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We look for solutions to derivative nonlinear Schrodinger equations built upon solitons. We prove the existence of multi-solitons i.e. solutions behaving at large time as the sum of nite solitons. We also show that one can attach a kink at the begin of the sum of solitons i.e multi kink-solitons. Our proofs proceed by xed point arguments around the desired prole, using Strichartz estimates.

, where gauge transformation and Fourier restriction method are used to obtain local well-posedness in H s , s ⩾ 1/2. In [31],

. More precisely, the author proved that the solutions exist globally in

Introduction

We consider the derivative nonlinear Schrödinger equation:

iu t + u xx + iα|u| 2 u x + iµu 2 u x + f (u) = 0, u(0) = u 0 . (1.1)
where α, µ ∈ R, f : C → C is a given function and u is a complex valueed function of (t, x) ∈ R × R.

In [START_REF] Tsutsumi | On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem[END_REF][START_REF] Tsutsumi | On solutions of the derivative nonlinear Schrödinger equation[END_REF], Tsutsumi and Fukuda used an approximation argument to prove the existence of solutions of (1.1) in the case α = -2, µ = -1. In this case with f = 0, Biagioni and Linares [START_REF] Biagioni | Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations[END_REF] proved that the solution map from H s (R) to C([-T, T ], H s (R)) is not locally uniformly continuous, for T > 0 and s < 1 2 . The H time under smallness on the initial data ∥u 0 ∥ L 2 < √ 2π + ε * , where ε * is a small positive constant. Later, Wu [START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF] improved this results for larger bounded on the initial data ∥u 0 ∥ L 2 < √ 4π. The proof combines a gauge transformation and conservation laws with a sharp Gagliardo-Nirenberg inequality. In [START_REF] Fukaya | A sucient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation[END_REF], by using variational argument, Fukaya-Hayashi-Inui gave results covering the result of Wu [START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF]. The authors showed that in the case f = 0, α = 1, µ = 0, the H 1 solutions of (1.1) exist globally in time for the initial satises ∥u 0 ∥ 2 L 2 < 4π or ∥u 0 ∥ 2 L 2 = 4π and P (u 0 ) < 0, where P is the momentum functional which is conserved under the ow of (1.1). In [START_REF] Colliander | A rened global well-posedness result for Schrödinger equations with derivative[END_REF], Colliander-Keel-Stalani-Takaoka-Tao proved by the so-called I-method the global well posedness in H s (R), s > 1 2 of (1.1) if ∥u 0 ∥ 2 L 2 < 2π (see also [START_REF] Colliander | Global well-posedness for Schrödinger equations with derivative[END_REF]). In the case f = 0 and µ = 0, (1.1) is a completely integrable equation. The complete integrability structure of equation was used to prove global existence of solutions in H 2,2 (R) by [START_REF] Jenkins | Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities[END_REF] and in H s (R), s > 1

2 by [1].

In the case µ = 0 and f (u) = b|u| 4 u, there were a lot of works on studying stability and instability of solitons of (1.1). The family of solitons of (1.1) has two parameters (ω, c). In the case b = 0, Guo and Wu [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF] proved that the solitons are orbitally stable when ω > c 2 4 and c < 0 by using the abstract theory of Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. After that, Colin and Ohta [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF] improved this result for all ω > c 2 4 using variational techniques. In [30], Ohta proved that for each b > 0 there exists a unique s * = s * (b) > 0 ∈ (0, 1) such that the soliton u ω,c is orbitally stable if -2 √ ω < c < 2s * √ ω and orbitally unstable if 2s * √ ω < c < 2 √ ω. In the case b < 0, the stability result is obtained in [START_REF] Hayashi | Stability of algebraic solitons for nonlinear schrödinger equations of derivative type: variational approach[END_REF]. In the case b = 0, Kwon-Wu [START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF] proved a stability result of solitons in the zero mass case. Removing the eect of scaling in the stability result of this work is an open question.

Our main goal of this paper is to study the multi-solitons theory of (1.1).

1.1. Multi-solitons. First, we focus on studying the following special form of (1.1):

iu t + u xx + i|u| 2 u x + b|u| 4 u = 0. (1.2)
Our rst goal in this paper is to study the long time behaviour of solutions of (1.2). More precisely, we study the multi-solitons theory of (1.2). The existence of multi-solitons is a step towards the proof of the soliton resolution conjecture, which states that all global solutions of a dispersive equation behave at large times as a sum of a radiative term and solitons. The theory of multisoliton has attracted a lot of interest. In [START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF][START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF], Le Coz-Li-Tsai proved existence and uniqueness of nite and innite soliton and kink-soliton trains of classical nonlinear Schrödinger equations, using xed point arguments around of the desired prole. Another method was introduced in [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] for the simple power nonlinear Schrödinger equation with L 2 -subcritical nonlinearities. The proof was established by two ingredients: uniform estimates and a compactness property. The arguments were later modied to obtain the results for L 2 -supercritical equations [START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF] and for proles made with excited states [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]. One can also cite the works on the logarithmic Schrödinger equation (logNLS) in the focusing regime in [START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF]. In [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media[END_REF], the inverse scattering transform method (IST) was used to construct multi-solitons of the one dimensional cubic focusing NLS. We would like also to mention the works on the non-linear Klein-Gordon equation [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] and [START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF], and on the stability of multi-solitons for generalized Korteweg-de Vries equations and L 2 -subcritical nonlinear Schrödinger equations from Martel, Merle and Tsai [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. In [START_REF] Coz | Stability of multisolitons for the derivative nonlinear Schrödinger equation[END_REF], Le Coz-Wu proved a stability result of multi-solitons of (1.2) in the case b = 0. Our motivation is to prove the existence of a multi-solitons in a similar sense as in [START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF][START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF]. The method used in [START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF][START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF] cannot apply directly in our case. The reason is the appearance of the derivative nonlinearities. To overcome this diculty, we use a Gauge transformation to obtain a system of Schrödinger equations without derivative nonlinearities. We may use Strichartz estimates and xed point argument to construct a suitable solution of this system. This solution satises a relation which is proved by using the Grönwall inequality and the condition on the parameters and we obtain a solution of (1.2). This solution satises the desired property.

Consider equation (1.2). The soliton of equation

(1.2) is a solution of the form R ω,c (t, x) = e iωt ϕ ω,c (x -ct), where ϕ ω,c ∈ H 1 (R) solves -ϕ xx + ωϕ + icϕ x -i|ϕ| 2 ϕ x -b|ϕ| 4 ϕ = 0, x ∈ R. (1.3)
Applying the following gauge transform to ϕ ω,c

ϕ ω,c (x) = Φ ω,c (x) exp i c 2 x - i 4 x -∞ |Φ ω,c (y)| 2 dy ,
it is easy to verify that Φ ω,c (see e.g [5, Proof of Lemma 2]) satises the following equation.

-

Φ xx + ω - c 2 4 Φ + c 2 |Φ| 2 Φ - 3 16 γ|Φ| 4 Φ = 0, γ := 1 + 16 3 b.
(1.4)

The positive even solution of (1.4) is explicitly obtained by: if γ > 0 (b > -3

16 ), Φ 2 ω,c (x) = 2(4ω-c 2 ) √ c 2 +γ(4ω-c 2 ) cosh( √ 4ω-c 2 x)-c if -2 √ ω < c < 2 √ ω, 4c (cx) 2 +γ if c = 2 √ ω, (1.5 
)

and if γ ⩽ 0 (b ⩽ -3 16 ), Φ 2 ω,c (x) = 2(4ω -c 2 ) c 2 + γ(4ω -c 2 ) cosh( √ 4ω -c 2 x) -c if -2 √ ω < c < -2s * √ ω,
where s * = s * (γ) = -γ 1-γ . We note that the following condition on the parameters γ and (ω, c) is a necessary and sucient condition for the existence of non-trivial solutions of (1.2) vanishing at innity (see [START_REF] Berestycki | Nonlinear scalar eld equations. I. Existence of a ground state[END_REF]):

if γ > 0(⇔ b > -3 16 ) then -2 √ ω < c ⩽ 2 √ ω, if γ ⩽ 0(⇔ b ⩽ -3 16 ) then -2 √ ω < c < -2s * √ ω.
Let (c j , ω j ) satisfying for each 1 ⩽ j ⩽ K the condition of existence of soliton. For each j ∈ {1, 2, .., K}, we set R j (t, x) = e iθj R ωj ,cj (t, x).

The prole of a multi-soliton is a sum of the form:

R = K j=1 R j . (1.6) A solution of (1.2) is called a multi-soliton if ∥u(t) -R(t)∥ H 1 → 0 as t → ∞,
For convenience, we set h j = 4ω j -c 2 j . We rewrite

Φ ωj ,cj (x) = √ 2h j c 2 j + γh 2 j cosh(h j x) -c j -1 2
.

