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CONSTRUCTION OF THE MULTI-SOLITON TRAINS, MULTI

KINK-SOLITON TRAINS OF THE DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATIONS BY THE FIXED POINT METHOD

PHAN VAN TIN

Abstract. We look for solutions to derivative nonlinear Schrodinger equations built upon ¨

solitons. We prove the existence of multi-soliton trains i.e. solutions behaving at large time as
the sum of �nite solitons. We also show that one can attach a kink at the begin of the train
i.e multi kink-soliton trains. Our proofs proceed by �xed point arguments around the desired
pro�le, using Strichartz estimates.
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1. Introduction

We consider the derivative nonlinear Schrödinger equation:

iut + uxx + iα1|u|2ux + iα2u
2ux + b|u|4u = 0, (1.1)

where α1, α2, b are given constants and u : Rt × Rx → C.
In this paper, we are interested in two special forms of (1.1). First, we consider (1.1) in case

α1 = 1, α2 = 0 as follows:
iut + uxx + i|u|2ux + b|u|4u = 0. (1.2)

Second, we consider (1.1) in case α1 = 0, α2 = 1 as follows

iut + uxx + iu2ux + b|u|4u = 0. (1.3)

The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as a
simpli�ed model for Alfvén wave propagation. Since then, it has attracted a lot of attention from
the mathematical community (see e.g [4, 5, 7, 10, 11, 17, 18]).

The local well posedness of (1.1) in H1(R) is given by using Gauge transform as in [8, 9]. The
global well posedness of (1.1) in H1(R) is given under small condition of the mass was considered
in several papers (see [20] and the references therein). In [1], rely on complete integrability of
equation, the authors proved the global well posedness of (1.1) in case α1 = 2, α2 = 1, b = 0 in

H
1
2 (R) and furthermore proved that the H

1
2 norm of solution is globally bounded in time. To our
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knowledge, there are no many works on the Cauchy problem of (1.1) under non vanishing boundary
condition. In [19], the author proved the local well posedness of (1.3) under b = 0 in some special
spaces. However, the method use in [19] can not extend to general case (1.1). The main reason is
that we can not �nd a proper transform to give a system without the derivative terms from (1.1).

The soliton of (1.2) is a pro�le of two parameters ω, c. In case b = 0, Colin and Ohta [3] proved

that the soliton uω,c is orbitally stable when ω > c2

4 by variational arguments. In case b > 0
Ohta[15] proved that for each b > 0 there exists unique s∗ = s∗(b) > 0 ∈ (0, 1) such that the
soliton uω,c is orbitally stable if −2

√
ω < c < 2s∗

√
ω and orbitally instable if 2s∗

√
ω < c < 2

√
ω.

In [6], Hayashi investigate the structure of (1.2) from the viewpoint solitons.
Our goal in this paper is to construct the multi-soliton trains of (1.2) and multi kink-soliton

trains of (1.3) i.e solutions which behave asymptotically as the sum of �nitely solitons and as
sum of a kink and �nite solitons respectively. In [14], Le Coz and Wu proved stability of multi-
soliton trains of (1.2) in case b = 0. For classical Schrödinger equation, in [12, 13] the authors
constructed the in�nite solitons train, in�nite kink-soliton train using �xed point methods. In this
paper, we prove the existence of multi-soliton trains and multi kink-soliton trains by using a �xed
point method. By similar arguments in the proof of construct multi-soliton trains for (1.2), we
can construct multi-soliton trains solution for (1.1). However, to construct the multi kink-soliton
trains, our arguments do not work for the general case (1.1). Before state the main result, we give
some preliminaries.

1.1. Multi-soliton trains. Consider equation (1.2). The soliton of equation (1.2) is solution of
form Rω,c(t, x) = eiωtφω,c(x− ct), where φω,c ∈ H1(R) solves

− φxx + ωφ+ icφx − i|φ|2φx − b|φ|4φ = 0, x ∈ R. (1.4)

Applying the following gauge transform to φω,c

φω,c(x) = Φω,c(x) exp

(
i
c

2
x− i

4

∫ x

−∞
|Φω,c(y)|2 dy

)
,

it is easily veri�ed that Φω,c satis�es the following equation.

− Φxx +

(
ω − c2

4

)
Φ +

c

2
|Φ|2Φ− 3

16
γ|Φ|4Φ = 0, γ := 1 +

16

3
b. (1.5)

The positive even solution of (1.5) is explicitly obtained as follows; if γ > 0 or equivalently
b > −3

16 ,

Φ2
ω,c(x) =

{
2(4ω−c2)√

c2+γ(4ω−c2) cosh(
√
4ω−c2x)−c

if − 2
√
ω < c < 2

√
ω,

4c
(cx)2+γ if c = 2

√
ω,

if γ 6 0 or equivalently b 6 − 3
16 ,

Φ2
ω,c(x) =

2(4ω − c2)√
c2 + γ(4ω − c2) cosh(

√
4ω − c2x)− c

if − 2
√
ω < c < −2s∗

√
ω,

where s∗ = s∗(γ) =
√
−γ
1−γ . We note that the condition of two parameters γ and (ω, c)

ifγ > 0⇔ b >
−3

16
,− 2
√
ω < c 6 2

√
ω,

ifγ 6 0⇔ b 6
−3

16
,− 2
√
ω < c < −2s∗

√
ω.

is a necessary and su�cient condition for the existence of non-trivial solutions of (1.2) vanishing
at in�nity (see [2]). For each j ∈ {1, 2, ..,K}, we set

Rj(t, x) = eiθjRωj ,cj (t, x− xj).
The pro�le of an multisoliton is a sum of the form:

R =
K

Σ
j=1

Rj . (1.6)

A solution of (1.2) is called multisoliton if, for some pro�le R:

u(t)−R(t)→ 0 as t→∞,
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in H1(R)-norm. For convenience, we set hj =
√

4ωj − c2j . Let (cj , ωj) be such that −2
√
ωj < cj <

2
√
ωj if γ > 0 or −2

√
ωj < cj < −2s∗

√
ωj if γ 6 0, for all 1 6 j 6 K. We have

Φωj ,cj (x) =
√

2hj(
√
c2j + γh2j cosh(hjx)− cj)

−1
2 . (1.7)

As each soliton is in H∞(R), we have R ∈ H∞(R).
Our �rst main result is the following.

Theorem 1.1. Let K ∈ N∗ and for each 1 6 j 6 K, (θj , cj , ωj , xj) be sequence of parameters such
that xj = 0, θj ∈ R, cj 6= ck 6= 0, for j 6= k and cj such that −2

√
ωj < cj < 2

√
ωj if γ > 0 and

−2
√
ωj < cj < −2s∗

√
ωj if γ 6 0. The multisoliton pro�le R is given as (1.6). We assume that

the parameters (ωj , cj) satisfy

max{1; ‖Rx‖L∞L∞‖R‖L∞L∞ + ‖R‖4L∞L∞} � v∗ := inf
j 6=k

hj |cj − ck|. (1.8)

There exist a solution u to (1.2) such that

‖u−R‖H1 6 Ce−λt. ∀t > T0, (1.9)

for some constant C > 0, λ = 1
8v∗.

The formula of soliton in case γ > 0 and γ 6 0 is similar. Thus, from now on, we assume γ > 0.
The case γ 6 0 is treated by similar arguments.

