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CONSTRUCTION OF MULTI-SOLITONS AND MULTI KINK-SOLITONS OF
DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS

PHAN VAN TIN

ABsTRACT. We look for solutions to derivative nonlinear Schrodinger equations built upon soli-
tons. We prove the existence of multi-solitons i.e. solutions behaving at large time as the sum
of finite solitons. We also show that one can attach a kink at the begin of the sum of solitons
i.e multi kink-solitons. Our proofs proceed by fixed point arguments around the desired profile,
using Strichartz estimates.
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1. INTRODUCTION

We consider the derivative nonlinear Schrodinger equation:

{z‘ut + Usp + ia|ulPuy + ipu?ty + f(u) =0, (1.1)

u(0) = up.

where o, p € R, f : C — C is a given function and u is a complex valueed function of (¢,z) € RxR.

In [33, 34], Tsutsumi and Fukuda used an approximation argument to prove the existence of
solutions of (1.1) in the case @« = —2, p = —1. In this case with f = 0, Biagioni and Linares [3]
proved that the solution map from H*(R) to C([—T,T], H*(R)) is not locally uniformly continuous,
for T > 0 and s < 1. The Hz solution in this case is global if |uol|2. < 27 by the work of
Miao-Wu-Xu [29]. Later, Guo and Wu [17] improved this result; that is, H2 solution is global if
|luol|22 < 4m. The Cauchy problem of (1.1) was also studied as in [32], where gauge transformation
and Fourier restriction method are used to obtain local well-posedness in H®, s > 1/2. In [31],
Ozawa studied the Cauchy problem and gave a sufficient condition of global well-posedness for
(1.1). The proof was used gauge transformations which reduce the original equations to systems of
equations without derivative nonlinearities. In [19, 20], in the case o = 2u, Hayashi-Ozawa proved
the unique global existence of solutions to (1.1) in Sobolev spaces and in the weighted spaces with
smallness on the initial data ||ug||7. < %. In the case a = =2, p = —1, f = 0, Wu [35] improved
the global results in [19, 20]. More precisely, the author proved that the solutions exist globally in
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time under smallness on the initial data ||ug||z> < V27 + €., where ¢, is a small positive constant.
Later, Wu [36] improved this results for larger bounded on the initial data ||ug|| 2 < v4m. The
proof combines a gauge transformation and conservation laws with a sharp Gagliardo-Nirenberg
inequality. In [13], by using variational argument, Fukaya-Hayashi-Inui gave results covering the
result of Wu [36]. The authors showed that in the case f =0, « = 1, u = 0, the H! solutions of
(1.1) exist globally in time for the initial satisfies ||ugl|3. < 47 or [jug||3. = 47 and P(ug) < 0,
where P is the momentum functional which is conserved under the flow of (1.1). In [7], Colliander-
Keel-Staffilani-Takaoka-Tao proved by the so-called I-method the global well posedness in H*(R),
s > 3 of (1.1) if [Jug||2. < 27 (see also [6]). In the case f =0 and p = 0, (1.1) is a completely
integrable equation. The complete integrability structure of equation was used to prove global
existence of solutions in H*?(R) by [21] and in H*(R), s > % by [1].

In the case p = 0 and f(u) = blu|*u, there were a lot of works on studying stability and
instability of solitons of (1.1). The family of solitons of (1.1) has two parameters (w,c). In the
case b = 0, Guo and Wu [16] proved that the solitons are orbitally stable when w > % and ¢ <0
by using the abstract theory of Grillakis-Shatah-Strauss [14, 15]. After that, Colin and Ohta [5]
improved this result for all w > % using variational techniques. In [30], Ohta proved that for each
b > 0 there exists a unique s* = s*(b) > 0 € (0,1) such that the soliton u, . is orbitally stable if
—2¢/w < ¢ < 2s*y/w and orbitally unstable if 2s*y/w < ¢ < 24/w. In the case b < 0, the stability
result is obtained in [18]. In the case b = 0, Kwon-Wu [22] proved a stability result of solitons in
the zero mass case. Removing the effect of scaling in the stability result of this work is an open
question.

Our main goal of this paper is to study the multi-solitons theory of (1.1).

1.1. Multi-solitons. First, we focus on studying the following special form of (1.1):
ity + Uy + ilul?ug + blul*u = 0. (1.2)

Our first goal in this paper is to study the long time behaviour of solutions of (1.2). More pre-
cisely, we study the multi-solitons theory of (1.2). The existence of multi-solitons is a step towards
the proof of the soliton resolution conjecture, which states that all global solutions of a dispersive
equation behave at large times as a sum of a radiative term and solitons. The theory of multi-
soliton has attracted a lot of interest. In [23, 24], Le Coz-Li-Tsai proved existence and uniqueness
of finite and infinite soliton and kink-soliton trains of classical nonlinear Schrédinger equations,
using fixed point arguments around of the desired profile. Another method was introduced in
[26] for the simple power nonlinear Schrédinger equation with L2-subcritical nonlinearities. The
proof was established by two ingredients: uniform estimates and a compactness property. The
arguments were later modified to obtain the results for L%-supercritical equations [10] and for
profiles made with excited states [8]. One can also cite the works on the logarithmic Schrédinger
equation (logNLS) in the focusing regime in [12]. In [37], the inverse scattering transform method
(IST) was used to construct multi-solitons of the one dimensional cubic focusing NLS. We would
like also to mention the works on the non-linear Klein-Gordon equation [11] and [9], and on the
stability of multi-solitons for generalized Korteweg-de Vries equations and L2-subcritical nonlinear
Schrédinger equations from Martel, Merle and Tsai [27],[28]. In [25], Le Coz-Wu proved a stability
result of multi-solitons of (1.2) in the case b = 0. Our motivation is to prove the existence of a
multi-solitons in a similar sense as in [24, 23]. The method used in [24, 23] cannot apply directly in
our case. The reason is the appearance of the derivative nonlinearities. To overcome this difficulty,
we use a Gauge transformation to obtain a system of Schrédinger equations without derivative
nonlinearities. We may use Strichartz estimates and fixed point argument to construct a suitable
solution of this system. This solution satisfies a relation which is proved by using the Grénwall
inequality and the condition on the parameters and we obtain a solution of (1.2). This solution
satisfies the desired property.

Consider equation (1.2). The soliton of equation (1.2) is a solution of the form R, .(t,z) =
e“td, o(z — ct), where ¢,, . € H'(R) solves

—ue + WO +ichy —i|9|Ps — b[*Gd =0, xER. (1.3)
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Applying the following gauge transform to ¢, .

bucle) = e (i5e = [ 1@ucPay).

— 00

it is easy to verify that ®,, . (see e.g [5, Proof of Lemma 2|) satisfies the following equation.

¢ ¢ 3 16
P — 7 )t SloPe - @[ =0, =1+ b 1.4
The positive even solution of (1.4) is explicitly obtained by: if v > 0 (b > %g),
2(4w—c?) £ _o cc<?
2 () = { VT (o—e?) cosh(Viw—ca) e 1 .\/5 c < 2y/w, w5
(G if ¢ = 2/,

and if v <0 (b< —3),

2(4w — c?)

if —2vw<c< —2s,v/w,
2 4+ v(4w — ¢?) cosh(viw — 2x) — ¢ v v

®} o(x) =

where s, = s.(v) = \/g . We note that the following condition on the parameters v and (w, ¢) is

a necessary and sufficient condition for the existence of non-trivial solutions of (1.2) vanishing at
infinity (see [2]):

-3
if’y>0(<:)b>1—6)then —2y/w < ¢ < 2v/w,

-3
if y<0(&b< 1—6) then — 2w < ¢ < —25,1/w.

