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I. ABSTRACT

This document provides further details on the paper “Digital Control of MEMS Gyroscopes:
a Robust Approach” [1]. These details concern the choice of the weighting functions for the
H∞ synthesis.

II. PROBLEM STATEMENT

As described in [1], the object of study is the control of a MEMS gyroscope.
The considered control architecture is represented in Fig. 1, where Gc is the model of the

gyroscope with actuation and instrumentation, and Kc is the controller. Both are Multi Input Multi
Output (MIMO) systems, in continuous time (CT). The controller Kc applies a signal ux (resp. uy)
on the drive (resp. sense) mode. The signal dx (resp. dy) is the disturbance on ux (resp. uy) and
is used to represent the Coriolis force acting on the drive mode (resp. from the drive to the sense
mode). Thus, estimating dy allows to compute the Coriolis force, and then the angular rate. The
input signals of Gc are udx

and udy
. The outputs of Gc are the displacements on the drive mode

x and on the sense mode y. The measurement noise is denoted nx (resp. ny) on the drive (resp.
sense) mode. ω0x

(resp. ω0y
) is the drive (resp. sense) resonance frequency (in rad/s).

Fig. 1: Control architecture

A model of the gyroscope, Gc, is obtained by identification and the electrical coupling is
compensated, as described in [2], [3]. Its Bode diagram of the gyroscope is presented in Fig. 2 and
Gc is partitioned as follows:

Gc(s) =

[
Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]
, (1)

where the main dynamics of Gxx (resp. Gyy) corresponds to a resonator with resonance frequency
ω0x

(resp. ω0y
) and quality factor Qx (resp. Qy), presented in Table I. The transfers Gxy and Gyx

model the couplings between drive and sense modes. The transfer Gyx presents resonance peaks at
ω0x

and ω0y
and a magnitude that is globally smaller than that of Gxx and Gyy. The transfer Gxy

is negligible. Finally, the actuation and instrumentation circuitry justifies the phase of the transfers.



TABLE I: Main characteristics of the MEMS gyroscope

ω0x (rad/s) ω0y (rad/s) Qx Qy

2π · 11586 2π · 11677 80502 8099

Fig. 2: Bode diagram of the gyroscope model.

The main control specifications are :

1) Track the sinusoidal reference signal xref (t) = Aref sin(ω0x
t) with an error εx(t) = xref (t)−

x(t), such that |εx| < εxmax
Aref in steady-state, where Aref ∈ R and εxmax

∈ R+.
2) Reject the disturbance dy(t) = Ady

sin (ω0x
t+ φy) on the signal udy

, i.e., with an error udy

such that
∣∣udy

∣∣ < εudymax
Ady

, where Ady
∈ R, φy ∈ R and εudymax

∈ R+.

Secondary control objectives are also considered:

• Minimize the control effort ux on the drive mode.
• Limit the influence of the measurement noises nx and ny.
• Reject the disturbance dx(t) = Adx

sin (ω0x
t+ φx) with an error ε′x(t) = x(t), such that

|ε′x| < ε′xmax
Adx

in steady-state, where Adx
∈ R, φx ∈ R and ε′xmax

∈ R+.

III. CHOICE OF THE WEIGHTING FUNCTION PARAMETERS

In the H∞ synthesis, the controller design is formulated as an optimization problem subject to
mathematical constraints, which express performance and stability robustness requirements into a
mathematical criterion to be minimized. The choice of the input and output signals and of the
weighting functions, the so-called H∞ criterion, must be adapted to the specifications.

We consider the criterion presented in Fig. 3, where the signals of interest w̃ = (xref , dx, dy, nx, ny)
T

and z̃ = (εx, ux, udy
)T , weighting functions Ww = diag (Ww1

, . . . Ww5
) and Wz = diag (Wz1 , . . . Wz3)

are defined with w =W−1w w̃ and z =Wz z̃.



Fig. 3: H∞ criterion

The H∞ problem is the following: for a given γ, find a controller such that the weighted closed-
loop transfer functions are stable and

∥∥∥∥∥∥
Tw1→z1 Tw2→z1 Tw3→z1 Tw4→z1 Tw5→z1

Tw1→z2 Tw2→z2 Tw3→z2 Tw4→z2 Tw5→z2

Tw1→z3 Tw2→z3 Tw3→z3 Tw4→z3 Tw5→z3

∥∥∥∥∥∥
∞

< γ, (2)

where we use the notation Ta→b to denote the transfer from a signal a to a signal b.
If the above problem has a solution with γ < 1, then it can be shown (see [4]) that (2) implies

∀ω ∈ R, ∀k ∈ {1, ..., 5} , ∀ l ∈ {1, ..., 3} , |Tw̃k→z̃l(jω)| < |Wwk
(jω)Wzl(jω)|

−1 . (3)

Therefore, the choice of the weighting functions allows imposing upper bounds on the magnitude
of the closed-loop transfer functions and thus to ensure compliance with the specifications, which
are themselves expressed as upper bounds objectives.

