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ABSTRACT

The natural history of COPD is complex, and the disease
is best understood as a syndrome resulting from
numerous interacting factors throughout the life cycle
with smoking being the strongest inciting feature.
Unfortunately, diagnosis is often delayed with several
longitudinal cohort studies shedding light on the long
‘preclinical’ period of COPD. It is now accepted that
individuals presenting with different COPD phenotypes
may experience varying natural history of their disease.
This includes its inception, early stages and progression
to established disease. Several scenarios regarding lung
function course are possible, but it may conceptually be
helpful to distinguish between individuals with normal
maximally attained lung function in their early adult-
hood who thereafter experience faster than normal
FEV, decline, and those who may achieve a lower than
normal maximally attained lung function. This may be
the main mechanism behind COPD in the latter group,
as the decline in FEV; during their adult life may be
normal or only slightly faster than normal. Regardless
of the FEV, trajectory, continuous smoking is strongly
associated with disease progression, development of
structural lung disease and poor prognosis. In develop-
ing countries, factors such as exposure to biomass and
sequelae after tuberculosis may lead to a more airway-
centred COPD phenotype than seen in smokers. Mecha-
nistically, COPD is characterized by a combination of
structural and inflammatory changes. It is unlikely that
all patients share the same individual or combined
mechanisms given the heterogeneity of resultant pheno-
types. Lung explants, bronchial biopsies and other tis-
sue studies have revealed important features. At the
small airway level, progression of COPD is clinically
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imperceptible, and the pathological course of the dis-
ease is poorly described. Asthmatic features can further
add confusion. However, the small airway epithelium is
likely to represent a key focus of the disease, combining
impaired subepithelial crosstalk and structural/inflam-
matory changes. Insufficient resolution of inflammatory
processes may facilitate these changes. Pathologically,
epithelial metaplasia, inversion of the goblet to ciliated
cell ratio, enlargement of the submucosal glands and
neutrophil and CD8-T-cell infiltration can be detected.
Evidence of type 2 inflammation is gaining interest in
the light of new therapeutic agents. Alarmin biology is a
promising area that may permit control of inflamma-
tion and partial reversal of structural changes in COPD.
Here, we review the latest work describing the develop-
ment and progression of COPD with a focus on lung
function trajectories, exacerbations and survival. We
also review mechanisms focusing on epithelial changes
associated with COPD and lack of resolution character-
izing the underlying inflammatory processes.

Key words: airway remodelling, chronic obstructive pulmo-
nary disease, epidemiology, epithelium, lung function, natural
history.

INTRODUCTION

The term COPD covers a heterogeneous group of
patients, who, despite the common presence of post-
bronchodilator airflow limitation, often exhibit different
clinical, pathoanatomical and physiological characteris-
tics.! Mechanistically and pathologically, COPD is
characterized by a combination of structural and
inflammatory changes that are reflected, in turn, by the
natural history of the disease.

The predominant COPD phenotype is a result of
numerous interacting factors of which active smoking
is the strongest.> On the other hand, not all smokers
develop COPD which suggests that other intrinsic or
extrinsic factors are important for the development of
clinical disease. At the same time, COPD patients show
substantial disease heterogeneity, which by far exceeds
the two iconic archetypes of ‘the pink puffer’ and ‘the



blue bloater’ suggested by Dornhorst® and pictured by
Netter more than 50 years ago.’ These have been trans-
itioned to the concept of individual treatable traits.*

It is increasingly evident that individuals presenting
with different COPD phenotypes likely differ regarding
the natural history of their COPD, with regards to its
inception, early stages and disease progression.>® In
addition, the presence of comorbidities in older age
including heart disease, osteoporosis, diabetes and
lung cancer often affect the course of COPD in the indi-
vidual patient.” Early COPD diagnosis® has remained
challenging due to small impact of early lung function
loss and social and psychological factors on the part of
the patient as well as physician delay.” A Canadian
population-based study estimated that the lifetime risk
of developing COPD, defined as either a hospitalization
or an ambulatory care visit with COPD diagnosis, is
around 28%.'° Relatively few cases were diagnosed
before the age of 50 years and the cumulative inci-
dence curves for both women and men showed there-
after a relatively linear trend until 80 years of age.
Danish investigators demonstrated that the average
patient starting inhaled medication for COPD was
67.8 years old and was treated for 8.2 years until death
occurred at the age of 76.0 years.""

Thus, at the first glance, the course of clinical COPD
in most patients seems to span relatively few years. Yet,
it has for many years been recognized that the natural
history of COPD begins with a long preclinical period
spanning many decades. At the time point when diag-
nosis is established and treatment initiated, many
patients already have moderate to severe airflow limita-
tion. A recent population-based study from the UK
characterized established COPD patients and those at
the time of their first inhaled maintenance therapy; the
latter were 68.9 years of age with a mean forced expira-
tory volume in 1 s (FEV;) of 63% predicted.'"* Several
population-based studies have shown that underdiag-
nosis of COPD is substantial.'® Although undiagnosed
individuals with COPD have lesser symptoms,'* they
exhibit an increased risk of adverse respiratory events
and mortality.'>'® In fact, many experts consider the
late diagnosis of COPD as the most important factor
responsible for the poor outcome in a substantial
proportion of patients and therefore focus on dis-
tinguishing between early and mild disease.®

Pathological features and mechanisms of COPD are
clinically expressed as progressive loss of lung function
with airflow obstruction that is irreversible. Loss of lung
function primarily arises from small airways disease
(SAD), a key feature of COPD.'” Bronchiolar remodelling
(a structural synonym for SAD) is characterized by lumi-
nal obstruction due to mucus, peribronchial fibrosis,
structural changes in airway epithelium and immune
cell involvement. Emphysema, often described as the
destruction of alveolar compartmentalization that is
another hallmark of COPD, is believed to be related to
cigarette smoke (CS) toxicity, extracellular matrix
remodelling and protease-antiprotease disequilibrium.

Numerous comprehensive reviews of the natural his-
tory of COPD have been published.'®*' Most of these
focused on the course of disease, particularly as
defined by FEV; decline, which has been considered as a
physiological surrogate of development and progression

of COPD since the seminal study of Fletcher and Peto.*?
In fact, the acceptance that an intervention is able to
change the natural history of COPD has in most people’s
mind implied that such treatment would normalize or
substantially reduce FEV; decline. In the first section of
this review, we therefore aim to update previous reviews
with recent insight on FEV; trajectories, exacerbations,
symptoms and comorbidities. By reviewing the mecha-
nisms of COPD, we describe COPD-related changes at
the airway epithelium, including advances drawn from
the fields of pluripotent stem cell research, disease
modelling and, finally, the T1/T2 inflammation paradigm
at the epithelial level.

NATURAL HISTORY OF COPD

Methodological aspects and historical

overview

Most of the longitudinal studies describing the natural
history of COPD have been conducted in the Western
societies where active tobacco smoking plays an over-
whelming role in the development of disease. However,
studies from developing countries have documented
that exposure to biomass-based fuels, even in the
absence of smoking, is associated with the develop-
ment of irreversible airflow limitation.**** Various
occupational or environmental exposures can contrib-
ute to the development of COPD*® and irreversible air-
flow limitation can be observed in never-smoking
adults both with and without apparent asthma.?® In the
present review, we will mainly focus on the natural his-
tory of smoking-related COPD, as there are limited
studies of natural history of COPD among non-
smokers.

An important limitation of our knowledge is the lack
of sufficient study of participants who have been
followed from birth into old age and monitored for the
development of symptoms and lung function through
the life cycle.? Although participants in some childhood
cohort studies have now reached 50-60 years of
age,>” " longer observation periods are required to
identify individuals developing COPD. Similarly,
cohorts of individuals at risk for COPD development
should be populated and studied to describe the full
picture of the natural history of the disease.

