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CONSTRUCTION OF THE MULTI-SOLITONS OF A DERIVATIVE
NONLINEAR SCHRODINGER EQUATION BY A FIXED POINT METHOD

PHAN VAN TIN

ABsTrRACT. We look for solutions to derivative nonlinear Schrodinger equations built upon
solitons. We prove the existence of multi-solitons, i.e. solutions behaving at large time as the
sum of finite solitons. Our proofs proceed by fixed point arguments around the desired profile,
using Strichartz estimates.
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1. INTRODUCTION

We consider the derivative nonlinear Schrodinger equation:

ity + Uy + ilulug + blul*u = 0, (1.1)

where u : Ry x R, — C.

The derivative nonlinear Schrodinger equation was originally introduced in Plasma Physics as a
simplified model for Alfvén wave propagation. Since then, it has attracted a lot of attention from
the mathematical community (see e.g [3, 4, 6, 7, 9, 10, 16, 17]).

The soliton of (1.1) is a profile of two parameters w, c¢. In case b = 0, Colin and Ohta [2] proved

that the soliton u,, . is orbitally stable when w > % by variational arguments. In case b > 0,

Ohta[14] proved that for each b > 0 there exists unique s* = s*(b) > 0 € (0,1) such that the
soliton w, . is orbitally stable if —2v/w < ¢ < 2s*y/w and orbitally instable if 2s*\/w < ¢ < 2y/w.
In [5], Hayashi investigate the structure of (1.1) from the viewpoint solitons.

Our goal in this paper is to constructing the multi-solitons of (1.1) i.e solutions which behave
asymptotically as the sum of finitely solitons. In [13], Le Coz and Wu proved stability of multi-
solitons of (1.1) in case b = 0. For classical Schrodinger equation, in [11, 12] the authors constructed
the infinite solitons train, infinite kink-soliton train using fixed point methods. In this paper, we
prove the existence of multi-solitons of (1.1), using a fixed point method. Before state the main
result, we give some preliminaries.

Consider equation (1.1). The soliton of equation (1.1) is solution of form R, .(t, z) = e™“!¢,, .(z—
ct), where ¢, . € H'(R) solves

— G + Wb Fico, —i|d]Pde — blo[*o =0, x€R. (1.2)
Date: January 30, 2021.
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Applying the following gauge transform to ¢, .

¢w,c(m) = (I)w,c(z) €Xp <Z;x - i[m |¢)w,c(y)|2 dy) )

it is easily verified that ®,, . satisfies the following equation.

? Ciz0o 3 4 16
The positive even solution of (1.3) is explicitly obtained as follows; if v > 0 or equivalently
b> 73,

2(4&)702) . B
7 (2) = {\/02+’Y(4w—02)zosh(\/mm)_c if —2yw<e<2yw,
(COEE=T if ¢ = 2/,

3

if ¥ <0 or equivalently b < —+5,

2(4w — ?)
V2 + (4w — ¢?) cosh(vViw — c?z) —

where s, = s,(7) = y/1=5. We note that the condition of two parameters v and (w, c)

P2 (z) = if —2vw << —25,1/w,
i c

-3
ify>0@b>l—6,—2ﬁ<c<2\/a,

-3

is a necessary and sufficient condition for the existence of non-trivial solutions of (1.1) vanishing
at infinity (see [1]). For each j € {1,2,.., K}, we set

R;(t,z) = eieijjﬁcj (t,x — ;).

The profile of an multisoliton is a sum of the form:

K
R= ¥ Rj;. (1.4)
j=1
A solution of (1.1) is called multisoliton if, for some profile R:

u(t) — R(t) = 0 as t — oo,
in H'(R)-norm. For convenience, we set h; = , /4w; — c5. Let (cj,w;) be such that —2,/w; < ¢; <
2w ifv>0o0r —=2,/w; <c¢j < —=2s,,/wj if v<0, for all 1 <j < K. We have

Dy e, () = V2R (4 /c? + fthQ. cosh(hjz) — cj)%l. (1.5)

As each soliton is in H*>*(R), we have R € H>*(R).
Our main result is the following.

