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CONSTRUCTION OF THE MULTI-SOLITON TRAINS, MULTI
KINK-SOLITON TRAINS OF THE DERIVATIVE NONLINEAR
SCHRODINGER EQUATIONS BY THE FIXED POINT METHOD

PHAN VAN TIN

ABsTrRACT. We look for solutions to derivative nonlinear Schrodinger equations built upon
solitons. We prove the existence of multi-soliton trains i.e. solutions behaving at large time as
the sum of finite solitons. We also show that one can attach a kink at the begin of the train
i.e multi kink-soliton trains. Our proofs proceed by fixed point arguments around the desired
profile, using Strichartz estimates.
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1. INTRODUCTION

We consider the derivative nonlinear Schrédinger equation:
iy + Uy + ic|ul?ug + ipuTy + blul*u = 0, (1.1)

where a, u,b € R and u is a complex value function of (¢,2) € R x R.

In [22], the authors studied the Cauchy problem and gave a sufficient condition of global well-
posedness for a general form of equation (1.1). Moreover, the author constructed modified wave
operators on small and sufficiently regular asymptotic states. One can also cite the other works
using the Gauge transformation as in [12, 13]. The Cauchy problem of (1.1) was also studied as in
[23], where a gauge transformation and the Fourier restriction method is used to obtain local well-
posedness in H® s > 1/2. Another approach was introduced as in [25, 26] using approximation
method. The global well posedness of (1.1) in H!(R) is studied in many works (see e.g [27, 28, 11])
under small condition of initial data. In [4], the authors proved global result in H*(R), s > 2
under small condition of initial data. Specially, in the case b = 0 and p = 0, (1.1) is a complete
integral equation. In this case, the complete integrability structure of equation was used to prove
the global existence of solution on H*(R), s > by the work as in [1].

Considering the case p = 0, the class of solitons of (1.1) has two parameters. In the case b = 0,
a stability result of solitons was obtained as in [3] using variational technique. In [21], the author

proved that for each b > 0 there exists unique s* = s*(b) > 0 € (0, 1) such that the soliton u, . is
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orbitally stable if —2y/w < ¢ < 2s*y/w and orbitally instable if 2s*y/w < ¢ < 24/w. The stability
result is obtained in case b < 0 as in [10]. Specially, in the case b = 0, [14] proved a stability result
of solitons in zero mass case. Removing the effect of scaling in stability result of this work is an
open question.

Our main goal of this paper is to study the multi-solitons theory of (1.1).

1.1. Multi-soliton trains. We focus on studying the following special form of (1.1):
g + Uge + iu*uy 4 blul*u = 0. (1.2)

Our first goal in this paper is to study the long time behaviour of solution of (1.2). More
precisely, we study the multi-solitons theory of (1.2). The existence of multi-solitons is a proof of
the soliton resolution conjecture which state that all global solution of a dispersive equation behaves
at large times as a sum of a radiative term and solitons. Theory of multi-solitons has attracted a
lot of interest in mathematics. In [15, 16], the authors proved existence and uniqueness of finite
and infinite soliton and kink-soliton trains of classical nonlinear Schrodinger equations, using fixed
point arguments around of the desired profile. Another method was introduced in [18] for simple
power nonlinear Schrédinger equation with L2-subcritical nonlinearities. The proof was established
by two ingredients: the uniform bounded and the compactness property. The arguments was later
modified to obtain the results of L2-supercritical equations [7] and of profile made with excited
state [5]. One can also cite the works on the logarithmic Schrédinger equation (logNLS) in the
focusing regime as in [9]. Specially, in [29], the inverse scattering transform method (IST) was used
to construct multi-solitons in the one dimensional cubic focusing NLS. This method is powerful to
show the problems of the complete integrable equations. We would like also to mention the works
on the non-linear Klein-Gordon equation as in [8] and [6], and on the stability of multi-solitons for
generalized Korteweg-de Vries equations and L2-subcritical nonlinear Schrédinger equations from
Martel, Merle and Tsai [19],[20]. In [17], the authors proved a stability result of multi-solitons of
(1.2) in the case b = 0. As a sequence, there exists a solition of (1.1) which is close to a sum
of solitons by a small constant as long as the initial data is enough close to a profile. In sense
of multi-solitons theory, this solution can seem to be a multi-solitons but not really good. Our
motivation is to prove the existence of a multi-solitons in similar sense as in [16, 15].

Consider equation (1.2). The soliton of equation (1.2) is solution of form R, .(t,z) = e™“!¢,, .(z—
ct), where ¢, . € H'(R) solves

— Pup + WO +ichy —i|p|*Pe — blo[*p =0, xR (1.3)

Applying the following gauge transform to ¢, .

(rbw,c(x) = q)w,c(x) €xXp <’L;$ - i/ |®w,c(y)|2 dy) )

—0o0

it is easily verified that ®,, . satisfies the following equation.

c? c 3 16
- —— o+ = |OPP - —v|P|'® = =14 —b. 1.4
ot (=T ) @ GlaPo - Falele =0 v =143 (14
The positive even solution of (1.4) is explicitly obtained by: if v > 0 (b > IT?)’

2(4w—c?) e
(1)2 (I) — \/02+’y(4w—c2)cosh(mz)—c if 2\/5 <c< 2\/5’
o L if ¢ = 2/w
(cx)>+v - ’

2(4w — ?)

/2 + (4w — ) cosh(VAw — 2z) — ¢

where s, = s.(v) = ,/%. We note that the following condition of the parameters v and (w, c)

is the necessary and sufficient condition for the existence of non-trivial solutions of (1.2) vanishing

if —2yw <c<—25,1/w,
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at infinity (see [2]):
if7>0<:>b>%§,—2\/07<c<2\/5,
if7<0<:>b<%§,—2\/5<c<—2s*\/07.
For each j € {1,2,.., K}, we set
Ri(t,x) = € Ry, ., (t, x — ;).

The profile of an multi-solitons is a sum of the form:

K
R= 3 R, (1.5)
=1

j:
A solution of (1.2) is called multi-solitons if, for the profile R:
lu(t) — R()||zr — 0 as t — oo,

For convenience, we set h; = /4w; — c5. Let (¢;,w;) be satisfy the condition of existence of soliton,
for each 1 < j < K. We rewrite

Dy, (x) = V20;(y /2 + yh2 cosh(hjx) — ). (1.6)
As each soliton is in H*°(R), we have R € H*(R). Our first main result is the following.