Although early clinical studies of COPD patients
described the prognosis of the disease during the
1960s,>" our understanding of the natural history of
COPD has for many years been influenced by the semi-
nal study of Fletcher and Peto.”? This study that was
conducted in London followed up male postal workers
aged 30-60 years for 8 years from 1961 to 1969 and was
originally designed to test the so-called ‘British hypoth-
esis’, which postulated that lung function impairment
in COPD is caused by recurrent airway infections. The
study refuted the British hypothesis and concluded that
rather than the infectious chest episodes, continuous
smoking itself led to irreversible airflow limitation by
steadily accelerating the rate of decline in FEV; in sus-
ceptible smokers. Importantly, the study showed that
stopping smoking resulted in normalization of the FEV,
decline towards the rates observed in never-smokers of



similar age. These findings were subsequently con-
firmed in various population studies recruiting both
men and women with a broader age span, including
the Tucson Study.** Simultaneously, another hypothe-
sis on the origins of COPD was formulated by Dutch
investigators.> This hypothesis was thereafter named
as ‘the Dutch hypothesis’ and emphasized the interac-
tion between endogenous factors (genes, age and sex)
and environmental factors (allergens, infections, air
pollution and smoking) both during childhood and
later in life, finally resulting in COPD. The Dutch
hypothesis enhanced ongoing discussion regarding the
inter-relationship between asthma and COPD.** Never-
theless, there remains controversy on the clinical and
biological implications to the nosological labels of
asthma and COPD.*

Additional important data come from general popu-
lation and occupational cohorts initiated in the 1970s-
1980s. These studies, previously reviewed by others,*®
have generally confirmed many of the prior findings
highlighting the deleterious effects of smoking on FEV,
decline and the beneficial effects of smoking cessation,
as finally confirmed by the Lung Health Study.*” In
addition, the presence of respiratory symptoms and
recurrent pulmonary infections play an important role
by priming children and adolescents to increased sus-
ceptibility with re%ards to the development of COPD
later in life.*®>%%%°

Preclinical phase of COPD

Both cross-sectional and longitudinal studies have
identified numerous factors associated with the risk of
being diagnosed with COPD. These factors can be
grouped according to the strength of the association,
with active smoking remaining the strongest factor,
which during the human life course interacts with the
genetic constitution of the individual and extrinsic
exposures such as respiratory infections and indoor
and outdoor air pollution. The latter approach distin-
guishes between events and exposures taking place
while the lung is still developing until it reaches its
peak, factors affecting the so-called plateau phase dur-
ing the third decade of life where the lung function is
believed to be relatively stable and finally factors
involved in the decline of lung function during adult-
hood and old age as illustrated in Figure 1.

Growth of the normal lung starts in utero and con-
tinues during childhood and adolescence until the lung
structure and function reaches its peak, which is
believed to take place at approximately 25 years of
age.*”*! The concept of the maximally attained level of
lung function has been discussed for some decades
and received additional interest after demonstration of
significant variability of FEV; decline.** A sentinel study
in the field combined multiple large cohort studies to
demonstrate that approximately 50% of individuals in
the general population presenting with airflow limita-
tion at the age of 60 years did not experience an accel-
erated FEV; decline, but developed airflow limitation
through a lung function trajectory characterized by
FEV, decline within the normal range, but starting from
a below normal lun§ function at approximately
35 years of age (Fig. 2).*> Thus, maximally attained lung

function in early adulthood can be considered as a sum
of genetic, intrinsic and extrinsic factors associated with
lung development, before the onset of the inevitable
decline during adult life caused by the ageing process
itself and exposures that may damage the function of
airways and the alveoli.*>** Thus, all other thing being
equal, the lower the maximally attained lung function in
early adulthood, the higher the risk of ending up with
poor lung function in old age and the higher risk of
developing clinical disease and of premature
death.21'45'46

Genetic factors
Genetic predisposition clearly plays a role in COPD
susceptibility with family studies and analyses of
unrelated individuals suggesting heritability accounting
for approximately 30% of variation in risk.*” Alpha-1
antitrypsin (A1AT) deficiency is the best described
genetic association with COPD, caused by a single
mutation in the AIAT gene (SERPINA1).*® Alas, it has
been estimated that AlAT deficiency accounts for
approximately 1% of COPD.* Other than A1AT defi-
ciency, several well-described genes have been associ-
ated with lung function and COPD susceptibility, such
as Hedgehog-interacting protein® and family with fre-
quency similarity 13 member A.>' The CHRNA3/
CHRNA5/IREB2 region on chromosome 15g25 has
been associated with COPD susceptibility.** Several loci
have been linked to COPD phenotypes including
emphysema.”®

Several groups have combined data from multiple
genes to define genetic risk scores. Investigators from
the MESA Lung and SPIROMICS cohorts defined a
genetic risk score that was associated with lower lung
function, increased COPD risk, lower lung density,
smaller airway lumen and fewer small airways without
effect modification by smoking.** The COPDGene
investigative group has associated 20 genetic loci with
various COPD phenotypes.”® Data from the UK Bio-
bank were used to create a genetic risk score for COPD
susceptibility using approximately six alleles; genes
involved in development, elastic fibres and epigenetic
regulation were particularly evident.>® A separate inves-
tigative group completed a Genome-Wide association
study (GWAS) of cases and controls from the UK Bio-
bank and the International COPD Genetics Consortium
to identify 82 loci associated with COPD or lung func-
tion.”” These genetic risk loci are associated with quan-
titative imaging measures and comorbidities, while
gene-enrichment analysis confirmed the importance of
developmental pathways suggesting factors related to
early life.” An approach combining multiple COPD risk
alleles appears to define the risk of lung function
abnormality.>®

Lung function trajectories in childhood and
adolescence

A recent review has described various lung function
trajectories during the first part of life that may reduce
the maximally attained lung function in early adult-
hood.** This review concluded that factors such as the
presence of asthmatic features, episodes of airway and
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Figure 2 Simplified diagram of forced expiratory volume in 1 s
(FEV4) progression over time and development of COPD
according to the two most important trajectories: low maximally
attained FEV, in early adulthood and normal maximally devel-
oped FEV, followed by fast decline. ——, TR1: normal; , TR2:
small lungs but no COPD; ——, TR3: normal initial FEV; with
rapid decline leading to COPD; , TR4: small lungs leading to
COPD. Reproduced from Lange et al.,*® with permission.

lung infections in the first years of life and being born
prematurely and/or with low birth wei§ht are of major
importance in the Western world.** Outdoor and
indoor air pollution and nutritional deficits may also
play an important role in developing countries
(Table 1).***%%° An increasing number of recent studies
have characterized the growth in lung function in chil-
dren and adolescents with asthma,®"%? whereas other
studies with very long follow-up contrasted asthma
symptom severity and clinical features in children with
asthma followed up to the sixth decade of life.>*%*%*
These studies suggest that a substantial proportion of
individuals with childhood asthma, in particular those
with the most severe symptoms, follow below average
lung function trajectories which may lead to relatively
fixed airflow limitation in adult life.®

Aging

Supranormal

Normal

Below normal

Figure 1 Possible lung func-
tion trajectories through life
cycle (Note the new trajectory
starting from the supranormal
one and ending up in the nor-
mal one). Reproduced from
Agusti and Faner,?® with
permission.

Early decline
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Interesting questions concern the long-term outcome
of low lung function in childhood. First, can this disad-
vantage in some individuals be compensated by repair
processes and/or extra growth during the teenage
years, so the maximally attained lung function in early
adulthood will end within normal ranges? This is the
so-called lung function catch-up. Second, does the
presence of lung function impairment in childhood
imply a faster than normal lung function decline during
adulthood? Studies suggest that several scenarios are
possible. Allinson ef al. examined the interaction
between early life exposures during infancy and lung
function until age 60-64 years.”® They noted that in
never-smokers, the FEV; level at the age of 43 years
was not significantly related to early life exposures,
whereas in ever-smokers these childhood disadvan-
tages associated significantly with clinically important
lung function reduction (Fig. 3). This suggests that, at
least in some circumstances, the lung can overcome
the disadvantages that were present at birth and/or
emerged during early childhood, although similar lung
function catch-up was not observed in other longitudi-
nal studies, implying that the low FEV; may track into
adulthood.*® Studies relating early life events to lung
function decline in adulthood have also shown diverging
results, probably reflecting the heterogeneity of factors
related to both lung function growth and decline.® One
investigative group suggested that childhood infections
were not related to the accelerated lung function decline
in adulthood,”” whereas a separate group noted that early
life disadvantages, including features as parental asthma,
parental atopy, childhood asthma, childhood respiratory
infections and parental smoking, were associated with both

lower lung function and a slightly greater decline in lung
function in their early adulthood.®®

Factors related to progression and an excess
decline in FEV,

The role of smoking

The smoking epidemic, which gained momentum after
the invention of the cigarette-rolling machine in 1880,
is the main reason for the rise and devastating global
consequences of COPD.®® Although all but 25-50% of



Table 1

Factors potentially affecting FEV, trajectories in childhood and adolescence

Low FEV, trajectory

Catch-up

Host factors
Perinatal factors

Childhood exposures

Genetic constitution
Prematurity

Low lung function at birth
Maternal smoking
Nutritional deficiencies
Respiratory infections
Childhood asthma

Passive smoking

Indoor air pollution including

Better management of
bronchopulmonary dysplasia?
Dietary interventions?

Relevant treatment of infections
and asthma?