Let (cj,w;) satisfying for each 1 < j < K the condition of existence of soliton. For each j €
{1,2,.., K}, we set
Rj(t,x) = € Ry, ., (t, ).

The profile of a multi-soliton is a sum of the form:

K
R=>R;. (1.6)

A solution of (1.2) is called a multi-soliton if

lu(t) — R(t)||gr — 0 as ¢ — oo,

For convenience, we set h; = | /4w; — c?. We rewrite

Dy ey (1) = V2hy ()2 + 902 cosh(hyz) — ;) (1.7)

S

As each soliton is in H*°(R), we have R € H*°(R). Our first main result is the following.

Theorem 1.1. Let K € N* and for each 1 < j < K, let (05,¢j,w;) be a set of parameters
such that 0; € R, ¢; # c, for j # k and c; such that —2,/w; < ¢; < 2,/w; if v > 0 and
—2/wj < ¢j < =2s./wj if v < 0. The multi-soliton profile R is given as in (1.6). Then there
exists a certain positive constant C.. such that if the parameters (w;, c;) satisfy

Cu (Ut IRl ) (Ut IRl sonze) + [ BlEe e ) S 0= il hsley —cul. (18)

then there exist Ty > 0 depending on wy, ...,wk, €1, ..., ¢k and a solution u of (1.2) on [Ty, 00) such
that

lu— Rl < Ce ™, Vt>T,, (1.9)

where \ = 1= and C is a positive constant depending on the parameters wi, ...,wk,C1, ..., Ck -

We observe that the formula for solitons in the case v > 0 and in the case v < 0 is similar.
Thus, in the proof of Theorem 1.1, we only consider the case v > 0. The case v < 0 is treated by
similar arguments.
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Remark 1.2. We give an example of parameters satisfying (1.8). Let d; < 0, h; € R for all
j € {1,2,..., K} such that d; # dj, for all j # k. Let (¢;,w;) = (Md;, 4(h2 Mzd?)). We prove
that for M large enough, the condition (1.8) is satisfied. By this choosing, we have h; < |¢;| and
¢j < 0 for all j. We have

1@u;.c; IF <

Moreover,

Njw

0Py, c; = 7h2 /c +fyh2 sinh(h;a (w/cf Jrfyh? cosh(h;x) — cj)_

Thus, for all j, we obtain

0P, ;| S B34/ 3 +vh2|sinh(h;z)] (, /c3 + yh3 cosh(hjx) — cj)
gt
<h3 (w/c? + yh3 cosh(hjz) — cj> ’

h2

[N

In the addition, we have

10R;]|Loe = [|0¢w; c; [l & [[0Du; e .

wj,Cj wj,Cj

Lo

.
< 0%, + '—;'||<I>wj,cj||m TS
2 5

= lejl +

|CJ| Viel®

Thus, the left hand side of (1.8) is bounded by

o1+ X ( e + hy ) 1+ M hy (1.10)
* C] 5 . .
1<K VI Ve l? 1<G<K 1 1<k G

By our choosing, (1.10) is order M= and the right hand side of (1.8) is order M'. Thus, (1.8) is
satisfied for M large enough.

1.2. Multi kink-solitons. Second, we consider another special case of (1.1) as follows
iy + Ugg + 1T + blu|*u = 0. (1.11)

Our goal is to construct multi kink-solitons of (1.11). The motivation comes from [24, 23], where
the authors have constructed an infinite multi kink-soliton train for classical nonlinear Schrodinger
equations by using fixed point arguments. However, in the case of (1.11), this method can not
directly be used due to the appearing of a derivative term. To overcome this difficulty, use a
transformation and work on a system of two equations without derivative nonlinearites.

Consider the equation (1.11). First, we would like to define a kink solution of (1.11). Let R, .
be a smooth solution of (1.11) of the form:

Ry, (t,z) = 6i“’t¢)w7c(x —ct), (1.12)
where ¢, . is smooth and solves
—Puz + WP+ ich, —ip? D, —blo[*¢ =0, x€R. (1.13)
If ¢y [r+€ H'(RT) then the following Gauge transform is well defined:

e i [ 5
D, . =exp —Z§$ + 1 |¢w,6(y)| dy | du e

Since ¢, solves (1.1 w,c 18 smooth and solves

3), @
2
1
04) o 7Im(<1><1> @ - ol + el =0, o= 516, g

_(I):L’x
+ ( 3 3
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Since @, . |r+ € H?(RT), by similar arguments as in [5, Proof of Lemma 2], we can prove that
In(Py,c0:Py,c) = 0.

Thus, ®,, . solves

~d,, + <w 4)<I>|<I>|2<I>+ 7|®|*® = 0. (1.15)

Now, we give the definition of a half-kink of (1.2).

Definition 1.3. The function R, . is called a half-kink solution of (1.2) if R, . is of the form
(1.12) and the associated ®,, . is a real valued function solving (1.15) and satisfying:

hm d(x) £ 0,

z—oo (1.16)
lim ®(x) =0,

T—Foo

where@:w—§,f:R—>]R.

For more convenience, we define

_ ¢ 3
fls)= 58" = 1678

The following result about the existence of a half-kink profile is stated in [23] as follows.

Proposition 1.4. Let f : R — R be a C' function with f(0) = 0 and define F(s fo
For w e R, let

1
¢(@) :=inf {g >0,F(¢) — 5@42 = o}
and assume that there exists 01 € R such that

Cl@) >0, f(0)—w1 <0, f(¢(@))—wi¢(@)=0. (1.17)

Then, for & = @, there ewists a half-kink profile ® € C?(R) of (1.16) i.e ® is unique (up to
translation), positive and satisfies ® > 0 on R and the boundary conditions

wglzlooq)(m) =0, lim ®(z) = ((@w1) > 0. (1.18)
If in addition,
J(¢(@1)) — @1 <0, (1.19)
then for any 0 < a < @w; — max{f'(0), f'(((@1))} there exists D, > 0 such that
18" (2)] + |®(2)1gco| + |(C(@1) — ®(x))1es0| < Dae™ !, Vz e R. (1.20)

We have the following remarks.

Remark 1.5.
(1) Asin [23, Remark 1.15], using the symmetry 2 — —z and Proposition 1.4 implies the existence
and uniqueness of half-kink profile ® satisfying

EEIPOOQ)(J:) = ((@1) >0, z151010 O(z) =0.
(2) In our case, f(s) = £s® — &vs°. We may check that if v > 0, ¢ > 0 then there exist @1 = %
and ((@1) = 4/ % satisfying the conditions (1.17), (1.19) and the definition of the function ¢. Thus,

using Proposition 1.4, if v > 0, ¢ > 0 then there exists a half-kink solution of (1.2) and the constant

a in Proposition 1.4 satisfy
2

c
O0<a< —.
a e

(3) Consider the half-kink profile ® of Proposition 1.4. Since ® solves (1.16) and satisfies (1.20),
we have

@(@)] + |9 (a)| < Dy
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Now, we assume v > 0. Let K > 0, 6y,wp,co € R be such that 2,/wg > ¢g > +/2v. For
1 <j<K,let (§,wj,c;) € R be such that ¢; > ¢y, ¢; # ¢ for j # k, 2,/wj > ¢; > 2s,,/w;
for s, = ,/ﬁ, Set R; = €% R, .., where R, ., € H'(R) is the soliton solution of (1.11) with
the associated profile defined in (1.5). Let ®¢ be the half-kink profile given in Remark 1.5 (1)
associated with the parameters wg, ¢o and R, ¢, be the associated half-kink solution of (1.11). Set

Ro = € Ry, ¢,- The multi kink-soliton profile of (1.11) is defined as follows:

K
V=Ry+)> R (1.21)

j=1
Our second main result is the following.