Theorem 1.1. Let K € N* and for each 1 < j < K, (6;,¢j,w;,z;) be sequence of parameters such
that x; =0, 0; € R, ¢j # ¢ # 0, for j # k and c; such that —2,/w; < ¢; < 2,/w; if v > 0 and
—2/wj < ¢j < —2s./wj if v < 0. The multi-solitons profile R is given as in (1.5). We assume
that the parameters (wj,c;) satisfy

(1 + ||Rm||LooLoo)(1 + ||RHLooLoc) + HR”%OOLOQ K Uy 1= jlg{j hj|Cj — Ck|. (].7)

There exist Tp > 0 and a solution u of (1.2) on [Ty, 00) such that

|u— R g1 < Ce™™. Vit =Ty, (1.8)

Ux

15 and C is a certain positive constant.

where A\ =

We observe that the formula of soliton in case v > 0 and v < 0 is similar. Thus, in the proof of
Theorem 1.1, we only consider the case v > 0. The case v < 0 is treated by similar arguments.

Remark 1.2. We give a example of parameters satisfy (1.7) as follows. First, we chose h; < |c¢j]
and ¢; < 0 for all j. We have

2 2
212 _ M

V2 : !
0Dy, o, = ?h?, [ ¢} + b3 sinh(hja)(y/c] 4 yh7 cosh(hjz) —¢;) 2.

Thus, choosing ¢; < 0, for all j, we obtain
0P, ;| S h54/c2 +yh2|sinh(h;x)|(y/c2 + A2 cosh(h;z) — ;)2

S h?(\/C? + ’yh? cosh(h;x) — cj)*%

h2

J

Vel

||(I)wj7CjH%°° <

Moreover,

~ h.j‘q)wj,cjl 5
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In the addition, we have

.
1OR;[|oe = 106w, ,¢; 120 & 0D ;L2 + 15 Pusye; = RS S

wj,Cj

<]

<100 o o + L e + 100 1
h2 b3

S — =+ hiy/lel + —=

~ Vel Ve

Thus, the left hand side of (1.7) is bounded by

1+ > ( hy + hi/les] + hy ) 1+ > S h (1.9)
i lé - :
1GKK \V |cj| V |Cj|3 1<GKK |Cj| 1<K G

Now, we give an example of parameters satisfying (1.7). Let d; <0, h; € Rfor all j € {1,2,..., K}
such that d; # dj for all j # k. Let (¢j,w;) = (Md;, i(h? + M?d?)). By this choosing, (1.9) is
order M and the right hand side of (1.7) is order M!. Thus, (1.7) is satisfied (1.7) for M large

enough.
1.2. Multi kink-soliton trains. Second, we consider another special case of (1.1) as follows
iUy + Uy + 15 + blultu = 0. (1.10)

Our goal is to construct the multi kink-soliton trains of (1.10). Motivation of this work is from [16],
where the authors have been success to constructed an infinite multi kink-soliton trains for classical
nonlinear Schrédinger equation by using fixed point arguments. However, in the case of (1.10), this
method can not directly use by appearing of a derivative term. To overcome this difficult, we will
use the similar method in the proof of Theorem 1.1. Specially, in the case b = 0, the same author
of this paper [24] established local theory of (1.10) under nonvanishing boundary condition. To our
knowledge, this is the first result in studying Cauchy problem of nonlinear Schrédinger equation
with derivative term.

Consider the equation (1.10). First, we would like to define a kink solution of (1.10). Let R, .
be a smooth solution of (1.10) of form:

Roc(t,x) = e“'¢y c(x — ct), (1.11)
where ¢,, . is smooth and solves
— bue + WP+ ich, —i¢* P, —blo|'0 =0, zeR. (1.12)
If ¢y [r+€ H'(RT) then the following Gauge transform is well defined:

c i [*
®,, . = exp (—1233 + Z/ |pw.c(v)|? dy) G e

Since ¢, . solves (1.12), ®,, . is smooth and solves
2
4

_ 1
¢ ) P — §Im(¢q>x)¢> — g|<1>‘2<1) + %7‘@4@ =0, 7v:= 5_ —Gb. (1.13)

_(I)”x+<” 2 33

Since @, . |g+€ H%(RT), by similar arguments as in [3], we can prove that Zm(®,, .0, P, ) = 0.
Thus, ®,, . solves

ot (v ® — $|0[20 + —n||'D = 0 (1.14)
s T YTy 2 16 - '

Now, we give the definition of a half-kink of (1.2).

Definition 1.3. The function R, . is called a half-kink solution of (1.2) if R, . is of form (1.11)
and associated @, . is a real valued function solves (1.14) and satisfies:

—3" 4+ od — f(®) =0,

lim@(x) £ 0, (1.15)
lim ®(z) =0,
T—Foo

where @ = w — %, f R — R such that f(s) = 5% — 2s°.
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The following result about the existence of a half-kink profile is stated in [15] as follows:

Proposition 1.4. Let f : R — R be a C' function with f(0) = 0 and define F(s fo
For o e R, let
1

¢(@) := inf {g >0,F(¢) - 5@42 = o}

and assume that there exists 1 € R such that
(@) >0, f(0)—a <0, f(¢(@))—@i(w1)=0. (1.16)

Then, for & = @, there ewists a half-kink profile ® € C?(R) of (1.15) i.e ® is unique (up to
translation), positive and satisfies ® > 0, ® > 0 on R and the boundary conditions

lim ®(x) =0, lim ®(z)= (@) > 0. (1.17)

Tr—r00

r—r—00

If in addition,

f (@) —an <0, (1.18)
then for any 0 < a < @y — max{f'(0), f'(((@1))} there exists D, > 0 such that
1@ ()] + |®(2) Lo<ol + |(C(@1) — (@) Lusol < Dae™ 1, Vo eR. (1.19)

Remark 1.5.

(1) As [15, Remark 1.15], using the symmetry @ — —a and Proposition 1.4 implies the existence
and uniqueness of half-kink profile ® satisfying
EEIPOO@(J:) = ((@1) > 0. xlgrolo o(z) = 0.