Reduction of air pollution
Weight loss

biomass fuels

e Qutdoor air pollution

e QObesity

Exposures in adolescence and early e Active smoking
adulthood * Asthma
e Obesity

e Passive smoking

¢ Non-smoking status

¢ Relevant treatment of infections
and asthma?

e Physical activity and weight loss?

¢ Indoor air pollution including e Reduction of air pollution and

biomass fuels

occupational exposures?

e Qutdoor air pollution
e QOccupational exposures

FEV,, forced expiratory volume in 1 s.

NON MAXIMALLY NON MAXIMALLY
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EARLY LIFE EARLY LIFE EARLY LIFE EARLY LIFE
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Figure 3 Comparison of estimated pattern of forced expiratory volume in 1 s (FEV,) (——) decline in relation to forced vital capacity
(FVC) (------ ) decline between ages 43 and 60-64 years for males of average age 43 years and average birth weight according to adult

smoking behaviour and early life disadvantage. Reproduced from Allinson et al.,?® with permission.

smokers develop COPD, smoking is the strongest risk
factor for COPD and may affect the risk in several ways
throughout the life cycle. Maternal smoking during
pregnancy can result in low birth weight and premature
birth, which is a strong risk factor for underdeveloped
lungs at birth.®® Maternal smoking during pregnancy
has also been associated with low lung function in both

childhood and adulthood, although the latter associa-
tion seems to be stronger in adults who have been
smokers than in never-smokers.”””* Exposure to passive
smoking during the first years of life can impair normal
lung growth and promote respiratory infections*”** and
is associated with higher risk of COPD in adulthood.”
In vulnerable schoolchildren, like Pi heterozygotes for



A1AT, the detrimental effect of environmental tobacco
smoke on lung function is even more pronounced than
in PiM homozygotes.”

Starting smoking at a young age can impair normal
lung development and reduce the duration of (and
even abolish) the plateau phase resulting in an earlier
onset of the decline in lung function.*>”>”"" In a recent
analysis of the Copenhagen General Population Study,
the prevalence of early COPD (defined as FEV,/forced
vital capacity (FVC) < lower limit of normal (LLN) in
participants younger than 50 years with at least
10 pack-years of tobacco consumption) was 15%."°
Active smoking in adulthood may overwhelm the influ-
ence of other factors. On a population level, there is a
strong relationship between cumulative tobacco expo-
sure and FEV, impairment™ and persistent smoking is
longitudinally very strongly related to the development
of COPD.”

Smoking cessation leads to reduction of the intensity
of lung symptoms and to a small improvement in FEV,
followed by normalization of subsequent FEV,
decline.?' These observations from population or occu-
pational cohorts were supported by the interventional
Lung Health Study, which enrolled individuals with
mild COPD.?” However, based on mechanistic, clinical
and population studies, there has been an ongoing dis-
cussion as to what extent factors such as old age and
presence of established disease modify the beneficial
effects of smoking cessation. Recent analyses of data
from six US population-based cohorts show that former
smokers also had a slightly higher adjusted decline in
FEV; than never-smokers, suggesting that all levels of
smoking exposure are likely to be associated with last-
ing and progressive lung damage.®

Biomass-related COPD

In 2009, Salvi and Barnes suggested, based on ques-
tionnaire and spirometry measurement from several
epidemiologic surveys, that 25-45% of patients with
COPD have never smoked.®® Importantly, they
highlighted the fact that use of biomass fuel for cooking
is an important risk factor in low-income countries,
where occupational exposures and sequalae after pul-
monary tuberculosis may also play an important role.®*
The natural history of biomass-induced COPD is not
well described and most information comes from
cross-sectional studies. A newly published systematic
review and meta-analysis has summarized results from
35 such studies comprising more than 73 000 individ-
uals® and concluded that exposure to biomass was
associated with 2.5-3 times higher risk of both airflow
limitation and chronic bronchitis. An elegant recent
study noted that biomass-induced COPD, compared to
that in cigarette smokers, was generally seen in youn-
ger subjects with more equal male-female distribution,
affecting predominantly small airways with less emphy-
sema, higher rate of bronchodilator reversibility and
hyper-responsiveness, as well as slower rate of decline
in lung function.®® A longitudinal study in Mexico
followed up adult patients (~90% female) for 15 years
and documented that individuals with biomass-
associated COPD have a lower FEV; but a less pro-
nounced decline in FEV, compared to smoking-

associated COPD.® At present, there are no available
data from longitudinal studies on how often biomass-
induced COPD leads to respiratory failure and death.

Non-smoking COPD in the Western society
Population studies with spirometry measurements
show that a substantial proportion of adults with air-
flow limitation in the Western world are never-
smokers. In a study from Northern Sweden, the
prevalence of FEV,/FVC < LLN was 3%, with a preva-
lence of GOLD stage >2 of 1.3%.%® In this study, occu-
pational exposure to dusts, gas and fumes was
significantly associated with increased risk of COPD. In
a study of the general population in Copenhagen, Den-
mark, where exposure to occupational pollutants is less
than that in the industrial areas of Northern Sweden,
approximately 22% of cases of airflow limitation in
individuals without asthma were observed among
never-smokers.?” In this study, never-smokers with
COPD had more respiratory symptoms than individuals
without COPD and had an increased risk of COPD-
related and pneumonia-related hospital admissions,
but not an increased risk of death. Contrary to what is
seen in smoking-related COPD, the never-smoking
individuals did not experience a higher risk of myocar-
dial infarction, ischaemic heart disease or heart failure,
suggesting that smoking itself rather than the presence
of airflow limitation is a major risk factor for these
comorbidities.?” In this cohort, never-smokers with
COPD did not differ from never-smokers without
COPD with regards to exposures to occupational
smoking, passive smoking and history of respiratory
infections; additional analyses have shown that the
majority of them did not have asthma suggesting that
other mechanisms were responsible for their airflow
limitation.*®

Natural history of COPD associated with

A1AT deficiency

The natural history of lung disease in individuals with
severe A1AT depends strongly on the presence of active
smoking. During 1972-1974, all 200 000 Swedish new-
born infants were screened for AIAT deficiency and
follow-up studies of this cohort have shed light on the
natural history of lung disease in individuals with A1AT
deficiency. At age 35-40 years, no significant differ-
ences were found in lung function between the never-
smoking A1AT-deficient and control subjects, whereas
PiZZ ever-smokers showed signs of hyperinflation and
emphysema, lower post-bronchodilator FEV; and
poorer median activity score according to the St
George’s Respiratory Questionnaire (SGRQ) than the
PiZZ never-smokers.?® " In clinical practice, AIAT
deficiency is usually diagnosed late (average age of
diagnosis was 46 years in the National Heart, Lung,
and Blood Institute registry) at the time when both
FEV; and diffusion capacity were approximating 50% of
predicted values.”® Thus, the progression is faster than
in the wusual context of smoking-related COPD.
Although the decline in FEV; did not differ significantly
between never- and ex-smokers in an UK study, there
was substantial inter-individual variability and the



progression of emphysema assessed by lung density in
computed tomography (CT) scans appeared to con-
tinue even when FEV; remains stable.”? Recent work
from a large Spanish AlAT registry confirmed great
inter-individual variability regarding lung function
decline, but reported values comparable to usually
observed in COPD.”® Once clinical lung disease has
developed survival is poor, whereas it seems that
never-smokers with A1AT-deficiency need not have an
increased mortality.”*

Early radiological predictors of COPD
progression

CT imaging, particularly quantitative assessment, has
revolutionized the assessment of lung structure.® Ana-
tomical tissue validation has confirmed that areas of
low lung density reflect reduced alveolar surface area
as a measure of emphysema.”® This is quite instructive
as CT metrics of emphysema relate to symptoms and
exacerbations,”®™®® as well as mortality.” In fact, the
simple visual presence of emphysema has been associ-
ated with more rapid FEV, decline.”> An additional
technique, parametric response mapping (PRM), pairs
inspiratory and expiratory chest CT scans to quantify
regional changes in lung density thereby distinguishing
regions of ‘normal’ lung from ‘functional SAD’ and
‘emphysema’.’®® Importantly, tissue validation con-
firms an excellent correlation between small airway
pathology and the PRM™P metric.'®!

COPDGene investigators have confirmed that base-
line PRM™AP associates with FEV, decline, even among
at-risk current and former smokers without airflow lim-
itation (Table 2).'%% A separate investigative group has
associated total airway count with an accelerated loss
of FEV,."® Another group has recently demonstrated
that the ‘Jacobian determinant’, a measure of local
lung expansion and contraction of normal voxels
located within 2 mm of emPhysematous voxels, was
associated with FEV, decline.' Longitudinal measures
of CT-defined lung structural abnormality are being
increasingly reported. Accelerated loss of lung function
and decreasing lung density are well established in
AlAT deficiency.'® The RAPID study, a 24-month,
multicentre, double-blind, randomized, placebo-
controlled study of alpha-1 proteinase inhibitor aug-
mentation confirmed that the annual rate of lung den-
sity loss was significantly less in patients receivin§
active therapy compared to those receiving placebo.'