(1.7)

As each soliton is in H ∞ (R), we have R ∈ H ∞ (R).
Our rst main result is the following.

Theorem 1.1. Let K ∈ N * and for each 1 ⩽ j ⩽ K, let (θ j , c j , ω j ) be a set of parameters

such that θ j ∈ R, c j ̸ = c k , for j ̸ = k and c j such that -2 √ ω j < c j < 2 √ ω j if γ > 0 and -2 √ ω j < c j < -2s * √ ω j if γ ⩽ 0.
The multi-soliton prole R is given as in (1.6). Then there exists a certain positive constant C * such that if the parameters (ω j , c j ) satisfy

C * (1 + ∥R x ∥ L ∞ t L ∞ x )(1 + ∥R∥ L ∞ t L ∞ x ) + ∥R∥ 4 L ∞ t L ∞ x ⩽ v * := inf j̸ =k h j |c j -c k |, (1.8) 
then there exist T 0 > 0 depending on ω 1 , ..., ω K , c 1 , ..., c K and a solution u of (1.2) on [T 0 , ∞) such that

∥u -R∥ H 1 ⩽ Ce -λt , ∀t ⩾ T 0 , (1.9) 
where λ = v * 16 and C is a positive constant depending on the parameters ω 1 , ..., ω K , c 1 , ..., c K .

We observe that the formula for solitons in the case γ > 0 and in the case γ ⩽ 0 is similar. Thus, in the proof of Theorem 1.1, we only consider the case γ > 0. The case γ ⩽ 0 is treated by similar arguments. Remark 1.2. We give an example of parameters satisfying (1.8). Let d j < 0, h j ∈ R for all j ∈ {1, 2, ..., K} such that d j ̸ = d k for all j ̸ = k. Let (c j , ω j ) = M d j , 1 4 (h 2 j + M 2 d 2 j ) . We prove that for M large enough, the condition (1.8) is satised. By this choosing, we have h j ≪ |c j | and c j < 0 for all j. We have

∥Φ ωj ,cj ∥ 2 L ∞ ⩽ 2h 2 j c 2 j + γh 2 j -c j ≲ h 2 j |c j | . Moreover, ∂Φ ωj ,cj = - √ 2 2 h 2 j c 2 j + γh 2 j sinh(h j x) c 2 j + γh 2 j cosh(h j x) -c j -3 2 .
Thus, for all j, we obtain

|∂Φ ωj ,cj | ≲ h 2 j c 2 j + γh 2 j | sinh(h j x)| c 2 j + γh 2 j cosh(h j x) -c j -3 2 ≲ h 2 j c 2 j + γh 2 j cosh(h j x) -c j -1 2 ≈ h j |Φ ωj ,cj | ≲ h 2 j |c j | .
In the addition, we have

∥∂R j ∥ L ∞ = ∥∂ϕ ωj ,cj ∥ L ∞ ≈ ∥∂Φ ωj ,cj ∥ L ∞ + c j 2 Φ ωj ,cj -Φ 3 ωj ,cj L ∞ ⩽ ∥∂Φ ωj ,cj ∥ L ∞ + |c j | 2 ∥Φ ωj ,cj ∥ L ∞ + ∥Φ ωj ,cj ∥ 3 L ∞ ≲ h 2 j |c j | + h j |c j | + h 3 j |c j | 3 .
Thus, the left hand side of (1.8) is bounded by

C *     1 + 1⩽j⩽K h 2 j |c j | + h j |c j | + h 3 j |c j | 3     1 + 1⩽j⩽K h j |c j |   + 1⩽j⩽K h 4 j c 2 j   . (1.10)
By our choosing, (1.10) is order M 1 2 and the right hand side of (1.8) is order M 1 . Thus, (1.8) is satised for M large enough. 1.2. Multi kink-solitons. Second, we consider another special case of (1.1) as follows

iu t + u xx + iu 2 u x + b|u| 4 u = 0. (1.11)
Our goal is to construct multi kink-solitons of (1.11). The motivation comes from [START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF][START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF], where the authors have constructed an innite multi kink-soliton train for classical nonlinear Schrödinger equations by using xed point arguments. However, in the case of (1.11), this method can not directly be used due to the appearing of a derivative term. To overcome this diculty, use a transformation and work on a system of two equations without derivative nonlinearites.

Consider the equation (1.11). First, we would like to dene a kink solution of (1.11). Let R ω,c be a smooth solution of (1.11) of the form: R ω,c (t, x) = e iωt ϕ ω,c (x -ct), (1.12) where ϕ ω,c is smooth and solves

-ϕ xx + ωϕ + icϕ x -iϕ 2 ϕ x -b|ϕ| 4 ϕ = 0, x ∈ R. (1.13) If ϕ ω,c | R + ∈ H 1 (R + ) then the following Gauge transform is well dened: Φ ω,c = exp -i c 2 x + i 4 x ∞ |ϕ ω,c (y)| 2 dy ϕ ω,c .
Since ϕ ω,c solves (1.13), Φ ω,c is smooth and solves 

-Φ xx + ω - c 2 4 Φ - 3 2 Im(ΦΦ x )Φ - c 2 |Φ| 2 Φ + 3 16 γ|Φ| 4 Φ = 0, γ := 5 3 - 16 3 b. (1.14) Since Φ ω,c | R + ∈ H 2 (R + ),
   lim x→±∞ Φ(x) ̸ = 0, lim x→∓∞ Φ(x) = 0, (1.16) 
where ω = ω -c 2 4 , f : R → R.

For more convenience, we dene

f (s) = c 2 s 3 - 3 16 γs 5 .
The following result about the existence of a half-kink prole is stated in [START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF] as follows.

Proposition

1.4. Let f : R → R be a C 1 function with f (0) = 0 and dene F (s) := s 0 f (t) dt.
For ω ∈ R, let

ζ(ω) := inf ζ > 0, F (ζ) - 1 2 ωζ 2 = 0
and assume that there exists ω1 ∈ R such that

ζ(ω 1 ) > 0, f ′ (0) -ω1 < 0, f (ζ(ω 1 )) -ω1 ζ(ω 1 ) = 0.
(1.17)

Then, for ω = ω1 , there exists a half-kink prole Φ ∈ C 2 (R) of (1.16) i.e Φ is unique (up to translation), positive and satises Φ ′ > 0 on R and the boundary conditions

lim x→-∞ Φ(x) = 0, lim x→∞ Φ(x) = ζ(ω 1 ) > 0. (1.18)
If in addition,

f ′ (ζ(ω 1 )) -ω1 < 0, (1.19) 
then for any

0 < a < ω1 -max{f ′ (0), f ′ (ζ(ω 1 ))} there exists D a > 0 such that |Φ ′ (x)| + |Φ(x)1 x<0 | + |(ζ(ω 1 ) -Φ(x))1 x>0 | ⩽ D a e -a|x| , ∀x ∈ R.
(1.20)

We have the following remarks.

Remark 1.5.

(1) As in [23, Remark 1.15], using the symmetry x → -x and Proposition 1.4 implies the existence and uniqueness of half-kink prole Φ satisfying

lim x→-∞ Φ(x) = ζ(ω 1 ) > 0, lim x→∞ Φ(x) = 0.
(2) In our case, f (s) = c 2 s 3 -3 16 γs 5 . We may check that if γ > 0, c > 0 then there exist ω1 = c 2 4γ and ζ(ω 1 ) = 2c γ satisfying the conditions (1.17), (1.19) and the denition of the function ζ. Thus, using Proposition 1.4, if γ > 0, c > 0 then there exists a half-kink solution of (1.2) and the constant a in Proposition 1.4 satisfy 0 < a < c 2 4γ .

