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Abstract
Herein, the problem of vehicle re‐identification using distance comparison of images in
CNN latent spaces is addressed. First, the impact of the distance metrics, comparing
performances obtained with different metrics is studied: the minimal Euclidean distance
(MED), the minimal cosine distance (MCD) and the residue of the sparse coding recon-
struction (RSCR). These metrics are applied using features extracted from five different
CNN architectures, namely ResNet18, AlexNet, VGG16, InceptionV3 and DenseNet201.
We use the specific vehicle re‐identification dataset VeRi to fine‐tune these CNNs and
evaluate results. Overall, independently of the CNN used, MCD outperforms MED,
commonly used in the literature. These results are confirmed on other vehicle retrieval
datasets. Second, the state‐of‐the‐art image‐to‐track process (I2TP) is extended to a track‐
to‐track process (T2TP). The three distance metrics are extended to measure distance
between tracks, enabling T2TP. T2TP and I2TP are compared using the same CNNmodels.
Results show that T2TP outperforms I2TP for MCD and RSCR. T2TP combining Den-
seNet201 and MCD‐based metrics exhibits the best performances, outperforming the
state‐of‐the‐art I2TP‐based models. Finally, experiments highlight two main results: i) the
impact of metric choice in vehicle re‐identification, and ii) T2TP improves the perfor-
mances compared with I2TP, especially when coupled with MCD‐based metrics.

1 | INTRODUCTION

With the recent growth of closed‐circuit television (CCTV)
systems in big cities, object re‐identification in video surveil-
lance, such as vehicle and pedestrian re‐identification, is a very
active research field. In the last few years, major progress has
been observed in the vehicle re‐identification field thanks to
recent advances in machine‐ and deep‐learning [1]. These ad-
vances are very promising for intelligent video‐surveillance
processing, intelligent transportation and future smart city
systems.

Vehicle re‐identification, in video surveillance, aims at
identifying a query vehicle, filmed by one camera, among ve-
hicles filmed by other cameras of a CCTV system. It relies on a
comparison between a query vehicle and a database of known

vehicles, to find the best matches. Commonly, the query is a
single image and the vehicles of the database are represented
by an image or a set of images called track, extracted from
video segments recorded by CCTV cameras.

In the literature [1–15], vehicle re‐identification is generally
conducted as follows. First, query and gallery vehicles are
placed in a common space, by extracting features, representing
the visual characteristics of the vehicle within one or several
images, to share the same dimensions and be comparable to
each other. In addition, these features can be augmented using
additional annotations (licence plate, trend of the car, colour of
the car, etc.) and/or contextual metadata (camera location,
time, road map, etc.). Second, using a distance metric (or
similarity) between these features, the gallery vehicles are
ranked with respect to the query vehicle, from the first
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candidate to the last. Depending on the study, authors
considered either an image‐to‐image process (I2IP) or an im-
age‐to‐track process (I2TP) for the ranking. In I2IP, all images
are ordered such that the ranking contains every image of each
vehicle. In I2TP, the ranking only take the nearest image of
each vehicle track as a reference.

Previous studies have focused on the problem of feature
extraction. Feris et al. [2] originally proposed an attribute‐based
method for vehicle re‐identification using several semantic
attributes (such as the category of vehicle and colour). Zapletal
et al. [3] proposed to use colour histograms and histograms of
oriented gradients on transformed images (placing them in a
common space) and a trained SVM classifier to perform
vehicle re‐identification. Liu et al. [4] were the first to evaluate
and to analyse the use of Convolutional Neural Networks
(CNNs) for vehicle re‐identification, extracting the Latent
Representation (LR) of the vehicles within the latent space of
CNNs. They also provided a specific large‐scale dataset for this
purpose: the VeRi dataset. They evaluated the vehicle re‐
identification performance of LR extracted from several con-
volutional neural networks (CNN) architectures, and compared
them to texture‐based and colour‐based features. They showed
that i) LRs of CNN architectures were particularly suitable for
vehicle re‐identification and ii) a linear combination of the
three types of features was performing better. Later, they
showed that adding contextual information (licence plate and
spatiotemporal metadata) improves performance [5,6]. Cui
et al. [13] also proposed to fuse the LR of CNNs specialiE in
the detection/classification of vehicle details such as colour,
model, and pasted marks on the windshield. In the same vein,
Shen et al. [7] incorporated complex spatiotemporal informa-
tion to improve the re‐identification results. They used a
combination of a Siamese‐CNN and a Long Short‐Term‐
Memory (LSTM) model to compute a similarity score, used for
vehicle re‐identification. Instead of training a CNN to classify
vehicles, Liu et al. [8] suggested to directly learn a distance
metric using a triplet loss function to fine‐tune a pre‐trained
CNN. They also provided another large dataset containing a
high number of vehicles, called vehicleID. Liu et al. [9] intro-
duced a CNN architecture that jointly learns LRs of the global
appearance and of local regions of the car. Attribute features
(colours, model) are additionally used to jointly train their deep
model. Finally, they concatenated global LR, local LR and
attribute features. They concluded that the more information is
combined, the higher the re‐identification performance is. As
an alternative of attribute combination for LR‐based re‐iden-
tification, De Oliviera et al. [12] used a two‐stream Siamese
neural network to fuse information from patches of the vehicle
shape's and patches of licence plate. Using a multi‐view
approach, Huang et al. [16] increased the re‐identification
performances by combining the information of consecutive
frames of the same vehicle with the estimation of its orienta-
tion and metadata attributes. Questioning the transferability of
attribute‐enriched models, Kabani et al. [17] argued that the
use of visual‐only LR remains more flexible while achieving
comparable results. Focusing on the development of more
effective LR of vehicles, Zhu et al. [10] fused quadruple

directional deep features learnt using quadruple directional
pooling layers, and were able to outperform most of the state‐
of‐the‐art methods without using extra vehicle information.
Recently, using generative adversarial network, Wu et al. [11]
proposed to generate unlabelled samples and a re‐ranking
strategy to boost the re‐identification performances of off‐the‐
shelf CNNs. Using also a re‐ranking optimisation, Peng et al.
[15] increased the performances through a multi‐region model
that fuses features from global vehicle appearance and local
regions of the vehicle images.

In these studies, the matching process uses the Euclidean
distance, or a similarity score derived from it, to measure the
distance between the query and a gallery vehicle image.
However, the use of Euclidean distance has often been criti-
cised for being not well suited to high‐dimensional spaces [18],
such as those constructed by CNNs (often generating a
dimension of features greater than 500). To our knowledge, the
impact of the metric choice on the vehicle re‐identification
performances has not been addressed; this is the first issue
addressed.

Furthermore, the systematic evaluation of distance metrics
leads us to consider a more general framework than the
commonly used I2IP/I2TP which relies on image‐to‐image/
image‐to‐track distance comparisons. Indeed, in the practice of
vehicle re‐identification, the query vehicle is selected directly
on the video segment recorded from the camera of the CCTV
system. This video segment provides a variety of valuable in-
formation that remains unused in I2IP/I2TP. For instance, in
the case of a moving car, the video segment may offer different
visual cues from the same vehicle (angle of view, zoom,
brightness/contrast changes, etc.). This additional knowledge
about the visual aspect of the query vehicle may improve the
re‐identification. Moreover, the use of a whole video segment
may avoid the selection of only one specific query image
without knowing the potential impact of such selection in the
re‐identification performances. The literature on vehicle
detection and tracking is very rich, and numerous methods are
today available to perform automatic vehicle detection and
tracking in a given camera [19]. Therefore, assuming that the
video segment selected by the user has to be processed by such
algorithms, the query vehicle could be represented by a track,
which would provide more information for the re‐identifica-
tion. So far, the use of a query containing more than one image
has not been fully addressed in vehicle re‐identification. We
address this issue by considering the track‐to‐track process
(T2TP).