Limited analyses among COPD patients with GOLD
1-2 spirometric severity su%gest that areas of small air-
way abnormality (PRM™*P) convert to emphysema
(PRM®™PM) over time.'*”

COPDGene investigators also recently demonstrated
increasing measures of emphysema and air trapping
over 5 years in smokers, with FEV; accounting for less
than 10% of emphysema pro%ression and less than 50%
of air trapping progression.’”® The complexity of pro-
gressive imaging changes was also suggested by a sepa-
rate group who described varying patterns of tissue to
airway or vice versa using a subset of the same
COPDGene patients; importantly, individuals with early
imaging changes were 2.5 times more likely to meet
COPD physiological criteria over time.'%

Exacerbations and bronchitis in the natural
history of COPD

Exacerbations play an important role in the natural his-
tory of COPD by impairing quality of life and contribut-
ing significantly to the burden of COPD, both in the
individual patient and in the society.'° It is recognized
that these events may have multiple causes and are
likely to have differing phenotypes and endotypes,
including the role of viral or bacterial infections.''" The
concepts regarding the role of exacerbations for the
natural history of COPD have varied throughout
the years and have been connected to the presence of
chronic bronchitis,** suggesting its importance to lung
function decline, exacerbations and mortality,"'* with
more recent work suggesting that mucus hyper-
secretion in both young and middle-aged smokers may
represent an early developmental phase of COPD.*”'"
Recent work in individuals with more advanced airflow
obstruction than those studied by Fletcher and Peto
has strongly suggested that exacerbations are associ-
ated with faster FEV; decline, although whether this is
the cause or consequence is still controversial.'**

Patients with concomitant asthma and COPD

A substantial proportion of patients show characteris-
tics of both asthma and COPD, although the nosology
of this overlap remains controversial.>*>''® The natural
history of patients with overlapping features remains
unclear, although studies generally agree that frequent
exacerbations are characteristic for this group.'*®'”
The Copenhagen City Heart Study followed up lung

Table 2 Association between PRM®™P" and PRM™AP with FEV, mL/year as a function of GOLD spirometric grade

(estimate, 95% Cl, P-value)'®?

PR'\/lfSAD

PRMe™P"

GOLD 0 (n=751)

Parameter estimate per 5% (mL/year)
GOLD 1-4 (n=757)

Parameter estimate per 5% (mL/year)

—2.2 (95% Cl: —4.2 to —0.1; P=0.04)

—4.5 (95% Cl: —6.3 to —2.6; P < 0.001)

5.5 (95% CI: —8.0 to 19.1; P = 0.42)

—3.5 (95% CI: -5.6 to —1.4; P=0.0.001)

Reproduced from Bhatt et al.,'®? with permission.

FEV,, forced expiratory volume in 1 s; GOLD, Global Initiative for Obstructive Lung Disease; PRM, parametric response mapping;
PRM®™P" PRM of emphysema; PRM™AP, PRM of functional small airway disease.



function trajectories, exacerbations and survival in indi-
viduals with asthma-COPD overlap with early-onset
(<40 years of age) asthma, and asthma-COPD overlap
with late-onset (>40 years of age) asthma.''® Individ-
uals with late-onset asthma experienced FEV, decline
at a faster rate than in those with early-onset asthma
and an increased risk of hospital admissions and
reduced life expectancy, which was even more pro-
nounced than in those with COPD without asthma.
The better survival of those with COPD with early-
onset asthma is keeping with the findings of Burrows
et al. reported decades earlier.''? Altogether, these
findings suggest that COPD evolving from early-onset
asthma is a more benign condition than smoking-
induced COPD that is complicated by the development
of late-onset asthmatic features.

Prognosis of more advanced COPD
In addition to the severity of airflow limitation, a num-
ber of different patient characteristics have a negative
influence on the prognosis, including the severity of
dyspnoea, presence of emphysema, cor pulmonale, fre-
quent exacerbations, presence of comorbidities, low
body mass index and low walking distance but also
extrinsic factors like poor socio-economic sta-
tus.**'?>12! Continuous fast decline in FEV, in elderly
patients has been linked to an increased risk of hospital
admissions and death.'?* Recent analyses suggest that
the trajectory leading to the development of COPD also
has prognostic information. In the Copenhagen City
Heart Study, COPD that developed through normal
maximally attained FEV; trajectory in early adulthood
followed by an accelerated FEV; decline was associated
with an increased risk of both respiratory disease mor-
tality and all-cause mortality compared with COPD that
developed through low maximally attained FEV, trajec-
tory (Fig. 4)."** Numerous cohorts of established COPD
patients have demonstrated very heterogenous disease
progression.'**'?°

In conclusion, several FEV; trajectories are seen in
individuals with COPD. In the Western world, regard-
less of the FEV; trajectory, continuous smoking is the
main factor associated with disease progression, devel-
opment of emphysema and poor prognosis, whereas
the course of COPD in never-smokers is much more
benign. In developing countries, factors such as expo-
sure to biomass and sequelae after tuberculosis may
lead to a type of COPD with more airway pathology
and less emphysema than we see in smokers.

MECHANISMS OF COPD

Insights at the epithelial level

COPD-related changes are found in the airway epithe-
lium and are key to appreciating recent developments
in our understanding of disease mechanisms operative
in COPD (Table 3). Also, at the epithelial level, impor-
tant advances have occurred in the fields of pluripotent
stem cell research, disease modelling and T1/T2
inflammation paradigms (Fig. 5).

Goblet cells

In healthy subjects, goblet cells are present in human
trachea/bronchi and submucosal glands, but normally
absent or only sparsely present in the smaller airway
generations. However, goblet cells have been found in
larger numbers in the small airways of smokers.'*® In
human lung samples, goblet cell metaplasia (GCM)
occupied 33% on average of the distal airway epithelia
in COPD versus <5% in normal lungs."*’

Epidermal growth factor receptor (EGFR) immunore-
activity is enriched in regions of increased GCM. Ciga-
rette smoking can promote GCM independent of
inflammation, by activating EGFR signalling in airway
basal cells (BC).'*® A number of proteins have been
shown to act downstream from inflammatory or EGFR
signalling, including SAM Pointed Domain Containing
ETS Transcription Factor (SPDEF) or forkhead box pro-
tein A2 (FOXA2), with airway epithelial expression of
both proteins increased in COPD.'*® FOXA2 is a tran-
scription factor that represses goblet cell differentiation
in the airway epithelium, and aberrant methylation
patterns have recently been observed in the FOXA2
promoter in COPD epithelium.'** FOXA2 expression is
depleted in human COPD airways overexpressing
mucus."?!

Interleukin (IL)-13, a pro-inflammatory cytokine,
promotes mucus cell hyperplasia and mucin 5 (MUC5)
AC expression'? in an SPDEF-dependent manner. IL-
17 is associated with neutrophilic airway inflammation
in severe asthma/COPD exacerbations and can pro-
rnotlgsGCM via Notch2-dependent signalling in airway
BC.

Rao et al. demonstrated that a subset of COPD air-
way epithelial clones can differentiate into GCM char-
acterized by p63+ BC and SCGB1Al, MUC5AC and
MUC5B markers.'*” This observation concords with
several studies, suggesting that mucus metaplasia
arises from metaplastic p63+ BC clones. The authors
finely phenotyped a new subset of transient receptor
potential (TRP) Ca®* channel 6 (TRPC6+) BC more spe-
cifically involved in GCM. In the terminal bronchioles
from end-stage COPD patients, TRPC6+ BC represen-
ted >50% of all p63+ BC, while less than 2% were found
in healthy controls.

