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CONSTRUCTION OF THE MULTI-SOLITON TRAINS, MULTI
KINK-SOLITON TRAINS OF THE DERIVATIVE NONLINEAR
SCHRODINGER EQUATIONS BY THE FIXED POINT METHOD

PHAN VAN TIN

ABsTrRACT. We look for solutions to derivative nonlinear Schrodinger equations built upon
solitons. We prove the existence of multi-soliton trains i.e. solutions behaving at large time as
the sum of finite solitons. We also show that one can attach a kink at the begin of the train
i.e multi kink-soliton trains. Our proofs proceed by fixed point arguments around the desired
profile, using Strichartz estimates.
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1. INTRODUCTION

We consider the derivative nonlinear Schrédinger equation:
Uy + Ugy + ial\u|2ux +iaou’uy + b\u|4u =0, (1.1)

where a1, as,b are given constants and u : Ry x R, — C.
In this paper, we are interested in two special forms of (1.1). First, we consider (1.1) in case
ay =1, as = 0 as follows:
iy + Uy + iulug + blul*u = 0. (1.2)
Second, we consider (1.1) in case a; = 0, ag = 1 as follows
Uy + Uz + iU TG + blu|*u = 0. (1.3)

The derivative nonlinear Schrodinger equation was originally introduced in Plasma Physics as a
simplified model for Alfvén wave propagation. Since then, it has attracted a lot of attention from
the mathematical community (see e.g [4, 5, 7, 10, 11, 17, 18]).

The local well posedness of (1.1) in H'(R) is given by using Gauge transform as in [8, 9]. The
global well posedness of (1.1) in H'(R) is given under small condition of the mass was considered
in several papers (see [20] and the references therein). In [1], rely on complete integrability of
equation, the authors proved the global well posedness of (1.1) in case oy = 2, e = 1, b =0 in
H? (R) and furthermore proved that the H 2 norm of solution is globally bounded in time. To our
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knowledge, there are no many works on the Cauchy problem of (1.1) under non vanishing boundary
condition. In [19], the author proved the local well posedness of (1.3) under b = 0 in some special
spaces. However, the method use in [19] can not extend to general case (1.1). The main reason is
that we can not find a proper transform to give a system without the derivative terms from (1.1).

The soliton of (1.2) is a profile of two parameters w, ¢. In case b = 0, Colin and Ohta [3] proved
that the soliton u,, . is orbitally stable when w > % by variational arguments. In case b > 0
Ohta[15] proved that for each b > 0 there exists unique s* = s*(b) > 0 € (0,1) such that the
soliton w, . is orbitally stable if —2v/w < ¢ < 2s*y/w and orbitally instable if 2s*/w < ¢ < 2y/w.
In [6], Hayashi investigate the structure of (1.2) from the viewpoint solitons.

Our goal in this paper is to construct the multi-soliton trains of (1.2) and multi kink-soliton
trains of (1.3) i.e solutions which behave asymptotically as the sum of finitely solitons and as
sum of a kink and finite solitons respectively. In [14], Le Coz and Wu proved stability of multi-
soliton trains of (1.2) in case b = 0. For classical Schrodinger equation, in [12, 13] the authors
constructed the infinite solitons train, infinite kink-soliton train using fixed point methods. In this
paper, we prove the existence of multi-soliton trains and multi kink-soliton trains by using a fixed
point method. By similar arguments in the proof of construct multi-soliton trains for (1.2), we
can construct multi-soliton trains solution for (1.1). However, to construct the multi kink-soliton
trains, our arguments do not work for the general case (1.1). Before state the main result, we give
some preliminaries.

1.1. Multi-soliton trains. Consider equation (1.2). The soliton of equation (1.2) is solution of
form R, .(t,z) = e}, o(x — ct), where ¢, . € H'(R) solves

— Guz + WP+ ich, —i|o]Pd, —blo[*'d =0, =z €ER. (1.4)
Applying the following gauge transform to ¢, .

(bw,c(x) - q)w,c(x) exp <'ch - %/ |cbw,c(y)|2 dy> )

2 —00

it is easily verified that ®,, . satisfies the following equation.

c? c 3 16
- o —— ) O+ PP — —7|P|*® = =1+ —b. L.
ot (=G ) o glole - Salate —0. gim14 (15
The positive even solution of (1.5) is explicitly obtained as follows; if v > 0 or equivalently
b> 32,

2(4w—c?) e
(I)i c(x) — \/c2+'y(4w—c2)cosh(\/4w—c2x)—c if 2\/(; <e< 2\/(;,
’ (cwl)ligﬂ lf Cc = 2\/(;,

if v < 0 or equivalently b < 71—36,

2(4w — c?)
v/ 4+ v(4w — ¢?) cosh(Vdw — c2z) — ¢

where s, = s.(y) = 4/ % We note that the condition of two parameters v and (w, ¢)

o7 (r) = if — 2V < ¢ < —2s,v/w,

-3
if7>0<:>b>1—6,—2ﬁ<c<2\/o7,

-3
ify <0 b< 1—6,—2\/a<c<—23*\/&
is a necessary and sufficient condition for the existence of non-trivial solutions of (1.2) vanishing
at infinity (see |2]). For each j € {1,2,.., K}, we set
Rj(t,x) = €' Ry e, (t,x —x5).
The profile of an multisoliton is a sum of the form:
K
R= Y R;. (1.6)
j=1
A solution of (1.2) is called multisoliton if, for some profile R:

u(t) — R(t) = 0 as t — oo,
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in H!(R)-norm. For convenience, we set h; = /4w, — c5. Let (¢j,wj) be such that —2, /w5 < ¢; <
2, /wyj if v >0 or —=2,/w; < ¢; < —28,,/w; if v <0, for all 1 <j < K. We have

Dy, 0, () = V2h;(1 /2 + yh3 cosh(h;z) — cj)%l. (1.7)

As each soliton is in H*°(R), we have R € H>*(R).
Our first main result is the following.