Theorem 1.1. Let K € N* and for each 1 < j < K, (0;,¢j,w;, ;) be sequence of parameters such
that x; = 0, 0; € R, ¢j # ¢ # 0, for j # k and ¢; such that —2,/w; < ¢; < 2,/w; if v > 0 and
—2,/wj < ¢j < =2s.\/w; if ¥ < 0. The multisoliton profile R is given as (1.4). We assume that
the parameters (wj,c;) satisfy

min{L; | Ryll oo [ Bll oo + Rl poe g} < 0x = nf hyle; — el (1.6)
There ezist a solution u to (1.1) such that
lu— R||gr < Ce ™. Vit =Ty, (1.7)
for some constant C > 0, A\ = %v*.

The formula of soliton in case v > 0 and v < 0 is similar. Thus, from now on, we assume v > 0.
The case v < 0 is treated by similar arguments.
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Remark 1.2. In cases v > 0, we give a example of parameters satisfy (1.6) as follows. First, chose
h; < min(|¢;|,1) and ¢; < 0 for all j. We have

2 2
2h3 _

||(bwjycj‘|%°° g ~ .
c? + ’yh? —¢j =
—V2 : s
Oy, o, = Thf, / ¢} + b3 sinh(hja)(y/c] 4 yhF cosh(hjz) — ;)7 2.

Thus, choosing ¢; < 0, for all j, we obtain
0@, ;] S h? ¢ +yh3|sinh(hja)|(1/ 5 + vh3 cosh(hjz) —c;)~

< h?(\/c? + ’yh? cosh(hjz) — cj)’%

h

Vel

Moreover,

lw

R R P, ;| S

Moreover, we have
s
||8Rj||L°° = Ha(bwjﬂj ||L°° ~ ||aq)wj,cj ||L°° + H5J¢Wj’cj - (bij,cj ||L°°

|e;
< Haq)wj-ﬁj”L“ + TJH(I)%‘,C]‘ ||L°° + H(Pwﬁcj ”iw
2 h3
< byl + —

Thus, we only need to chose the parameters (c;,w;) satisfy

Z(h? + hjy/lej| + hi)Z iy h?<<‘fh| | (1.8)
A PEL — <t hyjlej — ekl :
1<K |cj| |cj|3 1<K |cj| 1<K ] 7k

then the assumption (1.6) is satisfied. Let M > 1 be large enough positive constant. Replace (c;)
by Mc;, hj bounded (hence, w; = §(h? + M?c?)) for all j. As M — oo, the right hand sight of
(1.8) is order M and the left side is order M. Thus, for M large enough we obtain the parameters
(cj,w;) satisty (1.6).

Our strategy is using a Gauge transform to give a system of two equations of ¢, ¢ from equation
of u (1.1). Then, by fixed point method we prove that there exists a unique solution ¢, of this
system that decay exponential in time when ¢ is large enough. Using this property, we prove a
relation between ¢, which allow us to obtain a solution u of (1.1). This solution satisfies the
desired property. However, when we extend our result on construction of infinite solitons, we
meet some problems on selecting parameters. The reason is that in case of finite parameters the
condition ||R| gs is automatically true but in case of infinite parameters, this condition requires
some estimate on parameters. It is not easy to select the parameters which satisfy this estimate
and the assumption (1.6).

We introduce the following notations using in this paper.

Notation.
(1) Fort >0, we note the Strichartz space S([t,00)) is defined via the norm

lulls(it,00)) = sup  lullpaor (ft,00) xR)
(g,r) admissible
The dual space is denoted by N ([t,00)) = S([t,00))*.
(2) For z = (a,b) € C? is a vector, we denote |z| = |a| + |b|.
(3) We denote a < b, fora,b > 0, if a is smaller than b up to multiply a positive constant. Moreover,
we denote a ~ b if a equal to b up to multiply a certain positive constant.
(4) Let f € C*(R). We use Of or f, to denote the derivative in space of the function f.
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2. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. Our strategy is using the Banach fixed point
theorem and Strichartz estimates. We divide our proof into steps.