Theorem 1.6. Considering (1.11), we assume that b < 2 (v >0). Let V be given as in (1.21).
There exists a certain positive constant C, such that if the parameters (wj,c;) satisfy

Cs ((1 I Vallopere) L+ IVilzere) + ||V||‘i;x:L;o) < v, = min <J1§£ hilej — cxl, inf le; — CO|) :

(1.22)
then there exist a solution u to (1.11) such that

|u— Vg < Ce . Vt =Ty, (1.23)

where A = 7= and C, Ty are positive constants depending on the parameters wo, ..., Wk, Co, -+, CK -

We have some following discussions about the above theorem.

Remark 1.7.
1) The condition ¢2 > 2~ in Theorem 1.6 is a technical condition and we can remove this. The
0 Y

constant a in Proposition 1.4 satisfies
2

¢
0<a< -2
4y
Thus, under the condition ¢3 > 2v, we can choose a = % This fact makes the proof easier and we
have

/)] + 19§(0)] + 9 (2)| + ol 1ol + | (122 = @) ) Loco| S e (120
(2) By similar arguments as above, we can prove that there exists a half-kink solution of (1.2) which
satisfies the definition 1.3. To our knowledge, there are no result about stability or instability of
this kind of solution.

(3) Let v > 0. We give an example of parameters satisfying the condition (1.22) of Theorem 1.6.
As in Remark 1.2, we have

-

By, o = V2, (1 /¢ — 12 cosh(hyz) + cj)T . Vj=1,.. K.

Hence, choosing h; < c;, for all j, we have

2 2
213 _ M

[@uyc; 170 § == < .
\/G =k e

By similar arguments as in Remark 1.2, for all 1 < j < K, we have
h?2 3
10R; || S —= + hjy/e; + —~=.
V& \/ €
Now, we treat to the case j = 0. Let ®q be the profile given as in Proposition 1.4 associated to

the parameters ¢y, wo and Ry be the associated half-kink solution of (1.2). From (1.20), Remark
1.5 and Remark 1.7 we have

1oz < Vo,

[0®o]|~ S 1,
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Thus,
[RollLer= < +/co,
3 3
||8RO||LOOLOO 5 1 +C§ 5 Cé.

This implies that for h; < ¢; (j = 1,.., K) the left hand side of (1.22) is estimated by:

K
C. 1+c0+2 L +h\ﬁ+[ 1+\/%+Z%
G j=1

Choosing ¢y = 1, the above expression is estimated by:
K g
C. 1+Z +hﬁﬁ+ 1+> L] |. (1.25)
\/ e =1V

Let h;,d; e RY, dj #dj for all j # k, 1 < j,k < K. Set ¢; = Md;, w; = i(h? + M?d3). We have
(1.25) is of order M° and the right hand side of (1.22) is of order M*'. Thus, by these choices of
parameters, when M is large enough, the condition (1.22) is satisfied.

The proof of Theorem 1.6 uses similar arguments as in the one of Theorem 1.1. To prove
Theorem 1.1, our strategy is the following. Let R be the multi-soliton profile. Our aim is to
construct a solution of (1.2) which behaves as R at large times. Using the Gauge transform (2.1),
we construct a system of equations of (p,1)). Let h,k be the profile under the Gauge transform
of R. We see that h, k solves the same system as ¢, up to exponential decay pertubations. The
decay of these terms is showed by using the separation of solitons. Set ¢ = ¢ —h and =1 —k.
We see that if u solves (1.2) then (9, ) solves (2.10). By using the Banach fixed point theorem, we
show that there exists a solution of this system which decays exponentially fast at infinity. Using
this property and combining with the condition (1.8), we may prove a relation between ¢ and @Z
This relation allows us to obtain a solution of (1.2) satisfying the desired property.

This chapter is organized as follows. In the section 2, we prove the existence of multi-solitons for
the equation (1.2). In the section 3, we prove the existence of multi kink-solitons for the equation
(1.11). In the section 4, we prove some tools which is used in the proofs in the section 2 and the
section 3. More precisely, we prove the exponential decay of the pertubations in the equations
of h,k (Lemma 4.1, Lemma 4.4) and the existence of exponential decay solutions of the systems
considered in the proofs of the main results in the section 2 (Lemma 4.3).

Before proving the main results, we recall Strichartz estimates and introduce some notations
used in this chapter. We need the following definition of admissible pairs.

Definition 1.8. Let N € N*. We say that a pair (¢, r) is admissible if
2 1 1
(3
q 2 r
2N

2<r§ﬁ 2<r<ococif N=12<r<ocif N=2).

Lemma 1.9. (Strichartz estimates)(see e.g [4, Theorem 2.3.3|) Let S(t) be the Schrodinger group.
The following properties holds:
(i) There exists a constant C' such that for all ¢ € L*(RY), we have

and

[S(: )‘JD”L‘?(]RL DI < COlellze,

for every admissible pair (q,r).
(ii) Let I be an interval of R andto € I. Let (v, p) be an admissible pair and f € LY (I, L” (RV)).
Then, for all admissible pair (q,r), the function

t— Oy(2) :/ S(t—s)f(s)ds

to
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belong to LA(I, L™ (RN)) N C (I, L>(RY)). Moreover, there exists a constant C independent
of I such that

191l aqriry < CUF v gy For all f € LY (T, L7 (RY)).
Notation.
(1) Fort > 0, the Strichartz space S([t,0)) is defined via the norm

||U||S([t,<>o)) = sup HUHLzL;([t,oo)xR)
(g,r) admissible

The dual space is denoted by N ([t,00)) = S([t,00))*.

(2) For z = (a,b) € C? a vector, we denote |z| = |a| + |b|.

(3) We denote a Sb, for a,b >0, if a is smaller than b up to multiplication by a positive constant.
Moreover, we denote a =~ b if a equal to b up to multiplication by a positive constant.

(4) We denote a Sp b if there exists a constant C(k) depending only on k such that a < C(k)b.
Particularly, we denote a S, b if there exists a constant C depending only on the parameters
W1, .oy WK, C1y -, Ci SUCh that a < Cb.

(5) Let f € CY(R). We use Of or f, to denote the derivative in space of the function f.

(6) Let f(z,y,z2,..) be a function. We denote |df| = |fo| + | fyl + |f2] + ..

2. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. We divide our proof into three steps.
Step 1. Preliminary analysis
Considering the following transform:

{tp(t, 2) = exp (4 [ Jult,y)? dy) u(t, ),
¥ =0p — glol*p.