(2) In our case, f(s) = £s°

- 1%755. Let us see Proposition 1.4 under this nonlinear term. We may
% and ((w1) = 4 /% satisfy the conditions (1.16),
(1.18) and the definition of the function ¢. Thus, using Proposition 1.4, if v > 0, ¢ > 0 then there
exists half-kink solution of (1.2) and the constant a in Proposition 1.4 satisfies

check that if v > 0, ¢ > 0 then there exists &; =

2
c
0<a< e
(3) Consider the half-kink profile ® of Proposition 1.4. Since ® solves (1.15) and satisfies (1.19),
we have

| (2)] + 2" (2)] < Dae™I"l.

Now, we assume v > 0. Let K > 0, 0y, xg,wp,co € R be such that o = 0, 2\/wy > ¢ > /2.
For 1 < j < K, let (0;,z;,wj,¢;) € R be such that z; = 0, ¢; > co, ¢; # ¢ for j # k,

2/@j > ¢j > 2s,/w; for s, = | /{7=. Set R; = ¢%R,, ., where Ry, ., € H'(R) be soliton

solution of (1.10) given associated to the profile:

2h?
(132 = J y (hJ = 40.)]' — C?)

g =t cosh(hya) + ¢,

Let ®g be the half-kink profile given as in Remark 1.5 (1) associated with parameters wy, co and
Ruy.co be the associated half-kink solution of (1.10). Set Ry = € Ry, .¢,- The multi kink-soliton
profile of (1.10) is defined as follows:

K
V=Ro+) R (1.20)
j=1
Our second main result is the following:

Theorem 1.6. Considering (1.10), we assume that b < 2 (v >0). Let V be given as in (1.20).
We assume that the parameters (wj,c;) satisfy

(1 + Vallpeors) X4+ [[Vpore) + [V 1o foo <K v = }gi hjlej — ckl. (1.21)

Then there exist a solution u to (1.10) such that
|u— Vg < Ce . Vt =Ty, (1.22)
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Vs

where A = 1% and C' is a certain positive constant.

Remark 1.7.

1) The condition ¢2 > 27 in Theorem 1.6 is a technical condition and we can remove this. Under
0

this condition, the constant a in Proposition 1.4 satisfies

2

C
0<a< 2.
a 4'7

Thus, we can choose a = % This fact makes the proof is more easier and we have

(\/g Do (z )) 2<0

(2) By similar arguments as above, we can prove that there exists a half-kink solution of (1.2) which
satisfies the definition 1.3. To our knowledge, there are no result about stability or instability of
this kind of solution.

(3) Let v > 0. We give an example of parameters satisfy the condition (1.21) of Theorem 1.6. As
in remark 1.2, we have

96" ()] + 126 ()] + [26(2)| + [Po()1a>o0] + Sezll, (1.23)

—1

Dy, e, = V2h, (w/c? — yh3 cosh(h;x) + cj> o V3.

Hence, choosing h; < ¢, for all j, we have

2h? h?
@ e € e 5 2.
\/ G~ ’yhj +cj J
By similar arguments in remark 1.2, for all 1 < j < K, we have
2 3

|0R; ||~ < + hj GG+ —=.
J \/@ J J \/%

Now, we treat to the case j = 0. Let ®( be the profile given as in Proposition 1.4 associated to the
parameters ¢g, wo and Ry be associated half-kink solution of (1.2). Since (1.19), remark 1.5 and

remark 1.7 we have
B
@ oo < — =
[Pollz= <4/ 51~ Vo,
0Pl <1,

Thus,
[Roll Lo L~ < v/eo,

3 3

||8RO||LO<>L0<> 5 1+ Cg 5 002 .
This implies that for h; < ¢; (j =1,.., K) the left hand side of (1.21) is estimated by:

h

1+c0+z +h\ﬁ+— 1+a+ Y —=
\VE J J=1 Ve

Choosing ¢y = 1, the above expression is estimated by:

K
1+Z +h \ﬁ+\/, Z\/hg (1.24)

Let hj,dj € RY, dj # di for all j #k, 1 < j,k < K. Set ¢; = Md;, w; = §(h3 + M*d3). We have
(1.24) is of order M° and the right hand side of (1.21) is of order M*. Thus, by these choices of
parameters, when M is large enough, the condition (1.21) is satisfied.
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The proof of Theorem 1.6 uses similar arguments as in the one of Theorem 1.1. To prove
Theorem 1.1, our strategy is the following. Let R be the multi-solitons profile given as in Theorem
1.1. Our aim is to construct a solution of (1.2) which behaves as R at large times. Using the
Gauge transform (2.1), we give a system of equations of (p,1). Let h, k be the profile under the
Gauge transform of R. Set @ = ¢ — h and ¢ = 1) — k. We see that if u solves (1.2) then (,)
solves (2.10). By similar arguments as in [16], there exists a solution of this system which decays
very fast at infinity. Using this property and combining with the condition (1.7), we may prove
a relation of @ and . This relation allows us to obtain a solution of (1.2) satisfying the desired
property.

We introduce the following notations using in this paper.

Notation.
(1) Fort > 0, we note the Strichartz space S([t,00)) is defined via the norm
llulls(t,00)) = sup  [Jullpa pr ([t,00) xR)
(q,r) admissible
The dual space is denoted by N([t,00)) = S([t,00))*.
(2) For z = (a,b) € C? is a vector, we denote |z| = |a| + |b|.
(3) We denote a < b, fora,b > 0, if a is smaller than b up to multiply a positive constant. Moreover,

we denote a ~ b if a equal to b up to multiply a certain positive constant.
(4) We denote a <y b if there ezists a constant C(k) depend only on k such that a < C(k)b.

Particularly, we denote a <), b if there exists a constant C' depends only on parameters wi, ..., Wi, C1, ...

such that a < Cb.
(5) Let f € C*(R). We use Of or f, to denote the derivative in space of the function f.
(6) Let f(x,y,z,..) be a function. We denote |df| = |fu| + |fyl + |f2] + ..

2. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. We divide our proof into three steps.
Step 1. Preliminary analysis
Considering the following transform:

{so(t,x) —oxp (4 S ult,y) > dy ) u(t, @),
P =0p — 3ol

By similarly arguments as in [13] and [22], we see that if u(¢, ) solves (1.2) then (¢, 1) solves the
following system

(2.1)

Ly = ip*) — blel|*p,
Lp = —i)®p — 3blop|* — 26 0P %9,
¢ |t=0= po = exp (% I o luo(y))? dy) uo,
¥ |i=0= o = B0 — %|wol*o,
where L = 0; + 0,,. For convenience, we define
P(p, ) = ip*) — ble[*e,
Qlp,v) = —iy*p — 3ble| "y — 2b|p*?P.

Let R be multi soliton profile given as in (1.5). Set ¢ = u — R. Since R; solves (1.2), for all j, by
elementary calculation, we have

(2.2)

K o]
iR + Ryy +i|R|*Ry + b|R|*"R = i(|R|*R, — = |R;|*Rjz) + b(|R|'R — = IR;|*R;).  (2.3)
j= j=
Since Lemma 4.1, we have
K K
1R R, -z |R;* Rjoll = + || RI*R -z B[Rl < e, (2.4)

where A = L

gV« Thus, we rewrite (2.3) as follows

iRt 4+ Ryp +i|RI*Ry + b|R|*R = e Mu(t, z), (2.5)
where v(t) € H%(R) such that ||v(t)|| gz uniformly bounded in t¢.
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Define
h = exp <;/ IR|? dy) R(t,), (2.6)
k= hy — %|h|2h. (2.7)

By elementary calculation as above, we have

Lh = ih%k — blh|*h + e~ m(t, z),

Lk = —ik®h — 3b|h|*k — 2b|h|2h%E + e~ Pn(t, ),
where m(t), n(t) satisfy

m = vexp (;/ |R|? dy) - h/ Im(vR) dy, (2.8)
n = mg — i|h|?m + %h2m (2.9)

By Lemma 4.2 we have |[m(t)|[z1 +||n(?)[|g: uniformly bounded in ¢. Let ¢ = ¢ —h and Y =1—k.
Then ¢, 1 solve:
{Ls% = P(p, ) — P(h,k) — e~Pm(t, ), o1
Ly = Q(p,¥) — Q(h, k) — e~ n(t, x). :
Set n = (&, l/;)a W = (h,k) and f(p,¥) = (P(p, ), Q(p,v)). We find solution of (2.10) of following
form:
n= *i/t St —s)f(W+n)— f(W) + H](s) ds, (2.11)

where S(t — s) is Schrodinger group, H = e~**(m,n). Moreover, since ¢ = 0y — %||*p, we have

§= 00— L5+ MG+ h) — [hR). (212)

Step 2. Existence solution of (2.10)
Since Lemma 4.3, there exists T, > 1 such that for Ty > T, there exists unique solution 7 define
on [Ty, o0) of (2.10) such that

e (10l s(1t,00)) x5([t,00))) + €M |8 ([t00)) xS([100))) < L, VE = T, (2.13)

for the constant A > 0 defined as in step 1. Thus, for all ¢t > T, we have
@l + 190w S e, (2.14)

Step 3. Existence of multi-solitons

We prove that the solution n = (5,4) of (2.10) satisfying the relation (2.12). Indeed, let 7 be
solution of (2.10) which we find in step 1. Set ¢ = @+ h, ©» = + k and v = dp — Ll[*p. Since
h solves Lh = P(h, k) + e~ "m(t,z) and @ solves L = P(p, ) — P(h, k) — e tm(t, z), we have
(¢, 1) solves
2.1

By similarly arguments as above, we have

Lo = Lo = Qo) ~ (9Lp ~ 3L(1eP)

{LwP(%dJ),

= Qo) — (026 — J(LIP+ L) + 206259

= Qlp,¥) — <8Ls0 - %(2L<P|sol2 +2(09)°% — 9’ Ly + 2¢°002) + 290|8<P|2)> . (2.16)
Moreover, we have
Lo = P(p, ) = ig”¢ — ble[*ep
= i (¢ — v) +ip*T — blp|*e. (2.17)
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Combining (2.17) and (2.16) and by elementary calculation, we obtain
_ 1
Lip = Lv = Q(p,9) — 8(ip* (¥ —v)) — |¢[*0* (¥ —v) — §|<ﬂl4(¢ —v) = Q(p,v)
S _ 1
= (Qp¥) = Qp,v)) = 2ipdp(v — v) = ip*0(W — v) = |p[*P* (W —v) = S o' (¥ = v)

= —i(0? — V27~ Bl (0 o) ~ P =) - 20 (v + 5l W0

— 20— ) ~ el — 1) — 5lel(p — v). (218)
Define o = v — k. Since, ) — o = ¢ — v and (2.18) we have
Lip = Lo = (Y — 0) A, 0, @, h, k) + (¥ — D) B(), B, 3, h, k) — i(@ + h)*0(¢ — 0), (2.19)

where

1
A= i +0+2k)(@+h) = 3|+ h* = SIg+ A,
B = —2b|¢ + h|*(¢ + h)* — 2i(p + h) (v +k+ %|¢ +h2 (@ + h)) — @+ h2(@ + h)%

We see that A, B are polynomials of degree at most 4 in (1/;,17, @, h, k). Multiplying two sides of

(2.19) with 1; — v, take imaginary part and integral over space using integral by part , we obtain

= 2

306 =013 = Tn [ (5= 0PAG.5.5.0K) + (9= 0) B.5.6.hk) + 5006+ WP —5) da

Thus,

1,.- -~ -
‘2&“%& —0l72| S =0l 72| Al + [ Bllze + 10(& + 7)?[| ).
This implies that
ol — oll3 .
=L S Al + [Blloe + 10(& + b))
”"/J _UHL2

Hence, for N > t, integrating from ¢t to IV both sides we obtain

N N 7 ~112

d . OellY — |7
—Ln(||1y — 9|%.) ds / —— L% s

/t dy ( Iz2) ¢ v —10|3.