Theorem 1.1. Let K € N* and for each 1 < j < K, (0;,¢j,w;,x;) be sequence of parameters such
that x; = 0, 0; € R, ¢; # cx # 0, for j # k and c; such that =2, /w; < ¢; < 2,/wj if v > 0 and
—2/wj < ¢; < —2s4/w;j if v < 0. The multisoliton profile R is given as (1.6). We assume that
the parameters (wj,c;) satisfy

max{1; | Ry || poe oo | Rll oo poe + | B[ Lo e } < 04 = inf hyle; — i (1.8)
There exist a solution u to (1.2) such that
|u— R < Ce™™. Yt =Ty, (1.9)
for some constant C > 0, A\ = lv*.

The formula of soliton in case v > 0 and v < 0 is similar. Thus, from now on, we assume ~ > 0.
The case v < 0 is treated by similar arguments.

Remark 1.2. In cases v > 0, we give a example of parameters satisfy (1.8) as follows. First, chose
h; < min(|c;|,1) and ¢; < 0 for all j. We have

2 2
2h3 _

[P, e [|Foe « ———=—— S .
o ,/c?+7h?—ch|Cj|

0V, o, = —\th c? + 7h§ sinh(hjx)(mcosh(hjm) — cj)_‘ )
Thus, choosing ¢; < 0, for all j, we obtain

0@, ;] S h? ¢ +yh3|sinh(hja)|(1/ 5 + vh3 cosh(hjz) —c;)~

< h5(y/¢2 + b2 cosh(hjx) — ;)72
2

R hi| P e S

pR
el

Moreover,

[N/

wlw

Moreover, we have

c:
1OR; [l = 1106u;.c; 112 2 10 c; 100 + (15 Pusy ey = B ¢, 2

|cj]
< Haq)wj,cj||L°° + 7J||(ij70j ||L°° + H‘bwjacj ||?I’J°°

B2 3
> e + ——=.
&1 &1

Thus, we only need to chose the parameters (c;,w;) satisfy

Z J < 1nf hjle; — el (1.10)

h2
> (g enel i) X e
1<K lj I 1<K lj 1<G<K &
then the assumption (1.8) is satisfied. Let M > 1 be large enough positive constant. Replace (c;)
by Mc;, hj bounded (hence, w; = §(h? + M?c?)) for all j. As M — oo, the right hand sight of

(1.10) is order M and the left side is order M. Thus, for M large enough we obtain the parameters
(¢j,w;j) satisfy (1.8).
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1.2. Multi kink-soliton trains. Consider the equation (1.3). Let R, . be a smooth solution of
(1.2) of form:

Ry o(t,x) = e“tpy, o(x — ct), (1.11)
where ¢, . is smooth and solves
— Gpa + WO+ ichy — i Py —bO[*'9 =0, xR, (1.12)

If ¢ |r+€ H'(RT) then we can use the following Gauge transform:
e i [ 9
(I)w,c =exp | —tz;T+ — |¢w,c(y)| dy d)w,o
2" 1),
Since (1.12), ®,, . is smooth and solves

? 3. — € 3 1
ot (w5 ) @ = STn(@0,)0 — S0P+ fo'B =0, 7=

16
— —b. 1.1
4 3 (1.13)

W Ut

We note that signs of coefficients of the terms |¢|?® and |®|*® are not the same as (1.5). Since
D, [r+€ H?*(RT), by similar arguments as in [3], we can prove that Zm(®,, .0, P, ) = 0. Thus,
®,, . solves

—®,, + w—f <I>—f|<1>|2<1>+3 |®|*'® =0 (1.14)
o 1 2 16/ '
Now, we give the definition of kink solution of (1.2).

Definition 1.3. The function R, . is called a half-kink solution of (1.2) if R, . is of form (1.11)
and associated @, . is a real valued function solves (1.14) and satisfies:

—®" + 5 — () =0,

lim@(x) £ 0, (1.15)
lim ®(z) =0,
—Foo

where @ = w — %, f R — R such that f(s) = 5% — 2s°.
The following result about the existence of half-kink profile is stated in [12] as follows:

Proposition 1.4. Let f : R — R be a C* function with f(0) = 0 and define F(s) := fos () dt.
For w e R, let

¢(@) := inf {g >0,F() — %w@ = 0}
and assume that there exists 1 € R such that
C(le) > O7 f/<0) - < 0, f(C(&)l)) — @1C((IJ1) =0. (1.16)

Then, for & = @n, there ewists a half-kink profile ® € C?(R) of (1.15) i.e ® is unique (up to
translation), positive and satisfies ® > 0, ® > 0 on R and the boundary conditions

lim @(z) =0, lim ®(x) = ((@) > 0. (1.17)

r——00
If in addition,
F(¢(@n)) —an <0, (1.18)
then for any 0 < a < @y — max{f'(0), f'(C(@1))} there exists D, > 0 such that
18 (2)] + |B(2)1pwo| + |(C(@1 — B(2))1as0] < Dee™ 1 Va e R. (1.19)

Remark 1.5.
(1) As [12, Remark 1.15], using the symmetry 2 — —z and Proposition 1.4 implies the existence
and uniqueness of half-kink profile ® satisfying
lim ®(z) = ¢(@) >0. lim ®(z)=0.
T——00

T—00
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(2) In this paper, we consider f(s) = £s® — 2+s°. Let us see Proposition 1.4 under this nonlinear

term. We can check if v > 0, ¢ > 0 then there exists & = % and (((w)) = \/ 2 satisfy
the conditions (1.16), (1.18) and the definition of ((&), where A = Z~, B = £&. Thus, using
Proposition 1.4, if v > 0, ¢ > 0 then there exists half-kink solution of (1.2). Moreover, by
elementary calculation, we have the constant a in Proposition 1.4 satisfies