Basal cells
BC are assumed to be progenitor cells within the air-
way epithelium. In COPD, they exhibit a pathological
differentiation process, leading to both metaplasia and
hyperplasia. Differentiation is driven mainly by EGFR
and Notch signalling pathways. CS has a major impact
on BC phenotypes,'** partly due to epigenetic modifi-
cations."*® BC numbers are increased in the COPD air-
way epithelium, but their regeneration capacity is
largely decreased.’*® CS'™’ and EGF/amphiregulin-
EGEFR signalling play a role in reprogramming BC, with
EGF inducing squamous metaplasia.'*®'3®

EGF/EGFR pathway hyperexpression has been found
to mediate BC differentiation patterns in the small air-
ways of COPD patients. More specifically, a proximal
differentiation pattern arises instead of a distal one,
with an accompanying switch in 60% of RNA sequenc-
ing (RNAseq) transcripts.'*® In another study, certain
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Table 3 Histological, cellular and molecular modifications occurring in the small airways of COPD patients

Histological phenotype

Cellular modifications

Molecular mediators

BC hyperplasia/metaplasia

More than a unique layer of BC above
the basal membrane

Squamous cell metaplasia

Loss of pseudo-stratification

25% of airways in COPD

Peribronchiolar fibrosis

Loss of proximal to distal patterning

Goblet cell hyperplasia/metaplasia
Mucus plugging

Epithelial to mesenchymal phenotype
of airway epithelium

Emphysema

Small airway smooth muscle
Mass increase

Vascular remodelling

Area increase

Increase in the number of BC

Aberrant BC differentiation into
squamous cell involucrin+, KRT13/
14

CC loss

ECM remodelling

Senescence of bronchial fibroblasts

Secretory phenotype of fibroblast into
myofibroblast vimentin+

Squamous cell metaplasia

Epithelial phenotype changes

Immune cells

Proximal airway epithelium identity in
small airways

Loss of CC and CCSP secretion

Loss of ciliated cells, structural and
functional abnormalities

Proximal submucosal glands and
distal airway secretory cells
increase

MUCB5B plugging

Neuronal stimulation of submucosal
glands

Secretory differentiation fate from
metaplastic basal clone cells

Immune cells

Mesenchymal signature (vimentin),
EMT transcription factors, loss of
highly specialized epithelial proteins
(E-cadherin, tight junctions)

Apoptosis, cigarette toxicity

Protease/anti-protease unbalance in
bronchiolar and alveolar epithelium

Senescence, exhaustion of AT2
progenitors

Immune cells

Hypertrophy, hyperplasia?

Increase of proliferation rate

Morphological changes of the
mucosal micro-vessels,
neoangiogenesis?

Endothelial activation, leads to
immune cells recruitment

CS: EGFR and Notch signalling
Epigenetic reprogramming

CXCL8 BC secretion driving
neutrophilic inflammation

EGFR pathway

IL-1p-derived squamous cell
metaplasia — activation of integrin
aV-p8 in fibroblasts — TGF-f
activation in fibroblast

Epithelial production of TGF-$3,
GDF15, acting on fibroblasts
TGF-pR2

Epithelial growth factors: PDGF-b,
TGF, CTGF

CS (cadmium)

IL-17 from Th17 cells, ILC2, IL-12,
dendritic cells

EGFR pathway

SPDEF, IL-13-inducing SPDEF, FOXA3,
EGFR/amphiregulin activation
(through CSE)

FOXAZ2 loss

Smad signalling inhibition induced by
IL-13/IL-17A

IL-17 axis — Notch2 activation in BC

EGFR signalling
TGF-p pathway

CS-mediated toxicity
Telomere attrition
Auto-immunity C1q mediated
Th2 inflammation

NOX4 protein

Immune cells

VEGF, TGF-B from epithelial cells

FGF-2/FGF2-R axis from submucosal
glands

Epithelial mediators and IL-13 induced
V-CAM1 on endothelium

AT2, alveolar type 2; BC, basal cell; CC, club cell; CCSP, club cell secretory protein; CS, cigarette smoke; CSE, cigarette smoke
extract; CTGF, connective tissue growth factor; CXCL8, C-X-C motif-chemokine ligand 8; ECM,extracellular matrix; EGFR, epidermal
growth factor receptor; EMT, epithelial to mesenchymal transition; FGF-2/FGF2-R, basic fibroblast growth factor 2/receptor; FOXA2/3,
forkhead box A2/3; GDF15, growth and differentiation factor 15; IL, interleukin; ILC2, type 2 innate lymphoid cells; KRT13/14, keratin
13/14; MUC5B, mucin 5B; NOX4, NADPH oxidase 4; PDGF-b, platelet-derived growth factor-beta; SPDEF, SAM Pointed Domain Con-
taining ETS Transcription Factor; TGF-, transforming growth factor ; TGF-pR2, transforming growth factor receptor 2; Th17, T-helper
type 17; V-CAM1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor.
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COPD airway epithelial clone subtypes gave rise to
squamous cell metaplasia marked by immature p63
cells and expression of Krt10 and involucrin markers.'*’
These BC also expressed C-X-C motif-chemokine
ligand 8 (CXCL8), thereby driving neutrophilic inflam-
mation. The authors demonstrated that squamous
metaplasia occupied more than 25% of COPD airway
epithelia compared to <1% in normal lungs.

Club cells

Small airways contain specific bronchiolar progenitor
cells: the club cells (CC), which are self-renewing, give
rise to ciliated cells, and help repair the bronchiolar
epithelium.'*® CC numbers are decreased in the small
airways of COPD patients.'*""!*?

Ontogeny studies of CC in murine/human small air-
ways demonstrated that they can be derived from a
‘suprabasal’ cell type (p63—, KRT5+ and SCGB1Al-)
that give rise to CC (SGB1A1+/KTR5-MUC5AC-), but
spanning a continuous spectrum of cell types, includ-
ing KRT5+/SCGB1A1+ cells."*® This intermediate stage
was discovered by single-cell RNAseq analysis. How-
ever, a small subset of SCGB1Al+ KRT5— also exist
early in cell culture models, suggesting a second popu-
lation of CC progenitors that do not arise from BC."

Club cell secretory protein (CCSP or SCGB1A1) is the
primary protein secreted by CC and has anti-inflamma-
tory/immune functions. Both plasma and airway CCSP
protein levels are decreased in COPD,'** correlatin
with disease severity and accelerated FEV, decline.'*
COPD patients carrying the CCSP G38A polymorphism
had lower serum/sputum CCSP levels and a more
severe clinical phenotype.'*®

In vitro epithelial club cell 10-kDa protein (CC10)
gene transduction may inhibit IL-1f-induced IL-8
expression and nuclear factor kB (NF-xB) activation.'*
CCSP may also directly neutralize IL-8, therefore
damping neutrophil chemotaxis.'*® Club cell secretory
protein-16 (CC16) (—/—) mice are more susceptible to
CS effects, with induction of a COPD phenotype char-
acterized by greater emphysema, airway remodelling,
increased airway MUCS5AC expression, alveolar cell
apoptosis and inflammation.'*? Delivering CC16 pro-
tein to the airways of CC16—/— mice induced airway
immunostaining for CC16 and rescued the develop-
ment of COPD-like lung lesions'** via a yet-to-be eluci-
dated mechanism. Intra-tracheal recombinant CC16
supplementation has anti-inflammatory effects in
chronic CS murine COPD models."**'** in vitro recom-
binant CC16 reduced mucus metaplasia induced by CS
in airway epithelial cells from COPD patients.'**'>!

Ciliated cells

Mature multiciliated cells (MCC) arise from FOX]J1 pro-
genitors. Large airway epithelium in COPD, in contrast
to controls, has fewer ciliated cells. CS exposure signifi-
cantly reduced the number of ciliated cells.***>*>® Cili-
ary beating frequency was found to be decreased by
25% in nasal cilia from COPD patients.'** Cilia length is
decreased in smokers versus controls, and smokers
with COPD had shorter cilia length compared to both
groups.'”® Smokers with COPD also had an increased

percentage of abnormal cilia compared to both the
healthy smokers and non-smokers."*%'7

Deuterosomal cells and deuterosomal mucus
cells

Single-cell RNAseq has recently revealed lineage hier-
archies in the airway epithelium. Data analysis revealed
a specific group of cells, called deuterosomal cells,
which are intermediate between secretory and MCC,
express FOXJ1 and specific markers such as DEUPI,
without expressing the mature proteins found in
MCC."® A second cell subtype has also been discov-
ered by Ruiz Garcia et al,*®® who identified ‘hybrid’
cells expressing both MCC and goblet cell markers that
give rise to MCC. The role of these cells and their
abundance in COPD patient airways has not been
elucidated yet.