By similar arguments as in [20] and [31], we see that if u solves (1.2) then (¢, 1) solves the following
system

(2.1)

Lo = ip*) — blo|*p,

Lp = —i)®% — 3blop| v — 260 0?3,

¢ li=0= po = exp (% JZ o luo(y)? dy) uo,

Y Je=0= 10 = 0o — 5 lol*vo,
where L = i0; + Op,. Define

P(p, ) = ip*) — ble[*e,

Qlp, ) = —i)°B — 3blp| ' — 2b|p|* %9
Let R be the multi soliton profile given in (1.6). Since R; solves (1.2), for all j, by an elementary
calculation, we have

(2.2)

K K
iR¢ + Rag + i|RPRy + BRI*R =i ( [RPRy — Y |Rj|*Rjo | +b [ [RI'R=)_|R;|'R; | . (2.3)
j=1

j=1

From Lemma 4.1, we have

K K
|RPR, =Y |R;Ris||  +|[[RI'R=D_IR;I'R;|| <e ™, (2.4)
J=1 H2 J=1 H2
where A = {-v,. Thus, we rewrite (2.3) as follows
iRy + Ryx +i|RI*Ry + b|R|* R = e Mu(t, 2), (2.5)

where v(t) € H2(R) is such that ||v(t)|| 2 is uniformly bounded in t. Define

h(t,z) = exp (; /x |R|? dy> R(t,z), (2.6)

—0Q0

k= h, — %|h|2h. (2.7)
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By an elementary calculation, we have
Lh = ih®k — blh|*h + e Pm(t, x) = P(h, k) + e~ Pm(t, ),
Lk = —ik®h — 3bh|*k — 20|h2R%E + e~ n(t,z) = Q(h, k) + e n(t, x),

where m, n satisfy

m = vexp (;/ |R|? dy) - h/ Im(vR) dy, (2.8)
n = my —i|h|*m + %hzm. (2.9)

From Lemma 4.2, we have ||m(t)||g + [[n(¢)||gr uniformly bounded in t. Set ¢ = ¢ — h and

1 =1 — k. Then @, 9 solve:

L(% = P(p,¢) — P(h, k) — e~ m(t, x),
Ly = Q(p,v) — Q(h, k) — e~ Pn(t, x).

Set n = (p,), W = (h, k), H = —e ™ (m,n) and f(p,%) = (P(p,v), Q(¢,v)). We express
solutions of (2.10) in the following form:

(2.10)

n(t)=i/ St —=s)[f(W+n) = f(W) + H|(s) ds, (2.11)
t
where S(t) is the Schrodinger group. Moreover, by using ¢ = d¢ — £|¢|*p, we have

§ =05~ L(1p+h2(H +h) — APR). (212

Step 2. Existence a solution of (2.10)
From Lemma 4.3, there exists T, > 1 such that for Ty > T, there exists a unique solution 7
defined on [Ty, c0) of (2.10) such that

e[l s(1t,00)) x5([t,00))) + €M lls([t,00)) xS([1100))) < L, VE = T, (2.13)
Thus, for all ¢ > Ty, we have

1Bl + [l S e, (2.14)

Step 3. Existence of multi-solitons }
Let 7 be the solution of (2.10) found in step 1. We prove that the solution n = (g, ) of (2.10)
satisfies the relation (2.12). Set ¢ = ¢+ h, ¥» =¥ + k and

i
v=20¢p— §\s0|2s0~

Since h solves Lh = P(h, k) +e " m(t,x) and @ solves Lp = P(p, 1)) — P(h, k) — e ¥m(t, z), we
have Ly = P(p,4). Similarly, Ly = Q(p, ). We have

Ly = P(p, 1),
Ly = Q(,v).
Thus,

Lo~ Lo = Qle.) - (0L~ JL(ePp))
= Qe t) - (0Lp - S(L(P+ P LE) + 20059
= Qp,¥) — (5’L<P - %(Mplwl2 +2(00)*P — ¢ Ly + 20°0:47) + 4<p|3<p|2)) . (2.15)
Moreover,

Ly = P(p,1) = ip*) — blo| o
= i<p2(w —v) + %7 — b|ap|4<p. (2.16)
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Combining (2.16) and (2.15) and by an elementary calculation, we obtain

L~ Lv = Qp,4) — 0@ — ) ~ |20 — ) — 2 lol*(6 —v) — Qi)
= (Q(p,¥) = Q(p,v)) — 2ipdp(Y) — v) — i* (Y — v)
~lePe T o) — glol*( —v)
= —i(? — v*)7 = 3blel* (v — v) — 2b|* (¥ — v)

~2ip (v+ 5loPe ) =0 - g0l 0

S T R P ) (217)

Define & = v — k. Since ) — & = ¢ — v and (2.17) we have

Lip = Lo = () — D) AP, 0, @, h, k) + (& — 0)B(, 0,3, h, k) — i@ + h)*0(¢p — 9), (2.18)

where
~ - 1
A= =i +0+2k)(@+h) = 3b|G + h|* = Slp+ Al

B = —2b|¢ + h|*(¢ + h)* — 2i(p + h) (v +k+ %|@ +h2 (@ + h)) —|@ 4+ h2(@ + h)%

We see that A, B are polynomials of degree at most 4 in (1/3,6, @, h, k). Multiplying both sides of

(2.18) by 15 — v then taking imaginary part and integrating over space using integration by parts,
we obtain

= 2 ~

1 - ~ -
30U =0l = Tn [ (5= 0P A 5.5, K) + (5= 0) B 56 hi )

+ %a@ R0 =) da.

Thus,

1= - .
‘Z&IW —0ll72| S 1 = 0ll72 (Al + [ Bllooe + [0(& + h)?|[ o).

By using Gronwall inequality, we obtain
() = a()]7
~ N
S %(N) = 6(N)|Z2 exp (/t (Al + 1Bl o + 10(¢ + h)?|| 1o d8> : (2.19)

Combining (2.13), (2.14), using k = hy — |h|?h, © = 0@ — £(|¢ + h|*(¢ + h) — |h|?h), |h| = |R|
and the Sobolev embedding H'(R) < L, we have, for ¢t > Ty:

¢+ hllLe ST+ (AL,

SN0l + 1 @ll7ee + 18l 1Pl 7

- I A -
ol = o5 - 506+ G + ) - i)
LOO

S 1402 Lo + [IAll7 -
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Thus,
N
/t (JAllz= + | Bllz~ + 10(& + h)||~) ds

N
S / ([l o + 18llze + 1kl o) 1@+ hllzoe + 116 + Al Loe + 16 + hllLoo]|D + Kl L
t
+ ([l + [Pl ) (102 oo + [|he o) ds

N
S/ (L 19l + NEllzoe )X+ [lhllze) + 1+ Rl Lo + (14 Al ) (0] + [|F]|ze)
t
+ (L4 [Allz=)WI0@l Lo + [Pzl o) ds

N
S/t L+ [l zoe + [1Ellzoe (4 [[Bllz) + 9]l poe (1 + 2] o)
+ (L + [[Bllz=) (109l Lo + [[hallz) ds

N
S/t Lt (17l Zoe + 1Kl (1 + [Allpoe) + 0] oo (1 + [[hl| )

+ (L + Al Lo ) (10B]] Lo + k]| oo + [ A7) ds

N
S/t Lt [ Foe + llLoe (14 Rl poe) + 0@l o (1 + [[Bll L) ds
SN =)L+ [hllE o oo + [1ll oo oo (14 [[Bll Lo L))
+ 102l ez (1T 5 ¢y + 1204 )
SN =)L+ IRl poe + (1l oo oo + [|RIE e oo ) (L + [ R]| oo £o2))
+ (N =031+ R f o)
SN =)+ Rl e + [ Rellporoe (14 [|Rl e 1)) + (N = )3 (1 + [ Rl pc)-

Thus, there exists a certain positive constant Cy such that
N
/ (AL + IBllze + 18(& + h)?|| =) ds
t

3 4
< Co (¥ = O+ 1R oo + 1Rell oo oo (14 [ Rl o)) + (¥ = DF (14 Rl f ) ) -
Let C, = 32Cy. From the assumption (1.8), we have

Vs A
Co (14 1 Relli 1)1+ Rl r) + [ Bl ) < 55 = 5.