(3) Consider the half-kink prole Φ of Proposition 1.4. Since Φ solves (1.16) and satises (1.20), we have

|Φ ′′ (x)| + |Φ ′′′ (x)| ⩽ D a e -a|x| . Now, we assume γ > 0. Let K > 0, θ 0 , ω 0 , c 0 ∈ R be such that 2 √ ω 0 > c 0 > √ 2γ. For 1 ⩽ j ⩽ K, let (θ j , ω j , c j ) ∈ R be such that c j > c 0 , c j ̸ = c k for j ̸ = k, 2 √ ω j > c j > 2s * √ ω j for s * = γ 1+γ . Set R j = e iθj R ωj ,cj , where R ωj ,cj ∈ H 1 (R)
is the soliton solution of (1.11) with the associated prole dened in (1.5). Let Φ 0 be the half-kink prole given in Remark 1.5 (1) associated with the parameters ω 0 , c 0 and R ω0,c0 be the associated half-kink solution of (1.11). Set R 0 = e iθ R ω0,c0 . The multi kink-soliton prole of (1.11) is dened as follows:

V = R 0 + K j=1 R j . (1.21)
Our second main result is the following. Theorem 1.6. Considering (1.11), we assume that b < 5 16 (γ > 0). Let V be given as in (1.21). There exists a certain positive constant C * such that if the parameters (ω j , c j ) satisfy

C * 1 + ∥V x ∥ L ∞ t L ∞ x 1 + ∥V ∥ L ∞ t L ∞ x + ∥V ∥ 4 L ∞ t L ∞ x ⩽ v * := min inf j̸ =k h j |c j -c k |, inf j̸ =0 |c j -c 0 | , (1.22) 
then there exist a solution u to (1.11) such that

∥u -V ∥ H 1 ⩽ Ce -λt . ∀t ⩾ T 0 , (1.23) 
where λ = v * 16 and C, T 0 are positive constants depending on the parameters ω 0 , ..., ω K , c 0 , ..., c K .

We have some following discussions about the above theorem.

Remark 1.7.

(1) The condition c 2 0 > 2γ in Theorem 1.6 is a technical condition and we can remove this. The constant a in Proposition 1.4 satises 0 < a < c 2 0 4γ .

Thus, under the condition c 2 0 > 2γ, we can choose a = 1 2 . This fact makes the proof easier and we have

|Φ ′′′ 0 (x)| + |Φ ′′ 0 (x)| + |Φ ′ 0 (x)| + |Φ 0 (x)1 x>0 | + 2c 0 γ -Φ 0 (x) 1 x<0 ≲ e -1 2 |x| .
(1.24)

(2) By similar arguments as above, we can prove that there exists a half-kink solution of (1.2) which satises the denition 1.3. To our knowledge, there are no result about stability or instability of this kind of solution.

(3) Let γ > 0. We give an example of parameters satisfying the condition (1.22) of Theorem 1.6.

As in Remark 1.2, we have

Φ ωj ,cj = √ 2h j c 2 j -γh 2 j cosh(h j x) + c j - 1 2 
, ∀j = 1, ..., K.

Hence, choosing h j ≪ c j , for all j, we have

∥Φ ωj ,cj ∥ 2 L ∞ ⩽ 2h 2 j c 2 j -γh 2 j + c j ≲ h 2 j c j .
By similar arguments as in Remark 1.2, for all 1 ⩽ j ⩽ K, we have

∥∂R j ∥ L ∞ ≲ h 2 j √ c j + h j √ c j + h 3 j c 3 j
. Now, we treat to the case j = 0. Let Φ 0 be the prole given as in Proposition 1.4 associated to the parameters c 0 , ω 0 and R 0 be the associated half-kink solution of (1.2). From (1.20), Remark 1.5 and Remark 1.7 we have

∥Φ 0 ∥ L ∞ ≲ √ c 0 , ∥∂Φ 0 ∥ L ∞ ≲ 1, Thus, ∥R 0 ∥ L ∞ L ∞ ≲ √ c 0 , ∥∂R 0 ∥ L ∞ L ∞ ≲ 1 + c 3 2 0 ≲ c 3 2 0 .
This implies that for h j ≪ c j (j = 1, .., K) the left hand side of (1.22) is estimated by:

C *     1 + c 3 2 0 + K j=1   h 2 j √ c j + h j √ c j + h 3 j c 3 j       1 + √ c 0 + K j=1 h j √ c j     .
Choosing c 0 ≈ 1, the above expression is estimated by:

C *     1 + K j=1   h 2 j √ c j + h j √ c j + h 3 j c 3 j       1 + K j=1 h j √ c j     . (1.25) Let h j , d j ∈ R + , d j ̸ = d k for all j ̸ = k, 1 ⩽ j, k ⩽ K. Set c j = M d j , ω j = 1 4 (h 2 j + M 2 d 2 j
). We have (1.25) is of order M 0 and the right hand side of (1.22) is of order M 1 . Thus, by these choices of parameters, when M is large enough, the condition (1.22) is satised.

The proof of Theorem 1.6 uses similar arguments as in the one of Theorem 1.1. To prove Theorem 1.1, our strategy is the following. Let R be the multi-soliton prole. Our aim is to construct a solution of (1.2) which behaves as R at large times. Using the Gauge transform (2.1), we construct a system of equations of (φ, ψ). Let h, k be the prole under the Gauge transform of R. We see that h, k solves the same system as φ, ψ up to exponential decay pertubations. The decay of these terms is showed by using the separation of solitons. Set φ = φ -h and ψ = ψ -k. We see that if u solves (1.2) then ( φ, ψ) solves (2.10). By using the Banach xed point theorem, we show that there exists a solution of this system which decays exponentially fast at innity. Using this property and combining with the condition (1.8), we may prove a relation between φ and ψ.

This relation allows us to obtain a solution of (1.2) satisfying the desired property. This chapter is organized as follows. In the section 2, we prove the existence of multi-solitons for the equation (1.2). In the section 3, we prove the existence of multi kink-solitons for the equation (1.11). In the section 4, we prove some tools which is used in the proofs in the section 2 and the section 3. More precisely, we prove the exponential decay of the pertubations in the equations of h, k (Lemma 4.1, Lemma 4.4) and the existence of exponential decay solutions of the systems considered in the proofs of the main results in the section 2 (Lemma 4.3).

Before proving the main results, we recall Strichartz estimates and introduce some notations used in this chapter. We need the following denition of admissible pairs. Denition 1.8. Let N ∈ N * . We say that a pair (q, r) is admissible if

2 q = N 1 2 - 1 r , and 2 ⩽ r ⩽ 2N N -2 (2 ⩽ r ⩽ ∞ if N = 1 2 ⩽ r < ∞ if N = 2).
Lemma 1.9. (Strichartz estimates)(see e.g [4, Theorem 2.3.3]) Let S(t) be the Schrödinger group.

The following properties holds:

(i) There exists a constant C such that for all φ ∈ L 2 (R N ), we have

∥S(•)φ∥ L q (R,L r ) ⩽ C∥φ∥ L 2 ,
for every admissible pair (q, r). (ii) Let I be an interval of R and t 0 ∈ I. Let (γ, ρ) be an admissible pair and

f ∈ L γ ′ (I, L ρ ′ (R N )).
Then, for all admissible pair (q, r), the function

t → Φ f (t) = t t0 S(t -s)f (s) ds belong to L q (I, L r (R N )) ∩ C(I, L 2 (R N )).
Moreover, there exists a constant C independent of I such that

∥Φ f ∥ L q (I,L r ) ⩽ C∥f ∥ L γ ′ (I,L ρ ′ ) , for all f ∈ L γ ′ (I, L ρ ′ (R N )).
Notation.

(1) For t > 0, the Strichartz space S([t, ∞)) is dened via the norm

∥u∥ S([t,∞)) = sup (q,r) admissible ∥u∥ L q τ L r x ([t,∞)×R)
The dual space is denoted by Particularly, we denote a ≲ p b if there exists a constant C depending only on the parameters ω 1 , ..., ω K , c 1 , ..., c K such that a ⩽ Cb. (5) Let f ∈ C 1 (R). We use ∂f or f x to denote the derivative in space of the function f . (6) Let f (x, y, z, ..) be a function. We

N ([t, ∞)) = S([t, ∞)) * . ( 2 
denote |df | = |f x | + |f y | + |f z | + ....

Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. We divide our proof into three steps.