Step 1. Preliminary analysis

Considering the following transform:

otta) =oxp (5 [ e dn) ute.o)

i
Y =0p— §\<p|2s0~

By similarly arguments as in [8] and [15], we see that if u(t, ) solves (1.1) then (p,1) solves the
following system

Lo = ip®y — blg|*p,
Ly = —ip*B — 3b|p|*y — 2blp| >0y,
¢ li=0= o = exp (% I Juo(y)? dy) uo,
¥ |1=0= o = Opo — %|w0l* 0,
where L = 9; 4+ 0,,. For convenience, we define

P(p,¢) = ip*) — blo|*e,
Qlp, 1) = —iv®p — 3blo| "y — 20| 2.

Let R be infinite soliton profile given as in (1.4). Set ¢ = u — R. Since R; solves (1.1), for all j, by
elementary calculation, we have

iRyt Rop +iIRPR, +URIR = H((RPR, - 3[R PR) +W(RIR- 3 IRIR). @22)
Since Lemma 3.1, we have
IBPR: = 3 1B P Rl + I1RPR = 5 Rl Rylls < e, (23
for A = §v.. Thus, we rewrite (2.2) as follows

iRy + Ryw + i|R|*Ry + b|R|* R = e~ Mu(t, ), (2.4)
where v(t) € H?(R) such that ||v(t)| g2 uniformly bounded in ¢.

Define
h = exp <2/ IR dy) R(t,x),
k= hy — L|BPh
=hy = 5 )
By elementary calculation as above, we have
Lh = ih*k — blh*h + e~ Pm(t, z),
Lk = —ik®h — 3b|h|*k — 2b|h 212K + e~ n(t, ),
where m(t), n(t) satisty
m=uv— h/ Tm(vR) dy, (2.5)
n =m, —ilh|*m + %hQW. (2.6)

By Lemma 3.2 we have |[m(t)|[z1 + ||n(?)[|g: uniformly bounded in . Let ¢ = ¢ —h and Y =1—k.
Then ¢, 1 solve:

{L¢ = Plp,w) = P(h, k) — e~ mt,z), (27)

LZZJ = Q((pa w> - Q(h7 k) - e_w\n(t :13)
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Set n = (@,%), W = (h,k) and f(p,v) = (P(¢,%), Q(p,1)). We find solution of (2.7) of following

w=i [ S(= sV + )~ FOV) + H](s)ds, (28)
t
where S(t — s) is Schrodinger group, H = e~**(m,n). Moreover, since ¢ = 0p — %[|%p, we have
. i }
7/12380—§(|@+h|2(@+h)—|h|2h)~ (2.9)

Step 2. Existence solution of system equations
Since Lemma, 3.3, there exists T} > 1 such that for Ty > T, there exists unique solution 7 define
on [Ty, 00) of (2.7) such that

M1l (t,00))x s(1t.00))) + €17 5,000 xS (1t1007)) < 1, VE = To, (2.10)
for the constant A > 0 defined as in step 1. Thus, for all ¢ > T, we have
1Bl + [l S e, (2.11)

Step 3. Existence of multisoliton for (1.1)

We prove that the solution n = ($,1) of (2.7) satisfying the relation (2.9). Indeed, let n be
solution of (2.7) which we find in step 1. Set ¢ = @+ h, ¢ = ¢ + k and v = dp — Llp|?¢. Since
h solves Lh = P(h, k) + e~ *m(t,x) and @ solves L = P(p,v¢) — P(h, k) — e t*m(t, z), we have
(¢, ) solves

{Lw = P(e,9), (2.12)
L = Q(e,9).

