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Videos S1 and S2 



Figure S1: PIV measurements of velocity fields. (a) Image of a turbulent soap-
film flow seeded with beads. The flow has a mean velocity U = 117 m s−1; r/W = 0.5,
r = 1 cm and W = 2cm. (Also see Video 2 in SM.) Note that the backscattered light
produces bright edges on the serrations. We use the contour of these bright edges to locate
the position of the serrations and exclude that region from our analysis. (b) Instantaneous
fluctuating total velocity field (the arrows display the flow direction; the amplitude is given
by the color scale).



Figure S2: PIV and LDV measurements of fields. (a) Typical mean total velocity
field in the cove between two successive serrations; from PIV measurements. (b–f) Com-
parisons of profiles obtained from PIV measurements (solid lines) and LDV measurements
(circles): longitudinal mean velocity u (y) (b), transversal mean velocity v (y) (c), RMS
value of the fluctuations in the longitudinal direction uRMS (y) (d), idem in the transversal
direction vRMS (y) (e), and turbulent stress τt (y) (f).

Figure S3: Velocity fields from typical DNS of 2D turbulent flow over rough
walls. (a) Time-averaged streamwise and (b) transversal velocity fields (roughness r/W =
0.33). The dots at x = 1 represent the teeth of the comb (cf. with the paper’s Fig. 1a).
The grid mesh is 7040× 640px and the comb’s teeth diameter is 0.04. Note that we have
tested grid convergence of the results using different number of grid points (320, 640, and
1280) in the transverse direction.



Figure S4: The computational equivalent of Fig. 3 of the paper. Time-averaged
streamwise (a) and transversal (b) velocity fields; idem but averaged along the streamwise
direction. The attendant total shear stress field τ (x, y) (d) and turbulent shear stress field
τt (x, y) (e). The field τ (x, y) averaged along the streamwise direction (f).

Figure S5: Pressure fields. (a) Pressure fields from DNS for r/W = 0.75 and a
Re = 70000. (b) Average cross-sectional pressure P (x) for three different values of r/W ;
x is measured in units of W + 2r = 1. The slope of the linear trendline of P (x) (dashed
line) represents the rate of pressure drop along x.



1 Thickness of the soap film

In regard to the thickness of the soap film, it may be useful to begin by pointing out, for
reference, that the results from our computational simulations (where the flow is strictly
2D, corresponding to a perfectly uniform film thickness) are in very good accord with the
experimental results (where the film thickness may not be uniform). This suggests that
variations in film thickness have a negligible effect on the experimental results, including
the focus of the paper, i.e. the Strickler scaling in 2D.

To verify that the thickness of the film is roughly 10µm (as stated in the paper), we
start by measuring the thickness profile h(y) on an arbitrary transect of a rough-walled
flow. To measure h(y), where h is the thickness of the film and y is the spatial coordinate
transversal to the flow direction, we analyze color images of interference fringes (see, e.g.,
Video 1 in SM). We briefly explain the experimental procedure and show a typical h(y)
in Supp. Fig. S6a. From that figure, we conclude that the thickness of the film is nearly
uniform over the width of the film. This is the same conclusion we reached in a previous
study involving smooth-walled soap-film flows [21]; in that occasion, we used fluorescence
measurements (a different technique) to determine h(y).

The film thickness changes along the streamwise direction (that is to say, the x-
direction, where x = 0 represents the position of the comb), but the rate of change is
low except close to the comb (Supp. Fig. S6b). In particular, the film thickness changes
very gradually in that part of the flow where we carry out the measurements discussed in
the paper (mostly from x/W = 8 to 20), so that h may be said to be roughly 10µm, as
stated in the paper.
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Figure S6: Thickness of soap-film flows. (a) Film-thickness profile, h(y), in a rough-
walled turbulent soap-film flow of width W = 2 cm, for x/W = 10 (where x is the distance
from the comb), showing that h is quite uniform across the width of the flow (i.e., from
y = −W/2 to y = W/2, see Fig. 1a of the paper). To obtain h(y), we start with a
color movie (a time series of images) of interference fringes in white light. We split each
image into its primary (RGB) colors—the green and red colors generally dominate. By
averaging the time series of the images in either the green or the red color, we obtain
the mean intensity map associated with the chosen color. To convert from intensity to
thickness, we use the following calibration. We average the mean intensity map in y
to obtain the mean intensity variation in x, and we compute the corresponding mean
thickness variation from the mean velocity of the flow and the total flux of soapy solution
(see panel b). With this calibration, we traverse the mean intensity map at a given value
of x to obtain the film-thickness profile h(y). The plot of h(y) shown is from the green
color. (The results using the red color are similar.) (b) h vs. x/W from measurements of
the mean velocity of the flow and the total flux of soapy solution. The vertical bars show
± 1 standard deviation. h varies quite gradually in the part of the flow where we carry
out the measurements discussed in the paper (mostly from x/W = 8 to 20).



