-vous,
whether the sensors are mobile or not, whether the sensors are un-
calibrated or not. Since our proposed model is an extension of [7],
we need to also define a scene.

Definition 3 ( [7]). A scene S is a discretized area observed during
a time interval of duration∆) . The size of the spatial pixels is set so
that any couple of points inside the same pixel has a distance below
∆3.

According to Definition 3, sensors in rendez-vous are located in
the same cell of a scene. Fig. 1 shows a simple example of a scene.
As it is spatially sampled, the spatial samples can be stacked to form
an observed matrix X: , related to the :-th sensor of the arrays. Each
row of X: represents a spatial pixel of the scene S as seen by each
Sensor : of the different arrays. Let us recall that all the differ-
ent measurements in a scene are performed during a time interval
∆) . During this duration, the mobile sensors are free to move. This
means that the same sensor can provide some readings in several ar-
eas in a scene, as seen in Fig. 1. Each column of X: then contains

1Please note that it may be possible to relax such a constraint, as proposed
in [9] for non-cross-sensitive sensor calibration.
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Fig. 1. A scene S measured by 3 sensors and its associated observed
matrix X: . The sensors in a grey square are on a rendez-vous. By
construction, the sensors on the same line of X: make a rendez-vous.

all the measurements performed by a sensor. As an arbitrary choice,
the last column of X: always contains the measurements done by
the reference sensors. In fact, since the reference sensors are static,
they are modeled as only one mobile reference sensor which can
only make some measurements where the fixed references are lo-
cated. This explains why several reference sensors are characterized
by only one column—i.e., the last one—of X: .

Let us now assume that all the arrays are providing readings in
all the spatial pixels of a scene. In particular, for the :-th sensor,
combining Eq. (1) with the above scene formulation leads to

X:
theo ≈ G · F: (2)

with

X:
theo =

©­­­«
G:1,1 . . . G:1,< 61,:
.
.
.

.

.

.
.
.
.

G:
=,1 . . . G:=,< 6=,:

ª®®®¬ , (3)

where G:
8, 9

denotes the sensor reading provided by Sensor : of Array
9 in Pixel 8 of the scene,

G =
(
1= g1 . . . g?

)
, (4)

where g: =
(
61,: . . . 6=,:

)) is the vector of the :-th physical
phenomenon sensed in the = different spatial pixels of the scene, 1=
is a = × 1 vector of ones, and

F: =

©­­­­­«
5 :0,1 . . . 5 :0,< 0
5 :1,1 . . . 5 :1,< X:1
.
.
.

.

.

.
.
.
.

5 :
?,1 . . . 5 :?,< X:?

ª®®®®®¬
, (5)

where 5 :
8, 9

denotes the 8-th calibration parameter of Sensor : of Ar-

ray 9 , and where X:
;

= 1 if ; = : , 0 otherwise. F: contains the
calibration parameters of every sensor measuring the :-th physical
variable among the ? physical variables that are considered in Eq.
(1). G contains the physical variables considered in Eq. (1) in every
spatial pixel, and a column of ones for the offset. Each column of
F: provides the calibration parameters of the :-th sensor of one of
the < + 1 sensor arrays. By construction, as the last column of X:

theo
represents the measurements done by the reference sensors, the last
column of F: represents the calibration parameters of these sensors.
Since we can trust the calibration process of the reference sensors,
we can assume that their output values are directly the physical vari-
ables they are supposed to measure, hence the last column of X:

theo



being equal to g: . This implies the absence of an offset and the
presence of Kronecker functions X:

;
in the last column of F: .

Equation (2) alone means that only the desired physical vari-
able is measured by the mobile sensors. Considering sensor ar-
rays instead—that are constituted of sensors measuring every phys-
ical variable in Eq. (1)—a general relationship between the cross-
sensitive sensors of the different sensor arrays can be obtained by
concatenating the observed matrices X:

theo, i.e.,

Xtheo =
(
X1

theo . . . X?

theo

)
. (6)

Combining Eqs. (2) and (6) provides

Xtheo ≈ G · F, (7)

where G is defined in (4) and

F =
(
F1 . . . F?