Herein, we propose to i) evaluate the impact of the metric
choice in re‐identification and ii) extend the vehicle re‐identi-
fication to T2TP and assess the performances in comparison
with I2TP. To this extent, the main experiments here are made
using the VeRi dataset. Indeed, unlike other large‐scale dataset,
VeRi contains image‐based tracks of vehicles, allowing per-
formances comparison between I2TP and T2TP, as well as
comparison of performances with state‐of‐the‐art methods.
Note that since I2IP is not based on the same ranking support
than I2TP and T2TP, I2IP is not considered in these experi-
ments. In addition, we further investigated the impact of the
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metric in other I2IP‐based vehicle retrieval tasks using three
other large‐scale datasets of the literature, namely the Vehi-
cleID [8], CompCars [20] and BoxCars116k [21].

Let us underline that this work focuses on visual infor-
mation‐only re‐identification processes: no extra or contextual
information is used in the studied processes. It is worth noting
that the goal of this article is not to provide another re‐iden-
tification system, but rather to evaluate the impact of the
metric choice in the re‐identification performance, and the
potential benefits of T2TP on state‐of‐the‐art methods.

Herein, after introducing the mathematical notations in
Section 2, we present the distance metrics that we compare in
terms of re‐identification performance, in Section 3. Section 4
presents the extension of the re‐identification to T2TP. Then,
Sections 5 and 6, respectively, present the experiments con-
ducted to evaluate the re‐identification performance and the
results obtained. Finally, in Sections 7 and 8, we discuss our
results, give some perspectives, and conclude.

2 | VEHICLE RE‐IDENTIFICATION

In this section, we present the problem of vehicle re‐identifi-
cation. First, we introduce the mathematical notations that
cover state‐of‐the‐art I2TP, and T2TP (the second being a
generalisation of the first). Then, we present the two‐step
method for vehicle re‐identification considered in our experi-
ments, namely the LR extraction and the matching and ranking
process.

2.1 | Notations and problem statement

Let consider C ¼ fC1;C2;…;Cncg, the set of nc cameras of a
CCTV system, and V ¼ fV 1;V 2;…;Vnvg, the set of nv
vehicles captured by the cameras in C. Each vehicle of V is
uniquely identified. We denote T ¼ fT 1;T 2;…;Tntg the set
of nt tracks captured by the cameras of C , and stored in a
database. A track Tk, captured by one camera of C , is asso-
ciated with one of the vehicles of V denoted Vk. Since a
vehicle can be recorded by multiple cameras, two tracks Ti and
Tl (with l ≠ i) can be associated with the same vehicle, such
that Vi ¼ Vl. A track Ti ¼ fI i;1; I i;2;…; Ii;Nig is a set
composed of Ni images, all representing the same vehicle Vi.
Each image Ii,j of Ti is cropped within the frame of its cor-
responding video segment from where it has been recorded.
Note that, herein, we do not consider the time of the capture
of each image, so that the order of images in a track is not
considered. Given a query track Tq ¼ fIq;1; Iq;2;…; Iq;Nqg,
representing the vehicle Vq ∈ V , Vq being unknown, the aim
of vehicle re‐identification is to find a track Tr ∈ T in which
the vehicle Vq appears. It is worth noting that, in case of I2TP,
the query track Tq is only composed of one image Iq.

Figure 2 shows a general overview of the vehicle re‐iden-
tification process considered herein.

The first step consists of extracting features characterising
the vehicles in the track images. The feature extraction process

is presented in Section 2.2. Using these features, the second
step aims at ranking the different tracks of T based on their
distance to the query. The matching and ranking process is
presented in Section 2.3.

2.2 | Latent representation extraction

The aim of feature extraction is to represent all the images of
each track of T in one common space, to make them com-
parable. We use as common space the latent spaces of CNNs
and, as features, the LR of each image in these latent spaces.
The main idea is to use one of the last layers of a CNN as a
vector of features, to represent the input image in the latent
spaces of the network. Formally, we consider a function
N : Rn�m → Rf that transforms an image Ik ∈ Rn�m to a
vector of features Lk ∈ Rf , n � m being the size of the image
and f being the dimension of the latent space. To represent the
LR of a whole track, we concatenate each LR of its images to
form a matrix. Thus, we denote the matrix
Lk ¼ Lk;1;…;Lk;Nk

� ∈ Rf�Nk , the LR of a track Tk, con-
structed as a concatenation of the LR of the Nk images of the
track. Similarly, the LR of a query track Tq is denoted
Lq ∈ Rf�Nq . Let us notice that in case of I2TP, the LR of the
query image Iq is denoted Lq ∈ Rf . Figure 1 shows a graphical
representation of the LR extraction for a track Tk.

2.3 | Vehicle matching and ranking

Given a query track Tq, the aim of LR matching is to find the
vehicle Vr ̃ , such that

r̃ ¼ argmin
r
ðdðLq;LrÞÞ; ð1Þ

with r ∈{1, 2, …, nt}, and where d is a distance function
measuring how close the gallery track Tr (represented by Lr) is
from the query track Tq (represented by Lq).

To evaluate the vehicle‐re‐identification, the matching
process is conducted as a ranking on the gallery tracks, from
nearest to farthest. This consists in ranking every track of T

to construct an ordered set ~T q ¼ fTq;1;…;Tq;Ntg, such that
a track Tq,i is the ith nearest track from the query according to
the distance function d(.), Tq,1 being the first match (i.e. the
nearest) and Tq;Nt, being the last (i.e. the farthest).

3 | IMAGE‐TO‐TRACK DISTANCE
METRICS

In this section, we define the different distance metrics that we
tested to compare their impact on vehicle re‐identification.
Referring to Figure 2, we consider here a query track containing
one image Tq ¼ Iq (represented by Lq ∈ Rf ) and a gallery track
Tr (represented by the vector Lr ∈ Rf�Nr ) taken from T .
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3.1 | Minimum Euclidean distance

Euclidean distance has been widely used as a basic metric in
many applications of content‐based image retrieval [22,23]. In
our context of vehicle re‐identification, previous works only
focused on the use of minimum Euclidean distance (MED) (or
a variant) [2–9]. Therefore, we use minimal Euclidean dis-
tance (MED) as a basis to evaluate the impact of other metrics
(defined below) in the vehicle‐re‐identification. We define the
MED function as:

MEDðLq;LrÞ ¼ min
i∈f1;…;Nrg

ð‖Lq � Lr;i‖2Þ; ð2Þ

where ‖.‖2 is the L2 norm measuring the Euclidean distance
between the vector Lq and a column of Lr.