Step 1. Preliminary analysis Considering the following transform:

φ(t, x) = exp i 2 x -∞ |u(t, y)| 2 dy u(t, x), ψ = ∂φ -i 2 |φ| 2 φ. (2.1) 
By similar arguments as in [START_REF] Hayashi | Finite energy solutions of nonlinear Schrödinger equations of derivative type[END_REF] and [START_REF] Ozawa | On the nonlinear Schrödinger equations of derivative type[END_REF], we see that if u solves (1.2) then (φ, ψ) solves the following system

           Lφ = iφ 2 ψ -b|φ| 4 φ, Lψ = -iψ 2 φ -3b|φ| 4 ψ -2b|φ| 2 φ 2 ψ, φ | t=0 = φ 0 = exp i 2 x -∞ |u 0 (y)| 2 dy u 0 , ψ | t=0 = ψ 0 = ∂φ 0 -i 2 |φ 0 | 2 φ 0 , (2.2) 
where

L = i∂ t + ∂ xx . Dene P (φ, ψ) = iφ 2 ψ -b|φ| 4 φ, Q(φ, ψ) = -iψ 2 φ -3b|φ| 4 ψ -2b|φ| 2 φ 2 ψ.
Let R be the multi soliton prole given in (1.6). Since R j solves (1.2), for all j, by an elementary calculation, we have

iR t + R xx + i|R| 2 R x + b|R| 4 R = i   |R| 2 R x - K j=1 |R j | 2 R jx   + b   |R| 4 R - K j=1 |R j | 4 R j   . (2.3)
From Lemma 4.1, we have

|R| 2 R x - K j=1 |R j | 2 R jx H 2 + |R| 4 R - K j=1 |R j | 4 R j H 2 ⩽ e -λt , (2.4) 
where λ = 1 16 v * . Thus, we rewrite (2.3) as follows

iR t + R xx + i|R| 2 R x + b|R| 4 R = e -λt v(t, x), (2.5) 
where

v(t) ∈ H 2 (R) is such that ∥v(t)∥ H 2 is uniformly bounded in t. Dene h(t, x) = exp i 2 x -∞ |R| 2 dy R(t, x), (2.6) 
k = h x - i 2 |h| 2 h.
(2.7)

By an elementary calculation, we have

Lh = ih 2 k -b|h| 4 h + e -tλ m(t, x) = P (h, k) + e -tλ m(t, x), Lk = -ik 2 h -3b|h| 4 k -2b|h| 2 h 2 k + e -tλ n(t, x) = Q(h, k) + e -tλ n(t, x),
where m, n satisfy

m = v exp i 2 x -∞ |R| 2 dy -h x -∞ Im(vR) dy, (2.8 
)

n = m x -i|h| 2 m + i 2 h 2 m.
(2.9)

From Lemma 4.2, we have ∥m(t)∥ H 1 + ∥n(t)∥ H 1 uniformly bounded in t. Set φ = φ -h and ψ = ψ -k. Then φ, ψ solve:

L φ = P (φ, ψ) -P (h, k) -e -tλ m(t, x), L ψ = Q(φ, ψ) -Q(h, k) -e -tλ n(t, x).
(2.10)

Set η = ( φ, ψ), W = (h, k), H = -e -tλ (m, n) and f (φ, ψ) = (P (φ, ψ), Q(φ, ψ)). We express solutions of (2.10) in the following form:

η(t) = i ∞ t S(t -s)[f (W + η) -f (W ) + H](s) ds, (2.11) 
where S(t) is the Schrödinger group. Moreover, by using ψ = ∂φ -i 2 |φ| 2 φ, we have

ψ = ∂ φ - i 2 (| φ + h| 2 ( φ + h) -|h| 2 h).
(2.12)

Step 2. Existence a solution of (2.10)

From Lemma 4.3, there exists T * ≫ 1 such that for T 0 ⩾ T * there exists a unique solution η dened on [T 0 , ∞) of (2.10) such that

e tλ (∥η∥ S([t,∞))×S([t,∞)) ) + e tλ (∥η x ∥ S([t,∞))×S([t,∞)) ) ⩽ 1, ∀t ⩾ T 0 , (2.13)
Thus, for all t ⩾ T 0 , we have

∥ φ∥ H 1 + ∥ ψ∥ H 1 ≲ e -λt , (2.14)
Step 3. Existence of multi-solitons Let η be the solution of (2.10) found in step 1. We prove that the solution η = ( φ, ψ) of (2.10) satises the relation (2.12)

. Set φ = φ + h, ψ = ψ + k and v = ∂φ - i 2 |φ| 2 φ.
Since h solves Lh = P (h, k) + e -tλ m(t, x) and φ solves L φ = P (φ, ψ) -P (h, k) -e -tθ m(t, x), we have Lφ = P (φ, ψ). Similarly, Lψ = Q(φ, ψ). We have

Lφ = P (φ, ψ), Lψ = Q(φ, ψ).
Thus,

Lψ -Lv = Q(φ, ψ) -∂Lφ - i 2 L(|φ| 2 φ) = Q(φ, ψ) -∂Lφ - i 2 (L(φ 2 )φ + φ 2 L(φ) + 2∂(φ 2 )∂φ) = Q(φ, ψ) -∂Lφ - i 2 (2Lφ|φ| 2 + 2(∂φ) 2 φ -φ 2 Lφ + 2φ 2 ∂ xx φ) + 4φ|∂φ| 2 ) . (2.15)
Moreover, 

Lφ = P (φ, ψ) = iφ 2 ψ -b|φ| 4 φ = iφ 2 (ψ -v) + iφ 2 v -b|φ| 4 φ. ( 2 
Lψ -Lv = Q(φ, ψ) -∂(iφ 2 (ψ -v)) -|φ| 2 φ 2 (ψ -v) - 1 2 |φ| 4 (ψ -v) -Q(φ, v) = (Q(φ, ψ) -Q(φ, v)) -2iφ∂φ(ψ -v) -iφ 2 ∂(ψ -v) -|φ| 2 φ 2 (ψ -v) - 1 2 |φ| 4 (ψ -v) = -i(ψ 2 -v 2 )φ -3b|φ| 4 (ψ -v) -2b|φ| 2 φ 2 (ψ -v) -2iφ v + i 2 |φ| 2 φ (ψ -v) -iφ 2 ∂(ψ -v) -|φ| 2 φ 2 (ψ -v) - 1 2 |φ| 4 (ψ -v).
(2.17)

Dene ṽ = v -k. Since ψ -ṽ = ψ -v and (2.17) we have

L ψ -Lṽ = ( ψ -ṽ)A( ψ, ṽ, φ, h, k) + ( ψ -ṽ)B( ψ, ṽ, φ, h, k) -i( φ + h) 2 ∂( ψ -ṽ), (2.18) 
where

A = -i( ψ + ṽ + 2k)( φ + h) -3b| φ + h| 4 - 1 2 | φ + h| 4 , B = -2b| φ + h| 2 ( φ + h) 2 -2i( φ + h) ṽ + k + i 2 | φ + h| 2 ( φ + h) -| φ + h| 2 ( φ + h) 2 .
We see that A, B are polynomials of degree at most 4 in ( ψ, ṽ, φ, h, k). Multiplying both sides of (2.18) by ψ -ṽ then taking imaginary part and integrating over space using integration by parts, we obtain

1 2 ∂ t ∥ ψ -ṽ∥ 2 L 2 = Im R ( ψ -ṽ) 2 A( ψ, ṽ, φ, h, k) + ( ψ -ṽ) 2 B( ψ, ṽ, φ, h, k) + i 2 ∂( φ + h) 2 ( ψ -ṽ) 2 dx.
Thus,

1 2 ∂ t ∥ ψ -ṽ∥ 2 L 2 ≲ ∥ ψ -ṽ∥ 2 L 2 (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂( φ + h) 2 ∥ L ∞ ).
By using Grönwall inequality, we obtain