Hence, fix ¢t and let N large enough, we have

N
/ (Al + Bl + 9(6 + h)?||z=) ds < (N — £)A.
t

Combining with (2.14) and (2.19), we obtain, for N large enough:
() — 5(0) 30 S =N eN=N = AN=0
Let N — oo, we obtain
lo(t) =517 = 0.
This implies that v» = v and we have

1
Y =v=0p-slel*e (2.20)
Define u = exp (—% I le(y)? dy) . Combining (2.20) with the fact that (¢, ) solves

Lo = P(p,9),
L¢ = Q(@ﬂd))a
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we obtain that u solves (1.2). Moreover,

o (5 [ wPar)e e (=5 [ mra)i

Sl = bl = (1@l
Combining with (2.14), for ¢ > Ty, we have

lu— Rz < Ce M,

[u = R =

for a constant C' depending on the parameters wq,...,wg,c1,...,cx. This completes the proof of
Theorem 1.1.

3. PROOF OF THEOREM 1.6

In this section, we prove Theorem 1.6. We use the similar idea in the proof of Theorem 1.1.
However, the argument used in this section cannot apply to (1.2) (see Remark 3.1). We divide our
proof into three steps:

Step 1. Preliminary analysis

Set

vi= Uy + %|u\2u

By an elementary calculation, we see that if u solves (1.2) then (u,v) solves the following system:

Lu = —iv®v+ (3 — b) |ulu,
Lv = w*u+ (3 — 3b) |u|*v + (1 — 2b)|u|?u?v, (3.1)
u |t:0: Uo, .

v ‘tzoz Vo = 8u0 + %‘Uo‘QuO.

Define
1
P(u,v) = —iu’s + (2 - b) || *u,
Q(u,v) = w’u + (; - 3b> |u|*v + (1 — 2b) |u|*u*D.

Let V be the multi kink-soliton profile defined in (1.21). Since R; solves (1.2), for all j, by an
elementary calculation, we have

K K
Vit Voo + VAV + DVI'V =i [ VIV =Y RIR;, | +0 [ [VI'V =D IRI'R; | . (3.2)
§=0 j=0
From Lemma 4.4, we have
K K
VIV, =Y RIR| +|IVI'V =D IRIR|| <e M, (3.3)
j=0 H2 Jj=0 H?2
for A = {-v,. Thus, we rewrite (3.2) as follows
iVy + Vi + V3V, +0|V|'V = e Mmf(t, z), (3.4)
where m(t) € H?(R) such that ||m(t)|| g2 uniformly bounded in t. Define

h =1V,
i
k= h, + =|h[*h.
+ 21
By an elementary calculation, h, k satisfy the following system.
— 1
Lh = —ih*k + <2 - b) |h[*h + e P m = P(h, k) + e Pm,

3

Lk = ik*h + <2 - Sb) |h|*k + (1 — 20)| 1A%k + e n = Q(h, k) + e n.
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where n = my, + i|h|*m — Lh*m satisfies ||[n(t)||: uniformly bounded in ¢. Let @ = u — h and
0 =wv — k. Then (@, 0) solves:
Lii = P(u,v) — P(h, k) — e~"m,
Lo = Q(u,v) — Q(h, k) — e Pn.

Define n = (@, %), W = (h, k), H = e **(m,n) and f(u,v) = (P(u,v),Q(u,v)). We find a solution
of (3.5) in the Duhamel form

(3.5)

n— fi/ S(t— ) (W + ) — F(W) + H(s) ds. (3.6)
t
Moreover, from v = u, + &|u[*u, we have
5= + L (li+ h2(a+ h) — B2R). (3.7)

Step 2. Existence a solution of (3.6)
From Lemma 4.3, there exists T, > 1 such that for Ty > T, there exists a unique solution 7
defined on [Tp, 00) of (3.6) such that

MMl s ((t,00)) x S([t00)) + €Ml s((t,00) xS([,00)) < Lo VE = T, (3.8)
where A = 75. Thus, for all ¢ > Tj, we have
il g2+ [|5]] g S e (3.9)

Step 3. Existence of multi kink-solitons
By using similar arguments as in the proof of Theorem 1.1 we can prove that the solution

n = (p,1) of (3.6) satisfies the relation (3.7) provided assumption (1.22) is verified. This implies
that

b= iy + %(\a + (@ + h) — |h|?R).
Set u=1u+ h, v="0+ k. We have ‘
V= u; + %\u|2u. (3.10)

Since (1@, 0) solves (3.5), we infer that u, v solve

Lu = P(u,v),

Lv = Q(u,v).
Combining with (3.10), we have u solves (1.2). Moreover, for ¢ > Ty, we have

lu=Vilg = l[afm S e

This completes the proof of Theorem 1.6.

Remark 3.1. We do not have the proof for the construction of multi kink-solitons for (1.2). The
reason is that if the profile R in the proof of Theorem 1.1 is not in H!(R) then the function h
defined as in (2.6) is not in H!(R). Thus, the functions m,n defined as in (2.8) and (2.9) are not
in H'(R) and we can not apply Lemma 4.3 to construct a solution of system (2.10).

4. SOME TECHNICAL LEMMAS

4.1. Properties of solitons. In this section, we prove some estimates on the multi-soliton profile
used in the proof of Theorem 1.1.

Lemma 4.1. There ezist Tp > 0 and a constant X\ > 0 such that the estimate (2.4) is uniformly
true for t > Tp.

Proof. First, we need some estimates on the soliton profile. We have

[Rj(@,8)] = |@u, c, (2 = c5t)] = V2hy (/3 + 912 cosh(hy (@ = 1)) - ;)

—h;
eTJl‘T—CJt‘ .

1
2

~Shysle;l
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Moreover,

|0R; (2, 1) = |00u;.¢;(x — ¢;t)]

—V2
= Th? 5 +h? [sinh(hj(z — ¢;t)| (1 /¢3 +~h3 cosh(hj(z — ¢;t)) — cj)

—h.
elex_cjt‘.

(M)

~Shysle;l

By an elementary calculation, we have

—h.
0% (w,t)| + |0°Rj (x,t)| Spyojey e 2 1=t

J

For convenience, we set

K
X1 =i|RPRs —i Y |R;|*Rja, (4.1)
j=1
K
X2 = |RI*R=>_|R;|'R;. (4.2)
j=1

Fix t > 0. For z € R, choose m = m(z) € {1,2,..., K} so that

|z — emt| = mjin |z — ¢;t|.

For j # m, we have

t
=l¢j — eml.

1
|z —c;t| > §|cjt —cmt] = 5

Thus, we have

(R — Ry)(z,t)| + |(OR — OR,, (z,1))| + |0°R — 0°Ryn| + [0°R — 0°R,y,|

<D (Rj(@ )] + |0R; (x, )] + 0° R (2, )] + |0° R, (x,1)])
i#m

E ;hj\z—c'ﬂ
Shl,‘~7hkﬁ|51|7-~,\CK| 6m(x’t) = e ’
Jj#Em

Recall that
Uy = }Qihﬂcj — ¢kl
We have
(R = Ron)(, )] + |(OR — R (2,1))] + |9*R — 0*Ryn| + |°R — 8 Rpn| S G(,8) S €7 01,
Let f1,91,71 and fa, g2, 72 be the polynomials of wu, u,, gy, Urr, and conjugates satisfying:

Z|U‘2’U4w = fl(u,ﬂ, UI), |’LL|4’LL = fZ(uau)a
a(’L|U|2U$) = gl(u7u$7u$x7ﬂ7 ")7 a(‘u|4u) = 92(uauxaﬂa ")a
82(Z|u|2u:r) = Tl(u7uwauwwauxwz7ﬂa --)7 82(|'Uz|4u) = T2(U,Uz7uwz7ﬂ, )