Alveolar epithelium
The alveolar sacs of the distal lung are lined by two
major epithelial subtypes: the alveolar type 1 (AT1) and
type 2 (AT2) cells. Alveolar rupture or distortion results
in emphysema. CS causes chronic inflammation, oxida-
tive stress and apoptosis of epithelial cells and contrib-
utes to emphysematous processes. However, the
diverse mechanisms by which the lung fails to repair
the CS-induced damage remains unclear. Oxidative
stress is thought to be one of the most important
mechanisms involved.'* CS is also known to enhance
the degradation of key proteins involved in DNA
integrity."®

AT?2 cells are considered to be the stem cells of the
alveolar compartments and are responsible for
repairing/maintaining lung tissues. Certain AT2 subsets
can dysfunction through telomeric attrition, leading to
emphysema.'®"'®> Further mechanisms purportedly
leading to emphysema include a loss of protease-
antiprotease balance in the alveolar compartment.
Such a serine protease imbalance has been described
in the small airways of COPD patients.'®® Finally, auto-
immune processes resulting in emphysema have also
been hypothesized, where loss of complement (Clq)
on antigen-presenting cells (APC) leads to the expan-
sion of autoreactive T-helper lymphocytes.'®*

Lessons from iPSC biology

In 2006, Takahashi and Yamanaka'®® demonstrated that
the transient expression of four transcription factors
(OCT3/4, SOX2, KLF4 and C-Myc) in mouse somatic
cells using murine retroviruses could reprogramme
these somatic cells into ‘induced pluripotent stem cells’
(iPSC). The first human iPSC-derived cell line was
obtained in 2007.'%° iPSC are characterized by an infi-
nite proliferation capacity and the ability to differentiate
into all cell types from the three germ layers. They share
the same characteristics and behaviour as embryonic
stem cells.'®” Currently, somatic human cell repro-
gramming can be performed with small amounts of
blood with development of the first iPSC colonies at
around 1 month.



iPSC present a unique means of elucidating the bio-
logical mechanisms behind COPD and a drug screen-
ing tool in the domain of personalized medicine.

iPSC: Modelling the paediatric roots of COPD
Growing evidence supports the impact of early-life
events on the occurrence of chronic airway diseases
such as asthma and COPD. Toxic exposures in utero
(mainly represented by CS), prematurity, childhood
respiratory infections and probably genetic background
can lead to the occurrence of early-onset and severe
phenotypes. This trajectory represents >50% of adult-
hood COPD, suggesting that COPD may be a develop-
mental lung disease.*

Human iPSC offer a unique opportunity to model
this trajectory by not only recapitulating the physiologi-
cal lung development in vitro for each patient, but also
providing a model to evaluate diverse environmental
factors as well.'®®

In the laboratory, iPSC differentiation into airway epi-
thelium is based on our current knowledge of human and
animal lung development and the process mimics specific
developmental stages. iPSC are cultured in specific media
with specific growth factors (activin A, CHIR99021, SB-
noggin and Y-27632) and such timing so as to imitate sig-
nals occurring during physiological embryonic develop-
ment, resulting in iPSC-derived airway epithelial cells. The
most important and difficult stage is the generation of pro-
genitors characterized by NKX2.1 factor transcription
expression, also known as Thyroid Transcription Factor-1
(TTF-1). These lung progenitors are then differentiated
into airway epithelial cells based on physiological signals
that drive lung development. The sequence of steps used

Cell reprogramming

Cell isolation —
=

Expansion
of
blood progenitors

Patient
Blood samples

Sendai Virus transduction in

blood cells

Generation of human induced pluripotent
stem cells (hiPSC)

Isolation and culture of somatic cells

for the latter are protocolized in different publica-
tions.'®>'™ However, such protocols are heterogeneous
and vary with the part of the airwa_y studied (e.g. proximal
versus distal airways and alveolus'*")

iPSC as a new tool in the field of cell therapy
Cell therapy based on iPSC represents a new potential
tool in the field of regenerative medicine. Crucially,
iPSC can be specifically developed for a given patient,
thus circumventing the cellular rejection observed in
allografted tissues and the risk-laden, chronic immuno-
suppression that is often required. The therapeutic
effects of iPSC-derived macrophages in a humanized
disease model of hereditary pulmonary alveolar pro-
teinosis in mice have recently been evaluated. Macro-
phages derived from human iPSC were transplanted in
an intra-tracheal manner. Two months after engraft-
ment, iPSC cells displayed the expected morphology/
functionality of human alveolar macrophages. The cell
therapy led to a significant reduction in alveolar
proteinosis.' "

From bench to bedside: iPSC for the
development of new drugs

iPSC represent a tool for drug screening, already used
in the field of genetic nervous system diseases.'”” They
can be maintained and produced in an unlimited man-
ner, and genetically manipulated for monogenic disease
repair. Their proliferation and longevity make iPSC a
key model for screening chemical libraries not only for
specific diseases, but also for individual patients in the
context of personalized medicine (Fig. 6).

.Cell therapy and gene edition Biug seoseiing

Differentiation

Muco-obstructive lung disease modeling

hiPSC derived airway epithelium
and applications

Figure 6 Human induced pluripotent stem cells (hiPSC) in chronic airway diseases. Somatic cell reprogramming (e.g. isolation of cir-
culating progenitors from blood sample) by a non-integrative method (Sendai virus) allows the generation of hiPSC. hiPSC provide a
novel means of modelling chronic airway disease by mimicking normal lung development in sequential steps. hiPSC can therefore be
differentiated into proximal, distal or alveolar airway epithelium, depending on the cytokine combination used. The large amount of
induced pluripotent stem cells (iPSC) in culture that can be maintained virtually indefinitely represents a key tool in drug screening.
Drug screening on airway epithelium-derived iPSC from individual patients enables a personalized therapeutic development strategy.
Autologous transplantation of airway epithelium or progenitors derived from iPSC can be performed for the patient whose iPSC line

has been generated.



Defective resolving mechanisms may govern
the T1/T2 paradigm at the airway epithelial
level

Type 2 immunity in COPD

We will focus on airway epithelial-derived inflamma-
tory mediators and other mediators that can impact
airway epithelial cells (Fig. 7).

Alarmins. Alarmins are molecules released from cells
that either receive inflammatory signalling or respond
directly to a ‘danger’ that can damage the cells (e.g. an
allergen or virus). Alarmins are released from airway
epithelial cells and include IL-33, IL-25 and thymic
stromal lymphopoietin (TSLP).

Interleukin-5. IL-5 plays a key role in eosinophilic
inflammation. It promotes the differentiation of eosino-
phils from precursors in the bone marrow and pro-
longs the survival of eosinophils in the airways. IL-5
also activates eosinophils that then acquire their in situ
functions. Eosinophilic inflammation can also occur via
the activation of type 2 innate lymphoid cells (ILC2),
which produce IL-5 and IL-13 in response to epithelial-
derived alarmins.

Data concerning the correlation between blood and
lung/bronchial tissue eosinophil infiltration in COPD
are contradictory,’”*'”®> with at best a poor correlation
between blood biomarkers and airway inflammation.
Targeting eosinophilic inflammation has been success-
ful in managing severe eosinophilic asthma, but data
from COPD studies have not provided encouraging
results.'”®

Interleukin-4 and -13. IL-4 and IL-13 can promote
eosinophilic inflammation through the release of chemo-
attractants such as CC-chemokine ligand 26 (CCL26)
from airway epithelial cells. They stimulate mucus hyper-
secretion, airway fibrosis and remodelling in asthma.

IL-4 and IL-13 signal through a common receptor, IL-
4Ra, expressed by airway epithelial cells. Overexpression
of either in murine airways induces inflammation, sub-
epithelial fibrosis and mucus cell metaplasia.'”” Trans-
genic IL-13 pulmonary expression in an adult murine
model results in a COPD phenotype with inflammation,
mucus metaplasia and emphysema.'”® However, thera-
pies targeting IL-4/IL-13 pathways failed to show any
improvement in COPD patients.

Thymic stromal lymphopoietin. TSLP is a member
of the IL-7 family (produced by epithelial cells) that
activates dendritic cells (DCs) to drive the differentia-
tion of naive lymphocytes into Th2 cells. TSLP also acts
on ILC2 as a chemoattractive signal, leading to Th2
cytokine (e.g. IL-4/IL-13) production. TSLP is highly
expressed in the airway epithelial cells of patients with
severe asthma and COPD and affects eosinophil func-
tion."” Viruses can induce overproduction of TSLP in
COPD epithelial cells,"®® highlighting a further role for
TSLP in COPD exacerbations.

TSLP and IL-17A levels were higher in induced spu-
tum supernatants from COPD patients, with TSLP syn-
thesized in an IL-17A-dependent manner in the airway

epithelium. The anticholinergic drug tiotropium signifi-
cantly decreased airway epithelium TSLP mRNA after
exposure to rhIL-17A or COPD-induced sputum super-
natants.'®’ TSLP production in COPD can also be
induced by T-helper type 1 (Th1) cytokines, suggesting
the existence of a TSLP-mediated negative feedback
loop that can limit the magnitude of the inflammatory
response to injury.'®* These data suggest that TSLP
blocking may impact Th2 and non-Th2 COPD end-
otypes. A clinical trial is ongoing (ClinicalTrials.gov:
NCT04039113).