Remark 1.2. In cases γ > 0, we give a example of parameters satisfy (1.8) as follows. First, chose
hj � min(|cj |, 1) and cj < 0 for all j. We have

‖Φωj ,cj‖2L∞ 6
2h2j√

c2j + γh2j − cj
.

h2j
|cj |

.

Moreover,

∂Φωj ,cj =
−
√

2

2
h2j

√
c2j + γh2j sinh(hjx)(

√
c2j + γh2j cosh(hjx)− cj)−

3
2 .

Thus, choosing cj < 0, for all j, we obtain

|∂Φωj ,cj | . h2j
√
c2j + γh2j | sinh(hjx)|(

√
c2j + γh2j cosh(hjx)− cj)−

3
2

. h2j (
√
c2j + γh2j cosh(hjx)− cj)−

1
2

≈ hj |Φωj ,cj | .
h2j√
|cj |

.

Moreover, we have

‖∂Rj‖L∞ = ‖∂φωj ,cj‖L∞ ≈ ‖∂Φωj ,cj‖L∞ + ‖cj
2

Φωj ,cj − Φ3
ωj ,cj‖L∞

6 ‖∂Φωj ,cj‖L∞ +
|cj |
2
‖Φωj ,cj‖L∞ + ‖Φωj ,cj‖3L∞

.
h2j√
|cj |

+ hj

√
|cj |+

h3j√
|cj |3

.

Thus, we only need to chose the parameters (cj , ωj) satisfy∑
16j6K

(
h2j√
|cj |

+ hj

√
|cj |+

h3j√
|cj |3

) ∑
16j6K

hj√
|cj |

+
∑

16j6K

h4j
c2j
� inf

j 6=k
hj |cj − ck|, (1.10)

then the assumption (1.8) is satis�ed. Let M � 1 be large enough positive constant. Replace (cj)
by Mcj , hj bounded (hence, ωj = 1

4 (h2j + M2c2j )) for all j. As M → ∞, the right hand sight of

(1.10) is orderM and the left side is orderM0. Thus, forM large enough we obtain the parameters
(cj , ωj) satisfy (1.8).
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1.2. Multi kink-soliton trains. Consider the equation (1.3). Let Rω,c be a smooth solution of
(1.2) of form:

Rω,c(t, x) = eiωtφω,c(x− ct), (1.11)

where φω,c is smooth and solves

− φxx + ωφ+ icφx − iφ2φx − b|φ|4φ = 0, x ∈ R. (1.12)

If φω,c |R+∈ H1(R+) then we can use the following Gauge transform:

Φω,c = exp

(
−i c

2
x+

i

4

∫ x

∞
|φω,c(y)|2 dy

)
φω,c.

Since (1.12), Φω,c is smooth and solves

− Φxx +

(
ω − c2

4

)
Φ− 3

2
Im(ΦΦx)Φ− c

2
|Φ|2Φ +

3

16
γ|Φ|4Φ = 0, γ :=

5

3
− 16

3
b. (1.13)

We note that signs of coe�cients of the terms |φ|2Φ and |Φ|4Φ are not the same as (1.5). Since
Φω,c |R+∈ H2(R+), by similar arguments as in [3], we can prove that Im(Φω,c∂xΦω,c) = 0. Thus,
Φω,c solves

− Φxx +

(
ω − c2

4

)
Φ− c

2
|Φ|2Φ +

3

16
γ|Φ|4Φ = 0. (1.14)

Now, we give the de�nition of kink solution of (1.2).

De�nition 1.3. The function Rω,c is called a half-kink solution of (1.2) if Rω,c is of form (1.11)
and associated Φω,c is a real valued function solves (1.14) and satis�es:

−Φ′′ + ω̃Φ− f(Φ) = 0,

lim
x→±∞

Φ(x) 6= 0,

lim
x→∓∞

Φ(x) = 0,

(1.15)

where ω̃ = ω − c2

4 , f : R→ R such that f(s) = c
2s

3 − 3
16γs

5.

The following result about the existence of half-kink pro�le is stated in [12] as follows:

Proposition 1.4. Let f : R → R be a C1 function with f(0) = 0 and de�ne F (s) :=
∫ s
0
f(t) dt.

For ω̃ ∈ R, let

ζ(ω̃) := inf

{
ζ > 0, F (ζ)− 1

2
ω̃ζ2 = 0

}
and assume that there exists ω̃1 ∈ R such that

ζ(ω̃1) > 0, f ′(0)− ω̃1 < 0, f(ζ(ω̃1))− ω̃1ζ(ω̃1) = 0. (1.16)

Then, for ω̃ = ω̃1, there exists a half-kink pro�le Φ ∈ C2(R) of (1.15) i.e Φ is unique (up to
translation), positive and satis�es Φ > 0, Φ′ > 0 on R and the boundary conditions

lim
x→−∞

Φ(x) = 0, lim
x→∞

Φ(x) = ζ(ω̃1) > 0. (1.17)

If in addition,

f ′(ζ(ω̃1))− ω̃1 < 0, (1.18)

then for any 0 < a < ω̃1 −max{f ′(0), f ′(ζ(ω̃1))} there exists Da > 0 such that

|Φ′(x)|+ |Φ(x)1x<0|+ |(ζ(ω̃1 − Φ(x))1x>0| 6 Dae
−a|x|, ∀x ∈ R. (1.19)

Remark 1.5.
(1) As [12, Remark 1.15], using the symmetry x → −x and Proposition 1.4 implies the existence
and uniqueness of half-kink pro�le Φ satisfying

lim
x→−∞

Φ(x) = ζ(ω̃1) > 0. lim
x→∞

Φ(x) = 0.
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(2) In this paper, we consider f(s) = c
2s

3 − 3
16γs

5. Let us see Proposition 1.4 under this nonlinear

term. We can check if γ > 0, c > 0 then there exists ω̃ = B2

2A and ζ((̃ω)) =
√

B
2A satisfy

the conditions (1.16), (1.18) and the de�nition of ζ(ω̃), where A = 3
96γ, B = c

8 . Thus, using
Proposition 1.4, if γ > 0, c > 0 then there exists half-kink solution of (1.2). Moreover, by
elementary calculation, we have the constant a in Proposition 1.4 satis�es

0 < a <
c2

4γ
.

(3) Consider the half-kink pro�le Φ of Proposition 1.4. Since, Φ smooth solves (1.15) and satis�es
(1.19) we have

|Φ′′(x)|+ |Φ′′′(x)| 6 Dae
−a|x|.

Now, we assume γ > 0. Let K > 0, θ0, x0, ω0, c0 ∈ R be such that 2
√
ω0 > c0 > 0. For

1 6 j 6 K, let (θj , xj , ωj , cj) ∈ R such that 2
√
ωj > cj > 2s∗

√
ωj where s∗ =

√
γ

1+γ and

Rj ∈ H1(R) be soliton solution of (1.3) given associated to the pro�le:

Φ2
ωj ,cj =

2h2j√
c2j − γh2j cosh(hjx) + cj

,

where hj =
√

4ωj − c2j and Φωj ,cj is localized solution of (1.14). Let Φ0 be half-kink pro�le given

as in Remark 1.5 (1) associated with parameters ω0, c0 such that

lim
x→−∞

Φ0 6= 0, and lim
x→∞

Φ0 = 0.