Denote

A= sup (|df1] + |dfe| + |dgi| + |dg2| + [dri| + [dra]|),

K
‘“|+‘UT‘+|UTT|+‘"TTT‘< Z HRJ'HH4
i=1
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We have
Ixal + x| + [0x1] + [Oxz] + [0%x1| + 10°x2|

<fi(R, Ra) = f1(Ron, Rna)| + [ f2(R) = fo(Re)| + D (1f1(R;, Rjx)| + | f2(R))])
Jj#m
+ |91(R7 szRaan ) - gl(RmameaRmzwa )| + |92(R, Ra:v ) - g2(Rm7mea )|
JjEm
+ |T1(R7 Ry, Rz, Rz ) -7 (Rmv Rz, Rmae, Rmzas, )|
+ |7"2(R7 R, sz; ) - TQ(Rma Rz, Rmmxv )|

+ Z (Tl(Rj7 ija Rja:xa Rjaca:xa ) + TZ(Rja ijijacacy ))
j#m
< A(lR - le + |Rz - Rma:l + |R$a: - Rmzw' + ‘szz - Rm:r:vw”
+ ) A(R)| + |Rjal + |Rjza| + | Rjawal)
i#m
<24 > (IRl + |Rja| + |Rjuz| + |Rjazzl)
Jj#m
,Sp 5m(t,17).

In particular,

,lv*t

Ix1llw20o + [[X2llw2oe Spe™ a0
Moreover, we have

Ix1llw=1 + [[x2llweza
K
<D (R PRjellor + 10(R; P Rya)l L + [10°(|1R; P Rja) || 11

— =

]:
+ IRl + 0(R;[* R)) || + [10° (IR, Rj) || )

K
S DRI + 1B e + IR s + 1B 5 + IRl + (1B 32) < © < 00

<.
=

By Holder inequality, for 1 < r < oo, we have
C(1-1y1
HX1||W2'T + HXQHWQ*T Sp € @ T)4v*ta Vr € (1700)

Choosing r = 2 we obtain:

CE

Ix1llm2 + [Ixallmz Spe™ =7,
Thus, for ¢t > Ty, where Ty large enough depend on the parameters wy, ..., wk, ¢1, ..., Ck, we have
Ixallzz + lx2llae < €737, vt =T,

Let A = 7z, we obtain the desired result. O

4.2. Prove the boundedness of v,m,n. Let v, m and n be given as in (2.3), (2.8) and (2.9)
respectively. In this section, we prove the uniform in time boundedness in H2(R) of v and in H*(R)
of m,n. We have the following result.

Lemma 4.2. There exist C > 0 and Ty > 0 such that for all t > Ty the functions v, m,n satisfy
o)z + [m@)l g + In@) |l < C,
Proof. Let x1 and x2 be defined as in (4.1) and (4.2) respectively. We have
e Mu = 1 + bxa.
By Lemma 4.1, we have ||v(t)||g2 < D, for some constant D > 0. From (2.8), we have

Il = < ol + ([Pl vl a2 1Rl 22 < Cy,
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for some constant C; > 0. From, (2.9), we have

Inllze S lmalice + (Rl Imlla < llmllm 1+ [[B]7) < Ce,
for some constant Cy > 0. Moreover, we have

e llze S Imaellce + Rl mla < llmlgz(1+[|5lF0) < Cs,

for some constant C3 > 0. Choosing C' = D + C; + C5 + (3, we obtain the desired result. O

4.3. Existence solution of system equation. In this section, we prove the existence of solutions
of (2.11). For convenience, we recall the equation:

n(t)=i/tm5(t—5)[f(W+n)—f(W)+H](8)ds, (4.3)

where ) = (@, ¥) is unknown function, W = (h, k), H = —e~**(m,n) and f(u,v) = (P(u,v), Q(u,v)),
where P, () are defined by

1
P(u,v) = —iu’s + (2 - b) u|*u,
3
Q(u,v) = iv’*u + (2 - 3b> lu|*v + (1 — 2b) |u|*u*D.

The existence of solutions of (4.3) is established in the following lemma.

Lemma 4.3. Let H= H(t,z): [0,00) x R — C2, W = W(t,z) : [0,00) x R — C? be given vector
functions which satisfy for some Cq1 >0, Cy >0, A >0, Ty > 0:

W ()| o xe + MHE 1202 < C1 VE> To, (4.4)
1OW ()12 12+ [OW(0)]| sz + NOH () [12xre < Cor Vit > To. (4.5)

Consider equation (4.3). There exists a constant \. such that if X\ = \. then there exists a unique
solution n to (4.3) on [Ty, 00) x R satisfying
Il s(tt00) x s(ito0)) + €N 100Nl s(1t00)) xS(10)) <1, VE > T

Proof. We use similar arguments as in [23, 24]. We rewrite (4.3) into n = ®r. We shall show that,
for A sufficiently large, ® is a contraction map in the ball

B = {n:Inlx = e*nlls(t.oo)xs(t.oe) + €10 5(t.00) xS ((t.00)) <1}

Step 1. Proof that ® maps B into B
Let ¢t > Ty, n = (m,n2) € B, W = (w1, ws) and H = (hq, he). By Strichartz estimates, we have

120l 5(t,00)) x5((t,00)) S IFW +10) = V)N ([t,00)) x N ([#,00) (4.6)
+ | H L2 12 ([t,00)) x L1 L2 ([2,00)) (4.7
For (4.7), using (4.4), we have

I [ L1 L2 (1t,00)) x L2 L2 (1ti00)) = [1PallLr L2 (t,00)) + 1h2llLr L2 (12,00

& 1
< / e Mdr < ~e M.
. A

For (4.6), we have
|[P(W +n) — P(W)| = [P(w1 + 01, w2 +n2) — P(wi, ws)]
S (wy + m)?(wa + n2) — wiws| + [y + wi|*(ny + wi) — [ws[*wi |
< ml+ In2| + Iml?
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Thus,

IP(W +n) — POV)|IN(t,00)) S IMlN(00)) + (72l 3 (t,00)) + 131N ([2,00))

S lmllzarz o) + Im2llr 2 to0) + 1731 22 22 (2,00)

< / e dr + / o ()30 dr
t t

< 1 —At - z 3
Sye A im0z lom ()] 22
t

< lefkt n /OO o~ (T/2243/20)7 4
A ¢

< LY n 1 ~(7/2343/20)1 < L
A T/2X 4+ 3/2A A

By similar arguments as above, we have

e M,

>l =

QW 4+ 1) = QUW)|In(it,00)) S

Thus, for A large enough, we have

1
127 lls(t,00) x 511,000 < 75€ AL

It remains to estimate [|[0Pn||g(jt,00)x S([t,00)))- BY Strichartz estimate we have

[0Pn[5((t,00) xS ([t,00))) S NOF (W + 1) = FW)) N ([t,00)) x N([2,00)) (4.8)
+ 1OH || N ({t,00)) x N ([t,00)) - (4.9)

For (4.9), using (4.5), we have

NOH || 5 (jt,00)) x N ([t,00)) < 10h1 ] L1 22 ([t,00)) + [[0R2]l L1 22 ([t,00))

* 1
< / e Mdr = —e M, (4.10)
t )\
For (4.8), we have

N0(fF(W +n) = FIWDIIN([t,00)) x N ([t,00))
= 0(P(W +n) — P(W)|In(it,00)) + 10(QW + 1) — QW) n(lt,00))

Furthermore,

0(P(W +n) — P(W))|
S 10((wi +m)?(wa + n2) — wiwz)| + [8(|wi + m|*(wr +m) = [wi[*wr))]
S 0nl(Inl* + [W[?) + [0W|(Inf* + [W||n])

+on|(Inl* + (W) + oW |(Inl* + [n|W ).