∥ ψ(t) -ṽ(t)∥ 2 L 2 ≲ ∥ ψ(N ) -ṽ(N )∥ 2 L 2 exp N t (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂( φ + h) 2 ∥ L ∞ ds . (2.19) Combining (2.13), (2.14), using k = h x -i 2 |h| 2 h, ṽ = ∂ φ -i 2 (| φ + h| 2 ( φ + h) -|h| 2 h), |h| = |R| and the Sobolev embedding H 1 (R) → L ∞ , we have, for t ⩾ T 0 : ∥ φ + h∥ L ∞ ≲ 1 + ∥h∥ L ∞ , ∥ṽ∥ L ∞ = ∂ φ - i 2 (| φ + h| 2 ( φ + h) -|h| 2 h) L ∞ ≲ ∥∂ φ∥ L ∞ + ∥ φ∥ 3 L ∞ + ∥ φ∥ L ∞ ∥h∥ 2 L ∞ ≲ 1 + ∥∂ φ∥ L ∞ + ∥h∥ 2 L ∞ . Thus, N t (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂( φ + h) 2 ∥ L ∞ ) ds ≲ N t (∥ ψ∥ L ∞ + ∥ṽ∥ L ∞ + ∥k∥ L ∞ )∥ φ + h∥ L ∞ + ∥ φ + h∥ 4 L ∞ + ∥ φ + h∥ L ∞ ∥ṽ + k∥ L ∞ + (∥ φ∥ L ∞ + ∥h∥ L ∞ )(∥∂ φ∥ L ∞ + ∥h x ∥ L ∞ ) ds ≲ N t (1 + ∥ṽ∥ L ∞ + ∥k∥ L ∞ )(1 + ∥h∥ L ∞ ) + 1 + ∥h∥ 4 L ∞ + (1 + ∥h∥ L ∞ )(∥ṽ∥ L ∞ + ∥k∥ L ∞ ) + (1 + ∥h∥ L ∞ )(∥∂ φ∥ L ∞ + ∥h x ∥ L ∞ ) ds ≲ N t 1 + ∥h∥ 4 L ∞ + ∥k∥ L ∞ (1 + ∥h∥ L ∞ ) + ∥ṽ∥ L ∞ (1 + ∥h∥ L ∞ ) + (1 + ∥h∥ L ∞ )(∥∂ φ∥ L ∞ + ∥h x ∥ L ∞ ) ds ≲ N t 1 + ∥h∥ 4 L ∞ + ∥k∥ L ∞ (1 + ∥h∥ L ∞ ) + ∥∂ φ∥ L ∞ (1 + ∥h∥ L ∞ ) + (1 + ∥h∥ L ∞ )(∥∂ φ∥ L ∞ + ∥k∥ L ∞ + ∥h∥ 3 L ∞ ) ds ≲ N t 1 + ∥h∥ 4 L ∞ + ∥k∥ L ∞ (1 + ∥h∥ L ∞ ) + ∥∂ φ∥ L ∞ (1 + ∥h∥ L ∞ ) ds ≲ (N -t)(1 + ∥h∥ 4 L ∞ L ∞ + ∥k∥ L ∞ L ∞ (1 + ∥h∥ L ∞ L ∞ )) + ∥∂ φ∥ L 4 (t,N )L ∞ (∥1∥ L 4 3 (t,N ) + ∥h∥ L 4 3 (t,N )L ∞ ) ≲ (N -t)(1 + ∥R∥ 4 L ∞ L ∞ + (∥h x ∥ L ∞ L ∞ + ∥R∥ 3 L ∞ L ∞ )(1 + ∥R∥ L ∞ L ∞ )) + (N -t) 3 4 (1 + ∥R∥ 4 3 L ∞ L ∞ ) ≲ (N -t)(1 + ∥R∥ 4 L ∞ L ∞ + ∥R x ∥ L ∞ L ∞ (1 + ∥R∥ L ∞ L ∞ )) + (N -t) 3 4 (1 + ∥R∥ 4 3
L ∞ L ∞ ). Thus, there exists a certain positive constant C 0 such that

N t (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂( φ + h) 2 ∥ L ∞ ) ds ⩽ C 0 (N -t)(1 + ∥R∥ 4 L ∞ L ∞ + ∥R x ∥ L ∞ L ∞ (1 + ∥R∥ L ∞ L ∞ )) + (N -t) 3 4 (1 + ∥R∥ 4 3 L ∞ L ∞ ) .
Let C * = 32C 0 . From the assumption (1.8), we have

C 0 (1 + ∥R x ∥ L ∞ L ∞ )(1 + ∥R∥ L ∞ L ∞ ) + ∥R∥ 4 L ∞ L ∞ ⩽ v * 32 = λ 2 .
Hence, x t and let N large enough, we have

N t (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂( φ + h) 2 ∥ L ∞ ) ds ⩽ (N -t)λ.
Combining with (2.14) and (2.19), we obtain, for N large enough:

∥ ψ(t) -ṽ(t)∥ 2 L 2 ≲ e -2λN e (N -t)λ = e -λN -tλ . Let N → ∞, we obtain ∥ ψ(t) -ṽ(t)∥ 2 L 2 = 0.
This implies that ψ = ṽ and we have we obtain that u solves (1.2). Moreover,

ψ = v = ∂φ - i 2 |φ| 2 φ.
∥u -R∥ H 1 = exp - i 2 x -∞ |φ(y)| 2 dy φ -exp - i 2 x -∞ |h(y)| 2 dy h H 1 ≲ ∥φ -h∥ H 1 = ∥ φ∥ H 1
Combining with (2.14), for t ⩾ T 0 , we have

∥u -R∥ H 1 ⩽ Ce -λt ,
for a constant C depending on the parameters ω 1 , ..., ω K , c 1 , ..., c K . This completes the proof of Theorem 1.1.

Proof of Theorem 1.6

In this section, we prove Theorem 1.6. We use the similar idea in the proof of Theorem 1.1.

However, the argument used in this section cannot apply to (1.2) (see Remark 3.1). We divide our proof into three steps:

Step 1. Preliminary analysis

Set v := u x + i 2 |u| 2 u.
By an elementary calculation, we see that if u solves (1.2) then (u, v) solves the following system:

         Lu = -iu 2 v + 1 2 -b |u| 4 u, Lv = iv 2 u + 3 2 -3b |u| 4 v + (1 -2b)|u| 2 u 2 v, u | t=0 = u 0 , v | t=0 = v 0 = ∂u 0 + i 2 |u 0 | 2 u 0 . (3.1) Dene P (u, v) = -iu 2 v + 1 2 -b |u| 4 u, Q(u, v) = iv 2 u + 3 2 -3b |u| 4 v + (1 -2b)|u| 2 u 2 v.
Let V be the multi kink-soliton prole dened in (1.21). Since R j solves (1.2), for all j, by an elementary calculation, we have

iV t + V xx + iV 2 V x + b|V | 4 V = i   V 2 V x - K j=0 R 2 j R jx   + b   |V | 4 V - K j=0 |R j | 4 R j   . (3.2)
From Lemma 4.4, we have

V 2 V x - K j=0 R 2 j R jx H 2 + |V | 4 V - K j=0 |R j | 4 R j H 2 ⩽ e -λt , (3.3) 
for λ = 1 16 v * . Thus, we rewrite (3.2) as follows

iV t + V xx + iV 2 V x + b|V | 4 V = e -λt m(t, x), (3.4) 
where m(t) ∈ H 2 (R) such that ∥m(t)∥ H 2 uniformly bounded in t. Dene

h = V, k = h x + i 2 |h| 2 h.
By an elementary calculation, h, k satisfy the following system.

Lh = -ih 2 k + 1 2 -b |h| 4 h + e -tλ m = P (h, k) + e -tλ m, Lk = ik 2 h + 3 2 -3b |h| 4 k + (1 -2b)|h| 2 h 2 k + e -tλ n = Q(h, k) + e -tλ n.
where n = m x + i|h| 2 m -i 2 h 2 m satises ∥n(t)∥ H 1 uniformly bounded in t. Let ũ = u -h and ṽ = v -k. Then (ũ, ṽ) solves:

Lũ = P (u, v) -P (h, k) -e -tλ m, Lṽ = Q(u, v) -Q(h, k) -e -tλ n. (3.5)
Dene η = (ũ, ṽ), W = (h, k), H = e -tλ (m, n) and f (u, v) = (P (u, v), Q(u, v)). We nd a solution of (3.5) 

in the Duhamel form η = -i ∞ t S(t -s)[f (W + η) -f (W ) + H](s) ds. (3.6) Moreover, from v = u x + i 2 |u| 2 u, we have ṽ = ũx + i 2 (|ũ + h| 2 (ũ + h) -|h| 2 h).
(3.7)

Step 2. Existence a solution of (3.6) From Lemma 4.3, there exists T * ≫ 1 such that for T 0 ≫ T * there exists a unique solution η dened on [T 0 , ∞) of (3.6) such that

e tλ ∥η∥ S([t,∞))×S([t,∞)) + e tλ ∥η x ∥ S([t,∞))×S([t,∞)) ⩽ 1, ∀t ⩾ T 0 , (3.8)
where λ = v * 16 . Thus, for all t ⩾ T 0 , we have ∥ũ∥

H 1 + ∥ṽ∥ H 1 ≲ e -tλ .
(3.9)

Step 3. Existence of multi kink-solitons By using similar arguments as in the proof of Theorem 1.1 we can prove that the solution η = ( φ, ψ) of (3.6) satises the relation (3.7) provided assumption (1.22) is veried. This implies

that ṽ = ũx + i 2 (|ũ + h| 2 (ũ + h) -|h| 2 h). Set u = ũ + h, v = ṽ + k. We have v = u x + i 2 |u| 2 u. (3.10) 
Since (ũ, ṽ) solves (3.5), we infer that u, v solve

Lu = P (u, v), Lv = Q(u, v).
Combining with (3.10), we have u solves (1.2). Moreover, for t ⩾ T 0 , we have

∥u -V ∥ H 1 = ∥ũ∥ H 1 ≲ e -λt .
This completes the proof of Theorem 1.6.

Remark 3.1. We do not have the proof for the construction of multi kink-solitons for (1.2). The reason is that if the prole R in the proof of Theorem 1.1 is not in H 1 (R) then the function h dened as in (2.6) is not in H 1 (R). Thus, the functions m, n dened as in (2.8) and (2.9) are not in H 1 (R) and we can not apply Lemma 4.3 to construct a solution of system (2.10).