Ol — 9122

19—l

N
</
t

Ln([[d(t) = 5(t)[72) — Ln([$(N) = 5(N)|72) <

N
ds S / ([Allz> + 1Bl + 10(& + h)?|| ) ds,
t

This implies that

N4 ~
[~ olEa) ds
t t

N
5/t (Il + | Bllz~ + 18(& + h)2] =) ds

We obtain
N
() = 50172 S Ib(N) = 5(N)|[72 exp (/t (1Al o + |1 Bl + |0(@ + h)?| e ds) - (2.20)

Since (2.13) and (2.14) and Sobolev embedding H!(R) — L>°(R) we have, for t > Tj:
16+ Rl S 1+ 1B]L~,

1

S (PP(@+ 1) = (AP S0Pl + (517 + @l Plli= S 1+ 010 + [I2]Z--

0]z = [10f —
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Thus, using k = h, — £|h|?h and © = 0@ — (|¢ + h|*(¢ + h) — |h|?h) and |h| = |R|, we have
N
| Ul + 1Bl + 05+ b)) ds
t

N
S/t (1o + 8llzee + 1kl o) 1@+ hllzee + 116 + Al Lo + 16 + hll oo |0 + Kl 2
+ (Il + 1Rl )(102] oo + [[ha| ) ds
N
S / (14 [15llzee + [kl )X + [hllzoe) + 1+ (Al Lo + (14 Rl ) (5] o + [l )
t

+ (L [[hllLe) (1021 o + [[hall o) ds

N
S / Lt (7l poe + Kl (U NRllzoe) + [0l noe (1 + [[Rll o) + (1 + (12 o) (10@]] 2 + [hallzo) ds
t
N
< /t Lt (7l Zoe + Kl U+ [Allpoe) + [10G] oo (1 + [[Allzee) + (1 + Rl ) (102l 2 + [1Kllzoe + 7] Z) ds

N
< / L (Bl e+ Bl e (14 Al ) + 10 ] o (1 + (1B ) ds
SN = (14 [l e oo+ Wl (14 [l e o)) + 10l sy (1T g ) + IR gm0
SN = O+ R e + (Ml z + 1R p) (04 Rl ) + (V = D30+ [ RIf )
SN =)0+ Rl e+ [ Rollzm o (14 [ Rllzm o)) + (N = )3 (14 | R]f po)-

Thus, from the assumption (1.7), we have (14 ||R;||po o) (14 || R| Lo 1o )+ || R||; o .« < A. Hence,
fix ¢t and let N large enough, we have

N
Al + 1Bl + 105 + 1) ds < (¥ = ).
Combining with (2.14), we obtain, for N large enough:
[(8) ~ D)3 S e AN eN=0% = g1
Let N — oo, we obtain that

[4b(t) = (t)]7> = .
This implies that ¢ = , hence,

i
Y =v=0p - lel*e (2.21)

Let u = exp (—% I le()? dy) . Combining (2.21) with the fact that (p,) solves

Lo = P(p,),
Lw = Q(@a¢)a

we obtain u solves (1.2). Moreover,

i [* R
o= Rl = llexo (=5 [l an) e —exp (=5 [ Int)Pay) il
S llp = bl = 18l

Combining (2.14), for t > Ty, we have
||U — R”Hl < B_At.

This complete the proof of Theorem 1.1.
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3. PROOF OF THEOREM 1.6

In this section, we give the proof of Theorem 1.6. We divide our proof into three steps:
Step 1. Preliminary analysis
Set )
L2
vi= Uy + §|u\ u.
By elementary calculation as in the proof of Theorem 1.1 we see that if u solves (1.2) then (u,v)
solves the following system:

Lu = —iv®v+ (3 — b) |ul*y,
Lv = iww*u+ (2 - 3b) |u[*v + (1 — 2b)|ul*u?v, (3.1)
u |t:O: uo, .

v |t=0: Vo = 8u0 + %|UO|2U0.

Define
1
P(u,v) = —iu?T + (2 - b) |u|*u,

Q(u,v) = iv’*a + <2 - 3b> lu[*v 4 (1 — 2b)|u|*u?D.

Let V' be multi kink-soliton profile given as in (1.20). Set ¢ = v — V. Since R; solves (1.2), for all
7, by elementary calculation, we have

K K
Vit Vg +i[VPVe + DVI'V = i(VV, = > RIR;,) +b([VI*V = Y |Rj|I*R)). (3.2)

§=0 §=0
Since Lemma 4.4, we have
K K
Ve = RiRjalle + V'V = Y IR *Ryll e < e, (3.3)
j=0 §=0

for A = {-v,. Thus, we rewrite (3.2) as follows

iVi + Vo + V2V, +b|V|V = e Mmf(t, ), (3.4)
where m(t) € H?(R) such that ||m(t)|| g2 uniformly bounded in . Define
h=V,

i
k= hy + < |h°h.
By elementary calculation as above, we have
— 1
Lh = —ih*k + <2 — b) |h[*h + e P m = P(h, k) + e Pm,

Lk = ik*h + <3

i 3b> |h|*k + (1 — 20) 1A%k + e Pn = Q(h, k) + e n.

where n = my + i|h|*m — Lh*m satisfy ||n(t)||g: is uniformly bounded in ¢. Let @ = u — h and
,'U) - P(h7 k) - eit)\m7

v =wv — k. Then u, v solves:
Lu = P(u
Lo = Q(u,v) — Q(h, k) — e P n.

Set n = (@,0), W = (h, k) and f(u,v) = (P(u,v),Q(u,v)). We find solution of (3.5) of following

=g}
I

(3.5)

n= i / TS = SOV ) — (W) + H](s) ds, (3.6)

A(m,n). Moreover, since v = u, + %|u|?u, we have

where H = e~

=Gy + = (|@ + h|*(@+ h) — |h|?h). (3.7)

(S48
N =
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Step 2. Existence solution of system equations
Since Lemma 4.3, there exists T, > 1 such that for Ty > T, there exists unique solution 7
define on [T, 00) of (3.5) such that

1, Vt>Ty, (3.8)

M Il s((t,00)) x 5(1t00)) T+ €M Ml 5(12,00)) x5 ([£,00)) <
> Ty, we have

where the constant A > 0 is defined as in step 1. Thus, for all ¢
[l + (|19 S e (3.9)
Step 3. Existence of multi kink-soliton for (1.2)
Using similar arguments in the proof of Theorem 1.1 we can prove that the solution 7 = (3,)
of (3.5) satisfying the relation (3.7) under the condition (1.21). This implies that
L T, -
V= Uy + 5(\u + h2(@+ h) — |h?h).
Set u = + h, v =0+ k. We have

v =uy; + %|u|2u (3.10)
Since (@, ) solves (3.5), we have u, v solves
Lu = P(u,v),
Lv = Q(u,v).