2
c
O0<a<—.
a yo
(3) Consider the half-kink profile ® of Proposition 1.4. Since, ® smooth solves (1.15) and satisfies
(1.19) we have
@(2)] + 18 (2)] < Doe™¥.
Now, we assume v > 0. Let K > 0, 6y,20,wo,co0 € R be such that 2,/wg > ¢y > 0. For
1 <j < K, let (6j,2),wj,¢j) € R such that 2,/w; > ¢; > 2s,,/w; where s, = /{]- and
R; € H*(R) be soliton solution of (1.3) given associated to the profile:

2
2 2h;

Piyoes 2 2 ’
\/€; — vh3 cosh(h;z) + ¢;

where h; = /4w; — c? and @, ., is localized solution of (1.14). Let ®( be half-kink profile given

as in Remark 1.5 (1) associated with parameters wy, ¢y such that

Er_n Py #£0, and lim 45 = 0.

T—r 00

Let Ry be the associated half-kink solution of (1.3). The multi kink-soliton profile of (1.3) is

defined as follows: .

V=Ry+> R, (1.20)
j=1
Our second main result is the following:

Theorem 1.6. Considering (1.3), we assume that b < = (v > 0). Let K € N* and for each
1 <j <K, 0j,cj,wj,xz; be sequence of parameters such that x; = 0, 0; € R, ¢; # ¢ # 0 for
J # k and c; such that 2,/w0; > c; > 2s.,/wj. Let (0o, co,wo, To) such that xo =0, 2,/wy > co > 0,
co < cj for K> j>1and c3 > 2y and Ry be the associated half-kink solution given as above. The
multi kink-soliton profile V is given as in (1.20). We assume that the parameters (w;,c;) satisfy

max{L; Vol IVl + VI g} < 00 = i hyles — . (1.21)
Then there exist a solution u to (1.3) such that
|u— Vg < Ce . Vt =Ty, (1.22)
for some constant C > 0, A\ = %’u*.

Remark 1.7.
(1) The condition ¢ > 2v in Theorem 1.6 is a technical condition and we can remove this. Under
this condition, the constant a in Proposition 1.4 satisfies

2

Co
0<a< —.
a o

Thus, we can choose a = % This fact makes the proof is more easier and we have

(\/g_ ‘bo(l’)> Le<o

(2) Let v > 0. We give an example of parameters satisfy the condition (1.21) of Theorem 1.6. As
in remark 1.2, we have

95" ()] + 26 ()] + [6(2)| + |Po()1aso0] + Se2ll, (1.23)

-

Dy, 0, = V2h, (, /¢ —yh3 cosh(h;x) + cj) .
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for all 1 < j < K. Hence, choose h; < min{cj7 1} for all 1 € j < K, we have

2h2 h?
||(bwj7CjH%°° < . 5 J
/02. — ,th_ + cj Cj
By similar arguments in remark 1.2, for all 1 < j < K, we have
3

M&mms—i+m¢a+ﬁ£
A /Cj C?—
Now, we treat to the case j = 0. Let ®( be profile given as in Proposition 1.4 with parameters cg,

wo and Ry be associated half-kink solution of (1.2). Since (1.19), remark 1.5 and remark 1.7 we

have
B2
[Polli~ S &= 57 ~ b,

<o
0@~ < C,

for some constant C' > 0. Thus,
[Rollz= S b,
This implies that for h; < min{c¢;,1} (j = 1,.., K) we have
IVallpoe Lo [V Lo oo + [V [ Too poo
S IIVHLOOLOO + Voo o

K p4
<00+Z\7+ ¢+ Z%Nc3+c8+
j=1 .7

We only need to choose the parameters (c¢;,w;) satisfy

1M
>

K
CO+CO+Zh—<<1nfh le; — cxl, (1.24)
Jj=1 Ve
then the assumption (1.21) is satisfied. Let M > 1. be large enough positive constant. Choosing
¢o ~ 1 and h; uniformly bounded for all j. Replace ¢; by Mc; (hence, w; = ;(h? + M?c?)) for all
> 1. As M — oo, the right hand sight of (1.21) is order M and the left hand sight is order M?°.
Thus, for M large enough we obtain the parameters (c;,w;) satisfy (1.21).

To prove Theorem 1.1 and 1.6, our strategy is using a Gauge transform to give a system of
two equations of ¢,1 from equation of u (1.2). Then, by fixed point method we prove that
there exists a unique solution ¢, of this system that decay exponential in time when ¢ is large
enough. Using this property, we prove a relation between ¢, which allow us to obtain a solution
w of (1.2). This solution satisfies the desired property. However, when we extend our result
on construction of infinite soliton trains and infinite kink-soliton trains we meet some problems
on selecting parameters. The reason is that in case of finite parameters the condition ||R| gs or
IV — Ro|| iz bounded is automatically true but in case of infinite parameters, this condition requires
some estimate on parameters. It is not easy to select the parameters which satisfy this estimate
and the assumption (1.8) or (1.21). Moreover, the arguments in the proof of Theorem 1.1 can
extend to construct the multi-soliton trains for general equation 1.1. However, we do not have
prove to construct the multi kink-soliton trains for general equation as in 1.6.

We introduce the following notations using in this paper.

Notation.
(1) Fort > 0, we note the Strichartz space S([t,00)) is defined via the norm

1wl s(it,00)) = sup  [Jullpa e (ft,00) xR)
(g,r) admissible

The dual space is denoted by N ([t,00)) = S([t,00))*.
(2) For z = (a,b) € C? is a vector, we denote |z| = |a| + |b|.
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(3) We denote a < b, fora,b > 0, if a is smaller than b up to multiply a positive constant. Moreover,
we denote a ~ b if a equal to b up to multiply a certain positive constant.
(4) Let f € CYH(R). We use Of or f, to denote the derivative in space of the function f.

2. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. Our strategy is using the Banach fixed point
theorem and Strichartz estimates. We divide our proof into steps.

Step 1. Preliminary analysis

Considering the following transform:

ot =exo (5 [ luten)Pay) e,

—00
i
v =0p— clel*e.

By similarly arguments as in [9] and [16], we see that if u(t,z) solves (1.2) then (p,1) solves the
following system

Lo = i) — blo|*p, B
Lp = —i)®% — 3blop| — 2bp* %),
¢ li=0=po = exp (% J7 o luo(y)? dy) uo,
¥ |i=0= 1o = Opo — %|wol*o,
where L = 0; 4+ 0,,. For convenience, we define
P(p, ) = ip*) — ble[*e,
Qlp,¥) = —i*B — 3ble| "y — 2] >

Let R be multi soliton profile given as in (1.6). Set ¢ = v — R. Since R, solves (1.2), for all j, by
elementary calculation, we have

) 2 4 2 X 2 4 x 4
iRy Ry +i|RPR, + R R = i(|RPR, — 5 |RjPRya) + MRI'R— 3 [R['Ry). (2.2)
= j=
Since Lemma 4.1, we have
2 K 2 4 K 4 At
AP R~ 1R Rl + VR~ E IR Ryl < e, @3)
for A = {v,. Thus, we rewrite (2.2) as follows

iRy + Ryx + i|RI*Ry + b|R|* R = e Mu(t, 2), (2.4)
where v(t) € H%(R) such that ||v(t)| gz uniformly bounded in t.

Define
T 9
h=exp (s [ |IRPdy)R(t2),
2 — 00

k= hy — ~|h|2h.
2
By elementary calculation as above, we have
Lh = ih®k — blh|*h + e P m(t, z),
Lk = —ik®h — 3b|h|*k — 2b|h|2h%E + e~ n(t, ),

where m(t), n(t) satisfy

m = vexp (;/ |R|? dy) - h/ Im(vR) dy, (2.5)

— 00

n = mg — i|h[?m + %h2m. (2.6)
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By Lemma 4.2 we have ||[m(t)||z1 +||n(t)[| g1 uniformly bounded in ¢. Let ¢ = ¢ —h and Y =1—k.
Then ¢, 1 solve:

{w = P(p,) = Ph k) — e Pm(t,z), (27)

Lt = Q(e,¥) = Qb k) = e~Pn(t, ).
Set n = (,9), W = (h,k) and f(p,v) = (P(p,%), Q(p,)). We find solution of (2.7) of following
form:

5= —i / TS = )W ) — FOV) + H](s) ds, 2.8)

where S(t — s) is Schrodinger group, H = e~**(m,n). Moreover, since ¢ = 0y — %||%p, we have

§ =05~ L(6+hP(p+h)— nPh). (29)

Step 2. Existence solution of system equations
Since Lemma 4.3, there exists T} > 1 such that for Ty > T, there exists unique solution 7 define
on [Ty, o0) of (2.7) such that

eIl 5,000 x8([00))) + €M ll s (1,000 xS (1r00))) < 1, VE = Ty, (2.10)

for the constant A > 0 defined as in step 1. Thus, for all ¢t > T, we have
@l + 19l S e, (2.11)

Step 3. Existence of multisoliton for (1.2)

We prove that the solution n = ($,1) of (2.7) satisfying the relation (2.9). Indeed, let 1 be
solution of (2.7) which we find in step 1. Set ¢ = @+ h, ¢ = ¢ + k and v = dp — Llp|%¢. Since
h solves Lh = P(h, k) + e *m(t,x) and @ solves Ly = P(p,v) — P(h, k) — e *m(t, z), we have
(¢, ) solves

{Dp = Plp,¥), (2.12)
Lp = Q(p, ).

By similarly arguments as above, we have

Lo = Lo = Qo) ~ (9Lp ~ 3 L(1eP)

1

= Q(p,¥) — <(’9L<p —5

(D7 +0L() + 28@2)6@)

— Qo) - <9L<P L 9Lglol? + 2(09)%5 — ¢"Tp + 20%0,7) + 2<PI<9<PI2)> . (213)

i
2
Moreover, we have
Ly = P(p,9) = ig®p — blol*e
= 0% (¢ — v) + ip*D — ble| . (2.14)
Combining (2.14) and (2.13) and by elementary calculation, we obtain
S 1
Ly = Lv = Q(¢, ) = 0(i* (¥ — v)) = lol*¢* (¥ = v) = S le['(¥ = v) = Qe v)
S S 1
= Qe ¥) = Qp,v)) = 2ipdip(v — v) = ip*0(W —v) = |p[*¥* (Y —v) = S o' (¥ = v)

= —i(u? = o) = Mgl — ) — WP ) 2 (v+ 3o ) B )

~ 20— ) ~ gl 0 — 0~ glel* (6 ). (215)

Define ¥ = v — k. Since, ) — 0 =t — v and (2.15) we have

L'(/; —Lv= (1; - ’D)A&Z}v v, @a h7 k) + ('J) - {))B(Q;a v, @a ha k) - 2(95 + h)za('(/; - /D)’ (2'16)
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where
- N 1
A= —i(p+ 4 2k) (@ + h) — 3b|@ + h|* — 5|<;: + h|*,

B = —2b|¢ + h|*(¢ + h)* — 2i(p + h) (v +k+ %I@Jr hI2(¢ + h)) — g+ A2 (@ + h)%

We see that A, B are polynomials of degree at most 4 in (¢, 0, @, h, k). Multiplying two sides of

(2.16) with 1; — v, take imaginary part and integral over space using integral by part , we obtain
—2 i —2

(=) B, 0,¢,h,k) + 50(p+ h)* (¢ = 0) da

Lo+ = - -
500 =% = Tn [ (6= 0400.5,5.h. 1) +
<19 — o3 (1Al + 1Bz~ + 100+ )?llz).