3.2 | Minimum cosine distance

As a first alternative to MED, we propose to use the minimum
cosine distance (MCD). Cosine distance is commonly used in
data mining, machine learning [24], and is often referred as
being one of the most suitable distance metrics in information
retrieval. We compute the minimal cosine distance (MCD) as
follows:

MCDðLq;LrÞ ¼ min
i∈f1;…;Nrg

1 −
L⊤
q Lr;i

‖Lq‖2‖Lr;i‖2

 !

; ð3Þ

where the term
L⊤
q Lr;i

‖Lq‖2‖Lr;i‖2
corresponds to the cosine similarity

between Lq and Lr,i. Note that, since we consider CNN ar-
chitectures constructed with Rectified Linear Unit activation
functions [25], both elements of Lq and Lr,i are all positive.
Therefore, MCD is bounded in [0, 1] (0 when Lq ¼ Lr,i and
one when Lq and Lr,i are orthogonal).

3.3 | Residual of the sparse coding
reconstruction

Since Euclidean and cosine metrics are designed to measure
distance between signals of the same dimension (here Rf ), these
metrics are computed for each vector of Lr (corresponding to
an image‐to‐image comparison). The minimum distance is then
selected as the reference. Therefore, among all images con-
tained in tracks, at decision time, only one image is ever used to
measure the distance between Lq and Lr. To induce the use of
more information, we propose to use the residual of the sparse
coding reconstruction (RSCR). Sparse representation has been
widely studied in many applications of computer vision, such as
image classification, detection and image retrieval [26,27].

We computed the residue of the sparse coding reconstruc-
tion (RSCR) as follows:

RSCRðLq;LrÞ ¼ ‖Lq � LrΓq;r‖2
2; ð4Þ

where Γq;r ∈ RNr is a code, combining linearly the column of
the gallery Lr, and optimised to reconstruct the query Lq as
follows:

Γq;r ¼ argmin
Γ̃ q;r
ð‖Lq − LrΓ̃q;r‖2

2 þ α‖Γ̃q;r‖1Þ: ð5Þ

F I GURE 2 Overview of the vehicle re‐identification. Every vehicle image (query included) is represented by its LR within the latent space of the CNN. LR
of all images of the same track are concatenated to build a matrix representing the LR of this track. Using a distance metric d, each track is ranked towards the
query, from the closest to the farthest track, producing an ordered set ~T

F I GURE 1 Extraction of the latent representation Lk for a track Tk.
Each image Ik;i ∈ Rn�m of Tk is transformed into a vector Lk;i ∈ Rf

through the second‐to‐last layer of the CNN. The matrix Lk is then
constructed as the concatenation of the Nk vectors Lk,i
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where ‖.‖1 is the L1 norm maintaining the sparsity of the code,
controlled by the coefficient α ∈ [0, 1].

4 | EXTENSION TO TRACK‐TO‐TRACK
RE‐IDENTIFICATION

As an extension of I2TP, and referring to Figure 2, T2TP aims
at measuring the distance between a gallery track Tr containing
several images and the query track Tq. Here, LRs of Tr and Tq
are respectively represented by Lr ∈ Rf�Nr and Lq ∈ Rf�Nq .
Therefore, the main challenge with T2TP is to define metrics
that are able to measure the distance between two tracks of
different sizes.

4.1 | MED and MCD for T2TP

We extend the MED and MCD metrics to T2TP as follows.
First, considering a distance metric d (e.g. MED or MCD), we
construct a set of distances Dq,r ¼ {d(Lq,j, Lr) |j ∈ Nq}
containing the Nq computations of d for each vector j of Lq
regarding Lr. Then, we compute the overall distance between
Tq and Tr by defining an aggregation function g : Rn → R, in
order to aggregate the elements of Dq,r, and obtain a scalar.

In our experiments, we used the following aggregation
functions: minimum, mean and median. The minimum
function consists of selecting the best image‐to‐image match
between the query and the gallery track, without taking into
account the other images. Such function is therefore sup-
posed to be more efficient when seeking for two tracks
containing images with very similar points of view. The me-
dian function also considers one image‐to‐image match,
while promoting tracks containing at least half of its element
similar to the query. On the contrary, the mean function
aggregates all elements of Dq,r, promoting tracks for which
each image is similar to at least one image of the query,
which can be sensitive to query with more variability. With
d ¼ MED, we denote minMED, meanMED and medMED
the T2TP metrics using respectively the aggregation function
minimum, mean and median. Similarly, with d ¼ MCD, we
denote the T2TP metrics, minMCD, meanMCD and
medMCD. In addition, because some images of a track can
be irrelevant for T2TP, we also consider the computation of
truncated mean and median, using only the Nq/2 smallest
distances within Dq,r. With d ¼ MED, these metrics are
denoted mean50MED and med50MED. Similarly, with
d ¼ MCD, these metrics are denoted mean50MCD and
med50MCD.

4.2 | RSCR for T2TP

Interestingly, since sparse coding is designed to reconstruct
matrix,RSCR can easily be extended to comply with track‐based
queries, by rewriting Equations (4) to comply with Lq:

RSCRðLq;LrÞ ¼ ‖Lq � LrΓq;r‖F ; ð6Þ

where ‖.‖F denotes the Frobenius norm, and where the sparse
code Γq;r ¼ Γq1;r;…;ΓqNq;r� ∈ RNr�Nq is computed by itera-
tively solving Equation (5) for each column Γqi;r ∈ RNr of Γq,r,
such that:

Γqi;r ¼ argmin
Γ̃ qi ;r

ð‖Lq;i − LrΓ̃qi;r‖2
2 þ α‖Γ̃qi;r‖1Þ: ð7Þ

4.3 | Kernel distances

As a natural extension of distance measurements between two
sets of vectors (i.e. LR of tracks), we also propose to evaluate
kernel distance metrics [28,29]. Kernel distance allows the
measurement of the global distance between two tracks ac-
cording to a given similarity kernel function k. The kernel
distance Dk between Lq and Lr is defined as:

D2
kðLq;LrÞ ¼ ∑

i∈Nq

∑
j∈Nq

kðLq;i;Lq;jÞ þ ∑
i∈Nr

∑
j∈Nr

kðLr;i;Lr;jÞ

� 2 ∑
i∈Nq

∑
j∈Nr

kðLq;i;Lr;jÞ; ð8Þ

where k(.) is a positive definite kernel function, measuring
similarity between two vectors (here LR), such that k(Lx,
Lx) ¼ 1 and k(Lx, Ly) decreases when the distance between Lx
and Ly increases.

In our experiments, we tested two kernels, the radial basis
function (RBF), defined as kðLx;LyÞ ¼ eγ‖Lx � Ly‖2

2
(with

γ ∈ Rþ, the spread parameter of the function), and the cosine
similarity (CoS), defined in Section 3.2. We, respectively,
denoted these kernel distances KRBF and KCOS.

5 | EXPERIMENTS

We compared I2TP and T2TP performances and the impact of
the metric by running experiments on the large‐scale bench-
mark dataset VeRi [4]. We further evaluated the impact of the
metric on other I2IT‐based vehicle retrieval tasks VehicleID
[8], CompCars [20] and BoxCars116k [21].