Combining with (3.10) we have u solves (1.2). Moreover, for ¢t > Ty, we have
lu =Vl = llam S e
This completes the proof of Theorem 1.6.

Remark 3.1. We do not have the proof for constructing the multi kink-soliton trains of equation
(1.2) as (1.10). The reason is that if the profile R in the proof of Theorem 1.1 is not in H*(R) then
the function h defined as in (2.6) is not in H'(R). Thus, the functions m,n defined as in (2.8) and
(2.9) are not in H'(R) and we can not apply the Lemma 4.3 to construct solution of system (2.10).

4. SOME TECHNICAL LEMMAS

4.1. Properties of solitons. In this section, we prove some estimates of soliton profile using in
the proof of Theorem 1.1.

Lemma 4.1. There exist To > 0 and a constant A > 0 such that the estimate (2.4) is true uniformly
fort = Ty.

Proof. First, we need to some estimates on soliton profile. We have

1 —hj .
|Rj(z,t)] = |Pu, c, (x — cjt)] = \/§hj(1 /c —|—7h2 cosh(h;(x —¢;t)) —¢;) 72 Shyleyl ez lz—est]

Moreover,

|OR;(x,t)| = |0¢us, ¢, (x — cjt)| = —hQ,/ 2+ yh3sinh(hj(z — ¢t))(y/ ¢ 4+ yh3 cosh(hj(x — ¢;t)) — ;)72

TP et
Sth,‘Cj'e st|z—c; ‘
By elementary calculation, we have
—h.
2 3R Hz—c—jt
(0% R; (2, 0)| + |0° Ry (,1)] Sy e,y €77 107771,
Now, let us comeback to prove Lemma 4.1. For convenience, we set

2 K 2
x1=i|RI"Ry —i R |R;|"Rja,
J:
K
~imtR- ¥ R,
J:

Fix ¢ > 0. For each x € R, choose m = m(z) € {1,2,..., K} so that

| — cmt]| = Hl]ln |z — ¢;t|.
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For j # m, we have
1 t
|z —ct| > §|cjt —cmt] = i‘cj — Cml-
Thus, we have
(R — Ry) (2, )| + |(OR — ORy(,1))| + |0°R — O*Rp| + |0°R — 0° R,
S 2 (R(@ 0] + |0k, (z, 6)] + 0% R;(w,t)| + |0° R; (2, 1)])
JjFEmM

—h;
= Y e PR |z—c;t|

§h1,-<7hka|01|7~-7\ck\ 5m($,t) .
Jj#m

Define
U*—infh'C‘fck.
£k J|J |

We have
(R — Rp)(2,8)] + |(OR — ORm(z,1))| + |02R — 0*Rpp| + |0°R — 0P Ry | < Spu(,) < 7 1.
Let f1,g1,71 and f2, g2, 72 be polynomials of u, u,, Uz, Uze, and conjugates such that:
ilufuy = filw, @ ug),  |ul'u= fo(u,w),
AilulPug) = g1 (t, g, Uae, T, ), O(Jul*u) = go(u, g, T, ..),
% (ilul?uz) = r1(Uy Ugy U, Upaa, Ty o), O (|ul ) = ro(u, g, Ups, T, ..).
Denote

A= sup ([dfs| + [dfa| + dga| + |dga| + |dri| + |dr2]),
|2+ |2 |+ 2ea |+ 20w | <[ Rl ga

where we denote by |df (z,y,2,...) = |fz| + |fyl + |f:| + ... be absolute value of gradient of f at
point (z,y,z,...). We have

Ixal + Ixal + 10x1| + [0x2| + 10%x1| + 0% x|
<Ifi(R, Ra) = f1(Ron, Rna)| + [ f2(R) = fo(Re)| + D (1f1(R), Rjx)| + | f2(R))])
Jj#m
+ |91<R, Rm7 RCD(E? ) - gl(Rm7me7 Rma::ca )| + |g2(R7 sz ) - g?(Rm7 Rmza )|
+ Z(gl(RjaRjzijmm") + 92(Rj, Rj), -.)
Jj#Em
+ |7‘1(R7 Ry, Rz, Rz ) - Tl(Rma Rz, Rmze, Rmzaz, )| + |T2(R, R, Ryz, ) - TQ(RTV‘HRWL.’L'v Rozes )|
+ Z (Tl (R]7 ij; Rja:m; Rjzxa:; ) + T2<Rj, Rjaiaijalv ))
Jj#Em
< A(|R — Ryl + |Rw - Rmﬂﬂl + | Row — Rmm| + ‘me - mewwD + Z A(|Rj| + |ij‘ + |ija:| + |ijm|)
Jj#Em
<24 Z(|RJ| + IRjﬂc| + |ijw‘ + |ijm|)
Jj#m
< 240, (L, ).
In particular,
_1,
X1 llwzee + [Ix2llwze Sp e 1
Moreover, we have
X1 llwz + [Ixz([wea

K
Y IR P Rialles + 10081 Rya)ll o + 10 (| Ry PRyl o + 1B s + 10 R [ By )l s+ 0% (| R Ryl o)

<.
=

<
S D (IR + IRl + 1 Rs MG + IRs 150 + [ Rs 15 + [R;lI32) < © < o0

<
=
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By Holder inequality, for 1 < r < oo, we have
Ixallwzs + xzllwer <p ™73 vr € (s,00).

Choosing r = 2 we obtain:
2=t

X1l + lIxellm2 Sp e 57,
Thus, for t > Ty, where T large enough depend on the parameters wy, ...,wg, ¢1, ..., Cx, we have

Ixtllmz + X2l < e™ 168, Vit > Ty,

Let A = ==, we obtain the desired result. O

4.2. Prove the boundedness of v,m,n. Let v, m and n be given as in (2.3), (2.8) and (2.9)
respectively. In this section, we prove the boundedness of H?(R)-norm of v and H'(R)-norm of
m,n uniform in times. We have the following result:

Lemma 4.2. The functions v, m,n satisfy
lo@®)lm2 + [m®)llm + [In@) |1 < C,
uniformly on t > Tgy, for some constant C > 0.
Proof. Let x1 be given function as in Lemma 4.1, we have
e My =y,
By Lemma 4.1, we have ||v(t)|| gz < D, for some constant D > 0. Since (2.8), we have
[mllz> < llvllg2 + (Rl g2 vl g2 | Bl a2 < Ch,
for some constant C; > 0. Since, (2.9), we have
Inllze < lmalice + [RlZ Imlla < llmllm 1+ [[B]70) < Co,
for some constant Cy > 0. Moreover, we have
[nellze S llmaeallce + (1R Imll e < [lmla= 1+ [[B]F) < Cs,
for some constant C3 > 0. Choosing C' = D + C; + C5 + C3, we obtain the desired result. O

4.3. Existence solution of system equation. In this section, we prove the existence of solution
of the following equation:

In Duhamel form,

Tl(t):*i/t St —s)f(W+n) — f(W) + H|(s) ds, (4.1)
where f(ioal)[)) = (P(%i/))’Q(%w)) and P(‘Pﬂ/’) = 2902@ - b|50‘490> Q(%T/)) = 72‘11)2@ - 3b\90|4¢ -
2bJp[*p?1.