Thus, we have

10(P(W +n) = PW)l| N (12,00
S loml(nl? + 1WA w00 + OW (01> + W 1D x (1t,00) (4.11)
+onl(nl* + W v (e.00 + IOW I + W) v ie,000 - (4.12)
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For (4.11), using (4.4) and (4.5) and the assumption n € B we have

Honl(nl* + W) n(ie.oeyy + HOW (01> + W 0Dl v(1t.00))

S MomlnlP L Lz ie.00)) + HOMIW P L1 L2 (1t,.00)) + HOW 01?21 L2 (1t,00))
+ OW W [nlll 21 L2 (1t,00))

S |||a77|||L§L§([t,oo))H\77|||2L¢Loo + H\377\||L;Lg([t,oo))|||W|||%ooLoo
+ 1OW [ zoo poo 1Ml s e (.0on 7 272 12 (11,00
+ W[ Lo Loe [|OW [ Lo Lo (01| 22 22 (12,00))

S %e*)‘t.

For (4.12), using (4.4) and (4.5) and the assumption n € B we have

oml(nl* + W x e + HOW(n1* + 10lW ) x (12.00))
S Honl(nl* + W L1 L2 .00y + IOW (I + [0IW )| 1 L2 (ft.00))
S0l Lee 2 (1t00) 111178 £oo (11,009 + W oe 20 1971 22 22 (1£,00)
+ HaWHLOCLQHn”%f‘rLf([t,oo)) +10W | oo poo [ W[ F e poe 1911 L2 22 (2.,00)

1
5 XB_MS.
Hence,
1 _
[O(P(W 41) = POV)IN(t,00)) S G AL
By similar arguments, we have
1 _
1(QIW +n) = QW))lIn(ir.0n S e A

Combining (4.13) and (4.14), we obtain

1 _
1OCF W 1) = FWIN(le,00n x N(it,000) S Y€ A,
Combining (4.10) and (4.15), we obtain

1 _ 1 _
10Dl 11,00y x 511,000 S € ML e

N\
o

if A > 0 is large enough. Thus, for A > 0 large enough
[®n]lx < 1.

This implies that ® map B onto B.
Step 2. @ is contraction map on B

(4.13)

(4.14)

(4.15)

(4.16)

By using (4.4) and (4.5) and similar estimates as for the proof of (4.16), we can show that, for

any n € B, k € B,
1
@7 — ®lx < 5lln —slx.

By Banach fixed point theorem there exists a unique solution on B of (4.3).

O

4.4. Properties of multi kink-solitons profile. In this section, we prove some estimates on the

multi kink-solitons profile used in the proof of Theorem 1.6.

Lemma 4.4. There exist To > 0 and a constant X\ > 0 such that the estimate (3.3) is uniformly

true fort = Tj.

Proof. For convenience, set
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By similar arguments in the proof of Lemma 4.1, we have

- —hj .
|Rj (@, )] + [0R; (, )] + 0° Ry (@, )] +[0° Ry (@, )] Sy ey €72 17791,

for all 1 < j < K. Define

K
x1=iV?V, —iY RRj,
§=0

K
X2 = [VI*'V =Y |Rj|*R;.
=0

Fix ¢ > 0. For z € R, we choose m = m(z) € N such that

T — cpt| = IJIIGII{II |z — ¢jt|.

If m > 1 then by the assumption ¢y < ¢; for 7 > 0 we have x > cot. Thus, by the asymptotic
behaviour of ®( as in Remark 1.7, we can see Ry as a soliton. More precise, we have

[Ro(t, )| + | Ry (t, 2)| + [Rg (1, 2)| + By (t,2)| S e 210l S emivet,
Using similar argument as in the proof of Lemma 4.1, we have:
(R = Ryn)(2,8)| + |(OR — ORyp) (2, t)| + [(0*R — 8° Ry (2, )| + |0°R — 8° Ry | S e 10

Let f1,g1,71 and fa, g2, 72 be the polynomials of u, uy, Uy, Uz, and their conjugates such that for
all u € H3(R):

iuzuix = fl(uaﬂv um’)v "LL|4’LL = f2(uaﬂ)7
(7)) = g1 (U Ug, Upe, Ty ..),  O(|ul*u) = go(u, up, T, ..),

82(iu2%) =71 (U, Uz, Uz, Uzgay Uy - ), 82(|u|4u) = 1o (U, Uy, Uy, Uy -.)-
Denote

A= sup (ldf1| + |df2] + |dg1| + |dga| + |dr1| + |dra]).
[+ |ue |+ es | +|usee | < Rolly4,00 +32 7 1R || ra gy
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In the case m = 1, we have

Ixal + Ixa| + [0x1] + [0xz] + [0%x1| + 10°x2|
< [Ro|*|Rox| + [Rol® + | f1(V, ) = fu(R, D] + | f2(V;...) = f2(R, )]
+l(V,..) =1 (R, )|+ |g2(V,..) — g2(R, ..)]

K
+ (Vo) = ri(R D]+ eV, ) = re(R, ]+ | fi(R Re, R) — Z Rj., Rj)|
. K L K B
+|f2(RaR)_ZfQ(Rj»Rj)‘+|91(RaRm7“)_Zgl(Rj7Rja:;-~)|
=0 =

K
+|g2(Rva7" 292 g _]Tv')|+|r1 R RT?" Zrl ij- ‘
Jj=0 7=0

+ |702 R Ra:yn ZTQ 7K _]1:7" |

< [Rol?|Roa| + |R0|5 +A|R0|
+ A(|(R = Rp)(z,t)] + [(OR — ORp) (x,1)| 4 [(0*R — 0° Ry (z, )| + |0°R — 9°R,,))

K
+A > (IR +0R;| + [0°R;| + [0°Ry])

j=T#m
K
S |Rol?|Roo| + |Rol® + A[Ro| + A > (IR;| + [0R;| + |0°R;| + [0°R;|)
i=Lj#m
gp eiiv*ta

In the case m = 0, we have

X1l + x| + 10x1] + [Oxz] + [0%x1| + |0°x2|

S > (fo(ViVa, ) = fu(Ro, ORo, )| + |90 (V; Vi, ) — gu(Ro, OR, )|
v=1,2

+ |7nv(V7 Vwa ) - TU(R(), 6RO)D
+ > Ry Ry )| + 190 (By, Ry, )|+ Iro(Ry, Ry, )

j=1,... . K;v=1,2

K
S AR +AY (IR;| +10R;| +|0°R;| + |0°R;)

j=1
Sp e,
In all case we have
1,
Ix1 () llwzee + [Ix2 (@) lwzee Sp e 107 (4.17)
On one hand,
X1 (&) [lw2

K

S (IR Rzl + 10(R R0 | + 0% (B3R )| 0)

7=0

K

Z IR |35 + |0R0|lw21 < C < o0
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On the other hand,

Ix2()[lw21

K
SIVIV = [Rol* Rollwa + Y _lI1R; [ |lw=

j=1

K K K
SR D IR+ IR [P + ) IR 320
j=1 j=1 R

K
1Rol*|Rslllwza + Y Rjlfan

Jj=1

] =

S

<.
I
—

M=

< D _RjllwzlIRollfy2 + 1 Ryll3s) < € < oo,

<.
Il
—

Thus,

X (®llw= + [ (@) lw2 < oo (4.18)

From (4.17) and (4.18), using Holder inequality, we have

1

X @)z + Ix2 (@)l 2 $pe™3™"

Let Ty be large enough, we have

X1 (@) llz= + [x2(®) |z < €768, Vit > T,

Setting A = 1—161)*, we obtain the desired result. O

ACKNOWLEDGEMENT

I wishes to thank Prof.Stefan Le Coz for his guidance and encouragement. I am supported by
scholarship of MESR for his phD. This work is also supported by the ANR LabEx CIMI (grant
ANR-11-LABX-0040) within the French State Programme “Investissements d’Avenir. Finally, I
wishes to thank the unknown referees for careful reading and many useful discussions to improve
this paper.