By similarly arguments as above, we have
i
Lo = Lo = Qo) - (9o~ LL(1eP)
i
= Qe t) - (0Lp - S(LIP+ PLE) + 20059
) _
= Qo) ~ (0o~ FRLolel +200/'p ~ P T+ 250.07) + 2610617 ) . (213)
Moreover, we have
Ly = P(p,9) = ig”P — blol*e

= igoQ(LZ) —v)+ ip°T — b|<p|4<p. (2.14)

Combining (2.14) and (2.13) and by elementary calculation, we obtain
L — Lo = Q(p, ¥) — (i [T = ) ~ o6 =) - el (v —v) ~ Q(o,v)
= (QUp ) — QUi ) — 20— v) — 0?0 — ) — |20 —v) — gl (6 —v)

— ity — )7~ Bl (0 — 1) — WP~ ) - 20 (v + Sl W0

~ 0 — ) ~ el T = 0) — 5ol — v). (215)
Define & = v — k. Since, ¢ — o = 1) — v and (2.15) we have
L) — Lo = (¢ — D) A(, 0, @, h, k) + (¥ — 8)B(p, 0, $, h, k) — i(@ + h)*0(P — D), (2.16)

where

N _ 1
A= —i(p+0+2k)(@+h) —3b|@ + h|* — §|<ﬁ—|—h|4,

B = —2b|¢ + h|*(¢ + h)? — 2i(p + h) (v +k+ %|¢+ hI2 (@ + h)) —|@ 4+ hl2(@ + h)%
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We see that A, B are polynomials of degree at most 4 in (15,17, @, h, k). Multiplying two sides of

(2.16) with 1[) — v, take imaginary part and integral over space using integral by part , we obtain
1 ~ - ~ - ~ - - ~7~2 ~ - - Z. - r=3 ~ 2
iat‘lw - ’U”%z = Im/]R(QZ} - U)QAW? v, @, h7 k) + (w - ’U) B(¢7 v, @, ha k) + 56(30 + h)2(¢ - 1)) dx

S = ol Z2 (1Al + 1Bz + [0(Z + h)?[| o).

By using Gronwall’s inequality, we obtain

N
(1) = 5172 < (V) = 8(N)[| 72 exp (/t ([Allz> + 1Bl + 10(& + h)?| ds) - (217)

Since (2.10) and (2.11) and bounded of ||h| g1 + [|k| g4, for ¢ > Ty, we have

N
/ (JAll= + Bl = + 9 + 12| ~) ds
t

SNl zoe e, nxmy) + 1B L1 Lo (6.3 xR) + 0Bl Lo (1,3 x)R)
+ Ikl 1 poe ey xRy + 1B |23 Loe 0,8y xRy + 10(R®) | L3 Low (1,3 xR)
SNz e.vyxry (N = 1) 5 + (19| a poo (e, ) (N — )
+ 0@l s Lo (6.3 xRy (N = 1) + (N = ) (bl Lo L + B[ foe 1oe)
S(N=t)5e™ + (N = t)(|Rall | Rll Lo oo + [ Bl ).

~

3
1

where we use k = h, — 2|h|?h and § = 05 — (| + h|?(¢+ h) — |h|>R). Thus, from the assumption
(1.6), we have | Ry || || R||Locr= + | R} roc < A. Thus,

[t = 50132 S e exp (C(N = )% + C(N = t) | Rllw.~)
= exp (C(N — )i + (N = )| R|lwre — 2)\N) .

Let N — oo, we obtain that
() = o(t)||72 = 0.
This implies that 1/; = 9, hence,

1
Y =v=0p—slel*e (218)
Let u = exp (—% I le)? dy) . Combining (2.18) with the fact that (p,1)) solves
Le = P(p,¢),
Ly = Q(e, ¢),

we obtain u solves (1.1). Moreover,

o= Rl = lewp (=5 [ loPan) o e (<5 [ 1m0 dy )l

S lle = bl = ol a
Combining (2.11), for ¢t > Tp, we have
|u— R g <e M.

This complete the proof of Theorem 1.1.

3. SOME TECHNICAL LEMMAS

3.1. Properties of solitons. In this section, we prove some estimates of soliton profile using in
the proof of the main theorem.