Lemma 4.3. Let H = H(t,z) : [0,00) x R = C%, W = W(t,z) : [0,00) x R — C? be given vector
functions which satisfy for some C1 >0, Cy >0, A >0, Ty > 0:

W ()l zoex Lo + M H®) | 2wz < Cr o VE = T, (4.2)
[OW (£)|| 2w 22 + [OW (£) || Lo x oo + e OH ()| 2wz < Cay Vit = T, (4.3)

Consider equation (4.1). There exists a constant ). independent of Co such that if X > A, then
there exists a unique solution n to (4.1) on [Ty, 00) x R satisfying

<
<

Ml s (t,00)) xS ([t00)) + €N s((t,00)) xS((00y) < 1, VE = T

Proof. We use similarly arguments as in [15]. We write (4.1) as n = ®n. We shall show that, for
A sufficiently large, ® is a contraction in the ball

B = {77 Hnllx = 6)\t||77||S([t7oo))><S([t,oo)) =+ eMH877HS([t7oo))><S([t,oo)) < 1}
Step 1. Prove ® map B into B
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Let t > Ty, n = (m,n2) € B, W = (w1, ws) and H = (hq, he). By Strichartz estimates, we have
121 5(1t,00)) % S((t00)) S NF W +1) = FW) N ((t,00)) x N([t00)) (4.4)
A+ 1H || 21 22 (t,00)) x L1 L2 ([t,00)) (4.5)

For (4.5), using (4.2), we have

—_

|1 22 (1,00 x £2 22 (11,000 = Iall 22 18,00)) + 2]l 222 (11,00)) S /too e Mdr < e (46)
For (4.4), we have
|P(W +n) — P(W)| = |P(wi 4+ ni, w2 +12) — Pw:, w)|
S (w4 m)? (we + n2) — wiws| + (| + wi|* (m 4+ wi) — |ws|[*ws|
Slml+ 2l + mf?
Thus,
IP(W + 1) = POV) || n(tt.o0)) S Il (i.o0)) + 172]l v (it.00)) + 175 v (1t.00))

Sz rz o) + Im2llLe Lz ooy + 173122 22 (1,00)

S [Cevans [CInlgdr
t t
=\t - z 2
[l Bl ol
t

oM +/Oo o= (T/2243/20)7 4
t

N

A
Sl g

|
>
=

b s < L e
T/2)+ 3/2A ~ '

A
)

+

By similar arguments as above, we have

IRV +n) = QW) n(t,00)) S

Thus, for A large enough, we have

e M,

> =

1
1277115 ((6,00) x5 ([1,0000) < 7€ At

It remains to estimate [[0Pn||g(jt,00)x S([t,00)))- BY Strichartz estimate we have

01| 5(1t,00) x5 ([t:00))) S MO W 4+ 1) = FWN N (1t,00)) x N ([t.00)) (4.7)
+ 1OH || N ([t,00)) x N ([t,00)) - (4.8
For (4.8), using (4.3), we have
IOH || N ([t,00)) x N ([t,00)) < 10h1]|L1 L2 ((t,00)) + [[0h2llL1 L2 ([t,00))
° 1
< / e Mdr = —e M. (4.9)
] A

For (4.7), we have
[OCf(W +n) = FWDIIN(#,00)) x N([t,00)) = IO(PW + 1) = PW)) || n(1t,00)) + 1OQW + 1) — QW) N (t,00))
Furthermore, using the notation (1.2) (3), we have
[D(P(W +1) = P(W))| S |0((w1 +m)* (w2 +n2) — wiwz)| + |0(lwy +m|* (w1 +m) — wi|*w1)]
S lonl(Inl* + [w]?) + |ow|(|nf* + |wl|nl)
+1oml(Inl* + [w|*) + [0w|(|n* + Inllw]?).

Thus, we have

10(P(W +n) = PW))|[n(jt.00))

S oIl + [wl*) v 2,000 + 0wl + [w][9]) | 5 (12,000) (4.10)

+[l[oml(Inl* + ") x (12,000 + 110w]([1]* + 1l[w ) n1e,000 - (4.11)
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For (4.10), using (4.2) and (4.3) and the assumption n € B we have
1on1(nl* + Twl*)l| n .00y + I0w] (01> + [w][nD)]] n(jt,00)
S MomlnlP L Lz ie,00)) + 10mlw]? (| L1 L2 (12,00)) + 10N L1 12 ((2,00)) + [Owl 0] [7]]| 1 22 ((2,00))
S 0n 22 22 (eoop 14 oo + 1100111 L2 (1,000 | 0] [ F oo oo
+ 0wl zoe Lo Nl 2 Lo (.oop 111 375 12 (1 00y + Tl oo Loe 110wl ][ oo os Nl 22 22 11,00
S %e_)‘t.

For (4.11), using (4.2) and (4.3) and the assumption n € B we have

Honl(nl* + [w ) n (.00 + 0w (I* + [1w]®) | v (ie,000)
S Moml(nl* + [w| ) Lr 2 .00y + 110wl (n* + Inllw]*) L 22 (1,00))
S 10n1 Lee 22 (000 1M1 T8 20 (f1,00)) + 1011 22 poe 1011 L1 22 (2,00

+ ||3w||L°°L2||77||ingo([t,oo)) + ||3w||L°°L°°||w|\?£ooLooHUHL;L?E([t,oo))
1

S Xei)\t.
Hence,
1 _
[PV + 1) = V)t < € (412)
By similarly arguments, we have
1 _
1(QIW +n) = QW))lIn(ir.0n S e X, (4.13)

Combining (4.12) and (4.13), we obtain

1
10 W +0) = F) ooy veoen < 3¢ (4.14)

Combining (4.9) and (4.14), we obtain

1 _ 1 _
10Dl|s (12,000 x 511,000 S Y€ Mg G AL
if A > 0 large enough. Thus, for A > 0 large enough
[@nllx < 1. (4.15)

Which implies that & map B onto B.