Let R0 be the associated half-kink solution of (1.3). The multi kink-soliton pro�le of (1.3) is
de�ned as follows:

V = R0 +

K∑
j=1

Rj . (1.20)

Our second main result is the following:

Theorem 1.6. Considering (1.3), we assume that b < 5
16 (γ > 0). Let K ∈ N∗ and for each

1 6 j 6 K, θj , cj , ωj , xj be sequence of parameters such that xj = 0, θj ∈ R, cj 6= ck 6= 0 for
j 6= k and cj such that 2

√
ωj > cj > 2s∗

√
ωj. Let (θ0, c0, ω0, x0) such that x0 = 0, 2

√
ω0 > c0 > 0,

c0 < cj for K > j > 1 and c20 > 2γ and R0 be the associated half-kink solution given as above. The
multi kink-soliton pro�le V is given as in (1.20). We assume that the parameters (ωj , cj) satisfy

max{1; ‖Vx‖L∞L∞‖V ‖L∞L∞ + ‖V ‖4L∞L∞} � v∗ := inf
j 6=k

hj |cj − ck|. (1.21)

Then there exist a solution u to (1.3) such that

‖u− V ‖H1 6 Ce−λt. ∀t > T0, (1.22)

for some constant C > 0, λ = 1
8v∗.

Remark 1.7.
(1) The condition c20 > 2γ in Theorem 1.6 is a technical condition and we can remove this. Under
this condition, the constant a in Proposition 1.4 satis�es

0 < a <
c20
4γ
.

Thus, we can choose a = 1
2 . This fact makes the proof is more easier and we have

|Φ′′′0 (x)|+ |Φ′′0(x)|+ |Φ′0(x)|+ |Φ0(x)1x>0|+

∣∣∣∣∣
(√

B

2A
− Φ0(x)

)
1x<0

∣∣∣∣∣ . e− 1
2 |x|. (1.23)

(2) Let γ > 0. We give an example of parameters satisfy the condition (1.21) of Theorem 1.6. As
in remark 1.2, we have

Φωj ,cj =
√

2hj

(√
c2j − γh2j cosh(hjx) + cj

)−1
2

.
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for all 1 6 j 6 K. Hence, choose hj � min{cj , 1} for all 1 6 j 6 K, we have

‖Φωj ,cj‖2L∞ 6
2h2j√

c2j − γh2j + cj
.
h2j
cj
.

By similar arguments in remark 1.2, for all 1 6 j 6 K, we have

‖∂Rj‖L∞ .
h2j√
cj

+ hj
√
cj +

h3j√
c3j

.

Now, we treat to the case j = 0. Let Φ0 be pro�le given as in Proposition 1.4 with parameters c0,
ω0 and R0 be associated half-kink solution of (1.2). Since (1.19), remark 1.5 and remark 1.7 we
have

‖Φ0‖L∞ . ω̃ =
B2

2A
≈ c20,

‖∂Φ0‖L∞ . C,
for some constant C > 0. Thus,

‖R0‖L∞ . c20,
‖∂R0‖L∞ . C.

This implies that for hj � min{cj , 1} (j = 1, ..,K) we have

‖Vx‖L∞L∞‖V ‖L∞L∞ + ‖V ‖4L∞L∞
. ‖V ‖L∞L∞ + ‖V ‖4L∞L∞ ,

. c20 +

K∑
j=1

hj√
cj

+ c80 +

K∑
j=1

h4j
c2j
. c20 + c80 +

K∑
j=1

hj√
cj

We only need to choose the parameters (cj , ωj) satisfy

c20 + c80 +

K∑
j=1

hj√
cj
� inf

j 6=k
hj |cj − ck|, (1.24)

then the assumption (1.21) is satis�ed. Let M � 1. be large enough positive constant. Choosing
c0 ≈ 1 and hj uniformly bounded for all j. Replace cj by Mcj (hence, ωj = 1

4 (h2j +M2c2j )) for all

j > 1. As M →∞, the right hand sight of (1.21) is order M and the left hand sight is order M0.
Thus, for M large enough we obtain the parameters (cj , ωj) satisfy (1.21).

To prove Theorem 1.1 and 1.6, our strategy is using a Gauge transform to give a system of
two equations of ϕ,ψ from equation of u (1.2). Then, by �xed point method we prove that
there exists a unique solution ϕ,ψ of this system that decay exponential in time when t is large
enough. Using this property, we prove a relation between ϕ,ψ which allow us to obtain a solution
u of (1.2). This solution satis�es the desired property. However, when we extend our result
on construction of in�nite soliton trains and in�nite kink-soliton trains we meet some problems
on selecting parameters. The reason is that in case of �nite parameters the condition ‖R‖H3 or
‖V −R0‖H3 bounded is automatically true but in case of in�nite parameters, this condition requires
some estimate on parameters. It is not easy to select the parameters which satisfy this estimate
and the assumption (1.8) or (1.21). Moreover, the arguments in the proof of Theorem 1.1 can
extend to construct the multi-soliton trains for general equation 1.1. However, we do not have
prove to construct the multi kink-soliton trains for general equation as in 1.6.

We introduce the following notations using in this paper.

Notation.
(1) For t > 0, we note the Strichartz space S([t,∞)) is de�ned via the norm

‖u‖S([t,∞)) = sup
(q,r) admissible

‖u‖LqτLrx([t,∞)×R)

The dual space is denoted by N([t,∞)) = S([t,∞))∗.
(2) For z = (a, b) ∈ C2 is a vector, we denote |z| = |a|+ |b|.
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(3) We denote a . b, for a, b > 0, if a is smaller than b up to multiply a positive constant. Moreover,
we denote a ≈ b if a equal to b up to multiply a certain positive constant.
(4) Let f ∈ C1(R). We use ∂f or fx to denote the derivative in space of the function f .

2. proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Our strategy is using the Banach �xed point
theorem and Strichartz estimates. We divide our proof into steps.
Step 1. Preliminary analysis
Considering the following transform:

ϕ(t, x) = exp

(
i

2

∫ x

−∞
|u(t, y)|2 dy

)
u(t, x),

ψ = ∂ϕ− i

2
|ϕ|2ϕ.

By similarly arguments as in [9] and [16], we see that if u(t, x) solves (1.2) then (ϕ,ψ) solves the
following system 

Lϕ = iϕ2ψ − b|ϕ|4ϕ,
Lψ = −iψ2ϕ− 3b|ϕ|4ψ − 2b|ϕ|2ϕ2ψ,

ϕ |t=0= ϕ0 = exp
(
i
2

∫ x
−∞ |u0(y)|2 dy

)
u0,

ψ |t=0= ψ0 = ∂ϕ0 − i
2 |ϕ0|2ϕ0,

(2.1)

where L = ∂t + ∂xx. For convenience, we de�ne

P (ϕ,ψ) = iϕ2ψ − b|ϕ|4ϕ,
Q(ϕ,ψ) = −iψ2ϕ− 3b|ϕ|4ψ − 2b|ϕ|2ϕ2ψ.