Lemma 3.1. There exist C' > 0 and a constant X > 0 such that for t large enough, the estimate
(2.3) is true uniformly in t.
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Proof. First, we need to some estimates on soliton profile. We have

|Rj(z,t)] = |Pu, c, (x — cjt)| = \/§hj(1/c +7h2 cosh(h;(x —¢;t)) — cj)_% Shyley €2 |- et

Moreover,

|OR;(z,t)] = [0dw; c; (x — cjt)| = 7h2, /c + "yhz sinh(h;(xz — ¢;t))(4 /c +7h2 cosh(h;(z — ¢;t)) — cj)fg

< ol |z—cjt]
5 :chj
Nhj,lel & N

By elementary calculation, we have
e
|02 R; (2, 0)] + |0° Ry (2, )] Sy e,y €77 107771,
Now, let us comeback to prove Lemma 3.1. For convenience, we set
. 2 . K 2
o = iIRPR, — i % R Rja,
j=
4 K 4
Xz = |R['R— ¥ [R;["R
§=0
Fix ¢ > 0. For each € R, choose m = m(z) € {1,2,..., K} so that
|z — ¢pt] = min |z — ¢;t|.
J
For j # m, we have
1 t
|z — ¢jt| < §|cjt —cmt] = E‘Cj — Cml-
Thus, we have

(R — Ry) (2, )| + |(OR — OR (2, 1))| + |0°R — 0* R, | + |0°R — 9° R, |
2 (1B (@, )] + |0R; (=, )] + |07 Ry (x, 1) +0°R; (1))

—h.
L —L|x—c;t
Shiohicletllex] Om(z,1) = % ez lometl
Jj#Fm
Define
v, = inf hjlc; — el
£k
We have

(R — Ry)(z,t)| + |(OR — ORp (,1))| + |0°R — 0°Ryn| + |0°R — 0°Ryp| < 0pn(,t) < e TVt

Let fi,91,71 and fa,ge, 72 be polynomials of w,uy, Ugs, Uzrrr and conjugates such that for u €
H3(R):
z|u\2uw = fl(u’ U, ul’)v |u|4u = f2(uaﬂ)7
A(i|ulPuy) = g1(u, Ug, U, T, ..),  O(|u|*u) = go(u, ug, T, ..),
62(7"u|2uw) = Tl(uauwauwwauwxmaﬂa -~)7 62(|U‘4U) = TQ(U,UI,UMC,E, )

Denote

A= sup (ldf1| + [df2| + dg1| + |dga| + |dri| + |dra]),
|Z‘+|ZI|+‘ZII|+‘ZIII‘gllR”HAL(R)
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where we denote by df the differential of f). We have
x|+ x| + [0x1] + [Ox2] + [0%x1| + 10°x2|
< AR, Ry) = f1(Run, Rona)| + | f2(R) = fo(Ron)| + Y (| f1(R), Rja)| + | f2(R))])
i#m
+ |91(R, sz Rrxa ) - gl(Rma Rmzv Rmmza )| + |92(R7 sz ) - gZ(Rma Rm:m )|

+ Z(gl(RjﬁRjzija:m") + 92(R;, Rjz), --)
j#m
+ |T1(R7 RJHRQZLE) waw7 ) - Tl(Rm, mea Rmmwy Rmx;rwy )| + ‘T2(Ra Rw7 waa ) - r2(Rm7me7 Rm:vwa )|
+ Z (T](Rj, Rj:ry Rja:a:u Rjza::ra ) + T2(Rj7 Rja:u Rjza:> ))

J#Fm
SA(R = Rl + |Ry — Rya| + [Row — Ringal + [Raze — Ringaal) + Z A(|Rj| + |ij| + |Rjz$| + |ijww|)
J#FEm
<24 (IR + [Rjal + [Rjual + [Rjvaal)
j#m
< 240, (t, x).
In particular,
_1,
Ixallweee + Ix2llwae < ema

Moreover, we have
Z(||X1”W2v1 + lIxallw=1)
jEN
= D (IR P Ryall + IOUR PRl s + 107 (1B PRjo) o + I RGN o + 1O Ry |*By) 11 + 107 (|1 Ry |* By 1)

JEN
S D R + IRl + 1 Rs NG + I Rs N3 + [R5 |3 + [R;l[32) < C < o0

JjEN
By Holder inequality, for 1 < r < oo, we have

IxXtllwer + Ixzllwzr < Cem07Pavt 0 vr e (s,00).