By using Gronwall’s inequality, we obtain
N
(1) = o(®)]1Z2 S IW(N) = 5(N)||Z2 exp </ (Al + Bl Lo + 10(@ + h)?| Lo ds) (2.17)
t

Since (2.10) and (2.11) and bounded of ||h| e + ||k|| g2, for t > Ty, we have

N
/ (Al + | Bl + 9@ + h)?||1~) ds

t
S @l prree (¢, nxr)) + 1l L1 Loo (8,8 x®) + 10P| L1 Lo (¢, 8) x)R)
+ [[kR|| L1 oo (2,8 xR) F 1B 22 Lo (6,3 xR) + 1O(B®) || L1 oo (2, 8) xR)

3
4

~ 3 g
SN@llzazee (e, nyxr) (N = )3 + ([l Lapoe (e, vy xr) (N — 1)
~ 3
+ 1001l L oo (1,30 xR) (N = 8) 5 + (N = £)([[hghl| Lo oo + [[h]| T o)

3 —c
SN =1 + (N = t)(|| R || oo poo || Rl o oo + ([ Rl|7 o0 1 )-
where we use k = hy, — £|h|?h and © = 04 — (| + h|*(¢+ h) — |h[*h). Thus, from the assumption

(1.8), we have | Ryl[p || Rl e + | Bl 1o < A Thus,
[t = 5012 S e exp (C(N = )F + C(N = 1)| Rllw.)

= exp (C(N — ) + O(N = )| Rllwre — 2/\N) .

Let N — oo, we obtain that
I (t) = o(®)[1Z> = 0.

(2.18)

This implies that 1; = 9, hence,
)
Y =v=0p— §\<p|250-

Let u = exp (—% I le(y)? dy) . Combining (2.18) with the fact that (i, ) solves

Lo = P(p,9),
L’(/) = Q(@ad})a

we obtain u solves (1.2). Moreover,
|u— R g = [lexp (—2/ lo(y)]? dy) ¢ — exp (—2/ h(y)[* dy) Bl g

S lle = hllar = 1@l

Combining (2.11), for ¢t > Ty, we have
|lu— R g <e .

This complete the proof of Theorem 1.1.
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Remark 2.1. We do not have the proof for constructing the multi kink-soliton trains of equation
(1.2) as (1.3). The reason is that if the profile R in the proof of Theorem 1.1 is not in H!(R) then
the function h is defined as above is not in H'(R). Thus, the functions m,n defined as in (2.5) and
(2.6) are not in H'(R) and we can not apply the Lemma 4.3 to construct solution of system (2.7).

3. PROOF OF THEOREM 1.6

In this section, we give the proof of Theorem 1.6. We use the similar arguments as in proof of
Theorem 1.1. We divide our proof into three steps:

Step 1. Preliminary analysis

Set

V= Uy + %|u\2u

By elementary calculation as in the proof of Theorem 1.1 we see that if u solves (1.2) then (u,v)
solves the following system:

Lu = —iv®v+ (3 — b) |ul*u,
Lv = w*u+ (3 — 3b) |u[*v + (1 — 2b)|ul*u?D, (3.1)
u |t=0: Ug, .

v |t:O: Vo = 0u0 + %|U0|2UO.

Define

1
P(u,v) = —iu’s + (2 - b) u|*u,

Q(u,v) = iv’*u + <Z - 3b> lu|*v + (1 — 2b) |u|?u?D.

Let V' be multi kink-soliton profile given as in (1.20). Set ¢ = w — V. Since R, solves (1.2), for all
j, by elementary calculation, we have

K K
Vit Vg +i[VPVe + DVI'V = i(VV, = > RIR;,) +b([VI'V = Y |Rj|*R)). (3.2)
7=0 j=0

Since Lemma 4.4, we have
K K
VAV =0 R Rl + VIV = 3 B[ Ryl < e, (33)
§=0 §=0

for A = $v.. Thus, we rewrite (3.2) as follows

iVi + Vo + VAV, +0|V[*V = e Mm(t, x), (3.4)
where m(t) € H?(R) such that ||m(t)|| g2 uniformly bounded in t. Define
h=V,
k= hy + %\hﬁh.

By elementary calculation as above, we have
Lh = —ih%k + (; — b> |h[*h + e P m = P(h, k) + e Pm,
Lk = ik*h + (‘;’ - 3b> |h[*k 4 (1 — 20)|h|2h%E + e~ n = Q(h, k) 4+ e~ n.
where n = my, + i|h|*m — Lh*m satisfy |/m(t)||g is uniformly bounded in ¢, by similar arguments

in the proof of Theorem 1.1. Let &« = v — h and v = v — k. Then 4, ¥ solves:

{Lﬂ = P(u,v) — P(h,k) — e~m,

Lo = Q(u,v) — Q(h, k) — e~ n. (3.5)
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Set n = (a,0), W = (h, k) and f(u,v) = (P(u,v),Q(u,v)). We find solution of (3.5) of following

form:
0= / S(t— S)FW + ) — F(W) + H](s) ds, (3.6)

A(m,n). Moreover, since v = u, + %|u|?u, we have

where H = e~
ﬁ:ﬁx+%(\ﬂ+h\2(ﬁ+h)f|h\2h). (3.7)

Step 2. Existence solution of system equations
Since Lemma 4.3, there exists T, > 1 such that for T, > T, there exists unique solution 7
define on [T, o) of (3.5) such that

Ml s (000 x 5(1t00)) T €M el s(1t00)) xS (tr00)) <1, VE = T, (3.8)
for the constant A\ > 0 defined as in step 1. Thus, for all ¢ > T, we have
[l + (|9 S e (3.9)

Step 3. Existence of multi kink-soliton for (1.2)
Using similar arguments in the proof of Theorem 1.1 we can prove that the solution n = (p, 1))
of (3.5) satisfying the relation (3.7) under the condition (1.21). This implies that

b= iy + %(\w h[2(@ + h) — |h|2h).
Set w =a + h, v =0 + k. We have

V= Uy + %Mzu (3.10)
Since (@, ) solves (3.5), we have wu, v solves
Lu = P(u,v),
Lv = Q(u,v).