Let R be multi soliton pro�le given as in (1.6). Set q = u− R. Since Rj solves (1.2), for all j, by
elementary calculation, we have

iRt +Rxx + i|R|2Rx + b|R|4R = i(|R|2Rx −
K

Σ
j=1
|Rj |2Rjx) + b(|R|4R−

∞
Σ
j=1
|Rj |4Rj). (2.2)

Since Lemma 4.1, we have

‖|R|2Rx −
K

Σ
j=1
|Rj |2Rjx‖H2 + ‖|R|4R−

K

Σ
j=1
|Rj |4Rj‖H2 6 e−λt, (2.3)

for λ = 1
8v∗. Thus, we rewrite (2.2) as follows

iRt +Rxx + i|R|2Rx + b|R|4R = e−λtv(t, x), (2.4)

where v(t) ∈ H2(R) such that ‖v(t)‖H2 uniformly bounded in t.
De�ne

h = exp

(
i

2

∫ x

−∞
|R|2 dy

)
R(t, x),

k = hx −
i

2
|h|2h.

By elementary calculation as above, we have

Lh = ih2k − b|h|4h+ e−tλm(t, x),

Lk = −ik2h− 3b|h|4k − 2b|h|2h2k + e−tλn(t, x),

where m(t), n(t) satisfy

m = v exp

(
i

2

∫ x

−∞
|R|2 dy

)
− h

∫ x

−∞
Im(vR) dy, (2.5)

n = mx − i|h|2m+
i

2
h2m. (2.6)



8 PHAN VAN TIN

By Lemma 4.2 we have ‖m(t)‖H1 +‖n(t)‖H1 uniformly bounded in t. Let ϕ̃ = ϕ−h and ψ̃ = ψ−k.
Then ϕ̃, ψ̃ solve: {

Lϕ̃ = P (ϕ,ψ)− P (h, k)− e−tλm(t, x),

Lψ̃ = Q(ϕ,ψ)−Q(h, k)− e−tλn(t, x).
(2.7)

Set η = (ϕ̃, ψ̃), W = (h, k) and f(ϕ,ψ) = (P (ϕ,ψ), Q(ϕ,ψ)). We �nd solution of (2.7) of following
form:

η = −i
∫ ∞
t

S(t− s)[f(W + η)− f(W ) +H](s) ds, (2.8)

where S(t− s) is Schrödinger group, H = e−tλ(m,n). Moreover, since ψ = ∂ϕ− i
2 |ϕ|

2ϕ, we have

ψ̃ = ∂ϕ̃− i

2
(|ϕ̃+ h|2(ϕ̃+ h)− |h|2h). (2.9)

Step 2. Existence solution of system equations
Since Lemma 4.3, there exists T∗ � 1 such that for T0 > T∗ there exists unique solution η de�ne

on [T0,∞) of (2.7) such that

etλ(‖η‖S([t,∞))×S([t,∞))) + etλ(‖ηx‖S([t,∞))×S([t,∞))) 6 1, ∀t > T0, (2.10)

for the constant λ > 0 de�ned as in step 1. Thus, for all t > T0, we have

‖ϕ̃‖H1 + ‖ψ̃‖H1 . e−λt, (2.11)

Step 3. Existence of multisoliton for (1.2)

We prove that the solution η = (ϕ̃, ψ̃) of (2.7) satisfying the relation (2.9). Indeed, let η be

solution of (2.7) which we �nd in step 1. Set ϕ = ϕ̃ + h, ψ = ψ̃ + k and v = ∂ϕ − i
2 |ϕ|

2ϕ. Since

h solves Lh = P (h, k) + e−tθm(t, x) and ϕ̃ solves Lϕ̃ = P (ϕ,ψ) − P (h, k) − e−tθm(t, x), we have
(ϕ,ψ) solves {

Lϕ = P (ϕ,ψ),

Lψ = Q(ϕ,ψ).
(2.12)

By similarly arguments as above, we have

Lψ − Lv = Q(ϕ,ψ)−
(
∂Lϕ− i

2
L(|ϕ|2ϕ)

)
= Q(ϕ,ψ)−

(
∂Lϕ− i

2
(L(ϕ2)ϕ+ ϕ2L(ϕ) + 2∂(ϕ2)∂ϕ)

)
= Q(ϕ,ψ)−

(
∂Lϕ− i

2
(2Lϕ|ϕ|2 + 2(∂ϕ)2ϕ− ϕ2Lϕ+ 2ϕ2∂xxϕ) + 2ϕ|∂ϕ|2)

)
. (2.13)

Moreover, we have

Lϕ = P (ϕ,ψ) = iϕ2ψ − b|ϕ|4ϕ

= iϕ2(ψ − v) + iϕ2v − b|ϕ|4ϕ. (2.14)

Combining (2.14) and (2.13) and by elementary calculation, we obtain

Lψ − Lv = Q(ϕ,ψ)− ∂(iϕ2(ψ − v))− |ϕ|2ϕ2(ψ − v)− 1

2
|ϕ|4(ψ − v)−Q(ϕ, v)

= (Q(ϕ,ψ)−Q(ϕ, v))− 2iϕ∂ϕ(ψ − v)− iϕ2∂(ψ − v)− |ϕ|2ϕ2(ψ − v)− 1

2
|ϕ|4(ψ − v)

= −i(ψ2 − v2)ϕ− 3b|ϕ|4(ψ − v)− 2b|ϕ|2ϕ2(ψ − v)− 2iϕ

(
v +

i

2
|ϕ|2ϕ

)
(ψ − v)

− iϕ2∂(ψ − v)− |ϕ|2ϕ2(ψ − v)− 1

2
|ϕ|4(ψ − v). (2.15)

De�ne ṽ = v − k. Since, ψ̃ − ṽ = ψ − v and (2.15) we have

Lψ̃ − Lṽ = (ψ̃ − ṽ)A(ψ̃, ṽ, ϕ̃, h, k) + (ψ̃ − ṽ)B(ψ̃, ṽ, ϕ̃, h, k)− i(ϕ̃+ h)2∂(ψ̃ − ṽ), (2.16)
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where

A = −i(ψ̃ + ṽ + 2k)(ϕ̃+ h)− 3b|ϕ̃+ h|4 − 1

2
|ϕ̃+ h|4,

B = −2b|ϕ̃+ h|2(ϕ̃+ h)2 − 2i(ϕ̃+ h)

(
ṽ + k +

i

2
|ϕ̃+ h|2(ϕ̃+ h)

)
− |ϕ̃+ h|2(ϕ̃+ h)2.

We see that A,B are polynomials of degree at most 4 in (ψ̃, ṽ, ϕ̃, h, k). Multiplying two sides of

(2.16) with ψ̃ − ṽ, take imaginary part and integral over space using integral by part , we obtain

1

2
∂t‖ψ̃ − ṽ‖2L2 = Im

∫
R
(ψ̃ − ṽ)2A(ψ̃, ṽ, ϕ̃, h, k) + (ψ̃ − ṽ)

2

B(ψ̃, ṽ, ϕ̃, h, k) +
i

2
∂(ϕ̃+ h)2(ψ̃ − ṽ)

2

dx

. ‖ψ̃ − ṽ‖2L2(‖A‖L∞ + ‖B‖L∞ + ‖∂(ϕ̃+ h)2‖L∞).