First of all, since the VeRi dataset is the only dataset
containing several tracks for the same vehicle, we used it to
evaluate the impact of the distance metric in I2TP and T2TP,
as well as a performance comparison between them. We
conducted our experiments on the VeRi dataset as follows.
First, we used the training set of the VeRi dataset on five well‐
known CNN architectures to specialise them in the vehicle
recognition task. We then used these fine‐tuned CNNs to
extract LR on every image of the testing set. Second, we
evaluated I2TP and T2TP with respects to distance metrics
defined in Sections 3 and 4.

ROMAN‐JIMENEZ ET AL. - 89



Second of all, we extended the evaluation of the impact of
the distance metric on other vehicle‐based retrieval tasks using
the datasets VehicleID, CompCars and BoxCars116k. These
experiments were conducted using the DenseNet201 CNN
architecture, which showed to be the best CNN architecture
found during VeRI experiments. With the VehicleID dataset,
we conducted two kinds of experiments, vehicle re-identifica-
tion and vehicle retrieval tasks as originally proposed by the
authors in Ref. [8]. To evaluate the metric comparison to other
LR‐based retrieval tasks, we compared the impact of the metric
on vehicle type recognition task as in Ref. [21], using the
datasets BoxCars116k and CompCars. With the dataset Box-
Cars116k, since it contains the unique identifier of vehicles, we
also conducted experiments of vehicle retrieval as for Vehi-
cleID experiments.

5.1 | Experiments on the VeRi dataset: I2TP
and T2TP comparison and impact of the
distance metric

5.1.1 | The VeRi dataset

The VeRi dataset is composed of 49,357 images of 776 vehicles
recorded by 20 cameras in a real‐world traffic surveillance
system. Every vehicle of the dataset has been recorded by
several of the 20 cameras of the system, constituting a totality
of 6822 tracks of vehicles (each track is composed of a mean
number of six images, varying from 3 to 14 images). The VeRi
dataset is divided into two sets, a training set, composed of
37,778 images representing 576 vehicles (5145 tracks), and a
testing set, composed of 11,579 images representing 200 ve-
hicles (1677 tracks). The training set is used to fine‐tune the
CNN for the task of vehicle recognition as explained in Sec-
tion 5.1.3. Evaluation of I2TP is performed through 1677
query images preselected in each track of the testing set.
Evaluation of T2TP is conducted using the 1677 tracks of the
testing subset. Since I2TP and T2TP both rely on the com-
parison of a query (i.e. either a unique image from a track or
the whole track, taken from the testing set) to all other tracks
of the testing set, their performances remain comparable.

5.1.2 | CNN architectures and LR extraction

To extract LR, we used the second‐to‐last layer of popular
CNN architectures, namely ResNet18 [30], VGG16 [31],
AlexNet [32], InceptionV3 [33] and DenseNet201 [34] pre‐
trained on the dataset ImageNet [35]. These architectures,
widely analysed [36,37] and easily accessible [38], have been
chosen as a basis to evaluate the impact of the metrics and to
compare I2TP and T2TP.

To comply with the inputs dimension of these CNNs,
every image of the VeRi dataset was resized to 224 � 224. The
different dimensions of the second to the last layer of
ResNet18, VGG16, AlexNet, InceptionV3 and DenseNet201
are, respectively, 512, 4096, 4096, 2048 and 1920.

5.1.3 | Fine‐tuning for vehicle classification

To fine‐tune the CNN models, we proceed as follows. We
replaced the last layer of each CNN architecture by a fully
connected layer of 576 neurons, and trained each network to
classify the 576 vehicles of the VeRi training set. The back‐
propagation was performed using the cross‐correlation loss
function. Weight optimisation was performed using classical
stochastic gradient descent (learning rate set to 0.001, mo-
mentum set to 0.9). The network was trained during 50 epochs.

5.1.4 | Evaluation protocol

To evaluate the vehicle ranking, we use the Cumulative
Matching Characteristic (CMC) curve which is widely used in
object re‐identification [4,5]. We reported the two measures
rank 1 and rank 5 of the CMC curves, corresponding,
respectively, to the precision at ranks 1 and 5.

Regarding the dataset VeRi, since there are several tracks
that correspond to the query, we also computed the mean
average precision (mAP) which is classically used in vehicle re‐
identification evaluation. MAP takes recall and precision into
account to evaluate the overall vehicle re‐identification. Given
a query q and a resulting ranked set ~T q, the average precision
(AP) is computed as

APðqÞ ¼
1
Ngt

XNt

k¼1

δðTq;kÞ
Xk

i¼1

δðTq;iÞ

k

 !

; ð9Þ

where δ(Tq,i) is a function equal to 1 if the track Tq,i represents
the vehicle Vq, or 0 otherwise. Ngt is the number of tracks
representing the query vehicle Vq.

We computed mAP as the mean of all AP computed for
every query:

mAP ¼
1
NQ

XNQ

q¼1
APðqÞ; ð10Þ

with NQ being the number of queries performed with the
dataset (NQ ¼ 1677 with the VeRi dataset).

5.2 | Experiments on VehicleID,
BoxCars116k and CompCars datasets: impact
of the distance metric in other vehicle retrieval
tasks

For the experimentation on VehicleID, BoxCars116k and
CompCars, we used the DenseNet201 architecture. As in Sec-
tion 5.1.2, we extracted LR from the second‐to‐last layer of the
DenseNet201, constructing a LR of size 1920 for every image of
the dataset. For each dataset experiment, wefine‐tuned theCNN
for classification using their respective training set (described
below), following the procedure described in Section 5.1.3.
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Since these datasets do not contain several tracks for each
vehicle, experiments are using I2IP for the ranking. Thus, in
these experiments, MED and MCD, respectively, correspond
to Euclidean distance and cosine distance. Furthermore, due to
vector normalisation applied for the resolution of sparse
coding (Section 5.3), and because squared difference between
two normalised vectors is proportional to the cosine distance
[39], RSCR and MCD will produce the same ranking. There-
fore, RSCR is not included in these experiments.

5.2.1 | Experiment on the VehicleID dataset

The VehicleID dataset contains 221,763 images of 26,267 ve-
hicles (each vehicle is represented by 8.42 images in average). It
is divided into two sets, a training set, composed of 113,346
images representing 13,164 vehicles, and a testing set,
composed of 108,221 images representing 13,164 vehicles. To
evaluate the effect of the scale of the dataset on retrieval
performances, three subsets are extracted from the testing set:
the Small subset composed of 800 vehicles (6493 image), the
Medium composed of 1600 vehicles (13,377 images) and the
Large subset composed of 2400 vehicles (19,777 images). For
both vehicle re-identification and vehicle retrieval experi-
ments, the training set is used to fine‐tune the CNN for the
task of vehicle classification (with 13,164 classes).

For vehicle re-identification, in each subset (Small, Me-
dium and Large), an image of each vehicle is randomly selected
as a gallery image and the other images are used as query
images, resulting in 5693, 11,777, and 17,377 query images. In
this experiment, since only one gallery image correspond to the
query image, only rank 1 and rank 5 are reported.

Regarding vehicle retrieval, for a given vehicle containing
Nt images, max(6, Nt � 1) are selected as gallery images and
the rest as query images as in Ref. [8]. For evaluation, rank 1,
rank 5 and mAP measures are reported.