Interleukin-33. 1L-33 is a member of the IL-1 family
that mainly drives type 2 inflammation.'®® In response
to inflammation/damage, IL-33 binds its transmem-
brane receptor suppression of tumourigenicity 2 (ST2),
which is expressed by both structural and immune cell
types such as ILC2, eosinophils or macrophages.
Recent studies have demonstrated that IL-33 can
induce haematopoietic progenitor cell differentiation
into eosinophils in an IL-5-dependent manner.'®*

In COPD, epithelial damage signals (via CS, viral
infection or oxidative stress) enhance the expression
and release of IL-33 in human airway epithelial cells.'®
Conversely, the inflammatory effects of CS are reduced
by anti-IL-33 antibodies.'®® In another study, mice
were infected with influenza virus after CS exposure,
leading to IL-33 release from epithelial cells and
increased viral-induced responses.'®” CS exposure
highlighted an IL-33-driven Thl inflammatory response
whose mechanisms remain unclear. The effect does
not seem to be ILC2-dependent as CS decreased ST2
expression on ILC2 but enhanced ST2 on other cells,
such as natural killer (NK) cells and macrophages.'®®

In COPD airway epithelium and endothelium, IL-33
expression is increased at the mRNA and protein levels
compared to non-COPD subjects.'®*'*° In another study,
IL-33 was increased in plasma from COPD patients and
was correlated with eosinophil counts and chronic bron-
chitis."®" IL-33 is localized in the nucleus of certain basal
epithelial progenitor cells in patients with COPD. Inter-
estingly, IL-33 immunostaining was most intense in BC
present in regions of airway epithelial hyperplasia and
mucus cell remodelling.'® The suggested role of IL-33
in goblet metaplasia has been shown in an air-liquid
interface (ALI) culture model. IL-13 induced ST2 expres-
sion on the apical surface of goblet cells. Under IL-13
culture conditions, IL-33 stimulated apical IL-8 release
from goblet cells and promoted mucus metaplasia.'®* In
COPD, IL-33 responses may switch from a localized,
rather short-term, well-controlled danger signal to an
uncontrolled, amplified, long-term signal, leading to
lung structural destruction. IL-33 blocking is therefore a
promising therapeutic avenue for COPD patients and
antibodies are now in clinical development.

Non-type 2 immunity in COPD

Non-type 2-driven inflammation is usually insensi-
tive to corticosteroids. Epithelial cells are activated
by CS and other inhaled irritants to produce inflam-
matory mediators, including tumour necrosis factor
(TNF)-a, IL-1B, IL-6, granulocyte-macrophage colony-
stimulating factor (GM-CSF) and IL-8.'* Epithelial cells



in the small airways express transforming growth factor- T-helper type 1 axis. Neutrophils are the predomi-
B (TGF-p), which is implicated in small airway fibrosis. nant cells in Thl inflammation. They release several
proteases purportedly involved in lung structural
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damage. Several cytokines are thought to drive neutro-
philic inflammation, such as IL-8, TNF-a, IL-17 and IL-
23. Human bronchial epithelial cells also express IL-17
and IL-22/IL-22R. IL-8 is secreted by macrophages, T
cells, epithelial cells and neutrophils, and is chemotac-
tic for neutrophils via CXC-chemokine receptor
2 (CXCR2).

Non-Th2 adaptive immune responses in COPD also
involved recruitment of peripheral blood and
bronchoalveolar lava§e CD4+ Thl cells which produce
interferon-y (IFN-y)."”* Damaged tissues release TGF-f,
IL-33 and IL-1p from epithelial cells.'®® IL-1p and TNF
levels are increased in severe asthma/COPD and are
associated with macrophage activation and neutro-
philic inflammation.

Characterization of a Thl phenotype patients is diffi-
cult because studies show a high variability in sputum
neutrophil counts and data concerning Thl/Th17
inflammatory mediators in blood of COPD patients are
not consistent. Although targeting neutrophilic inflam-
mation appears to be a promising avenue, clinical trials
in COPD so far provide no evidence of related reduc-
tions in exacerbation rate.

produce IL-17A, IL-17F, IL-21, IL-22 and IL-23 in the
proximal airways in response to mucosal infections.

Activation of IL-17 and IL-22 receptors on airway
epithelial cells induces secretion of neutrophil chemo-
tactic factors. In patients with COPD, sputum IL-17A
and IL-22 levels are increased, and IL-17A positively
correlates with sputum neutrophils.'”” However, other
studies present conflicting data concerning Th17 cyto-
kine levels in COPD airways. In most studies, blood IL-
17A concentrations in COPD are higher compared to
healthy smokers. IL-17 can also induce IL-6 production
by airway epithelium, both of which induce mucins
(MUC5B and MUC5AC) in human, mouse or monkey
airway epithelium cultures.'®®

In steady-state COPD small airways, the number of
IL-22 and IL-23 immunoreactive epithelial cells'®® and
IL-17A inflammatory cells are increased®*® versus con-
trol groups. Both IL-17 and IL-22 can induce airway-
derived antimicrobial peptides such as f-defensins and
S100 proteins.'® ILC3, NK cells are also able to pro-
duce Thl7 cytokines®”' and neutrophils can activate
ILC3. One human study showed that a subset of ILC3
was notably increased in lung tissue from COPD

patients, with increased IL-17/IL-22 production by
ILC3.2%
T-helper type 17 axis. Non-Th2 immunity also
involves the recently described CD4+ T-helper type 17
(Th17) axis. Thl7 differentiation occurs under APC
priming in the presence of IL-6/IL-1p,'*® whereas their
maintenance requires IL-23. Th17 cells Cclassically

A20. TNF-a-induced protein 3 (TNFAIP3, also known
as ‘A20’) has recently been described as a negative reg-
ulator of NF-xB activation in myeloid cells and

Figure 7 Type 2 and non-type 2 inflammation in COPD airways. Top of the figure: T-helper type 17 (Th17) axis. Alveolar macrophages
present defective immune functions, such as decreased phagocytosis. They express suppression of tumourigenicity 2 (ST2) receptors
and can be modulated by cigarette smoke (CS). Dendritic cells (DC) have a decreased expression in A20 protein, leading to up-
regulation of nuclear factor kB (NF-xB) inflammation. Under specific conditions, airway epithelial cells, alveolar macrophages and DC
produce interleukin (IL)-16, IL-23, IL-22 and IL-6 that polarize innate lymphoid cells (ILC) into the ILC-3 subtype. Activated ILC-3 produce
Th17 cytokines (IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor (TNF)-a). IL-17A
effects are driven by IL-17A/IL-17A receptors expressed by goblet cells. IL17A, GM-CSF and IL-6 induce goblet cell hyperplasia and pro-
duction of mucins. Goblet cells amplify the signal by secreting these IL. Epithelial inflammatory mediators and DC produce Th17 cyto-
kines such as IL-6/IL-1p and IL-22/23 that will drive differentiation of naive T-lymphocyte cells into Th17 cells. Activated Th17 cells
thereby secrete pro-Th17 mediators, acting on ILC-3, epithelium and neutrophils. Th17 cytokines are able to promote thymic stromal
lymphopoietin (TSLP) production, an alarmin considered to be pro-Th2 that probably has more complex effects in COPD. Pathogens
and CS can activate airway epithelial cells to produce inflammatory mediators, such as TNF, IL-8 and GM-CSF, which attract neutro-
phils. Th17 cells are also a major source of neutrophil activation. Neutrophils produce IL-17A/F and proteases purported to strongly
contribute to emphysema. They can also activate ILC-3. In contrast, epithelium-derived calcitonin gene-related peptide (CGRP) can
dampen neutrophil activity. The middle part of the figure represents Th2 inflammation. Th2 cytokines (IL-5 and IL-13) act on goblet
cells to induce goblet cell hyperplasia and mucus production. The epithelial alarmin TSLP activates DC that releases chemokines (CC-
chemokine ligands 17 and 22; CCL17, CCL22). These chemokines recruit Th2 lymphocytes and ILC2. Th2 cell activation and ILC2 induce
the secretion of IL-4, IL-5 and IL-13. IL-4 and IL-13 share a common receptor (IL-4 receptor subunit-a (IL-4Ra)) and IL-5 acts on IL-5Ra
expressed on eosinophils. Activated eosinophils secrete IL-13 and transforming growth factor-p (TGF-B)-inducing epithelial cells to
release eosinophil-attracting chemokines, such as CCL26. TSLP and IL-33 epithelial alarmins contribute to Th2 inflammation through
Th2 and ILC-2 activation. IL-33 acts through its specific receptor ST2. Neuroinflammation from airway nerves or epithelial mediators
highly modulates ILC behaviour, mainly described in Th2 airway inflammation. neuroepithelial bodies (NEB) produce neuropeptides
such as vasoactive intestinal peptide (VIP), substance P (SP) and CGRP. Transient receptor potential vanilloid 1 (TRPV1) is expressed in
mostly all the C-fibres and these sensory nerves are also able to produce these neuropeptides. VIP activates ILC-2, whereas CGRP has
a dual effect depending on the inflammatory context. SP effects have not been described for airway ILC2. ILC2 were found to express
high levels of the receptor for neuropeptide neuromedin U (NMU), NMUR1. NMU is mainly produced from parasympathetic nerves.
When NMU binds its receptor expressed on ILC2, the interaction induces increases in ILC2 proliferation and activation. By contrast,
ILC2 are inhibited by catecholaminergic neurons that secrete norepinephrine/noradrenaline which bind to 2-adrenoreceptor (ADRB2)
(B2AR) on ILC2, thus damping ILC2 responses. Acetylcholine (ACh) release from parasympathetic neurons and possibly non-neuronal
cells can also inhibit ILC2 activity via a7 nicotinic ACh receptor (a7nAChR), leading to decreased production of IL-5 and IL-13. The main
therapeutic anti-Th2 antibodies already tested or currently ongoing trials (IL-33 blocking) in COPD are represented. Bottom of the fig-
ure: T-helper type 1 (Th1) axis. Airway epithelial cells are able to produce pro-Th1 chemokines (C-X-C motif-chemokine ligand 8 9,
10 and 11; CXCL9, CXCL10 and CXCL11) that induce naive lymphocyte T-cell differentiation into Th1 cells. Chemokines also drive ILC
differentiation into ILC1. Both Th1 and ILC1 produce interferon-y (IFN-y), which induces epithelial cells to release pro-Th1 cytokines in a
feedback loop.