By using Grönwall's inequality, we obtain

‖ψ̃(t)− ṽ(t)‖2L2 . ‖ψ̃(N)− ṽ(N)‖2L2 exp

(∫ N

t

(‖A‖L∞ + ‖B‖L∞ + ‖∂(ϕ̃+ h)2‖L∞ ds

)
. (2.17)

Since (2.10) and (2.11) and bounded of ‖h‖H4 + ‖k‖H4 , for t > T0, we have

∫ N

t

(‖A‖L∞ + ‖B‖L∞ + ‖∂(ϕ̃+ h)2‖L∞) ds

. ‖ϕ̃‖L1L∞((t,N×R)) + ‖ψ̃‖L1L∞((t,N)×R) + ‖∂ϕ̃‖L1L∞((t,N)×)R)

+ ‖kh‖L1L∞((t,N)×R) + ‖h4‖L1L∞((t,N)×R) + ‖∂(h2)‖L1L∞((t,N)×R)

. ‖ϕ̃‖L4L∞((t,N)×R)(N − t)
3
4 + ‖ψ̃‖L4L∞((t,N)×R)(N − t)

3
4

+ ‖∂ϕ̃‖L4L∞((t,N)×R)(N − t)
3
4 + (N − t)(‖hxh‖L∞L∞ + ‖h‖4L∞L∞)

. (N − t) 3
4 e−ct + (N − t)(‖Rx‖L∞L∞‖R‖L∞L∞ + ‖R‖4L∞L∞).

where we use k = hx− i
2 |h|

2h and ṽ = ∂ϕ̃− i
2 (|ϕ̃+h|2(ϕ̃+h)−|h|2h). Thus, from the assumption

(1.8), we have ‖Rx‖L∞L∞‖R‖L∞L∞ + ‖R‖4L∞L∞ � λ. Thus,

‖ψ̃(t)− ṽ(t)‖2L2 . e−2λN exp
(
C(N − t) 3

4 + C(N − t)‖R‖W 1,∞

)
= exp

(
C(N − t) 3

4 + C(N − t)‖R‖W 1,∞ − 2λN
)
.

Let N →∞, we obtain that

‖ψ̃(t)− ṽ(t)‖2L2 = 0.

This implies that ψ̃ = ṽ, hence,

ψ = v = ∂ϕ− i

2
|ϕ|2ϕ. (2.18)

Let u = exp
(
− i

2

∫ x
−∞ |ϕ(y)|2 dy

)
ϕ. Combining (2.18) with the fact that (ϕ,ψ) solves{

Lϕ = P (ϕ,ψ),

Lψ = Q(ϕ,ψ),

we obtain u solves (1.2). Moreover,

‖u−R‖H1 = ‖exp

(
− i

2

∫ x

−∞
|ϕ(y)|2 dy

)
ϕ− exp

(
− i

2

∫ x

−∞
|h(y)|2 dy

)
h‖H1

. ‖ϕ− h‖H1 = ‖ϕ̃‖H1

Combining (2.11), for t > T0, we have

‖u−R‖H1 6 e−λt.

This complete the proof of Theorem 1.1.
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Remark 2.1. We do not have the proof for constructing the multi kink-soliton trains of equation
(1.2) as (1.3). The reason is that if the pro�le R in the proof of Theorem 1.1 is not in H1(R) then
the function h is de�ned as above is not in H1(R). Thus, the functions m,n de�ned as in (2.5) and
(2.6) are not in H1(R) and we can not apply the Lemma 4.3 to construct solution of system (2.7).

3. Proof of Theorem 1.6

In this section, we give the proof of Theorem 1.6. We use the similar arguments as in proof of
Theorem 1.1. We divide our proof into three steps:
Step 1. Preliminary analysis
Set

v := ux +
i

2
|u|2u.

By elementary calculation as in the proof of Theorem 1.1 we see that if u solves (1.2) then (u, v)
solves the following system:

Lu = −iu2v +
(
1
2 − b

)
|u|4u,

Lv = iv2u+
(
3
2 − 3b

)
|u|4v + (1− 2b)|u|2u2v,

u |t=0= u0,

v |t=0= v0 = ∂u0 + i
2 |u0|

2u0.

(3.1)

De�ne

P (u, v) = −iu2v +

(
1

2
− b
)
|u|4u,

Q(u, v) = iv2u+

(
3

2
− 3b

)
|u|4v + (1− 2b)|u|2u2v.

Let V be multi kink-soliton pro�le given as in (1.20). Set q = u− V . Since Rj solves (1.2), for all
j, by elementary calculation, we have

iVt + Vxx + i|V |2Vx + b|V |4V = i(V 2Vx −
K∑
j=0

R2
jRjx) + b(|V |4V −

K∑
j=0

|Rj |4Rj). (3.2)

Since Lemma 4.4, we have

‖V 2Vx −
K∑
j=0

R2
jRjx‖H2 + ‖|V |4V −

K∑
j=0

|Rj |4Rj‖H2 6 e−λt, (3.3)

for λ = 1
8v∗. Thus, we rewrite (3.2) as follows

iVt + Vxx + iV 2Vx + b|V |4V = e−λtm(t, x), (3.4)

where m(t) ∈ H2(R) such that ‖m(t)‖H2 uniformly bounded in t. De�ne

h = V,

k = hx +
i

2
|h|2h.

By elementary calculation as above, we have

Lh = −ih2k +

(
1

2
− b
)
|h|4h+ e−tλm = P (h, k) + e−tλm,

Lk = ik2h+

(
3

2
− 3b

)
|h|4k + (1− 2b)|h|2h2k + e−tλn = Q(h, k) + e−tλn.

where n = mx + i|h|2m− i
2h

2m satisfy ‖m(t)‖H1 is uniformly bounded in t, by similar arguments
in the proof of Theorem 1.1. Let ũ = u− h and ṽ = v − k. Then ũ, ṽ solves:{

Lũ = P (u, v)− P (h, k)− e−tλm,
Lṽ = Q(u, v)−Q(h, k)− e−tλn.

(3.5)
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Set η = (ũ, ṽ), W = (h, k) and f(u, v) = (P (u, v), Q(u, v)). We �nd solution of (3.5) of following
form:

η = −i
∫ ∞
t

S(t− s)[f(W + η)− f(W ) +H](s) ds, (3.6)

where H = e−tλ(m,n). Moreover, since v = ux + i
2 |u|

2u, we have

ṽ = ũx +
i

2
(|ũ+ h|2(ũ+ h)− |h|2h). (3.7)

Step 2. Existence solution of system equations
Since Lemma 4.3, there exists T∗ � 1 such that for T0 � T∗ there exists unique solution η

de�ne on [T0,∞) of (3.5) such that

etλ‖η‖S([t,∞))×S([t,∞)) + etλ‖ηx‖S([t,∞))×S([t,∞)) 6 1, ∀t > T0, (3.8)

for the constant λ > 0 de�ned as in step 1. Thus, for all t > T0, we have

‖ũ‖H1 + ‖ṽ‖H1 . e−tλ. (3.9)

Step 3. Existence of multi kink-soliton for (1.2)

Using similar arguments in the proof of Theorem 1.1 we can prove that the solution η = (ϕ̃, ψ̃)
of (3.5) satisfying the relation (3.7) under the condition (1.21). This implies that

ṽ = ũx +
i

2
(|ũ+ h|2(ũ+ h)− |h|2h).