5.2.2 | Experiment on the BoxCars116k dataset

The BoxCars116k dataset is composed of 116,286 images of
27,496 unique vehicles of 693 different vehicle models (brand,
model, submodel, model year) collected from 137 different
CCTV cameras with various angle viewpoints. BoxCars116k
has been originally designed for fine‐grained vehicle classifi-
cation and vehicle‐type recognition [21]. For this purpose,
authors constructed a subset, named ‘hard’, containing 107
fine‐grained vehicle classes (precise type of vehicle, including
the model year) with uniquely identified vehicle divided into a
training set of 11,653 tracks (51,961 images) and a testing set of
11,125 tracks (39,149 images). We used this subset for vehicle-
type recognition and vehicle re-identifications tasks.

For vehicle-type recognition, we used the training set to
fine‐tuned the CNN considering the 107 classes of fine‐
grained vehicle models. Using the testing set, for all image of a
given vehicle model (107 classes), we randomly selected an
image as query and the rest as gallery images.

For vehicle re-identification task, we used the 11,653
unique vehicle identities as classes to fine‐tuned the CNN. For
testing, for a given track of vehicle, we randomly selected an
image as query and the rest as gallery images.

5.2.3 | Experiment on the CompCars dataset

The CompCars dataset is composed of 214,345 images of 1687
vehicles collected from the web and urban surveillance cam-
eras. For our experiment, we used the Part‐I and the ‘surveil-
lance data’ subsets of CompCars defined by the authors in Ref.
[20]. Part‐I subset contains 30,955 images of 431 vehicle
models; the training set and testing set contain, respectively,
16,016 and 14,939 images of the same 431 vehicle models. The
subset ‘surveillance data’ is composed of 44,481 images of 281
car models captured in the front view; the training set and
testing set contains, respectively, 31,709 and 13,894 images of
the same 281 car models. For both subsets, we used the
training set to fine‐tune the CNN for fine-grained vehicle
classification task considering the vehicle models as classes
(431 classes for PART‐I and 281 classes for the ‘surveillance
data’). For testing, given a testing set and for all images of a
given vehicle model, we randomly selected an image as query
and the rest as gallery images.

5.3 | Implementations details

CNN architecture construction and training have been
implemented using the Pytorch framework in Python [38].
Regarding the RSCR, we solved Equations (5) and (7) using
the lasso‐LARS algorithm (Lasso model with a regularisation
term L1, fitted with Least Angle Regression) [40], with α ¼ 1.
We computed the kernel distance KRBF with γ ¼ 1

f , f being the
LR dimension of the considered CNN. Distance metric com-
putations were implemented using the package scikit-learn
in Python. Source codes for LR extraction (Section 2.2),
distance metric computations (Sections 3 and 4) and vehicle
ranking (Section 2.3) are available at https://github.com/
GeoTrouvetout/Vehicle_ReID.

6 | RESULTS

6.1 | Results on the VeRI dataset

6.1.1 | Image‐to‐track results

Table 1 reports the performances obtained with the metrics
tested in I2TP (MED, MCD and RSCR), depending on the
CNN (AlexNet, VGG16, ResNet18, DenseNet201 and
InceptionV3). Figure 3 depicts the mAP results obtained.

In terms of mAP, MCD outperforms MED for every CNN
models (ranging from þ2.02% to þ5.79%). RSCR out-
performs MED when associated with AlexNet (þ3.74%) and
VGG16 (þ4.82%), but remains similar to ResNet18 (þ0.87%),
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InceptionV3 (‐0.12%) and DenseNet201 (� 0.97%). Overall,
the best mAP result is obtained with DenseNet201 and MCD
(58.60%).

Regarding results of rank 1 and rank 5, MCD outperforms
MED with AlexNet (rank 1 þ3.34%, rank 1 þ3.28%) and
VGG16 (rank 1: þ3.94%, rank 5: þ2.68%), but performs

similarly with ResNet18 (rank 1: � 0.06%, rank 5: þ0.47%),
InceptionV3 (rank 1: þ1.13%, rank 5: þ0.3%) and Dense-
Net201 (rank 1: � 1.43%, rank 5: þ0.3%). RSCR outperforms
MED when associated with AlexNet (rank 1: þ2.81%, rank 5:
þ2.8%) and VGG16 (rank 1: þ3.58%, rank 5: þ2.14%), but
performs slightly lower with other CNNs (rank 1 ranging from
� 1.07% to � 2.51%, rank 5 ranging from � 0.83% to 0.18%).
Overall, the best rank 1 is obtained with DenseNet201 and
MED (85.37%), while the best rank 5 is found with Dense-
Net201 and MCD (95.41%).

6.1.2 | Track‐to‐track results

Table 2 reports the T2TP performances obtained with the
different metrics tested (RSCR, KRBF, KCOS, MED‐ and
MCD‐based metrics), depending on the CNN. Figure 4 depicts
the mAP results obtained.

For each CNN taken individually, T2TP outperforms I2TP
independently of the metric (with the exception of KRBF and
KCOS, not computed with I2TP). The gain of mAP is,
respectively, þ0.34% � 2.63 for the MED‐based metrics,
þ4.07% � 0.85 with MCD‐based metrics, and þ3.37% � 3.11
for RSCR.

Comparing aggregation functions pairwise, MCD‐based
metrics outperform MED‐based metrics independently of the
CNN (mAP: þ6.14 � 3.65%). Both for MED‐ and MCD‐
based metrics, the aggregation function mean50 outperforms
others. Kernel distances (KRBF and KCOS) performed poorly
in comparison with MED‐ and MCD‐based metrics. With the
exception of results obtained with DenseNet201, RSCR out-
performed KRBF (mAP: þ12.55% � 9.77%) and KCOS
(mAP: þ3.312% � 3.05%). Overall, the different combina-
tions of DenseNet and MCD‐based metrics provide the best
overall performance (mAP: [62.08% – 63.2%], rank 1: [86.64%
– 87.36%] and rank 5: [96.6% – 97.08%]). Best performance
are found with DenseNet and mean50MCD (mAP: 63.2%,
rank1: 87.36%).

Figure 5 shows some visual results obtained with
DenseNet and mean50MCD. In the first example (white car),
we can observe that the model was able to correctly retrieve
tracks containing images of the vehicle behind other elements
(tree and bush) and with different angles of view. The second
and third examples (yellow truck carrying rocks and the black
car) shows that the model was able to retrieve the correct
vehicles, but was not able to distinguish between similar ve-
hicles (a yellow truck carrying sand or another black car).
Other examples of visual results are available at https://cloud.
irit.fr/index.php/s/cBWsTDBHfcWnJ9y.

6.1.3 | Results on other dataset

Results on the VehicleID dataset
Table 3 reports the performances obtained on the VehicleID
dataset regarding the vehicle re-identification and vehicle
retrieval tasks.

TABLE 1 Image‐to‐track re‐identification performance depending on
the distance metrics and the CNN architecture used. Best performances are
highlighted in bold

CNN Metric mAP rank1 rank5

MED 29.08 63.98 81.1

AlexNet MCD 33.98 67.32 84.38

RSCR 32.82 66.79 83.90

MED 42.47 75.07 88.91

VGG16 MCD 48.26 79.01 91.59

RSCR 47.29 78.65 91.05

MED 51.58 80.32 92.49

ResNet18 MCD 53.66 80.26 92.96

RSCR 52.45 78.47 92.67

MED 56.58 85.57 95.11

DenseNet201 MCD 58.60 84.14 95.41

RSCR 55.60 83.06 94.28

MED 48.91 77.28 91.53

InceptionV3 MCD 51.05 78.41 91.83

RSCR 48.79 76.21 91.00

Note: Values are in percentages. The higher, the better.