Combining with (3.10) we have u solves (1.2). Moreover, for ¢ > Tp, we have
lu =V = [|all g S e
This completes the proof of Theorem 1.6.
4. SOME TECHNICAL LEMMAS

4.1. Properties of solitons. In this section, we prove some estimates of soliton profile using in
the proof of Theorem 1.1.

Lemma 4.1. There exist C > 0 and a constant X > 0 such that for t large enough, the estimate
(2.3) is true uniformly in t.

Proof. First, we need to some estimates on soliton profile. We have

—h.
|Rj(x,1)] = [P, ., (x — c;t)| = \/ﬁhj@ /c? +’yh§ cosh(h;(z — ¢;t)) — cj)*% Shilesl ozt lz—cjt|

Moreover,

|OR; (2, 1) = |0¢u, ¢, (x — c;t)| = —hQ,/ >+ yh3 sinh(hj(z — ¢;t))(y/ ¢ +yh3 cosh(hj(x — ¢jt)) —¢j)”

Shyles| eTW*Cjt\.
By elementary calculation, we have

0°R; ()| + [0° Rj (2, 1) Shyoje; €77 re—emit]
Now, let us comeback to prove Lemma 4.1. For convenience, we set

— 9 2 ) X |2 .
X1 = Z|R| Rw —1 421 ‘R]| Rjz7
j:

K
= |R*R _j§1 |R;|*R;.

(M)
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Fix ¢ > 0. For each € R, choose m = m(z) € {1,2,..., K} so that

|z — emt| = mjin |z — ¢;t|.

For j # m, we have

1 t
|z —cjt| < §|Cjt_cmt| = 5\

Cj — Cm|-
Thus, we have

(R — R, (z,t)] + [(OR — ORp(2,1))| 4 |0°R — 0*Ryn| + |0°R — 0° Ry,
S g (IR;j(x, )] + |OR; (x, t)| +10° R (x, t)| + |0° R (x, 1)])
J17Fm

;hj\at—cﬂ
Shl,-~7hxx|01|7-~,\CK| (5m($,t) =X e !
Jj#Em

Define

Ve = ]i_gihﬂcj — ¢kl
We have
(R — Rop) (2, )| + |(OR — Ry (2,1))] + |0*R — 9*Ryn| + |°R — 8 Ryn| S G (,8) S €7 01,

Let f1,91,71 and f3,g2,72 be polynomials of w,u,, Uzy, Urr, and conjugates such that for u €
H3(R):
ilul?uy = fi1(u, T, ug), |u|4u= fo(u,@),
8(z|u|2u1) = g1(U, Uy, Uge, T, ..), 8(\u|4u) = g2(u, uy, @, ..),

82(i|u|2u$) = 11 (U, Ug, Uz, Ugg, T, - ), 62(|u|4u) = ro(t, Uy, Uz, T, .. ).
Denote

A= sup (Idf1] + dfa| + dg1| + [dga| + |dri[ + |dr2]),
‘Z‘+|Zz|+‘zzz|+‘zzzm‘<HR||H4(]R)

where we denote by df the differential of f). We have

Ixal + Ixal + [0x1| + [0x2l +10%x1| + 0% X2
< |f1(R»Rx) - fl(RmaRmz)| + ‘fQ(R) - fZ(Rm)| + Z(|f1(RJ7RjI)| + |f2(Rj)|)
Jj#m

=+ |91(R, R., Rys, ) - gl(Rma Roe, Rinzas )| + |92(R7 R, ) - gZ(RmyRmxa )|
+ Z(g1(Rj,ij7ij7 )+ 92(Rj, Rjz), )

Jj#Em

+ |7"1(R7 Rza Rmx; Razm:m ) - T1(Rm7 Rm:ra le‘ma Rmmxma )| + ‘T2(R7 R:m Rxma ) - T2(Rm»Rmza Rmmma )|

+ Z(Tl(Rj,ij,ij,ijm, ) +12(Rj, Rz, Rjsza, )

Jj#m
S A(IR = Ryl + [Ry — Rimal| + |Roe — Rinaw| + [Raze — Rmaaal) + Z A(|Rj| + |ij| + |ij| + |ijzz|)
Jj#m
<24 (IRl + [Rjal + |Rjua| + | Rjuaal)
Jj#Em

< 246, (t, ).

In particular,

X1z + X2 llwze S e 1oL,
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Moreover, we have

Ix1llw=1 + [Ix2llw2a
K
S R PRyallor + 10(R; P Rjz) v + 10°(IR; P Ry )| L2 + |1 RS o + 10( R 1*Ry) | v + 10*(IR; [*Ry) | 1)

<.
=

< DR i + IR 3 + IR; 13 + [ Rsl13r + || Rjll + [ Rjll%) < € < 00

—

<

By Holder inequality, for 1 < r < oo, we have
Ixallwaer + [[xallwzr < Ce=@=PE0t v e (s, 00).

Choosing r =2 and A = %v* we obtain the desired result.
O

4.2. Prove the boundedness of v,m,n. Let v given as (2.2) and m,n be given as (2.5) and
(2.6). In this section, we give a proof of boundedness for H?(R)-norm of v and H!(R)-norm of m
and n. We have the following lemma

Lemma 4.2. The functions v, m,n satisfy
lo@ a2 + Im@) L + [In®)|lm < C,
uniformly on t, for some constant C > 0.