Set u = ũ+ h, v = ṽ + k. We have

v = ux +
i

2
|u|2u. (3.10)

Since (ũ, ṽ) solves (3.5), we have u, v solves

Lu = P (u, v),

Lv = Q(u, v).

Combining with (3.10) we have u solves (1.2). Moreover, for t > T0, we have

‖u− V ‖H1 = ‖ũ‖H1 . e−λt.

This completes the proof of Theorem 1.6.

4. Some technical lemmas

4.1. Properties of solitons. In this section, we prove some estimates of soliton pro�le using in
the proof of Theorem 1.1.

Lemma 4.1. There exist C > 0 and a constant λ > 0 such that for t large enough, the estimate
(2.3) is true uniformly in t.

Proof. First, we need to some estimates on soliton pro�le. We have

|Rj(x, t)| = |Φωj ,cj (x− cjt)| =
√

2hj(
√
c2j + γh2j cosh(hj(x− cjt))− cj)−

1
2 .hj ,|cj | e

−hj
2 |x−cjt|.

Moreover,

|∂Rj(x, t)| = |∂φωj ,cj (x− cjt)| =
−
√

2

2
h2j

√
c2j + γh2j sinh(hj(x− cjt))(

√
c2j + γh2j cosh(hj(x− cjt))− cj)−

3
2

.hj ,|cj | e
−hj
2 |x−cjt|.

By elementary calculation, we have

|∂2Rj(x, t)|+ |∂3Rj(x, t)| .hj ,|cj | e
−hj
2 |x−c−jt|.

Now, let us comeback to prove Lemma 4.1. For convenience, we set

χ1 = i|R|2Rx − i
K

Σ
j=1
|Rj |2Rjx,

χ2 = |R|4R−
K

Σ
j=1
|Rj |4Rj .
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Fix t > 0. For each x ∈ R, choose m = m(x) ∈ {1, 2, ...,K} so that

|x− cmt| = min
j
|x− cjt|.

For j 6= m, we have

|x− cjt| 6
1

2
|cjt− cmt| =

t

2
|cj − cm|.

Thus, we have

|(R−Rm)(x, t)|+ |(∂R− ∂Rm(x, t))|+ |∂2R− ∂2Rm|+ |∂3R− ∂3Rm|
6 Σ
j 6=m

(|Rj(x, t)|+ |∂Rj(x, t)|+ |∂2Rj(x, t)|+ |∂3Rj(x, t)|)

.h1,..,hK ,|c1|,..,|cK | δm(x, t) := Σ
j 6=m

e
−hj
2 |x−cjt|

De�ne

v∗ = inf
j 6=k

hj |cj − ck|.

We have

|(R−Rm)(x, t)|+ |(∂R− ∂Rm(x, t))|+ |∂2R− ∂2Rm|+ |∂3R− ∂3Rm| . δm(x, t) . e
−1
4 v∗t.

Let f1, g1, r1 and f2, g2, r2 be polynomials of u, ux, uxx, uxxx and conjugates such that for u ∈
H3(R):

i|u|2ux = f1(u, u, ux), |u|4u = f2(u, u),

∂(i|u|2ux) = g1(u, ux, uxx, u, ..), ∂(|u|4u) = g2(u, ux, u, ..),

∂2(i|u|2ux) = r1(u, ux, uxx, uxxx, u, ..), ∂2(|u|4u) = r2(u, ux, uxx, u, ..).

Denote

A = sup
|z|+|zx|+|zxx|+|zxxx|6‖R‖H4(R)

(|df1|+ |df2|+ dg1|+ |dg2|+ |dr1|+ |dr2|),

where we denote by df the di�erential of f). We have

|χ1|+ |χ2|+ |∂χ1|+ |∂χ2|+ |∂2χ1|+ |∂2χ2|

6 |f1(R,Rx)− f1(Rm, Rmx)|+ |f2(R)− f2(Rm)|+
∑
j 6=m

(|f1(Rj , Rjx)|+ |f2(Rj)|)

+ |g1(R,Rx, Rxx, ..)− g1(Rm, Rmx, Rmxx, ..)|+ |g2(R,Rx, ..)− g2(Rm, Rmx, ..)|

+
∑
j 6=m

(g1(Rj , Rjx, Rjxx, ..) + g2(Rj , Rjx), ..)

+ |r1(R,Rx, Rxx, Rxxx, ..)− r1(Rm, Rmx, Rmxx, Rmxxx, ..)|+ |r2(R,Rx, Rxx, ..)− r2(Rm, Rmx, Rmxx, ..)|

+
∑
j 6=m

(r1(Rj , Rjx, Rjxx, Rjxxx, ..) + r2(Rj , Rjx, Rjxx, ..))

6 A(|R−Rm|+ |Rx −Rmx|+ |Rxx −Rmxx|+ |Rxxx −Rmxxx|) +
∑
j 6=m

A(|Rj |+ |Rjx|+ |Rjxx|+ |Rjxxx|)

6 2A
∑
j 6=m

(|Rj |+ |Rjx|+ |Rjxx|+ |Rjxxx|)

6 2Aδm(t, x).

In particular,

‖χ1‖W 2,∞ + ‖χ2‖W 2,∞ . e−
1
4 v∗t.
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Moreover, we have

‖χ1‖W 2,1 + ‖χ2‖W 2,1

.
K∑
j=1

(‖|Rj |2Rjx‖L1 + ‖∂(|Rj |2Rjx)‖L1 + ‖∂2(|Rj |2Rjx)‖L1 + ‖R5
j‖L1 + ‖∂(|Rj |4Rj)‖L1 + ‖∂2(|Rj |4Rj)‖L1)

.
K∑
j=1

(‖Rj‖3H1 + ‖Rj‖3H2 + ‖Rj‖3H3 + ‖Rj‖5H1 + ‖Rj‖5H1 + ‖Rj‖5H2) < C <∞

By Holder inequality, for 1 < r <∞, we have

‖χ1‖W 2,r + ‖χ2‖W 2,r 6 Ce−(1−
1
r )

1
4 v∗t, ∀r ∈ (s,∞).

Choosing r = 2 and λ = 1
8v∗ we obtain the desired result.

�

4.2. Prove the boundedness of v,m, n. Let v given as (2.2) and m,n be given as (2.5) and
(2.6). In this section, we give a proof of boundedness for H2(R)-norm of v and H1(R)-norm of m
and n. We have the following lemma

Lemma 4.2. The functions v,m, n satisfy

‖v(t)‖H2 + ‖m(t)‖H1 + ‖n(t)‖H1 6 C,

uniformly on t, for some constant C > 0.

Proof. Let χ1 be given function as in Lemma 4.1, we have

e−λtv = χ1

By Lemma 4.1, we have ‖v(t)‖H2 6 D, for some constant D > 0. Since (2.5), we have

‖m‖H2 . ‖v‖H2 + ‖h‖H2‖v‖H2‖R‖H2 6 C1,

for some constant C1 > 0. Since, (2.6), we have

‖n‖L2 . ‖mx‖L2 + ‖h‖2H1‖m‖H1 6 ‖m‖H1(1 + ‖h‖2H1) 6 C2,

for some constant C2 > 0. Moreover, we have

‖nx‖L2 . ‖mxx‖L2 + ‖h‖2H1‖m‖H1 6 ‖m‖H2(1 + ‖h‖2H1) 6 C3,

for some constant C3 > 0. Choosing C = D + C1 + C2 + C3, we obtain the desired result. �

4.3. Existence solution of system equation. In this section, we prove the existence of solution
of the following equation:

i∂tη + ∂xxη = −[f(W + η)− f(W )]−H,

In Duhamel form,

η(t) = −i
∫ ∞
t

S(t− s)[f(W + η)− f(W ) +H](s) ds, (4.1)

where f(ϕ,ψ) = (P (ϕ,ψ), Q(ϕ,ψ)) and P (ϕ,ψ) = iϕ2ψ − b|ϕ|4ϕ, Q(ϕ,ψ) = −iψ2ϕ − 3b|ϕ|4ψ −
2b|ϕ|2ϕ2ψ.