4. Some technical lemmas 4.1. Properties of solitons. In this section, we prove some estimates on the multi-soliton prole used in the proof of Theorem 1.1.

Lemma 4.1. There exist T 0 > 0 and a constant λ > 0 such that the estimate (2.4) is uniformly true for t ⩾ T 0 .

Proof. First, we need some estimates on the soliton prole. We have

|R j (x, t)| = |Φ ωj ,cj (x -c j t)| = √ 2h j c 2 j + γh 2 j cosh(h j (x -c j t)) -c j -1 2 ≲ hj ,|cj | e -h j 2 |x-cj t| . Moreover, |∂R j (x, t)| = |∂ϕ ωj ,cj (x -c j t)| = - √ 2 2 h 2 j c 2 j + γh 2 j |sinh(h j (x -c j t)| c 2 j + γh 2 j cosh(h j (x -c j t)) -c j -3 2 ≲ hj ,|cj | e -h j 2 |x-cj t| .
By an elementary calculation, we have

|∂ 2 R j (x, t)| + |∂ 3 R j (x, t)| ≲ hj ,|cj | e -h j 2 |x-cj t| .
For convenience, we set

χ 1 = i|R| 2 R x -i K j=1 |R j | 2 R jx , (4.1) 
χ 2 = |R| 4 R - K j=1 |R j | 4 R j . (4.2) Fix t > 0. For x ∈ R, choose m = m(x) ∈ {1, 2, ..., K} so that |x -c m t| = min j |x -c j t|. For j ̸ = m, we have |x -c j t| ⩾ 1 2 |c j t -c m t| = t 2 |c j -c m |.
Thus, we have

|(R -R m )(x, t)| + |(∂R -∂R m (x, t))| + |∂ 2 R -∂ 2 R m | + |∂ 3 R -∂ 3 R m | ⩽ j̸ =m (|R j (x, t)| + |∂R j (x, t)| + |∂ 2 R j (x, t)| + |∂ 3 R j (x, t)|) ≲ h1,..,h K ,|c1|,..,|c K | δ m (x, t) := j̸ =m e -h j 2 |x-cj t| Recall that v * = inf j̸ =k h j |c j -c k |.
We have

|(R -R m )(x, t)| + |(∂R -∂R m (x, t))| + |∂ 2 R -∂ 2 R m | + |∂ 3 R -∂ 3 R m | ≲ δ m (x, t) ≲ e -1 4 v * t .
Let f 1 , g 1 , r 1 and f 2 , g 2 , r 2 be the polynomials of u, u x , u xx , u xxx and conjugates satisfying:

i|u| 2 u x = f 1 (u, u, u x ), |u| 4 u = f 2 (u, u), ∂(i|u| 2 u x ) = g 1 (u, u x , u xx , u, ..), ∂(|u| 4 u) = g 2 (u, u x , u, ..), ∂ 2 (i|u| 2 u x ) = r 1 (u, u x , u xx , u xxx , u, ..), ∂ 2 (|u| 4 u) = r 2 (u, u x , u xx , u, ..). Denote A = sup |u|+|ux|+|uxx|+|uxxx|⩽ K j=1 ∥Rj ∥ H 4 (|df 1 | + |df 2 | + |dg 1 | + |dg 2 | + |dr 1 | + |dr 2 |),
We have

|χ 1 | + |χ 2 | + |∂χ 1 | + |∂χ 2 | + |∂ 2 χ 1 | + |∂ 2 χ 2 | ⩽ |f 1 (R, R x ) -f 1 (R m , R mx )| + |f 2 (R) -f 2 (R m )| + j̸ =m (|f 1 (R j , R jx )| + |f 2 (R j )|) + |g 1 (R, R x , R xx , ..) -g 1 (R m , R mx , R mxx , ..)| + |g 2 (R, R x , ..) -g 2 (R m , R mx , ..)| + j̸ =m (g 1 (R j , R jx , R jxx , ..) + g 2 (R j , R jx ), ..) + |r 1 (R, R x , R xx , R xxx , ..) -r 1 (R m , R mx , R mxx , R mxxx , ..)| + |r 2 (R, R x , R xx , ..) -r 2 (R m , R mx , R mxx , ..)| + j̸ =m (r 1 (R j , R jx , R jxx , R jxxx , ..) + r 2 (R j , R jx , R jxx , ..)) ⩽ A(|R -R m | + |R x -R mx | + |R xx -R mxx | + |R xxx -R mxxx |) + j̸ =m A(|R j | + |R jx | + |R jxx | + |R jxxx |) ⩽ 2A j̸ =m (|R j | + |R jx | + |R jxx | + |R jxxx |) ≲ p δ m (t, x).
In particular,

∥χ 1 ∥ W 2,∞ + ∥χ 2 ∥ W 2,∞ ≲ p e -1 4 v * t .
Moreover, we have

∥χ 1 ∥ W 2,1 + ∥χ 2 ∥ W 2,1 ≲ K j=1 (∥|R j | 2 R jx ∥ L 1 + ∥∂(|R j | 2 R jx )∥ L 1 + ∥∂ 2 (|R j | 2 R jx )∥ L 1 + ∥R 5 j ∥ L 1 + ∥∂(|R j | 4 R j )∥ L 1 + ∥∂ 2 (|R j | 4 R j )∥ L 1 ) ≲ K j=1 (∥R j ∥ 3 H 1 + ∥R j ∥ 3 H 2 + ∥R j ∥ 3 H 3 + ∥R j ∥ 5 H 1 + ∥R j ∥ 5 H 1 + ∥R j ∥ 5 H 2 ) < C < ∞
By Holder inequality, for 1 < r < ∞, we have

∥χ 1 ∥ W 2,r + ∥χ 2 ∥ W 2,r ≲ p e -(1-1 r ) 1 4 v * t , ∀r ∈ (1, ∞).
Choosing r = 2 we obtain:

∥χ 1 ∥ H 2 + ∥χ 2 ∥ H 2 ≲ p e -v * 8 t ,
Thus, for t ⩾ T 0 , where T 0 large enough depend on the parameters ω 1 , ..., ω K , c 1 , ..., c K , we have 

∥χ 1 ∥ H 2 + ∥χ 2 ∥ H 2 ⩽ e -v * 16 t , ∀t ⩾ T 0 . Let λ = v *
∥m∥ H 2 ≲ ∥v∥ H 2 + ∥h∥ H 2 ∥v∥ H 2 ∥R∥ H 2 ⩽ C 1 ,
for some constant C 1 > 0. From, (2.9), we have

∥n∥ L 2 ≲ ∥m x ∥ L 2 + ∥h∥ 2 H 1 ∥m∥ H 1 ⩽ ∥m∥ H 1 (1 + ∥h∥ 2 H 1 ) ⩽ C 2 ,
for some constant C 2 > 0. Moreover, we have

∥n x ∥ L 2 ≲ ∥m xx ∥ L 2 + ∥h∥ 2 H 1 ∥m∥ H 1 ⩽ ∥m∥ H 2 (1 + ∥h∥ 2 H 1 ) ⩽ C 3 ,
for some constant C 3 > 0. Choosing C = D + C 1 + C 2 + C 3 , we obtain the desired result. □ 4.3. Existence solution of system equation. In this section, we prove the existence of solutions of (2.11). For convenience, we recall the equation:

η(t) = i ∞ t S(t -s)[f (W + η) -f (W ) + H](s) ds, (4.3) 
where η = (ũ, ṽ) is unknown function, W = (h, k), H = -e -tλ (m, n) and f (u, v) = (P (u, v), Q(u, v)), where P, Q are dened by

P (u, v) = -iu 2 v + 1 2 -b |u| 4 u, Q(u, v) = iv 2 u + 3 2 -3b |u| 4 v + (1 -2b)|u| 2 u 2 v.
The existence of solutions of (4.3) is established in the following lemma. Lemma 4.3.