Proof. Let x1 be given function as in Lemma 4.1, we have

e Mo =x

By Lemma 4.1, we have ||v(¢)||g2 < D, for some constant D > 0. Since (2.5), we have
Mz S vllgz + Al mzllvllp2 | Rl g2 < Ch,
for some constant C; > 0. Since, (2.6), we have
[nllzz S lmellzz + [Pl mlla <m0+ (A7) < Co,
for some constant Cy > 0. Moreover, we have
[Inallze S lImaallze + 1RlIZ Imll e < lmllz 1+ [Bl7) < Cs,
for some constant Cs > 0. Choosing C' = D + C; + C5 + (5, we obtain the desired result. O

4.3. Existence solution of system equation. In this section, we prove the existence of solution
of the following equation:

10 + Opan) = _[f(W+77> _f(W)] - H,

In Duhamel form,

W)= =i [ 8= 9OV +0) = FOV) + H)(5) s, (4.1)

t

where f(p,9) = (P(¢,9), Q(p,¥)) and P(p,¢) = ip®y — blol*p, Q(p,v) = —it*D — 3bp[* —
20?0

Lemma 4.3. Let H = H(t,z) : [0,00) x R = C%, W = W(t,z) : [0,00) x R — C? be given vector
functions which satisfy for some C; >0, Co >0, A >0, Ty > 0:

IW (Ol Lo xre + XH (#)]| 12x 22
IOW (D)l z2x 22 + 1OW ()| Lo x L + M |OH (2)]| 12 x 22

Consider equation (4.1). There exists a constant ). independent of Co such that if X > A, then
there exists a unique solution n to (4.1) on [Ty, 00) X R satisfying

Cy V=T, (4.2)

<
<Oy VES T (4.3)

MMl s (1,000 x S([t,00)) + € 11OM (8,000 x5 ([1100)) < L, VE = To.
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Proof. We use similarly arguments as in [12]. We write (4.1) as n = ®7. We shall show that, for
A sufficiently large, ® is a contraction in the ball

B = {77 nllx = e)\t||77||S([t7oo))><S([t,oo)) + eAtH877HS([t7oo))><S([t,oo)) < 1}
Step 1. Prove ® map B into B
Let t > Ty, n = (m,m2) € B, W = (w1, w2) and H = (hq, he). By Strichartz estimates, we have

197 5(1t.00)) x S(1t00)) S IFV +1) = FIWV) |5 (11,00)) x N (.00 (4.4)
A+ 1H || 21 22 (ft,00)) x L1 L2 ([t,00)) (4.5)
For (4.5), using (4.2), we have

oo ar 1 _
IH || L1 2 ((t,00)) x L2 22 ((t,00)) = IhallLap2((t,00)) + 12l L2 r2 (t,00)) 5/ e Tdr < 1€ M (4.6)
t

For (4.4), we have
|P(W +n) — P(W)| = |P(w1 + 11, w2 + n2) — P(w, ws)]
< (wr + m)? (wa + n2) — wiws| + [+ wi|* (i + wi) — [w:[*wa|

< Iml+ [n2| + lm]?
Thus,

[P(W +n) = POV nit.00) S ImllN(ito0)) + M2l 8 (.00 + 10215 (1200))

Slmllzacz o) + M2l r2eo0) + 173 1E2 L2 (2,00)

S [ evars [ mmligdr
t t
)\t o0 z 3
ey / I () llom ()£,
e~ g /Oo o~ (T/2243/20)7 4
t

n 1 o~ (T/22+3/2)t < Lo

7/2) + 3/2X

A A

|
>
=

A
i i

g

By similar arguments as above, we have

1
QW +n) = QUW)lIn(r.0p S e A,

Thus, for A large enough, we have

1 _
12| 5([#,00) x S([t,00))) < 10° At

It remains to estimate [|[0Pn||s([t,00)x s([t,00)))- By Strichartz estimate we have

10| 5((t,00) x S([t.00))) S NOSF (W + 1) = FIWDIIN([t,00)) x N ([t.00)) (4.7)
+ NOH || N ([#,00)) x N ([t,00)) - (4.8)
For (4.8), using (4.3), we have

IOH || N (jt,00)) x N ([t,00)) < 10h1 ] L1 12 ([t,00)) + [[0P2]| L1 12 ([t,00))
° 1
< / e AMdr = Ze M. (4.9)
+ A

For (4.7), we have

[0(fF(W +n) = FW)IN([t,00) x N ([t,00)) = OPW + 1) — P(W))||n(it,00)) + 10(QIW + 1) — QW) n(it,00))

Furthermore, using the notation (1.2) (3), we have
O(P(W +1) = PW))| S 10((w1 +m)* (w2 +12) — wiwz)| +[9(jwi +m[*(wr +m) — [wi|*w:)]
< 1onl(Inf? + |w]?) + [9w](|n]* + |w|Inl)
+{oml(Inl* + [wl*) + [0w|(In* + [nl|w]?).
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Thus, we have
[0(P(W +n) — PW)) | N ([t,00))
S onl(nl* + [wl*) I n(ie.00y) + 10wl (nf* + [l )|y (.00 (4.10)
+ 110l (In* + [w|*) v (ie,o0n) + NOwl(nl* + [nllw]?) | x2,00)) - (4.11)

For (4.10), using (4.2) and (4.3) and the assumption n € B we have

Honl(nl* + [w) w00 + 110wl(In1? + [l 7))l v it,00))

S MNomlnlPlLe e ie.00)) + 10w L1 12 (1t,00)) + 1OW[MI] L1 12 ((2,00)) + IOw 0]l 1 22 ((2,00))

S |||377|||L3Lg([t,oo))H|77|H%¢Loo + H|377|||L;L§([t,oo))|||w|||2L°ch><>

+ 0wlll oo poo [0l 2 Lee (100 171 372 12 1 0y F NIl 2o Loe [|Ow] [ oo poo [[[0l] 21 22 (1t.00))

1
< = —)\t.