Lemma 4.3. Let H = H(t, x) : [0,∞)× R→ C2, W = W (t, x) : [0,∞)× R→ C2 be given vector
functions which satisfy for some C1 > 0, C2 > 0, λ > 0, T0 > 0:

‖W (t)‖L∞×L∞ + eλt‖H(t)‖L2×L2 6 C1 ∀t > T0, (4.2)

‖∂W (t)‖L2×L2 + ‖∂W (t)‖L∞×L∞ + eλt‖∂H(t)‖L2×L2 6 C2, ∀t > T0. (4.3)

Consider equation (4.1). There exists a constant λ∗ independent of C2 such that if λ > λ∗ then
there exists a unique solution η to (4.1) on [T0,∞)× R satisfying

eλt‖η‖S([t,∞))×S([t,∞)) + eλt‖∂η‖S([t,∞))×S([t,∞)) 6 1, ∀t > T0.
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Proof. We use similarly arguments as in [12]. We write (4.1) as η = Φη. We shall show that, for
λ su�ciently large, Φ is a contraction in the ball

B =
{
η : ‖η‖X := eλt‖η‖S([t,∞))×S([t,∞)) + eλt‖∂η‖S([t,∞))×S([t,∞)) 6 1

}
Step 1. Prove Φ map B into B
Let t > T0, η = (η1, η2) ∈ B, W = (w1, w2) and H = (h1, h2). By Strichartz estimates, we have

‖Φη‖S([t,∞))×S([t,∞)) . ‖f(W + η)− f(W )‖N([t,∞))×N([t,∞)) (4.4)

+ ‖H‖L1
τL

2
x([t,∞))×L1

τL
2
x([t,∞)). (4.5)

For (4.5), using (4.2), we have

‖H‖L1
τL

2
x([t,∞))×L1

τL
2
x([t,∞)) = ‖h1‖L1

τL
2
x([t,∞)) + ‖h2‖L1

τL
2
x([t,∞)) .

∫ ∞
t

e−λτ dτ 6
1

λ
e−λt. (4.6)

For (4.4), we have

|P (W + η)− P (W )| = |P (w1 + η1, w2 + η2)− P (w1, w2)|

. |(w1 + η1)2(w2 + η2)− w2
1w2|+ ||η1 + w1|4(η1 + w1)− |w1|4w2|

. |η1|+ |η2|+ |η1|5

Thus,

‖P (W + η)− P (W )‖N([t,∞)) . ‖η1‖N([t,∞)) + ‖η2‖N([t,∞)) + ‖η51‖N([t,∞))

. ‖η1‖L1
τL

2
x(t,∞) + ‖η2‖L1

τL
2
x(t,∞) + ‖η51‖L1

τL
2
x(t,∞)

.
∫ ∞
t

e−λτ dτ +

∫ ∞
t

‖η1(τ)‖5L10 dτ

.
1

λ
e−λt +

∫ ∞
t

‖η1(τ)‖
7
2

L2‖∂η1(τ)‖
3
2

L2

.
1

λ
e−λt +

∫ ∞
t

e−(7/2λ+3/2λ)τ dτ

.
1

λ
e−λt +

1

7/2λ+ 3/2λ
e−(7/2λ+3/2λ)t .

1

λ
e−λt.

By similar arguments as above, we have

‖Q(W + η)−Q(W )‖N([t,∞)) .
1

λ
e−λt.

Thus, for λ large enough, we have

‖Φη‖S([t,∞)×S([t,∞))) 6
1

10
e−λt.

It remains to estimate ‖∂Φη‖S([t,∞)×S([t,∞))). By Strichartz estimate we have

‖∂Φη‖S([t,∞)×S([t,∞))) . ‖∂(f(W + η)− f(W ))‖N([t,∞))×N([t,∞)) (4.7)

+ ‖∂H‖N([t,∞))×N([t,∞)). (4.8)

For (4.8), using (4.3), we have

‖∂H‖N([t,∞))×N([t,∞)) 6 ‖∂h1‖L1
τL

2
x([t,∞)) + ‖∂h2‖L1

τL
2
x([t,∞))

.
∫ ∞
t

e−λτ dτ =
1

λ
e−λt. (4.9)

For (4.7), we have

‖∂(f(W + η)− f(W ))‖N([t,∞))×N([t,∞)) = ‖∂(P (W + η)− P (W ))‖N([t,∞)) + ‖∂(Q(W + η)−Q(W ))‖N([t,∞))

Furthermore, using the notation (1.2) (3), we have

|∂(P (W + η)− P (W ))| . |∂((w1 + η1)2(w2 + η2)− w2
1w2)|+ |∂(|w1 + η1|4(w1 + η1)− |w1|4w1)|

. |∂η|(|η|2 + |w|2) + |∂w|(|η|2 + |w||η|)
+ |∂η|(|η|4 + |w|4) + |∂w|(|η|4 + |η||w|3).
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Thus, we have

‖∂(P (W + η)− P (W ))‖N([t,∞))

. ‖|∂η|(|η|2 + |w|2)‖N([t,∞)) + ‖|∂w|(|η|2 + |w||η|)‖N([t,∞)) (4.10)

+ ‖|∂η|(|η|4 + |w|4)‖N([t,∞)) + ‖|∂w|(|η|4 + |η||w|3)‖N([t,∞)). (4.11)

For (4.10), using (4.2) and (4.3) and the assumption η ∈ B we have

‖|∂η|(|η|2 + |w|2)‖N([t,∞)) + ‖|∂w|(|η|2 + |w||η|)‖N([t,∞))

. ‖|∂η||η|2‖L1
τL

2
x([t,∞)) + ‖|∂η||w|2‖L1

τL
2
x([t,∞)) + ‖|∂w||η|2‖L1

τL
2
x([t,∞)) + ‖|∂w||w||η|‖L1

τL
2
x([t,∞))

. ‖|∂η|‖L2
τL

2
x([t,∞))‖|η|‖2L4

τL
∞ + ‖|∂η|‖L1

τL
2
x([t,∞))‖|w|‖2L∞L∞

+ ‖|∂w|‖L∞L∞‖|η|‖L4
τL
∞
x ([t,∞))‖|η|‖L4/3

τ L2
x([t,∞))

+ ‖|w|‖L∞L∞‖|∂w|‖L∞L∞‖|η|‖L1
τL

2
x([t,∞))

.
1

λ
e−λt.