Let H = H(t, x) : [0, ∞) × R → C 2 , W = W (t, x) : [0, ∞) × R → C 2 be given vector
functions which satisfy for some C 1 > 0, C 2 > 0, λ > 0, T 0 ⩾ 0:

∥W (t)∥ L ∞ ×L ∞ + e λt ∥H(t)∥ L 2 ×L 2 ⩽ C 1 ∀t ⩾ T 0 , (4.4 
)

∥∂W (t)∥ L 2 ×L 2 + ∥∂W (t)∥ L ∞ ×L ∞ + e λt ∥∂H(t)∥ L 2 ×L 2 ⩽ C 2 , ∀t ⩾ T 0 . (4.5) 
Consider equation (4.3). There exists a constant λ * such that if λ ⩾ λ * then there exists a unique solution η to (4.3) on [T 0 , ∞) × R satisfying

e λt ∥η∥ S([t,∞))×S([t,∞)) + e λt ∥∂η∥ S([t,∞))×S([t,∞)) ⩽ 1, ∀t ⩾ T 0 .
Proof. We use similar arguments as in [START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF][START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF]. We rewrite (4.3) into η = Φη. We shall show that, for λ suciently large, Φ is a contraction map in the ball

B = η : ∥η∥ X := e λt ∥η∥ S([t,∞))×S([t,∞)) + e λt ∥∂η∥ S([t,∞))×S([t,∞)) ⩽ 1 .
Step

1. Proof that Φ maps B into B Let t ⩾ T 0 , η = (η 1 , η 2 ) ∈ B, W = (w 1 , w 2 ) and H = (h 1 , h 2 ). By Strichartz estimates, we have ∥Φη∥ S([t,∞))×S([t,∞)) ≲ ∥f (W + η) -f (W )∥ N ([t,∞))×N ([t,∞)) (4.6) + ∥H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L 2 x ([t,∞)) . (4.7) 
For (4.7), using (4.4), we have

∥H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L 2 x ([t,∞)) = ∥h 1 ∥ L 1 τ L 2 x ([t,∞)) + ∥h 2 ∥ L 1 τ L 2 x ([t,∞)) ≲ ∞ t e -λτ dτ ⩽ 1 λ e -λt .
For (4.6), we have

|P (W + η) -P (W )| = |P (w 1 + η 1 , w 2 + η 2 ) -P (w 1 , w 2 )| ≲ |(w 1 + η 1 ) 2 (w 2 + η 2 ) -w 2 1 w 2 | + ||η 1 + w 1 | 4 (η 1 + w 1 ) -|w 1 | 4 w 1 | ≲ |η 1 | + |η 2 | + |η 1 | 5 Thus, ∥P (W + η) -P (W )∥ N ([t,∞)) ≲ ∥η 1 ∥ N ([t,∞)) + ∥η 2 ∥ N ([t,∞)) + ∥η 5 1 ∥ N ([t,∞)) ≲ ∥η 1 ∥ L 1 τ L 2 x (t,∞) + ∥η 2 ∥ L 1 τ L 2 x (t,∞) + ∥η 5 1 ∥ L 1 τ L 2 x (t,∞) ≲ ∞ t e -λτ dτ + ∞ t ∥η 1 (τ )∥ 5 L 10 dτ ≲ 1 λ e -λt + ∞ t ∥η 1 (τ )∥ 7 2 L 2 ∥∂η 1 (τ )∥ 3 2 L 2 ≲ 1 λ e -λt + ∞ t e -(7/2λ+3/2λ)τ dτ ≲ 1 λ e -λt + 1 7/2λ + 3/2λ e -(7/2λ+3/2λ)t ≲ 1 λ e -λt .
By similar arguments as above, we have

∥Q(W + η) -Q(W )∥ N ([t,∞)) ≲ 1 λ e -λt .
Thus, for λ large enough, we have

∥Φη∥ S([t,∞)×S([t,∞))) ⩽ 1 10 e -λt . It remains to estimate ∥∂Φη∥ S([t,∞)×S([t,∞))) . By Strichartz estimate we have ∥∂Φη∥ S([t,∞)×S([t,∞))) ≲ ∥∂(f (W + η) -f (W ))∥ N ([t,∞))×N ([t,∞)) (4.8) 
+ ∥∂H∥ N ([t,∞))×N ([t,∞)) .

(4.9)

For (4.9), using (4.5), we have

∥∂H∥ N ([t,∞))×N ([t,∞)) ⩽ ∥∂h 1 ∥ L 1 τ L 2 x ([t,∞)) + ∥∂h 2 ∥ L 1 τ L 2 x ([t,∞)) ≲ ∞ t e -λτ dτ = 1 λ e -λt . (4.10) 
For (4.8), we have

∥∂(f (W + η) -f (W ))∥ N ([t,∞))×N ([t,∞)) = ∥∂(P (W + η) -P (W ))∥ N ([t,∞)) + ∥∂(Q(W + η) -Q(W ))∥ N ([t,∞)) Furthermore, |∂(P (W + η) -P (W ))| ≲ |∂((w 1 + η 1 ) 2 (w 2 + η 2 ) -w 2 1 w 2 )| + |∂(|w 1 + η 1 | 4 (w 1 + η 1 ) -|w 1 | 4 w 1 )| ≲ |∂η|(|η| 2 + |W | 2 ) + |∂W |(|η| 2 + |W ||η|) + |∂η|(|η| 4 + |W | 4 ) + |∂W |(|η| 4 + |η||W | 3 ).
Thus, we have

∥∂(P (W + η) -P (W ))∥ N ([t,∞)) ≲ ∥|∂η|(|η| 2 + |W | 2 )∥ N ([t,∞)) + ∥|∂W |(|η| 2 + |W ||η|)∥ N ([t,∞)) (4.11) + ∥|∂η|(|η| 4 + |W | 4 )∥ N ([t,∞)) + ∥|∂W |(|η| 4 + |η||W | 3 )∥ N ([t,∞)) .
(4.12) For (4.11), using (4.4) and (4.5) and the assumption η ∈ B we have

∥|∂η|(|η| 2 + |W | 2 )∥ N ([t,∞)) + ∥|∂W |(|η| 2 + |W ||η|)∥ N ([t,∞)) ≲ ∥|∂η||η| 2 ∥ L 1 τ L 2 x ([t,∞)) + ∥|∂η||W | 2 ∥ L 1 τ L 2 x ([t,∞)) + ∥|∂W ||η| 2 ∥ L 1 τ L 2 x ([t,∞)) + ∥|∂W ||W ||η|∥ L 1 τ L 2 x ([t,∞)) ≲ ∥|∂η|∥ L 2 τ L 2 x ([t,∞)) ∥|η|∥ 2 L 4 τ L ∞ + ∥|∂η|∥ L 1 τ L 2 x ([t,∞)) ∥|W |∥ 2 L ∞ L ∞ + ∥|∂W |∥ L ∞ L ∞ ∥|η|∥ L 4 τ L ∞ x ([t,∞)) ∥|η|∥ L 4/3 τ L 2 x ([t,∞)) + ∥|W |∥ L ∞ L ∞ ∥|∂W |∥ L ∞ L ∞ ∥|η|∥ L 1 τ L 2 x ([t,∞)) ≲ 1 λ e -λt .
For (4.12), using (4.4) and (4.5) and the assumption η ∈ B we have

∥|∂η|(|η| 4 + |W | 4 )∥ N ([t,∞)) + ∥|∂W |(|η| 4 + |η||W | 3 )∥ N ([t,∞)) ≲ ∥|∂η|(|η| 4 + |W | 4 )∥ L 1 τ L 2 x ([t,∞)) + ∥|∂W |(|η| 4 + |η||W | 3 )∥ L 1 τ L 2 x ([t,∞)) ≲ ∥∂η∥ L ∞ τ L 2 x ([t,∞)) ∥η∥ 4 L 4 τ L ∞ x ([t,∞)) + ∥W ∥ 4 L ∞ L ∞ ∥∂η∥ L 1 τ L 2 x ([t,∞)) + ∥∂W ∥ L ∞ L 2 ∥η∥ 4 L 4 τ L ∞ x ([t,∞)) + ∥∂W ∥ L ∞ L ∞ ∥|W |∥ 3 L ∞ L ∞ ∥η∥ L 1 τ L 2 x ([t,∞)) ≲ 1 λ e -λt .
Hence,

∥∂(P (W + η) -P (W ))∥ N ([t,∞)) ≲ 1 λ e -λt . (4.13) 
By similar arguments, we have Step 2. Φ is contraction map on B By using (4.4) and (4.5) and similar estimates as for the proof of (4.16), we can show that, for

∥∂(Q(W + η) -Q(W ))∥ N ([t,∞)) ≲ 1 λ e -λt .
∥∂(f (W + η) -f (W ))∥ N ([t,∞))×N ([t,∞)) ≲ 1 λ e -λt . ( 4 
any η ∈ B, κ ∈ B, ∥Φη -Φκ∥ X ⩽ 1 2 ∥η -κ∥ X .
By Banach xed point theorem there exists a unique solution on B of (4.3). □ 4.4. Properties of multi kink-solitons prole. In this section, we prove some estimates on the multi kink-solitons prole used in the proof of Theorem 1.6. for all 1 ⩽ j ⩽ K. Dene

χ 1 = iV 2 V x -i K j=0 R 2 j R jx , χ 2 = |V | 4 V - K j=0 |R j | 4 R j .
Fix t > 0. Using similar argument as in the proof of Lemma 4.1, we have:

|(R -R m )(x, t)| + |(∂R -∂R m )(x, t)| + |(∂ 2 R -∂ 2 R m )(x, t)| + |∂ 3 R -∂ 3 R m | ≲ e -1 4 v * t .
Let f 1 , g 1 , r 1 and f 2 , g 2 , r 2 be the polynomials of u, u x , u xx , u xxx and their conjugates such that for all u ∈ H 3 (R): ≲ p e -1 4 v * t .