)
. (8)

At this stage, Eq. (7) is a structured matrix factorization problem
where Xtheo is non-negative—as it contains voltage outputs and/or
concentrations—G is non-negative, as it contains contration values
and a column of ones. Finally, if the calibration parameters in F
are positive—which is not a far fetched hypothesis2—then Eq. (7)
is in fact a specific NMF problem. Solving it is equivalent to per-
forming sensor array calibration since F contains all the calibration
parameters of the sensor arrays. The quality of the calibration is
then implied by the error of estimation upon the matrix F itself. In a
real case, Xtheo is not accessible. Only its noisy projection X on the
observation space Ω- is observed, through the operator PΩX

, i.e.,

X≈PΩX
(Xtheo). (9)

In practice, each sensor is associated with its own confidence mea-
sure, denoted d:

9
for Sensor : of Array 9 . Combining Eqs. (9) and

(7) yields an NMF problem with missing entries, i.e.,

min
1
2
‖W ◦ (X −G · F)‖2F , (10)

where ◦ denotes the Hadamard product and W is defined such that
its (8, 9)-th entry—with : · (< + 1) < 8 < (: + 1) · (< + 1)—reads

F8, 9 =
{

d:
9

if the (8, 9)-th value of X is measured,
0 otherwise.

(11)

The above definition of W allows to take into account some differ-
ence of confidence in the accuracy of the sensed data. If this confi-
dence is the same for all observed sensor readings, then W can be
replaced by a binary matrix. Without additional constraints, solving
NMF—whether there are some missing values or not—can lead to
multiple solutions [12], because of the well-known scale and permu-
tation ambiguities. In the considered context of sensor calibration,
such ambiguities are not allowed since they might degrade the cal-
ibration accuracy. In our model, these ambiguities are cleared up
by the imposed structure on G and F. To take them into account in
the factorization, we use the same parameterization as in [7, 13]: we
rewrite both G and F as the sum of their free and fixed parts, i.e.,

G = ΩG ◦ ΦG +ΩG ◦∆G, F = ΩF ◦ ΦF +ΩF ◦∆F, (12)

2Considering calibration parameters that can be negative would result in
a semi-NMF which is still solvable by the method proposed in Section 3.

where ΩG and ΩF (respectively ΩG and ΩF) are the binary ma-
trices informing of the presence (respectively the absence) of con-
straints upon G and F, and ΦG and ΦF (respectively ∆G and ∆F)
are the matrices containing the constrained values (respectively the
free values) of G and F. In what follows, to simplify the notations, let
ΦG = ΩG◦ΦG, ΦF = ΩF◦ΦF, ∆G = ΩG◦∆G and ∆F = ΩF◦∆F.
Finally, sensor array calibration leads to solve

(G̃, F̃) = arg min
G ≥ 0,F ≥ 0

1
2
‖W ◦ (X −G · F)‖2F

subject to G = ΦF +∆G,

F = ΦF +∆F.

(13)

It should be noticed that Eq. (13) is similar to the cost function pro-
posed in [7], except that the dimensions of the matrices are here
much larger than those in [7]. This implies that even if the calibra-
tion method proposed in [7]—named IN-Cal in [9]—is found to be
accurate for the considered application, it may not be applicable in
the configuration we here consider, because of the increased matrix
sizes and of the slow convergence rate of its update rules. As a con-
sequence, we propose a fast extension of IN-Cal—named F-IN-Cal
in the remainder of the paper—to solve Eq. (13).

3. PROPOSED CALIBRATION METHOD

To solve NMF with missing entries, different strategies have been
proposed in the literature, i.e., minimizing the cost function by using
only the observed data—either by considering W in the cost func-
tion [14] or by using a stochastic gradient descent in the case of bi-
nary weights [15]—or through an Expectation-Maximization (EM)
framework [16]. The latter consists of a two-stage approach. The ex-
pectation step (E-step) consists of estimating the missing entries in
Xtheo as Xcomp = W◦X+W◦(G ·F), where W = 1=,?(<+1)−W and
1=,?(<+1) is the =×?(<+1) of ones. The maximization step (M-step)
consists of estimating G and F from Xcomp with any NMF solver.
The authors in [17] proposed to combine such an EM framework
with the Nesterov accelerated gradient [18] to solve NMF with miss-
ing entries. They found this strategy to be much more efficient than
using Nesterov gradient descent with the original weighted NMF op-
timization problem. Our proposed method extends [17] by also tack-
ling the equality constraints of ΦG and ΦF. Then, as for most NMF
algorithms, the M-step consists of alternatively solving