For (4.11), using (4.2) and (4.3) and the assumption n € B we have

Honl(nl* + [w )| (.00 + 10w[(I]* + |7l |w]*) | v (ie.000)
S onl(nl* + [w ) L1 £z ((t.00)) + NOw|(nl* + [nllw?) L1 22 (t,00))
SN0 oo 22 (tt.0o) 11114 120 (1,00)) F 101 2 £ 1071 21 L2 (2,00

+ ||aw||L°°L2||n||%f,1_L;°([t,oo)) + ||3w||L°<>Loo||wH?io<>Loc Hﬁ”L;Lg([t,oo))

1
5 Xe_kt.
Hence,
1 _
1O(P(W + 1) = POV) I v(iroepy S v (4.12)
By similarly arguments, we have
1 _
1(QIW +n) = QW))lIn(ir.00n S € X (4.13)
Combining (4.12) and (4.13), we obtain
1 _
1OCFW + 1) = FW)IN(it,000 x N (lt,000) S Y€ A (4.14)

Combining (4.9) and (4.14), we obtain

_ 1 _
e M < M

1
10Dl 1t,00)) x5 (11.000) S 10°

if A > 0 large enough. Thus, for A > 0 large enough
[Pnllx < 1. (4.15)
Which implies that ® map B onto B.

Step 2. @ is contraction map on B
By using (4.2) and (4.3) and similarly estimate of (4.15), we can show that, for any n € B,
K € B,
1
0~ @slx < 5 lln — slx.
By Banach fixed point theorem there exists unique solution on B of (4.1). g

4.4. Properties of multi kink-soliton trains profile. In this section, we prove some estimates
of multi kink-soliton trains profile using in the proof of Theorem 1.6.

Lemma 4.4. There exist C > 0 and a constant X > 0 such that for t large enough, the estimate
(3.3) is true uniformly in t.
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Proof. For convenience, set

K
R=>R;.
j=1

By similar arguments as in the proof of Lemma 4.1, we have

|R;(2,t)| + [0R;(x,t)| + |0°Rj (2, )| + |0°R; (2, t)] Spyojey) €2 L le—e—jt]

for all 1 < j < K. Now, let us comeback to prove Lemma 4.1. For convenience, we set
_ K o
x1=1iV?V, —i ‘zoRiij,
j=
K
= [v|'V - = |R;|"R;.

As in the proof of Lemma 4.1, we fix ¢t > 0, take any « € R and choose m = m(z) € N such that
| — cmt]| = Ijnelél |z — ¢;t|.
If m > 1 then by the assumption ¢y < ¢; for j > 0 we have x > ¢ot. Thus, by asymptotic behaviour
of ®q as in Remark 1.7, we can see Ry as a soliton. More precise, we have
|Ro(t, )| + [RG(t,@)| + | RG (¢, 2)| + |RY (£, )| S e 21t S emivet,
Thus, by similar arguments as in the proof of Lemma 4.1, we have:
(R — R)(, 1) + |(OR — ORp) (2, 8)| + [(9*R — 82 Ry ) (2,1)| + |0°R — 0° Ry | < e 101,
where
Ve = ji_g;hﬂcj — ¢kl

Let f1,91,71 and f3,ge, 72 be polynomials of w,uy, Uzs, Uzre and conjugates such that for u €
H3(R):
ity = fi(u, T ug), |ul*u= folu,7),
O(iu*tg) = g1(u, U, Uns, T, ..),  O(|ul|*u) = go(u, us, T, ..),
02 (7)) = 71 (U, Ug, Uy U, Ty )y O (|l u) = 7o (U, Ug, Uge, T, ..).
Denote

A= sup (dfs| + |dfa| + dga| + |dga| + |dri| + [dra]),
|2+ 22 |+ 2zw |+ 2eea | S| R HA (R)

where we denote by df the differential of f). Therefore, if m > 1 we have
x|+ [xel + [0xa] + [0xa| + [0%x1| + |0%x2]

K K
< |Rol?[Rox| + [Rol® + A|Ro| + | f1(R, R, R) = > fi(R), Rju, Rj)| + | f2(R,R) = > fo(R;, R,)]
= =
K K
+ |91(R, Ry, ..) Z Rjo, )| + [92(R, R, ) = Y g2(Rj, Rja, )| + 11 (R, Ry, )
j=1 j=0
K
— ZTI(RjaRjaja )| + ‘TQ(R, R,,..)— ZTQ(R]‘7RJ‘$, n]
j=0 7=0

< |Rol*| Roa| + [Rol” + Al Rol

K
+AY (R~ Ru)(@,t)| + |(OR — ORp)(2,1) + |(9*R — 0*Ron) (2, )| + 0" R — 0° Ry )
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If m = 0 we have

Ixal + x| + [0x1] + [Oxz] + [0%x1| + 10°x2|
K
—l’l*
S AlR|+ Z (Ifo(Rjs Rjzs )| + g0 (R, Rjzy )| + |10 (R, Rja, )]) Se 1t

Jj=1,0=1,2

This implies in all case we have

=

X1 (@) llwz + [x2(®)lwzee < e (4.16)

On one hand,

1 (@) [lw=a

=

< D (IR Rjallzy + |0(RF Rjo) | oo + 10° (R R;0) 1)
7=0

=

ZHR ||H5 + H8R0HW2 1 < C < 0.
Jj=1

On the other hand,
Ix2(t)

e

K
SIVIYV = [Ro[* Rollw= + > IR |* Ry [lw2a

j=1
K K K
SR Y IR+ [Rol Y IR *lwar + Y IR [5s
j=1 j=1 j=1
K
S Y IRjllwza ([Rollwzes + 1) + [|R;|l3s) < C < o0.
j=1
Thus,
X1 @) llw21 + lIx1(®)][wzr < oo (4.17)

Since (4.16) and (4.17), using Holder inequality, we have

1
I (®)llw=2 + [Ix2(®) w22 < e 50F
Set A = %v*. This completes the proof. O
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