Choosing r = 2 and A = %v* we obtain the desired result.
O

3.2. Prove the boundedness of v,m,n. Let v given as (2.2) and m,n be given as (2.5) and
(2.6). In this section, we give a proof of boundedness for H?(R)-norm of v and H'(R)-norm of m
and n. We have the following lemma

Lemma 3.2. The functions v, m,n satisfy
[o@)[zz + M@l + @) |2 < C,
uniformly on t, for some constant C > 0.
Proof. Let x1 be given function as in Lemma 3.1, we have
e My =
By Lemma 3.1, we have ||[v(t)| gz < D, for some constant D > 0. Since (2.5), we have
Imllz> < llvllg2 + [kl g2 vl g2 | Bl 22 < Ch,
for some constant C; > 0. Since, (2.6), we have
Inllze S lmalice + (Rl Imlla < llmllm 1+ [[B]F) < Ce,
for some constant Cy > 0. Moreover, we have
Inallze S llmaeallze + 1Rl Imlla < llmllz 1+ [[B]F) < Cs,

for some constant C3 > 0. Choosing C' = D + C; + C5 + C3, we obtain the desired result. O
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3.3. Existence solution of system equation. In this section, we prove the existence of solution
of the following equation:

iat"] + 8309:77 = _[f(W + 77) - f(W)] - H,
In Duhamel form,
)= =i [ (=¥ )= FOV) + H)9) s, (3.1)
where f(p,9) = (P(¢,9), Q(p,¥)) and P(p,¢) = ip®¢ — blol*p, Q(p,v) = —it*p — 3bp[* —
2blp 9.

Lemma 3.3. Let H= H(t,z):[0,00) x R — C2, W = W(t,z) : [0,00) x R — C? be given vector
functions which satisfy for some C1 >0, Cy >0, A >0, Ty > 0:

W ()| oo x oo + €M H(E)]| L2 xr2 < Cr - VE = T, (3.2)
1OW (1) || 2 xc 2 + |OW (£)|| Lo x oo + M OH ()| 2w < Coy V> Th. (3.3)

Consider equation (3.1). There exists a constant ). independent of Co such that if X > A, then
there exists a unique solution n to (3.1) on [Ty, 00) X R satisfying

<
<

MMl s ((t,00)) x S([t,00)) + € 11ON (1,000 x5 ([1,00)) < L, VE = To.

Proof. We use similarly arguments as in [11]. We write (3.1) as n = ®7. We shall show that, for
A sufficiently large, @ is a contraction in the ball

B = {n:|nlx = e*nlls(itoo)xst.oe) + €10l s(it.00) x5 ((t.00)) < 1}

Step 1. Prove ® map B into B
Let t > Ty, n = (m,n2) € B, W = (w1, ws) and H = (hq, he). By Strichartz estimates, we have

12nls((t,00)) x5 (1,000 S LF (W 410) = FW) N (12,000 x N([£,00)) (3.4)
+ I H || 22 L2 ([t,00)) x L2 L2 ([t,00)) (3.5)
For (3.5), using (3.2), we have

1H oy 22 .00 2 200 = IMallianz oo + 12l 2 oo S /too i <3N (30)
For (3.4), we have
|P(W +mn) — P(W)| = |P(w1 + m1, w2 + n2) — P(w, w2)|
S Hwr +m)* (w2 + 1m2) — wiwz] + ||m + wi]* (i + wr) — [wi [ws|

< Iml+ Inel + Iml?
Thus,

IP(W + 1) = POV)|In(t.00)) S ImlIN(ie,oo)) + Im2ll N (.00 + 1021 M ((200))

S lmllLarz ,00) + M2l e 2 o0y + 131 11 22 2,00)