For (4.11), using (4.2) and (4.3) and the assumption η ∈ B we have

‖|∂η|(|η|4 + |w|4)‖N([t,∞)) + ‖|∂w|(|η|4 + |η||w|3)‖N([t,∞))

. ‖|∂η|(|η|4 + |w|4)‖L1
τL

2
x([t,∞)) + ‖|∂w|(|η|4 + |η||w|3)‖L1

τL
2
x([t,∞))

. ‖∂η‖L∞τ L2
x([t,∞))‖η‖4L4

τL
∞
x ([t,∞)) + ‖w‖4L∞L∞‖∂η‖L1

τL
2
x([t,∞))

+ ‖∂w‖L∞L2‖η‖4L4
τL
∞
x ([t,∞)) + ‖∂w‖L∞L∞‖w‖3L∞L∞‖η‖L1

τL
2
x([t,∞))

.
1

λ
e−λt.

Hence,

‖∂(P (W + η)− P (W ))‖N([t,∞)) .
1

λ
e−λt. (4.12)

By similarly arguments, we have

‖∂(Q(W + η)−Q(W ))‖N([t,∞)) .
1

λ
e−λt. (4.13)

Combining (4.12) and (4.13), we obtain

‖∂(f(W + η)− f(W ))‖N([t,∞))×N([t,∞)) .
1

λ
e−λt. (4.14)

Combining (4.9) and (4.14), we obtain

‖∂Φη‖S([t,∞))×S([t,∞)) .
1

λ
e−λt 6

1

10
e−λt,

if λ > 0 large enough. Thus, for λ > 0 large enough

‖Φη‖X 6 1. (4.15)

Which implies that Φ map B onto B.
Step 2. Φ is contraction map on B
By using (4.2) and (4.3) and similarly estimate of (4.15), we can show that, for any η ∈ B,

κ ∈ B,

‖Φη − Φκ‖X 6
1

2
‖η − κ‖X .

By Banach �xed point theorem there exists unique solution on B of (4.1). �

4.4. Properties of multi kink-soliton trains pro�le. In this section, we prove some estimates
of multi kink-soliton trains pro�le using in the proof of Theorem 1.6.

Lemma 4.4. There exist C > 0 and a constant λ > 0 such that for t large enough, the estimate
(3.3) is true uniformly in t.
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Proof. For convenience, set

R =

K∑
j=1

Rj .

By similar arguments as in the proof of Lemma 4.1, we have

|Rj(x, t)|+ |∂Rj(x, t)|+ |∂2Rj(x, t)|+ |∂3Rj(x, t)| .hj ,|cj | e
−hj
2 |x−c−jt|,

for all 1 6 j 6 K. Now, let us comeback to prove Lemma 4.1. For convenience, we set

χ1 = iV 2Vx − i
K

Σ
j=0

R2
jRjx,

χ2 = |v|4V −
K

Σ
j=0
|Rj |4Rj .

As in the proof of Lemma 4.1, we �x t > 0, take any x ∈ R and choose m = m(x) ∈ N such that

|x− cmt| = min
j∈N
|x− cjt|.

If m > 1 then by the assumption c0 < cj for j > 0 we have x > c0t. Thus, by asymptotic behaviour
of Φ0 as in Remark 1.7, we can see R0 as a soliton. More precise, we have

|R0(t, x)|+ |R′0(t, x)|+ |R′′0 (t, x)|+ |R′′′0 (t, x)| . e− 1
2 |x−c0t| . e−

1
4 v∗t.

Thus, by similar arguments as in the proof of Lemma 4.1, we have:

|(R−Rm)(x, t)|+ |(∂R− ∂Rm)(x, t)|+ |(∂2R− ∂2Rm)(x, t)|+ |∂3R− ∂3Rm| . e−
1
4 v∗t,

where

v∗ = inf
j 6=k

hj |cj − ck|.

Let f1, g1, r1 and f2, g2, r2 be polynomials of u, ux, uxx, uxxx and conjugates such that for u ∈
H3(R):

iu2ux = f1(u, u, ux), |u|4u = f2(u, u),

∂(iu2ux) = g1(u, ux, uxx, u, ..), ∂(|u|4u) = g2(u, ux, u, ..),

∂2(iu2ux) = r1(u, ux, uxx, uxxx, u, ..), ∂2(|u|4u) = r2(u, ux, uxx, u, ..).

Denote

A = sup
|z|+|zx|+|zxx|+|zxxx|6‖R‖H4(R)

(|df1|+ |df2|+ dg1|+ |dg2|+ |dr1|+ |dr2|),

where we denote by df the di�erential of f). Therefore, if m > 1 we have

|χ1|+ |χ2|+ |∂χ1|+ |∂χ2|+ |∂2χ1|+ |∂2χ2|

. |R0|2|R0x|+ |R0|5 +A|R0|+ |f1(R,Rx, R)−
K∑
j=1

f1(Rj , Rjx, Rj)|+ |f2(R,R)−
K∑
j=0

f2(Rj , Rj)|

+ |g1(R,Rx, ..)−
K∑
j=1

g1(Rj , Rjx, ..)|+ |g2(R,Rx, ..)−
K∑
j=0

g2(Rj , Rjx, ..)|+ |r1(R,Rx, ..)

−
K∑
j=0

r1(Rj , Rjx, ..)|+ |r2(R,Rx, ..)−
K∑
j=0

r2(Rj , Rjx, ..)|

. |R0|2|R0x|+ |R0|5 +A|R0|

+A

K∑
j=1

(|(R−Rm)(x, t)|+ |(∂R− ∂Rm)(x, t)|+ |(∂2R− ∂2Rm)(x, t)|+ |∂3R− ∂3Rm|)

. e−
1
4v∗t,
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If m = 0 we have

|χ1|+ |χ2|+ |∂χ1|+ |∂χ2|+ |∂2χ1|+ |∂2χ2|

. A|R|+
K∑

j=1,v=1,2

(|fv(Rj , Rjx, ..)|+ |gv(Rj , Rjx, ..)|+ |rv(Rj , Rjx, ..)|) . e−
1
4 v∗t.

This implies in all case we have

‖χ1(t)‖W 2,∞ + ‖χ2(t)‖W 2,∞ . e−
1
4v∗t. (4.16)

On one hand,

‖χ1(t)‖W 2,1

.
K∑
j=0

(‖R2
jRjx‖L1 + ‖∂(R2

jRjx)‖L1 + ‖∂2(R2
jRjx)‖L1)

.
K∑
j=1

‖Rj‖3H3 + ‖∂R0‖W 2,1 < C <∞.

On the other hand,

‖χ2(t)‖W 2,1

. ‖|V |4V − |R0|4R0‖W 2,1 +

K∑
j=1

‖|Rj |4Rj‖W 2,1

. ‖|R0|4
K∑
j=1

|Rj |+ |R0|
K∑
j=1

|Rj |4‖W 2,1 +

K∑
j=1

‖Rj‖5H3

.
K∑
j=1

(‖Rj‖W 2,1(‖R0‖W 2,∞ + 1) + ‖Rj‖5H3) < C <∞.

Thus,

‖χ1(t)‖W 2,1 + ‖χ1(t)‖W 2,1 <∞. (4.17)

Since (4.16) and (4.17), using Hölder inequality, we have

‖χ1(t)‖W 2,2 + ‖χ2(t)‖W 2.2 . e−
1
8v∗t.

Set λ = 1
8v∗. This completes the proof. �
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