Two main types of weighting functions were used in this work, which are adapted to the reference
tracking and disturbance rejection of sinusoidal signals [5]:

1) An “amplification” weighting function Wamp

Wamp(k,Wmax,Wint, ωmin, ωmax, s) = k · s2 + αs+ ωminωmax

s2 + α/Wmax · s+ ωminωmax
(4)

with

α = (ωmax − ωmin) ·Wmax ·

√
W 2

int − 1

W 2
max −W 2

ω

, (5)

where k > 0, Wmax > Wint > 0 and ωmax > ωmin > 0 can be chosen by the user.
The magnitude plot of this type of weighting function is given in Fig. 4, with ω2

0 = ωmin ·
ωmax.



Fig. 4: Magnitude plot of Wamp

2) An “attenuation” weighting function Watt

Watt(k,Wmin,Wint, ωmin, ωmax, s) = k · s
2 + βWmins+ ωminωmax

s2 + βs+ ωminωmax
(6)

with

β = (ωmax − ωmin) ·

√
1−W 2

int

W 2
int −W 2

max

(7)

The magnitude of this transfer is given in Fig. 5, with ω2
0 = ωmin · ωmax.

Fig. 5: Magnitude plot of Watt

The desired specifications can be expressed through the choice of the weighting functions and
their parameters, as follows.

Main Control Specifications
• Reference tracking:



The signals of interest are xref , the reference signal, and εx, the tracking error to be minimized.
The function to be worked on is Txref→εx . The objective is to track a sinusoidal reference
signal xref of frequency ω0x

. More precisely, the first control specification demands:∣∣Txref→εx(jω0x
)
∣∣ < εxmax

(8)

For k = l = 1, (3) is equivalent to

∀ω ∈ R,
∣∣Txref→εx(jω)

∣∣ < |Wz1(jω)Ww1
(jω)|−1 . (9)

Thus, (8) can be enforced using (9) via the product WεxWxref
. The weighting functions must

be chosen so that |Ww1
(jω0x

)Wz1(jω0x
)|−1 ≤ εxmax

.
The weighting functions are retained such that:

Ww1
·Wz1 =Wamp(k1,Wmax1

,Wint1 , ωmin1
, ωmax1

) (10)

with 
ωmax1

= ω0x
+ δωx

ωmin1
= ω0x

− δωx

Wint1 =
1

εxmax ·k1

, (11)

where δωx > 0 is associated with the reference tracking bandwidth, k1 > 0 and Wmax1
> 0.

In general, these parameters are chosen by the user iteratively.

• Disturbance rejection on the sense mode:
The signals of interest are dy, the disturbance, and udy

, the estimation error to be minimized.
The function to be worked on is Tdy→udy

. The second control specification demands:∣∣∣Tdy→udy
(jω0x

)
∣∣∣ < εudymax

(12)

With k = l = 3, (3) is equivalent to

∀ω ∈ R,
∣∣∣Tdy→udy

(jω)
∣∣∣ < |Ww3

(jω)Wz3(jω)|
−1 . (13)

Similar to the reference tracking, the weighting functions are such that:

Ww3
·Wz3 =Wamp(k2,Wmax2

,Wint2 , ωmin2
, ωmax2

) (14)

with 
ωmax1

= ω0x
+ δωy

ωmin1
= ω0x

− δωy

Wint2 =
1

εudymax
·k2

, (15)

where δωy > 0 is associated with the bandwidth of the disturbance rejection on the sense
mode, k2 > 0 and Wmax2

> 0. In general, these parameters are chosen by the user iteratively.

Secondary Control Specifications
• Minimization of the control effort on the drive mode.

The signal of interest is ux. All the transfer functions which have ux as output signal are
considered, but here, we focus on Txref→ux

, corresponding to the control effort to track the
sinusoidal reference on the drive mode. Equation (3) implies that

∀ω ∈ R,
∣∣Txref→ux

(jω)
∣∣ < |Ww1

(jω)Wz2(jω)|
−1 (16)

The gain of Txref→ux
at ω0x

is constrained by the specification of tracking (i.e. the value
of εxmax

) and the gains of the gyroscope at ω0x
: Txref→ux

(jω0x
) cannot be lowered under a



minimal value, necessary to ensure the reference tracking. This means that the control effort
can only be influenced to a limited extent in steady state. This reasoning is actually valid not
only at ω0x

, but also for frequencies around ω0x
, due to the bandwidth, associated with δωx.

However, it is possible to limit the control effort in transient state by minimizing as much as
possible the gain of Txref→ux

(jω) outside the bandwidth [ω0x
− δωx;ω0x

+ δωx]. This also
enforces the robust stability [4]. The weighting functions are chosen so that Ww1

·Wz2 behaves
like an attenuation function,, that is, with low gains around ω0x

and high gains in low and
high frequencies.