DC. Conditional deletion of the TNFAIP3 gene in either
mouse myeloid cells or DC leads to Th17 cell differenti-
ation and increased Th17 cytokines.”’®® A20 is reduced
in the airway epithelial cells of a murine model of
virus-induced COPD exacerbation.?**

Neuronal regulation of immunity in lungs

Lung innervation and neurogenic

inflammation

The lungs are innervated by the efferent parasympa-
thetic and sympathetic fibres, and sensory components
of the peripheral nervous system. Afferent peripheral
sensory nerve lung innervation largely originates from
vagal afferents. These afferent neurons can be sub-
divided into A- and C-fibres, and the cough receptors.

A-nerve terminals are associated with airway smooth
muscle cells and neuroepithelial bodies (NEB) within
the airway epithelium. C-fibres can be activated by
physical, chemical and thermal stimuli, such as brady-
kinin and CS. Transient receptor potential vanilloid
1 (TRPV1) is expressed in almost all C-fibres. A subset
of C-fibre neurons express neuropeptides, such as the
tachykinin substance P (SP) and calcitonin gene-related
peptide (CGRP). Release of neuropeptides upon stimu-
lation of peripheral nerve endings in the airways
induces ‘neurogenic inflammation’. TRPV1 neurons
secrete CGRP, which inhibits neutrophil recruitment
and surveillance in a murine bacterial lung infection
model.**®

The parasympathetic nervous system interacts with
immune cells through the action of acetylcholine
(ACh) on muscarinic receptors. ACh is a neurotrans-
mitter released from the nerve terminals of postgangli-
onic parasympathetic neuronal and non-neuronal cells,
including airway epithelial cells. COPD is associated
with increased muscarinic 1 and 3 receptor (M1R and
M3R) expression in airways, probably through pro-
longed ACh release. M3R on structural cells in the lung
may also play a pro-inflammatory role. The genetic
ablation of M3R prevents neutrophilic airway inflam-
mation in response to CS exposure.”’® In COPD, strong
evidence supporting a pro-inflammatory role for ACh is
limited.

ACh may have anti-inflammatory effects via the o7
nicotinic ACh receptor («7nAchR). In mice, «7nAChR
are expressed in the distal lung epithelium, especially
in CC, AT2 cells and alveolar macrophages. Genetic
deletion of the receptor in mice decreased CC and AT2
transcripts, Muc5b distal airway plugs and peri-
bronchiolar fibrosis.?®”

The sympathetic nervous system also modulates
immune cells via noradrenaline-mediated activation of
B2-adrenoreceptors (f2AR) on ILC and other immune
cells. p2AR induces an asthmatic phenotype in mice.**®

Neural regulation of innate lymphoid cells

Recent work has shown that neurons closely interact
with ILC. ILC2 were found to express high levels of
neuromedin U (NMU) receptors (NMUR1). NMU is
mainly produced from parasympathetic nerves (cholin-
ergic neurons). When NMU binds its receptor on ILC2
during allergen challenge models, the interaction

provokes ILC2 proliferation and activation. Activated
ILC2 lead to Th2 cytokine (IL-5 and IL-13) production,
which further induce goblet cell hyperplasia and
mucus production.’®® Furthermore, vasoactive intesti-
nal peptide (VIP) can activate ILC2*'° and Th2 cells.*!!

Pulmonary neuroendocrine cells (PNEC) also modu-
late ILC2 functions through CGRP receptors.>'? The dif-
ferential effects of CGRP on ILC2 appear tissue-specific
(e.g. differing between lung vs gut). in vitro analysis
demonstrated that CGRP suppresses IL-33-mediated
activation of ILC2, especially IL-13 production and cell
proliferation, but promoted IL-5 production.*'* PNEC
are organized into highly innervated clusters called
NEB. In mice, NEB reside near airway branch points
and colocalize with ILC2.2'* Of note, PNEC are more
abundant in airways from patients with COPD relative
to healthy donors.*'*

By contrast, ILC2 are inhibited by catecholaminergic
neurons (sympathetic nervous system). These neurons
secrete molecules (such as norepinephrine/noradrena-
line) that bind to P2AR (ADRB2) on ILC2, thus
damping ILC2 responses.”’® ACh release from para-
sympathetic neurons and possibly non-neuronal cells
can also inhibit ILC2 activity via a7nAChR, leading to
decreased production of IL-5 and IL-13.%'"

SUMMARY

It is well established that individuals presenting with
different phenotypes under the diagnostic label of
COPD may differ regarding the natural history of their
COPD, with regards to its inception, early stages and
progression of established disease. In some individuals,
lower than normal maximally attained lung function in
their early adulthood may be the main mechanism
behind COPD, in others accelerating decline in FEV,
during the adult years plays a major role, whereas
some individuals may experience both. Regardless of
the FEV, trajectory, continuous smoking is very
strongly associated with disease progression, develop-
ment of emphysema and poor prognosis. In the West-
ern world, the course of COPD in never-smokers is
much more benign. In developing countries, factors
such as exposure to biomass and sequelae after tuber-
culosis may lead to a type of COPD with more airway
pathology and less emphysema than we see in
smokers. New advances in imaging and biomarkers
together with longer observation periods in childhood
cohorts will contribute to a better understanding of
development and progression of COPD in forthcoming
years.

Mechanistically, aberrant repair processes in COPD
are likely related to changes in airway cell populations
(both progenitors and differentiated). There is a grow-
ing corpus of evidence supporting aberrant expression
of epigenetic markers in COPD (such as non-coding
RNA expression, histone changes and DNA methyla-
tion) that may help explain these changes. Progenitor
reprogramming, in particular, may be partially
explained by epigenetic modifications due to early-life
exposures that can be inherited.”'® Currently, the only
curative therapeutic strate%y in severe, end-stage COPD
is lung transplantation.”’”?** To move beyond this



impasse, efforts should focus on the development of
diverse strategies for restoring lung homeostasis.
Potential future treatments include retinoids and
growth factors such as fibroblast growth factor-2 (FGF-
2) or hepatic growth factor (HGF); intratracheal/nasal
administration of the latter improves emphysema in
animal models.?**** Administration of mesenchymal
stem cells for therapeutic purposes has been tested in
animals and humans with COPD, and although safe,
failed to provide any benefit to patients. Autologous,
iPSC-derived, bronchial progenitors now represent a
promising alternative source of cell therapy. Moreover,
proof-of-concept has recently been achieved in
humans through autologous iPSC-derived retinal cells
in macular degeneration.”*® Epigenetic rewriting also
represents a unique opportunity to restore altered gene
expression induced by environmental exposure. The
therapeutic window, duration and route of administra-
tion remain crucial outstanding issues. Finally, ethical
frameworks to support and sustain these novel treat-
ment initiatives remain to be established.
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