G̃ = arg min
G ≥ 0

1
2



Xcomp −G · F


2
F

subject to G = ΦF +∆G,

(14)

F̃ = arg min
F ≥ 0

1
2



Xcomp −G · F


2
F

subject to F = ΦF +∆F,

(15)

with Nesterov iterations to update G and F. Denoting J (G,F) =
1
2 ‖X

comp −G · F‖2F , the algorithm to update F is described in Alg.

1, where ∂J
∂∆F

(G,∆F+ΦF) = G) G∆F+G) GΦF−G) Xcomp is the
derivative of J according to ∆F, P is the endomorphism projecting
negative values on zero (to respect the non-negativity constraint3),
and the Hadamard product with ΩF ensures that ∆F ◦ ΩF = 0 (to
respect the equality constraint).

3Let us recall that by removing P from the update rules of F, we can
perform Semi-NMF and tackle the case of negative calibration parameters.
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Fig. 2. Envelope and median RMSE with respect to time for 20 simulations. In blue, IN-Cal [7]. In red, the proposed F-IN-Cal method. (a)
= = 100, < = 25, ? = 1, 4 references, (b) = = 100, < = 25, ? = 2, 4 references (c) = = 400, < = 100, ? = 2, 10 references.

Algorithm 1: Update of F with Nesterov gradient

Data: GC ,FC

1 Y0 = ∆F
C , U0 = 1, ! = ‖GC) GC ‖2, : = 0;

2 while Stopping criteria not reached do
3 ∆F: = P(ΩF ◦ (Y: − 1

!
∂J
∂∆F

(GC ,Y: + ΦF)));

4 U:+1 = 0.5 · (1 +
√

4U2
:
+ 1);

5 Y:+1 = ∆F: + U:−1
U:+1

(∆F: −∆F:−1);
6 : ← : + 1;

7 FC+1 = ΦF +∆F: ;

4. EXPERIMENTAL VALIDATION

In this section, we investigate the performance reached by our pro-
posed F-IN-Cal method in different sensor calibration simulations.
Let us first recall that we showed in Section 2 that calibrating a net-
work of sensor arrays could be revisited as an informed (semi-)NMF
problem, which is also the case of single-sensor network calibra-
tion [7]. We thus propose to compare the enhancement provided
by both our proposed F-IN-Cal method and IN-Cal4 [7]—an in-
formed NMF method using multiplicative updates—on several con-
figurations. To simulate the physical phenomena in a scene, several
normal distributions with random parameters are summed and pro-
jected into intervals that could represent air pollutant concentrations.
The calibration parameters are also randomly chosen in an interval
that can be provided by a manufacturer. Some parameters are fixed
and their influence will not be investigated in this paper, namely the
missing values proportion—i.e., the proportion of zeros in W—is
fixed to 0.5, the proportion of rendez-vous between reference and
uncalibrated sensors is fixed to 0.3, the sensor cross-sensitivity—
considered as an input signal-to-interference ratio [19]—is set to
15 dB, and the signal-to-noise ratio is fixed to infinity. Moreover,
each sensor makes at most one rendez-vous with a reference sen-
sor, which is a difficult scenario as state-of-the-art multi-hop tech-
niques [20, 21] require many of such rendez-vous to work. Both
methods are stopped after the same amount of CPU time and are
tested on the same set of simulations with the same initialization.
Each simulation is repeated 20 times, so that we can derive some
statistics for each method. The calibration accuracy is evaluated with

4See its implementation at https://gogs.univ-littoral.fr/
puigt/Informed_NMF_Mobile_Sensor_Calibration/.

the root mean-square error (RMSE) computed over one line5 of F:

if the physical variable of interest is supposed to be measured by the
:-th sensor of a sensor array. The tests were run on a laptop with
an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 2592 MHz, 4
cores, 8 threads and 8.00 GB of RAM.