• Limit the influence of the measurement noises nx and ny
The signals of interests are nx and ny. Similarly to the control effort minimization, the
weighting functions should be designed to minimize the magnitude of the transfer functions
that have nx and ny as inputs. Again, trade-offs have to be made between the desired precision
(reference tracking and disturbance rejection) and noise attenuation/limitation. Similarly to the
control effort ux, the weighting functions related to the signals nx and ny are chosen so that
the transfer functions having nx and ny as inputs behave similar attenuation functions, that is,
they have low gains around ω0x

and high gains in low and high frequencies.

• Disturbance rejection on the drive mode
The disturbance dx represents the Coriolis force acting on the drive mode. The reasoning is
the same as for the disturbance rejection on the sense mode, and the weighting functions be
chosen like:

Ww2
·Wz1 =Wamp(k3,Wmax3

,Wint3 , ωmin3
, ωmax3

) (17)

with


ωmax3

= ω0x
+ δω′x

ωmin3
= ω0x

− δω′x
Wint3 =

1
ε′xmax

·k3

, (18)

where δω′x > 0 is associated with the bandwidth of the disturbance rejection on the drive mode,
ε′xmax

corresponds to the disturbance rejection error, k3 > 0 and Wmax1
> 0. In general, these

parameters are chosen by the user iteratively.

The final choice of the weighting functions is made keeping in mind that the more important the
total order of the weighting functions is, the more important the order of the controller is.

The following numerical values are retained:



εxmax
= 0.005

δωx = 2 rad/s
εudymax

= 0.02

δωy = 7 rad/s
ε′xmax

= 0.005
δω′x = 2 rad/s

(19)



The retained weighting functions are the following:

Ww1
=Wamp(k1,Wmax1

,Wint1 , ωmin1
, ωmax1

)
Ww2

=Wamp(k3,Wmax3
,Wint3 , ωmin3

, ωmax3
)

Ww3
=Wamp(k2,Wmax2

,Wint2 , ωmin2
, ωmax2

)
Wz1 = 1

Wz2 =Watt(k4,Wmin4
,Wint4 , ωmin4

, ωmax4
)

Wz3 = 1
Wz4 =Watt(k5,Wmin5

,Wint5 , ωmin5
, ωmax5

)
Wz5 =Watt(k6,Wmin6

,Wint6 , ωmin6
, ωmax6

)

(20)

All the parameters of these functions are given in Table II.

TABLE II: Numerical values of the parameters of the weighting functions

k1 k2 k3 k4 k5 k6

10−8/20 10−8/20 10−8/20 1040/20 1080/20 1040/20

Wint1 Wint2 Wint3 Wint4 Wint5 Wint6

1/(εxmax · k1) 1/(εudymax
· k2) 1/(ε′xmax

· k3) 0.001 0.0178 0.224

Wmax1 Wmax2 Wmax3 Wmin4 Wmin5 Wmin6

4 ·Wint1 5 ·Wint2 4 ·Wint3 10−5 5.6234 · 10−5 1040/20

ωmin1 ωmin2 ωmin3 ωmin4 ωmin5 ωmin6

ω0x − δωx ω0x − δωy ω0x − δω′x 0.6 0.75 0.9

ωmax1 ωmax2 ωmax3 ωmax4 ωmax5 ωmax6

ω0x + δωx ω0x + δωy ω0x + δω′x 1.6667 1.333 1.111

IV. SYNTHESIS RESULTS

With the model Gc and the weighting functions of the previous section, the H∞ problem (see
(2)) is solved with γ = 0.95. The closed-loop transfer functions are presented in Fig. 8 and Fig. 9.
The upper bounds imposed by the weighting functions are respected.

The magnitude of Txref→εx is low at the resonance frequency ω0x
: -68 dB (4.10−4) < εxmax

.
Then, the tracking specification is respected.

The magnitude of Tdx→εx is low at the resonance frequency ω0x
: -50 dB (3.10−3) < ε′xmax

. Then,
the disturbance rejection specification on the drive mode is respected.

The magnitude of Tdy→udy
is low at the resonance frequency ω0x

: -55 dB (2.10−3) < εudymax
.

Then, the disturbance rejection specification on the sense mode is respected.
The magnitude of the transfers with the noises nx and ny as inputs is minimized in low and

high frequencies, limiting the influence of the measurement noises on the signals of interest.
The Bode plot of the obtained controller Kc is represented in Fig. 6 and Fig. 7. It is reminded

that In(1), or Input(1), is xref ; In(2) is x; In(3) is y; Out(1) is ux; Out(2) is uy. The controller
has important gains around the resonance frequency ω0x

, which enables to ensure a good tracking
of xref and a good estimation of dy. Its gains are weak in low and high frequencies, which enables
to minimize the control effort in transient state, the influence of the measurement noise on the
signals of interest, and enhancement of the robustness.



Fig. 6: Bode plot of Kc

Fig. 7: Bode plot of Kc – zoom



Fig. 8: Magnitudes of the closed-loop transfer functions (solid line) and upper bounds enforced by
the weighting functions (dashed line).

Fig. 9: Zoom around ω0x
on the magnitudes of the closed-loop transfer functions (solid line) and

upper bounds enforced by the weighting functions (dashed line).
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