In all case we have ∥χ 1 (t)∥ W 2,∞ + ∥χ 2 (t)∥ W 2,∞ ≲ p e -1 4 v * t .

(4.17)

On one hand,

∥χ 1 (t)∥ W 2,1 ≲ K j=0 (∥R 2 j R jx ∥ L 1 + ∥∂(R 2 j R jx )∥ L 1 + ∥∂ 2 (R 2 j R jx )∥ L 1 ) ≲ K j=1 ∥R j ∥ 3 H 3 + ∥∂R 0 ∥ W 2,1 < C < ∞.
On the other hand, ∥χ 2 (t)∥ W 2,1 

≲ ∥|V | 4 V -|R 0 | 4 R 0 ∥ W 2,1 + K j=1 ∥|R j | 5 ∥ W 2,1 ≲ |R 0 | 4 K j=1 |R j | + K j=1 |R j | 5 W 2,1 + K j=1 ∥R j ∥ 5 W 2,1 ≲ K j=1 ∥|R 0 | 4 |R j |∥ W 2,1 + K j=1 ∥R j ∥ 5 W 2,1 ≲ K j=1 (∥R j ∥ W 2,1 ∥R 0 ∥ 4 W 2,∞ + ∥R j ∥ 5 H 3 ) < C < ∞.

  ) For z = (a, b) ∈ C 2 a vector, we denote |z| = |a| + |b|. (3) We denote a ≲ b, for a, b > 0, if a is smaller than b up to multiplication by a positive constant. Moreover, we denote a ≈ b if a equal to b up to multiplication by a positive constant. (4) We denote a ≲ k b if there exists a constant C(k) depending only on k such that a ⩽ C(k)b.

(2. 20 ) 2 x

 202 Dene u = exp -i -∞ |φ(y)| 2 dy φ. Combining (2.20) with the fact that (φ, ψ) solves Lφ = P (φ, ψ), Lψ = Q(φ, ψ),

Lemma 4 . 4 .

 44 There exist T 0 > 0 and a constant λ > 0 such that the estimate (3.3) is uniformlytrue for t ⩾ T 0 . Proof. For convenience, set R = K j=1 R j .By similar arguments in the proof of Lemma 4.1, we have|R j (x, t)| + |∂R j (x, t)| + |∂ 2 R j (x, t)| + |∂ 3 R j (x, t)| ≲ hj ,|cj | e -h j 2 |x-cj t| ,

  For x ∈ R, we choose m = m(x) ∈ N such that |x -c m t| = min j∈N |x -c j t|.If m ⩾ 1 then by the assumption c 0 < c j for j > 0 we have x > c 0 t. Thus, by the asymptotic behaviour of Φ 0 as in Remark 1.7, we can see R 0 as a soliton. More precise, we have|R 0 (t, x)| + |R ′ 0 (t, x)| + |R ′′ 0 (t, x)| + |R ′′′ 0 (t, x)| ≲ e -1 2 |x-c0t| ≲ e -1 4 v * t .

iu 2 uf 1 (f 2 (g 1 (g 2 (r 1 (, 2 ( 2 (

 21212122 x = f 1 (u, u, u x ), |u| 4 u = f 2 (u, u), ∂(iu 2 u x ) = g 1 (u, u x , u xx , u, ..), ∂(|u| 4 u) = g 2 (u, u x , u, ..), ∂ 2 (iu 2 u x ) = r 1 (u, u x , u xx , u xxx , u, ..), ∂ 2 (|u| 4 u) = r 2 (u, u x , u xx , u, ..). Denote A = sup |u|+|ux|+|uxx|+|uxxx|⩽∥R0∥ W 4,∞ + K j=1 ∥Rj ∥ H 4 (R) (|df 1 | + |df 2 | + |dg 1 | + |dg 2 | + |dr 1 | + |dr 2 |).In the case m = 1, we have|χ 1 | + |χ 2 | + |∂χ 1 | + |∂χ 2 | + |∂ 2 χ 1 | + |∂ 2 χ 2 | ≲ |R 0 | 2 |R 0x | + |R 0 | 5 + |f 1 (V, ..) -f 1 (R, ..)| + |f 2 (V, ...) -f 2 (R, ..)| + |g 1 (V, ..) -g 1 (R, ..)| + |g 2 (V, ..) -g 2 (R, ..)| + |r 1 (V, ..) -r 1 (R, ..)| + |r 2 (V, ..) -r 2 (R, ..)| + |f 1 (R, R x , R) -K j=1 R j , R jx , R j )| + |f 2 (R, R) -K j=0 R j , R j )| + |g 1 (R, R x , ..) -K j=1 R j , R jx , ..)| + |g 2 (R, R x , ..) -K j=0 R j , R jx , ..)| + |r 1 (R, R x , ..) -K j=0 R j , R jx , ..)| + |r 2 (R, R x , ..) -K j=0 r 2 (R j , R jx , ..)| ≲ |R 0 | 2 |R 0x | + |R 0 | 5 + A|R 0 | + A(|(R -R m )(x, t)| + |(∂R -∂R m )(x, t)| + |(∂ 2 R -∂ 2 R m )(x, t)| + |∂ 3 R -∂ 3 R m |) =m (|R j | + |∂R j | + |∂ 2 R j | + |∂ 3 R j |) ≲ |R 0 | 2 |R 0x | + |R 0 | 5 + A|R 0 | + A K j=1,j̸ =m (|R j | + |∂R j | + |∂ 2 R j | + |∂ 3 R j |) ≲ p e -1 4 v * t ,In the case m = 0, we have|χ 1 | + |χ 2 | + |∂χ 1 | + |∂χ 2 | + |∂ 2 χ 1 | + |∂ 2 χ 2 | ≲ v=1|f v (V, V x , ..) -f v (R 0 , ∂R 0 , ..)| + |g v (V, V x , ..) -g v (R 0 , ∂R 0 , ..)| + |r v (V, V x , ..) -r v (R 0 , ∂R 0 )|) + j=1,...,K;v=1,|f v (R j , R jx , ..)| + |g v (R j , R jx , ..)| + |r v (R j , R jx , ..)|) ≲ A|R| + A K j=1 (|R j | + |∂R j | + |∂ 2 R j | + |∂ 3 R j |)

  by similar arguments as in [5, Proof of Lemma 2], we can prove that Im(Φ ω,c ∂ x Φ ω,c ) = 0.

	Thus, Φ ω,c solves							
	-Φ xx + ω -	c 2 4	Φ -	c 2	|Φ| 2 Φ +	3 16	γ|Φ| 4 Φ = 0.	(1.15)
	Now, we give the denition of a half-kink of (1.2).			
	Denition 1.3. The function R ω,c is called a half-kink solution of (1.2) if R ω,c is of the form
	(1.12) and the associated Φ ω,c is a real valued function solving (1.15) and satisfying:	

  Prove the boundedness of v, m, n. Let v, m and n be given as in (2.3), (2.8) and (2.9) respectively. In this section, we prove the uniform in time boundedness in H 2 (R) of v and in H 1 (R) of m, n. We have the following result. Lemma 4.2. There exist C > 0 and T 0 > 0 such that for all t > T 0 the functions v, m, n satisfy∥v(t)∥ H 2 + ∥m(t)∥ H 1 + ∥n(t)∥ H 1 ⩽ C,Proof. Let χ 1 and χ 2 be dened as in (4.1) and (4.2) respectively. We have e -λt v = χ 1 + bχ 2 . Lemma 4.1, we have ∥v(t)∥ H 2 ⩽ D, for some constant D > 0. From (2.8), we have

	16 , we obtain the desired result.	□
	4.2. By	

  Thus,∥χ 1 (t)∥ W 2,1 + ∥χ 1 (t)∥ W 2,1 < ∞.From (4.17) and (4.18), using Hölder inequality, we have∥χ 1 (t)∥ H 2 + ∥χ 2 (t)∥ H 2 ≲ p e -1 8 v * t .

	(4.18)

Let T 0 be large enough, we have

∥χ 1 (t)∥ H 2 + ∥χ 2 (t)∥ H 2 ⩽ e -1 16 v * t , ∀t ⩾ T 0 .

Setting λ = 1 16 v * , we obtain the desired result. □
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