(o) o0
/ e AT dT+/ H771(T)||5Llod7
t t

At > z 2
ey / I (7)) s llom (1) 2.
t

oM Jr/Oo o= (T/2343/20)7 4
t

A A A

|
>
<

A
P i L e

e

n 1 ~(/aat3/20t < Looa
7/2) + 3/2 ~

By similar arguments as above, we have

QW + 1) = QUW)|In(it,00)) S

Thus, for A large enough, we have

e M,

> =

1
12715 ((6,00) x5 (11,0000) < 7€ At
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It remains to estimate [|[0Pn||s(jt,00)x S([t,00)))- BY Strichartz estimate we have
0P| 5([t,00) x5 ([t,00)0)) S IO (W +m) = FIWNIN([2,00)) x N ([£,00)) (3.7)
FOH | N (1t,00)) x N ([t.00))-
For (3.8), using (3.3), we have
IOH || N ([t,00)) x N ([t,00)) < 1OR1ll L1 L2 ([t,00)) + [10h2l L1 L2 ((2,00))

o 1
5/ e Mdr = —e M, (3.9)
t A
For (3.7), we have
[OCFW + 1) = FOW)vtenxicison = [PV + 1) = POVl .00y + 10QUV +1) = QW) Ly
Furthermore, using the notation (1) (3), we have
D(P(W +n) = P(W)| < |0((wy + m1)* (w2 + n2) — wiwz)| + |0(lwy + m[* (wi +m1) — |wi[*w1)]
< 10nl(Inl* + [w]?) + [ow| (I + [wllnl)
+onl(Inl* + [w]*) + [0w|(Inl* + Inllw]*).
Thus, we have
[0(P(W +n) — PW)) [ N ([t,00))
S Monl(nf? + [w ) w000 + 110w] (10 + [wl[n]) |5 (z,00)) (3.10)
+onl(nl* + [wl) | v (re.0n + 11Owl(Inl* + [0l [w]*) v (gt,00))- (3.11)
For (3.10), using (3.2) and (3.3) and the assumption n € B we have
Honl(n1* + [wI*)lI nie,c0n + NOwl (1 + [wllnl)lln .00
S MomlnlP L Lz ie,00)) + 10mlw (| 21 12 (1t,00)) + 10N L1 12 ((2,00)) + IOwl 0] 7] 1 22 ((2,00))
S N0l z2 2 (toop 17 oo + 1110011 L2 22 (11,000 0] [ F oo o0
+ 0wl oo poo [0l 2 Loe tt.00n 17 472 £2 1 0y F NIl 2o Loe [|Ow][[ oo zoo ([0l 21 22 (1t.00))
1
5 Xe_)\t.
For (3.11), using (3.2) and (3.3) and the assumption n € B we have

l0n|(In* + [w*) | v t,00)) + HOw[(I]* + [9]]w]*) | 5 (it,00))
S onl(nl* + [w|*) 1 L2 (1t,00)) + NOwl(nl* + [nllwl?) L1 L2t ,00))
S ||a77HL$°LZ([t,OO))HnH%f_Lf([t,oo)) + ||w||%oeLoo||377||L1L§([t,oo))

+ ||aw||L°°L2||77||if,‘_Lg°([t,oo)) + 0wl poe oo || 700 o 19]] L2 22 (12.00))
1

5 Xe_kt.
Hence,
1 _
1O(PW + 1) = POV) I v(iroepy S v (3.12)
By similarly arguments, we have
1 _
1(QIW +n) = QW))lin(ir.00n) S e X, (3.13)
Combining (3.12) and (3.13), we obtain
1 _
1OCF W+ 1) = FW)IN(ie,00n x N(it,00)) S Y€ A (3.14)

Combining (3.9) and (3.14), we obtain

1 1
o < DA © =)
10nlls(1,000) x511.00) S 1 0°

N
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if A > 0 large enough. Thus, for A > 0 large enough
[@nllx < 1. (3.15)

Which implies that ® map B onto B.

Step 2. Phi is contraction map on B

By using (3.2) and (3.3) and similarly estimate of (3.15), we can show that, for any n € B,
Kk € B,

1
127 = @xllx < Flln = xllx.

By Banach fixed point theorem there exists unique solution on B of (3.1). 0
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