F I GURE 3 Image‐to‐track mAP results depending on the CNN
architecture and the distance metrics used. The higher, the better
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Regarding the vehicle re-identification task, for all the
three subsets (small, medium, large), MCD systematically
outperforms MED for rank1 ([þ0.88% – þ1.71%]) and rank5
([þ0.75% – þ1.35%]).

Similarly, regarding the vehicle retrieval task, MCD out-
performs MED in terms of mAP ([þ1.43% – þ2.18%]), rank 1
([� 0.66% – þ0.99%]) and rank 5 ([þ0.31% – þ0.69%]).

Results on the BoxCars116k dataset
Table 4 reports the performances obtained on the Box-
Cars116k dataset regarding the vehicle re-identification and
vehicle type recognition tasks.

For the vehicle retrieval, MCD systematically outperforms
MED, with mAP (þ1.95%), rank 1 (þ1.78%) and rank 5
(þ1.89%).

For vehicle‐type recognition task, MED and MCD reach
high performances ([96.26% – 99.07%]), and MCD performed
slightly better than MED (mAP þ0.96%, rank1 þ0.94% and
rank5 þ0.94%).

Results on the CompCars dataset
Table 5 shows the performances on the vehicle-type recogni-
tion task obtained with the two subsets ‘PART‐I’ and ‘sur-
veillance data’ of CompCars.

TABLE 2 Track‐to‐track re‐identification performances (mAP, rank1 and rank5) depending on the metrics and the CNN architecture used. Best
performances are highlighted in bold (RSCR, kernel distances, MED‐ and MCD‐based metrics separately)

AlexNet VGG16 ResNet18 DenseNet201 InceptionV3

Metric mAP rank1 rank5 mAP rank1 rank5 mAP rank1 rank5 mAP rank1 rank5 mAP rank1 rank5

RSCR 38.12 72.03 87.78 51.78 81.81 93.44 56.48 83.3 95.05 53.48 84.79 96 53.96 81.75 93.74

KRBF 12.99 42.75 53.25 36.02 75.73 86.46 40.33 79.55 88.61 53.14 84.62 92.67 48.59 80.44 90.52

KCOS 31.03 68.28 84.91 46.58 79.49 90.7 53.76 82.71 92.55 54.45 84.91 93.14 51.44 80.92 91.41

minMED 29.6 63.21 80.56 42.91 75.13 89.03 55.43 83.84 94.69 60.7 88.97 96.72 52.33 81.45 94.04

meanMED 25.89 59.63 78.59 40.28 74.12 87.84 54.58 83.42 94.81 58.48 87.66 96.24 50.84 80.98 92.61

medMED 25.58 60.05 78.95 39.65 73.29 87.84 54.3 83.24 94.39 58.3 87.95 96.18 50.33 80.92 92.55

mean50MED 28.33 62.85 80.8 42.5 75.43 88.91 56.13 84.73 95.23 60.37 88.49 96.66 52.53 82.41 93.62

med50MED 27.89 62.43 80.32 42 74.78 88.55 55.63 84.38 94.93 60.07 88.43 96.9 52.04 82.29 93.8

minMCD 38.4 71.79 87.95 52.83 82.65 94.57 58.08 84.2 95.53 62.31 87.06 96.78 55.48 83.06 94.69

meanMCD 36.13 70.24 87.66 52.1 81.45 93.8 58.24 83.72 95.11 62.53 86.64 96.6 54.56 81.75 93.56

medMCD 35.86 70.18 87.95 51.63 81.04 94.04 57.89 83.3 95.35 62.08 86.82 96.72 54.37 82.41 93.98

mean50MCD 37.93 72.09 87.78 53.26 82.89 94.28 59.17 84.38 95.95 63.2 87.36 97.02 55.94 83.84 94.69

med50MCD 37.8 71.91 88.01 52.91 82.47 94.22 58.92 84.2 95.59 62.82 87.06 97.08 55.71 83.3 95.95

Note: Values are in percentages. The higher, the better.

F I GURE 4 Track‐to‐track mAP results depending on the CNN architecture and the distance metric used. Black bars correspond to RSCR metric. Grey and
white bars correspond to kernel distances, respectively KRBF and KCOS. Blue‐coloured bars represent the MED‐based metrics. Warm colours (yellow to red)
bars represent the MCD‐based metrics. The higher, the better
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Regarding the ‘PART‐I’ subset, MCD outperformed MED
with þ2.79% for rank 1 and þ0.93% for rank 5. Reaching high
performances with the ‘surveillance data’ subset ([97.84% –
98.92%]), MCD performed slightly better than MED (þ0.35%
for rank 1 and equally for rank 5).

7 | DISCUSSION AND PERSPECTIVES

From a general point of view, we can observe high variability of
performance between CNNs. As expected, such results
confirm the impact of the CNN architectures on the re‐iden-
tification performance. This demonstrates the relevance of
previous works focusing on the definition of specific CNN
architectures and on the learning of efficient LR.

Besides, considering a given CNN architecture to produce
LR, our results also show high variability of performance
depending on the distance metric, showing that the choice of

the metric for the matching process has a major impact on re‐
identification performance.

7.1 | Impact of the metric in image‐to‐track
re‐identification performances

7.1.1 | Limitations of MED

Globally, experiments on the VeRi dataset show a clear gain of
performance from MED to MCD (mAP gain ranging from
þ2.02% to þ5.79%). More precisely, we can observe big dif-
ference of performance between MED and MCD/RSCR,
especially when associated with AlexNet and VGG16. This
could be related to the higher dimension of the LR produced
by these CNNs (R4069), potentially more affected by the curse
of dimensionality [41], compared with other CNNs (R512,
R1920 and R2048). Therefore, besides the obvious differences of
performance between CNN architectures, we argue that such
dimensionality‐performance relationship could have limited
MED‐based results in the literature. For instance, with their
RAM architecture, Liu et al. [9] concatenated vectors of

F I GURE 5 Qualitative examples of queries and ranking obtained with DenseNet in T2TP with mean50MCD. Each row indicates the query track (blue
frame) and its corresponding top‐5 ranking. Red frame indicates incorrect retrievals and green indicates correct retrievals. A maximum of six images per track are
displayed

TABLE 3 Distance metric comparison on the VehicleID dataset

Vehicle re‐
identification Vehicle retrieval

Subset Metric rank1 rank5 mAP rank1 rank5

Small MED 62.83 71.37 66.64 95.73 96.95

MCD 64.54 72.12 68.07 95.12 97.26

Medium MED 61.19 68.71 61.27 92.24 94.67

MCD 62.07 69.65 63.05 93.00 94.98

Large MED 58.80 67.13 60.19 90.80 94.46

MCD 60.24 68.48 62.37 91.79 95.15

Note: Values are in percentages. The higher, the better.