Step 2. @ is contraction map on B

By using (4.2) and (4.3) and similarly estimate of (4.15), we can show that, for any n € B,
k € B,

1
1®n = @xllx < 5l — xllx.
By Banach fixed point theorem there exists unique solution on B of (4.1). O

4.4. Properties of multi kink-soliton trains profile. In this section, we prove some estimates
of multi kink-soliton trains profile using in the proof of Theorem 1.6.

Lemma 4.4. There exist Ty > 0 and a constant A > 0 such that the estimate (3.3) is true uniformly
fort = Ty.

Proof. For convenience, set

K
R = ZRj.
j=1

By similar arguments as in the proof of Lemma 4.1, we have

|Rj(a, )] + [0R; (a, )] + 0% Ry, )| +0° Ry (2, )] Sy je, €72 7771,
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for all 1 < j < K. Now, let us comeback to prove Lemma 4.1. For convenience, we set
g K
X1 = iV Va; —1 ,EORjij
j=
K
= VI'V - 3 |R;|'R;.
7=0
As in the proof of Lemma 4.1, we fix ¢ > 0, take any = € R and choose m = m(z) € N such that
|z — emt| = min |z — ¢;t|.
If m > 1 then by the assumption ¢y < ¢; for j > 0 we have > cpt. Thus, by asymptotic behaviour
of ®y as in Remark 1.7, we can see Ry as a soliton. More precise, we have
|Ro(t, 2)| + [Ro(t, 2)| + |RG (1, 2)| + |RY' (8, )] S e 2lomeotl S eminet,
Thus, by similar arguments as in the proof of Lemma 4.1, we have:
(R — Rpn)(2,8)| + |(OR — 8Ryp) (2, )| + [(9*R — 8 Rp) (2, 1)| + |8°R — 8* Ry | S e 17,
where
Vs :]igihj|cj — ¢kl

Let fi,91,71 and fa, ge, 72 be polynomials of w,uy, Ugs, e and conjugates such that for u €
H3(R):
ity = fi(u, T, ug), |u/*u= folu,7),
O(iu*Tg) = g1(u, U, U, T, ..),  O(|u|*u) = go(u, us, T, ..),
az(iUQW) =71 (U, Uy, U, g, Ty - ), 62(|u|4u) = 1o (U, Uy, Uga, Uy --)-
Denote

A= sup (ldfi| + |dfz2| + dg1| + |dg2| + |dre| + |dr2]),
|Z|+|Zx|+‘zzx|+‘zzxz|<”R”H4(R)

where we denote by |df (z,y, z,...)| = |fz| + [ fy| + |f.| + ... the absolute value of gradient of f at
point (z,y, 2, ...). Therefore, for m > 1 we have

x|+ x| + [0x1] + [Oxz] + [0%x1| + 10°x2|
S IRo*[Ros| + [Rol” + [ /1(V, ) = fi(R, )+ [ f2(V, ) = fa(R, D)+ 91 (Vo) — g1 (R, )|+ [g2(V, ) — g2(R, )|

K
+ (Vi) = (B )|+ (Vi) = ra(Ry )l + [ fi(R, Rey B) = Y f1(Ry, Ry, By

j=1
_ K K K
+|f2(R7R)_Zf (ijR )|+|gl R Rza-- Z ]m- ‘+|92(R Rla-~)_292(RjaRjza-~)|
=0 =1 =0
K K
+ {11 (R, Ry ) = Y r1(Ry, Rja, )| + [r2(R, Ry, ) = > 12(Rj, Rja, )|
=0 §j=0

< |Rol*| Roa| + [Rol” + Al Ro
+A(I(R = Ryn) (@, )| + [(OR = ORwm) (x, )| + [(0°R — 0° Ry ) (w,8)] + [0°R — 9 Run)

K
+A > (IR +|0R;| +|0°R,| + [0°Ry])

j=1.j#m
K
S IRo*|Rox| + [Rol® + A[Ro| + A >~ (IR;| +|0R;| + |0°R;| + |0°R;))
j=1j#m
< e avet

~p bl
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If m = 0 we have

x|+ x| + [0x1] + [Oxz] + [0%x1| + 10°x2|

Z |f'u V V:m .. fU(R07aR07 )l + |gv(Va Vma ) - g'u(ROaaROa )| + |T'u(‘/7 wa ) - TU<RO;8RO)|)

v=1,2

+ Z (Ifo(Rj, Rjz, - )| + |90 (R), Rjw, )| + [10(R), Rja, -.)])
j=10=1,2
K
S AR+ A (IR;| + |0R;| + [0°R;| + [0°R])
j=1

1
— ZU4t
Sp e 10

~.

This implies in all case we have

_1
X1 (®)llwzoe + Ix2 () lwae Sp et (4.16)

On one hand,

lIx1 () |21

K
<D (IR Rl + 10(RE Rl + 0% (R3R;z) | 1)
7=0

K
SN UR s + 10Ro|lwzn < € < o0
Jj=1

On the other hand,

2 (8) [[w2.1

K
S VIV = [Rol*Rollw=r + Y IR, R; [lw2a
j=1

< ll1Rol* ZIR |+ IRo|Z|R *llwa +ZIIR I3

j=1 j=1

K
S (IRjllwza (| Rollwze + 1) + | R; ]| 32) < C < oc.
j=1

Thus,
X ®llw2 + [Ixa (@) lw=1 < oo (4.17)
Since (4.16) and (4.17), using Holder inequality, we have
1y,
X1l + Ixa(®)llaz <p e 5

Let Ty be large enough which depends on the parameters wy, ..., wx,c1, ..., ¢k, we have

I ()l gz + D2 ()l < e84, V> T,
Let A = {-v,, we obtain the desired result. O
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