2 Turbulence

The comb induces turbulence of spectral exponent 3, which in the absence of boundaries
is know from theory to be decaying turbulence. For wall-bounded soap-film flow, the rate
of decay turns out to be quite modest except in the immediate vicinity of the comb. In
that part of the flow where we carried out our measurements (mostly from x = 8W to
x = 20W , where x is the distance from the comb, and W is the flow’s width), the rate
of decay is quite low and, most importantly, it has a negligible effect on the turbulent
friction. These statements can be verified in Supp. Fig. S7 and Supp. Fig. S8, which show
friction (and pressure) as a function of x/W and the spectrum as a function of x/W .
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Figure S7: Experimental and computational results to study the turbulent
friction in rough-walled soap-film flows as a function of the streamwise position.
(a) Turbulent friction f vs. x/W , where x is the distance downstream from the comb
and W is the flow’s width. From experimental measurements. The relative roughness
r/W is the same for all points: 0.75. In that part of the flow where we carried out the
measurements of the paper (mostly from x/W = 8 to 20), changes in friction are well
within the error bars. The error bars correspond to ±1 standard deviation in the f data
for r/W = 0.75 (from Fig. 4 of the paper); the data for each value of W was considered
separately in order to compute the error bars. (b) DNS result of average cross-sectional
pressure P vs. x/W , for r/W = 0.33 and Re = 70000. The slope of the linear trendline
(dashed line) represents the rate of pressure drop along x. Note that the flow is fully
developed for x/W >≈ 4.
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Figure S8: Experimental results used to ascertain the rate of turbulent decay
in rough-walled soap-film flows. Turbulent spectra vs. x/W , where x is the distance
from the comb, and W is the flow’s width. The flow corresponds to W = 2 cm and
r = 1 cm. As was the case for the spectra shown in Fig. 2 of the paper, these spectra
were measured close to the roughness elements that line the wall. For reference, we mark
the wavenumbers corresponding to the comb’s tooth spacing (= 1cm), kc, and W , kW .
(2π/k is the length corresponding to the wavenumber k.) Turbulent decay can be clearly
discerned only very close to the comb—for x/W < 5, say. (This fact is consistent with
Fig. 1b of the paper, where the characteristic lengthscale is seen to increase tenfold from
x/W = 0 to x/W = 4 or so, a manifestation of pronounced turbulent decay; farther
downstream, the lengthscale seems to saturate, and the decay may be inferred to be quite
small.) Note that where turbulent decay is clearly apparent (that is to say, for x/W < 5
or so), it concerns mostly the energetic range of the spectrum, leaving the power-law range
of the spectrum largely unaffected.

3 Third-order structure function and the enstrophy cascade

The presence of the enstrophy cascade in the soap-film flows can be confirmed by comput-
ing the third-order structure function δu3(δx). For 3D energy cascade, δu3(δx) < 0 and
δu3(δx) ∝ δx, whereas for 2D enstrophy cascade, δu3(δx) > 0 and δu3(δx) ∝ δx3 [35].
In Supp. Fig. S9, we show a typical plot of δu3(δx). In accord with the spectral scaling,
E(k) ∝ k−3, we verify that turbulence in this soap-film flow corresponds to the enstrophy
cascade.
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Figure S9: Typical plot of the (longitudinal) third-order structure function
δu3(δx). Here, δu3(δx) is computed using the PIV data for a soap-film flow with the
geometry shown in Fig. 3 of the paper, on a 1 cm × 1 cm region centered at y = 0. In accord
with enstrophy cascade, δu3(δx) ∝ δx3. Further, from the exact relation δu3 = 1/8β δx3

[35], where β is the rate of enstrophy dissipation, we estimate β ≈ 3×104 s−3. In the inset
we plot the (longitudinal) second-order structure function δu2(δx), which we compute
using the same PIV data as δu3(δx). In accord with enstrophy cascade, δu2(δx) ∝ δx2.
Further, using the value of β estimated above, we estimate that the dimensionless constant
C in δu2 = C β2/3 δx2 is ≈ 1.

4 Measurement of the viscous and turbulent shear stresses

From Fig. 3 of the paper (which corresponds to a soap-film flow of roughness r/W = 0.5,
Re = 30000), we can conclude that the turbulent shear stress τt is much larger than the
viscous shear stress τν . This conclusion may be verified in Supp. Fig. S10, where it is seen
that the turbulent shear stress is more than 10 times larger than the viscous shear stress,
consistent with the asymptotic (Strickler) regime.

Supp. Fig. S11 shows the velocity fields and the shear stress fields for a typical flow of
roughness r/W = 0.33.



Figure S10: Stress fields determined by PIV for the same soap-film flow of
Fig. 3 of the paper (roughness r/W = 0.5). (a) Viscous shear stress field τν (x, y).
(b) Turbulent shear stress field τt (x, y). (c) Viscous and turbulent shear stress functions
corresponding to spatial averaging of τν (x, y) and τt (x, y) along the streamwise direction.
Compare with the paper’s Fig. 3d, e and f.

Figure S11: Fields determined by PIV for a typical soap-film flow of roughness
r/W = 0.33. (a) Time-averaged streamwise and (b) transversal velocity fields. (c)
Attendant velocity profiles spatially averaged over the streamwise direction. Viscous shear
stress field (d) turbulent shear stress field (e) and those same stress fields spatially averaged
along the streamwise direction (f).
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