TABLE 4 Distance metric comparison on the BoxCars116k dataset
regarding the vehicle re-identification and vehicle type recognition tasks

Task Metric mAP rank1 rank5

Vehicle MED 73.09 66.30 81.16

re‐identification MCD 75.04 68.08 83.05

Vehicle type MED 97.08 96.26 98.13

Recognition MCD 98.05 97.20 99.07

Note: Values are in percentages. The higher, the better.
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features into a single vector of dimension > 6000. Thus, we
think that the use of MED metric during their matching pro-
cess may have reduced the performance of their system, which
could be improved with a more appropriate metric (e.g. MCD).

7.1.2 | Performance of MCD

Cosine measure has been shown to be a powerful metric when
dealing with high‐dimensional features [42], in various appli-
cations [43,44]. In our I2TP‐based VeRi experiments, MCD
metric clearly outperforms MED in terms of mAP, and remains
similar regarding the metrics rank 1 and rank 5. This can be
interpreted as the fact that MCD provides overall better
ranking of vehicles, improving the retrieval of other correct
track of vehicles that are not in the first ranks, without
impacting the retrieval of top‐rank vehicle tracks. In addition,
MCD demonstrates adaptive capabilities to various dimensions
of features (from R512 to R4096). Overall, the performances
gain obtained with MCD suggests that cosine‐based metric can
be considered as an interesting, and easy to implement, alter-
native to Euclidean‐based metric (such as MED).

7.1.3 | Impact of the metric on other LR‐based
vehicle retrieval tasks

Experiments on VehicleID, BoxCars116k and CompCars also
showed that MCD systematically outperformed MED on I2IP‐
based vehicle retrieval, vehicle re-identification and vehicle-
type recognition tasks. In these experiments, rank 1 is slightly
more improved (gain ranging from þ0.88% to þ2.79%) than
rank 5 (gain ranging from þ0.31% to þ1.35%) using MCD
instead of MED, suggesting that MCD is able to rank in the
first positions more similar images than MED. Overall, the
systematic gain across each I2IP experiment suggests that the
improvement of performances using MCD over MED could
be generalised to other LR‐based retrieval tasks.

7.2 | Performance improvement with T2TP

From a general point of view, T2TP outperforms I2TP inde-
pendently of themetric (with the exception ofKRBFandKCOS,

not computed with I2TP). The gain of mAP is respectively
þ0.34%� 2.63 for theMED‐based metrics,þ4.07%� 0.85 for
the MCD‐based metrics, and þ3.37% � 3.11 for the RSCR.
These results clearly illustrate the interest of using track‐based
query to help the re‐identification process. Obviously, such gain
of performance had to be expected since a track‐based query
(T2TP) contains more visual information than an image‐based
query (I2TP). Nevertheless, we can observe that the gain of
performance is higher withMCD‐based andRSCRmetrics than
MED‐based metrics (with the exception of DenseNet201 for
RSCR). In addition, T2TP‐specific metrics (KRBF and KCOS)
performed poorly compared to others, indicating that global
track‐to‐track distancemeasurements, taking into account all the
images of both tracks, seem to be less effective than more “se-
lective” ones. Thus, results outline that a significant improve-
ment of performances with T2TP can only be obtained when
combined with a relevant and adapted metric.

7.2.1 | Aggregation function

As mentioned above, results show the extension of I2TP met-
rics to T2TP (MED‐ and MCD‐based metrics) seem more
effective than T2TP‐specific metrics (KRBF and KCOS).
However, the generalisation of MED and MCD to T2TP is not
straightforward, and induces, in the absence of a priori knowl-
edge on the vehicle tracks, an arbitrary choice of aggregation
function. In our experiments, the aggregation functions min and
mean50 show the best overall performances. As MED and
MCD in I2TP, the min function consists in selecting the best
image‐to‐image distance between all pairs of images, focusing
the re‐identification on the best possible match between the
query and a gallery vehicle. Therefore, the performance ob-
tained with this metric depends on the existence of similar
images between tracks of the same vehicle. Alternatively, the
aggregation function mean50 has the advantage of aggregating
the distances between query and gallery track images, while
truncating irrelevant images contained in the query track. Such
aggregation function is thus supposed to be less dependent on
the existence of similar images between tracks of the same
vehicle. Nevertheless, since the VeRi dataset mainly contains
tracks with similar images, such effects are hard to evaluate.

Further experiments including more diversity in tracks of
vehicles are thus needed. For instance, the PKU‐VD [45] and
ToCaDa [46] datasets provide tracks of vehicles containing
different points of view (e.g. a track containing images of the
vehicle in front and side‐view). Although these datasets are not
meant to assess re‐identification performances as VeRi, they
could be used to evaluate the effect of using more diverse
images over tracks (more viewpoints of the vehicles, lack of
similar images, etc.), and hence evaluate the benefit of T2TP.

7.2.2 | Advantages of RSCR

Despite the relatively poor results obtained with RSCR
(compared with outperforming MCD‐based results), we think

TABLE 5 Distance metric impact on CompCars dataset regarding
the vehicle-type recognition task

Subset Metric rank1 rank5

PART‐I MED 77.49 88.86

(Web‐source data) MCD 80.28 89.79

Surveillance data MED 97.84 98.92

MCD 98.20 98.92

Note: Values are in percentages. The higher, the better.
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that the use of sparse coding reconstruction remains an inter-
esting method to explore in the context of LR‐based re‐identi-
fication. First, RSCR has the advantage of being directly usable
for both I2TP and T2TP, without having to define any arbitrary
aggregation function (like MED‐ and MCD‐based metrics), or
to perform a global comparison between tracks (like kernel
distances). Second, unlike other distancemetrics,RSCR is based
on linear combinations (the sparse coding reconstruction) of
LR, which are expected to induce complex semantic operations
between the visual cues present in the images. Mikolov et al. [47]
in the domain of word representation and Radford et al. [48] in
synthetic image generation showed that simple arithmetic op-
erations between objects in latent spaces of DNN can corre-
spond to complex transformations between semantic concepts.
In our context of vehicle re‐identification, linear combination
performed withRSCR can be viewed as a combination between
the various existing points of view of a given vehicle, which
could potentially produce LRs corresponding to unseen points
of view of the vehicle. Hence, in contrast to other metrics,
RSCR could be more robust to the absence of similar images
between tracks. In addition, the sparse constraint narrows this
linear combination to the most useful LRs, avoiding the use of
irrelevant images (e.g. images of vehicle in back‐view to retrieve
a vehicle seen in a front‐view, noisy images, etc.) and/or
redundant information (e.g. stationary vehicle), in the
reconstruction.

Future work will focus on evaluating the advantages of
using RSCR, and more generally of metrics based on linear
combination of LRs, in the context of vehicle re‐identification.

7.3 | Comparison with the state‐of‐the‐art
methods

We compared our best results (in I2TP and T2TP) with several
recent methods including all the methods reported by Liu et al.
[6] (namely, BOW‐SHIFT, LOMO BOW‐CN, VGG, Goo-
gLeNet, FACT and nuFACT), RAM [9] (the baseline LR‐only
version of RAM is also reported), QD_DLF [10], GS‐TRE
[14], SSL [11] (with and without re‐ranking) and MRM [15].
Performance comparison is summarised in Table 6.