(1]
(2]

(3]
(4]

(5]
[6]
[7]
(8]
(9]
[10]
[11]
[12]

[13]

REFERENCES

H. Bahouri and G. Perelman. Global well-posedness for the derivative nonlinear schrédinger equation, 2020.
H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. 1. Existence of a ground state. Arch. Rational
Mech. Anal., 82(4):313-345, 1983.

H. A. Biagioni and F. Linares. Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono
equations. Trans. Amer. Math. Soc., 353(9):3649-3659, 2001.

T. Cazenave. Semilinear Schridinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York
University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,
RI, 2003.

M. Colin and M. Ohta. Stability of solitary waves for derivative nonlinear Schrédinger equation. Ann. Inst. H.
Poincaré Anal. Non Linéaire, 23(5):753-764, 2006.

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global well-posedness for Schrédinger equations
with derivative. SIAM J. Math. Anal., 33(3):649-669, 2001.

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. A refined global well-posedness result for
Schrodinger equations with derivative. STAM J. Math. Anal., 34(1):64-86, 2002.

R. Coéte and S. Le Coz. High-speed excited multi-solitons in nonlinear Schrédinger equations. J. Math. Pures
Appl. (9), 96(2):135-166, 2011.

R. Cote and Y. Martel. Multi-travelling waves for the nonlinear Klein-Gordon equation. Trans. Amer. Math.
Soc., 370(10):7461-7487, 2018.

R. Cote, Y. Martel, and F. Merle. Construction of multi-soliton solutions for the L2-supercritical gKdV and
NLS equations. Rev. Mat. Iberoam., 27(1):273-302, 2011.

R. Cote and C. Munoz. Multi-solitons for nonlinear Klein-Gordon equations. Forum Math. Sigma, 2:Paper No.
el5, 38, 2014.

G. Ferriere. Existence of multi-solitons for the focusing logarithmic non-linear Schrédinger equation. Ann. Inst.
H. Poincaré Anal. Non Linéaire, 38(3):841-875, 2021.

N. Fukaya, M. Hayashi, and T. Inui. A sufficient condition for global existence of solutions to a generalized
derivative nonlinear Schrédinger equation. Anal. PDE, 10(5):1149-1167, 2017.



22

PHAN VAN TIN

[14] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry. 1. J.

Funct. Anal., 74(1):160-197, 1987.

[15] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry. II. J.

Funct. Anal., 94(2):308-348, 1990.

[16] B. L. Guo and Y. P. Wu. Orbital stability of solitary waves for the nonlinear derivative Schrédinger equation.

J. Differential Equations, 123(1):35-55, 1995.

[17] Z. Guo and Y. Wu. Global well-posedness for the derivative nonlinear Schrédinger equation in H? (R). Discrete

Contin. Dyn. Syst., 37(1):257-264, 2017.

[18] M. Hayashi. Stability of algebraic solitons for nonlinear schrédinger equations of derivative type: variational

approach, 2020.

. Hayashi an . Ozawa. On the derivative nonlinear Schrodinger equation. ys. D, -2):14-36, .
19] N. H hi and T. O On the derivati li Schrodi ion. Phys. D, 55(1-2):14-36, 1992
[20] N. Hayashi and T. Ozawa. Finite energy solutions of nonlinear Schrédinger equations of derivative type. STAM

J. Math. Anal., 25(6):1488-1503, 1994.

[21] R. Jenkins, J. Liu, P. Perry, and C. Sulem. Global existence for the derivative nonlinear Schrédinger equation

with arbitrary spectral singularities. Anal. PDE, 13(5):1539-1578, 2020.

[22] S. Kwon and Y. Wu. Orbital stability of solitary waves for derivative nonlinear Schrédinger equation. J. Anal.

Math., 135(2):473-486, 2018.

[23] S. Le Coz, D. Li, and T.-P. Tsai. Fast-moving finite and infinite trains of solitons for nonlinear Schrédinger

equations. Proc. Roy. Soc. Edinburgh Sect. A, 145(6):1251-1282, 2015.

[24] S. Le Coz and T.-P. Tsai. Infinite soliton and kink-soliton trains for nonlinear Schrédinger equations. Nonlin-

earity, 27(11):2689-2709, 2014.

[25] S. Le Coz and Y. Wu. Stability of multisolitons for the derivative nonlinear Schrodinger equation. Int. Math.

Res. Not. IMRN, (13):4120-4170, 2018.

[26] Y. Martel and F. Merle. Multi solitary waves for nonlinear Schrodinger equations. Ann. Inst. H. Poincaré Anal.

Non Linéaire, 23(6):849-864, 2006.

[27] Y. Martel, F. Merle, and T.-P. Tsai. Stability and asymptotic stability in the energy space of the sum of N

solitons for subcritical gKdV equations. Comm. Math. Phys., 231(2):347-373, 2002.

[28] Y. Martel, F. Merle, and T.-P. Tsai. Stability in H! of the sum of K solitary waves for some nonlinear

Schrédinger equations. Duke Math. J., 133(3):405-466, 2006.

[29] C. Miao, Y. Wu, and G. Xu. Global well-posedness for Schrédinger equation with derivative in H%(R) J.

Differential Equations, 251(8):2164-2195, 2011.

[30] M. Ohta. Instability of solitary waves for nonlinear Schrédinger equations of derivative type. SUT J. Math.,

50(2):399-415, 2014.

[31] T. Ozawa. On the nonlinear Schrdédinger equations of derivative type. Indiana Univ. Math. J., 45(1):137-163,

1996.

[32] H. Takaoka. Well-posedness for the one-dimensional nonlinear Schrédinger equation with the derivative nonlin-

earity. Adv. Differential Equations, 4(4):561-580, 1999.

[33] M. Tsutsumi and I. Fukuda. On solutions of the derivative nonlinear Schrédinger equation. Existence and

uniqueness theorem. Funkcial. Ekvac., 23(3):259-277, 1980.

[34] M. Tsutsumi and I. Fukuda. On solutions of the derivative nonlinear Schrédinger equation. II. Funkcial. Fkvac.,

24(1):85-94, 1981.

[35] Y. Wu. Global well-posedness for the nonlinear Schrédinger equation with derivative in energy space. Anal.

PDE, 6(8):1989-2002, 2013.

[36] Y. Wu. Global well-posedness on the derivative nonlinear Schrddinger equation. Anal. PDE, 8(5):1101-1112,

2015.

[37] V. E. Zakharov and A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-

modulation of waves in nonlinear media. Z. Eksper. Teoret. Fiz., 61(1):118-134, 1971.

(Phan Van Tin) INSTITUT DE MATHEMATIQUES DE TouLouse ; UMR5219,
UNIVERSITE DE TouLouUsE ; CNRS,

UPS IMT, F-31062 TouLoust CEDEX 9,

FRANCE

Email address, Phan Van Tin: van-tin.phan@univ-tlse3.fr