We first confront the methods in a test where IN-Cal is known
for performing well according to [7], namely scenes of size 10 × 10
with 25 mobile sensors that are not cross-sensitive and 4 references.
Our tests presented in Fig. 2(a) show that both methods converge
in less than 2 seconds to a median RMSE around 10−12, even if the
high part of the IN-Cal envelope is slowly decreasing along time. We
then consider 10× 10 scenes observed by 25 mobile sensor arrays—
where each array is composed of 2 cross-sensitive sensors—and 4
reference sensor arrays. Figure 2(b) shows the convergence speed of
IN-Cal to be drastically reduced, because the quantity of information
has doubled as we aim to calibrate 2 sensors per array. After 30 s,
the median RMSE reached by IN-Cal is equal to 1.3 · 10−3. On the
contrary, F-IN-Cal still converges in 15 s to reach a median RMSE
around 10−12. Lastly, we consider a larger problem with simulations
of scenes of size 20 × 20, observed by 100 mobile sensor arrays and
10 reference sensor arrays. In Fig. 2(c), our method still converges
in a reasonable amount of time although there are more than six-
teen times more data to process in this test than in the tests plot in
Fig. 2(b). On the contrary, the median RMSE provided by IN-Cal is
slowly decreasing to reach 0.08 after 1 min. These simulations show
the relevance of the proposed approach.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed an extension of the calibration model
in [7] to tackle mobile sensor arrays. We first revisited sensor ar-
ray calibration as a matrix factorization problem with missing en-
tries and equality constraints. We then derived a fast informed NMF
technique using an EM framework and a Nesterov gradient. Our
simulations show that our proposed approach is much faster than
IN-Cal [7], especially when the size of the scene and/or of the sen-
sor network increase. Future work will focus on the enhancement
provided by random projections [22, 23] in order to increase even
more the convergence speed.

5In our tests, we never encountered a situation where the RMSE computed
over a line of F: was satisfying while those computed over the other lines of
F: or of another submatrix of F were not. As a consequence, for the sake of
concision, we only show the performance obtained for one of the ? · (? + 1)
computed RMSEs.
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situ calibration algorithms for environmental sensor networks:
A review,” IEEE Sensors Journal, vol. 19, no. 15, pp. 5968–
5978, 2019.

[6] Balz Maag, Olga Saukh, David Hasenfratz, and Lothar Thiele,
“Pre-deployment testing, augmentation and calibration of
cross-sensitive sensors.,” in EWSN, 2016, pp. 169–180.

[7] Clément Dorffer, Matthieu Puigt, Gilles Delmaire, and Gilles
Roussel, “Blind calibration of mobile sensors using informed
nonnegative matrix factorization,” in International Conference
on Latent Variable Analysis and Signal Separation. Springer,
2015, pp. 497–505.

[8] Clément Dorffer, Matthieu Puigt, Gilles Delmaire, and Gilles
Roussel, “Nonlinear mobile sensor calibration using informed
semi-nonnegative matrix factorization with a vandermonde
factor,” in 2016 IEEE Sensor Array and Multichannel Signal
Processing Workshop (SAM). IEEE, 2016, pp. 1–5.

[9] Clément Dorffer, Matthieu Puigt, Gilles Delmaire, and Gilles
Roussel, “Informed nonnegative matrix factorization methods
for mobile sensor network calibration,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 4, no.
4, pp. 667–682, 2018.

[10] Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier, “Dy-
namic deployment of sensing experiments in the wild using
smartphones,” in IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 2013, pp.
43–56.

[11] Olga Saukh, David Hasenfratz, Christoph Walser, and Lothar
Thiele, On Rendezvous in Mobile Sensing Networks, vol. 281,
pp. 29–42, 01 2014.

[12] Yu-Xiong Wang and Yu-Jin Zhang, “Nonnegative matrix fac-
torization: A comprehensive review,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 6, pp. 1336–
1353, 2012.

[13] Abdelhakim Limem, Gilles Delmaire, Matthieu Puigt, Gilles
Roussel, and Dominique Courcot, “Non-negative matrix fac-
torization under equality constraints—a study of industrial
source identification,” Applied Numerical Mathematics, vol.
85, pp. 1–15, 2014.

[14] Ngoc-Diep Ho, Nonnegative matrix factorization algo-
rithms and applications, Ph.D. thesis, PhD thesis, Université
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