First, using only visual information (LR), the method
combining DenseNet201 and MCD (in I2TP) outperforms
FACT and nuFACT [6], which use a combination of the visual
aspect and contextual information. The method Dense-
Net201þMCD also outperforms the state‐of‐the‐art RAM
‘baseline’ [9], which only uses the global visual aspect of ve-
hicles (like in our approach). These first results highlight the
importance of the metric in the re‐identification process,
indicating that the use of MCD is a more relevant metric than
MED in LR‐based vehicle re‐identification.

Second, the method combining DenseNet201 and
mean50MCD in T2TP outperformed the state‐of‐the‐art
RAM, QD_DLF and GS‐TRE methods [9,10,14] in terms of
mAP (respectively, þ1.35%, þ1.7% and þ3.73%), but not the
SSL þ re‐ranking method proposed by Wu et al. [11] and
MRM proposed by Peng et al. [15].

However, these results should be balanced with the fact
that authors of Refs. [11,14], and [15] used I2IP for the ranking
process instead of I2TP as used in Refs. [6,9], and [10]. In I2IP,
each image of each vehicle is ordered individually, the ranking
of I2IP and I2TP/T2TP are not based on the same support
(images for I2IP, tracks of vehicles for I2TP/T2TP). There-
fore, except for rank 1 which only consider the first position of
the ranking, performances between I2IP and I2TP/T2TP are
difficult to compare.

Considering the performance improvement obtained
with only global visual information of vehicle images (no
local features, no metadata/contextual information) and
the very simplistic learning procedure that we used in our
experiments (fine‐tuning of standard CNN architectures),
we argue that a relevant metric (MCD) combined with
the use of more visual cues of the query vehicle (T2TP),
could easily improve the performances of state‐of‐the‐art
methods which are specifically designed for vehicle re‐
identification.

7.4 | Limitation of LR visual‐only based re‐
identification

As stated and studied in Refs. [5–7], qualitative examples
presented in Figure 5 confirm that visual‐only‐based methods
remain limited in their capacity to distinguish visually similar

TABLE 6 Comparison with the state‐of‐the‐art methods on VeRi
dataset

Method mAP rank1 rank5

BOW‐SIFT [6] 1.51 1.91 4.53

LOMO [6] 9.41 25.33 46.48

BOW‐CN [6] 12.20 33.91 53.69

VGG [6] 12.76 44.10 62.63

GoogleLeNet [6] 17.89 52.32 72.17

FACT [6] 18.75 52.21 72.88

nuFACT [6] 48.47 76.76 91.42

RAM (baseline: Only LR) [9] 55.0 84.8 93.1

RAM [9] 61.5 88.60 94.00

QD_DLF [10] 61.83 88.50 94.46

I2TP þ Densenet201þMCD 58.60 84.14 95.41

T2TP þ Densenet201 þ mean50MCD 63.2 87.36 97.02

GS‐TRE [14]* 59.47 96.24 98.97

SSL[11]* 61.07 88.57 93.56

SSL þ re‐ranking [11]* 69.90 89.69 95.41

MRM [15]* 68.55 91.77 95.82

Note: Values are in percentages. The higher, the better.
*method using image‐to‐image process for the ranking.
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vehicles. As an example, the model was not able to discriminate
between two similar yellow trucks carrying, respectively, rocks
and sand. This is possibly due to the use of global visual‐only
features, limiting the detection of details. To overcome such
limitation, the use of region‐based features, as in Refs. [9] and
[15], could allow the detection of small details differing be-
tween two similar vehicles, and increase the re‐identification
performances. In addition, visual‐only‐based methods seem to
hardly discriminate two similar cars with the same colour and
model (see the black car example of Figure 5). In such case, the
use of contextual metadata, such as spatiotemporal informa-
tion and/or licence plate, as in Refs. [6] and [7], is required to
reach better discrimination between similar vehicles.

Finally, herein, we focused on the transfer learning
approach which consists of reusing pre‐trained CNN latent
spaces to extract features (called here LR) and measure
dissimilarity between images. However, another strategy pro-
posed in the literature on re‐identification consists of directly
learning the distance between images using distance learning
approach [14,49,50]. These approaches rely on optimising
intra‐/inter‐class distances during model learning. Thus, as the
impact of the distance definition has been shown in transfer
learning LR‐based approaches in this work, it could be relevant
to evaluate if such impact also exists in distance learning‐based
approaches.

8 | CONCLUSION

Recent studies on vehicle re‐identification focused on the
extraction of LR of vehicles, that is vectors of features
extracted from the latent space of CNN, to discriminate be-
tween vehicles on their visual appearance to retrieve a given
vehicle. These previous works performed the re‐identification
process by comparing LR of vehicles using metrics based on
the Euclidean distance (or a variant), which is known to be
poorly suited with high‐dimensional spaces (such as CNN
latent spaces). In addition, they used I2IP or I2TP for the re‐
identification process, using one image of a query vehicle to
retrieve an image or a track (a set of images) of the probed
vehicle.

Herein, we first studied the impact of the metric used for
the vehicle re‐identification, comparing performances obtained
with different metrics; we studied visual‐information only re‐
identification processes (no extra or contextual information
was used). We tested metrics based on the MED, the MCD and
the residual of the sparse coding reconstruction (RSCR). We
applied these metrics using features extracted from five
different CNN architectures (namely ResNet18, AlexNet,
VGG16, InceptionV3 and DenseNet201). We used the VeRi
dataset to fine‐tune these CNNs and to evaluate the results in
I2TP. Results show a major impact of the metric on the re‐
identification performance. In overall, independently of the
CNN used, MCD metric outperforms MED (mAP: [þ2.02% –
þ5.79%]). This result is of great importance since the literature
mainly uses Euclidean‐based distance (or a variant) during the
re‐identification process. Keeping the CNN providing the best

performances (DenseNet201), we further evaluated the impact
of the metric in other I2IP‐based vehicle retrieval tasks using
three other datasets (VehicleID, CompCars and BoxCars116k).
In these experiments, MCD also outperformed MED, sug-
gesting that performance gain provided by MCD could be
generalised to other LR‐based retrieval tasks.

In a second part, we investigated to extend the state‐of‐the‐
art I2TP to a track‐to‐track process (T2TP). Indeed, in real
applications, users mainly operate video segments (vehicle
tracks) rather than vehicle images. T2TP grounds the re‐
identification on the visual data available (vehicle track) and
enhances the process without using additional metadata
(contextual features, spatiotemporal information, etc.). We
extended the metrics to measure the distance between tracks,
allowing for the evaluation of T2TP and comparison with I2TP.

Results show that T2TP outperforms I2TP for MCD
(mAP: þ4.07% � 0.85) and for RSCR (mAP:
þ3.37% � 3.11). T2TP combining DenseNet201 and MCD‐
based metrics shows the best performances, outperforming
some of the state‐of‐the‐art methods without integrating any
additional metadata.

To conclude, our experiments highlight the importance of
the metric choice in the vehicle re‐identification process. In
addition, T2TP improves the vehicle re‐identification perfor-
mances (compared with I2TP), especially when coupled with
MCD‐based metrics.

As practice of vehicle re‐identification tends to favour
queries based on tracks rather than images, we argue for
considering T2TP (in addition or in replacement of I2TP) in
future vehicle re‐identification works.
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