Gauss Digitization of Simple Polygons

Keywords: Point-in-polygon, digitization, ray casting algorithm, crossing number

formulation

Introduction

A digital object X ⊂ Z 2 is generally the result of a digitization process applied on a continuous object X ⊂ R 2 (X is finite if X is bounded). As mentioned, the object X is a subset of Z 2 ; but from an imaging point of view, it can also be seen as a subset of pixels, i.e., unit squares defined as the Voronoi cells of the points of X within R 2 (see Fig. 1).

In a recent study about topology-preserving rigid motion of digital objects, we need to compute the Gauss digitization of polygonal objects. More specifically, in R n , rigid motions (i.e., transformations based on translations and rotations) are both topology and geometry preserving. Unfortunately, these properties are generally lost in Z n . In [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Ngo | Discrete regular polygons for digital shape rigid motion via polygonization[END_REF], a rigid motion scheme is proposed to allow the preservation of connectivity and some geometric properties (e.g., convexity, area and perimeter) of the transformed digital object. To this end, the proposed scheme relies on (1) a polygonization of the digital object, (2) the transformation of the intermediate piecewise affine object of R 2 , and (3) a digitization step for recovering a result within Z 2 . In this document, we address the step (3) which is to digitize the transformed polygonal object. Still in [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Ngo | Discrete regular polygons for digital shape rigid motion via polygonization[END_REF], if the digital object X is H-convex [START_REF] Kim | On the cellular convexity of complexes[END_REF], this digitization process can be done using the polygonal convex hull of X. More precisely, X is defined as the intersection of the smallest set of closed half-plane that include X. In case of non-convex objects, an attempt via the convex decomposition has been considered. This generally works with an extra cost of the decomposition of polygons into convex parts. In this work, we present a method allow to digitize polygons without this decomposition step. The approach is based on the ray casting algorithm for the point-in-polygon problem.

This paper is organized as follows: in section 2 and 3, we recall the basic notions of Gauss digitization and the ray casting algorithm. Section 4 is devoted to formulate the problem of Gauss digitization for simple polygons together with the proposed algorithm for computing the digitized object. Then, in section 5 we present the experimental results. Finally, we conclude the paper with discussion of future works and some applications in section 6.

(a) The connectivity is preserved by Gauss digitization.

(b) The connectivity is not preserved by Gauss digitization. The digital object X represented by pixels. Due to the resolution of the discrete grid, the Gauss digitization may lead to a disconnection between X and X as shown in the below example.

Gauss digitization

Let n ≥ 2. Let X ⊂ R n be a continuous object. Digitization can be defined as a process of transforming X into a discrete one, denoted by X. In this work, we consider the Gauss digitization [START_REF] Klette | Digital Geometry: Geometric Methods for Digital Picture Analysis[END_REF], denoted by D, which is simply the intersection of a connected and bounded set X with Z

n . X = X ∩ Z n . (1)
The obtained object is also called a digital object X which is a finite subset of Z n . In 2D and from an imaging point of view, X ⊂ Z 2 can be seen as a subset of unit squares, called pixels, defined as the Voronoi cells of the points of X (see Fig. 1(a)). Similarly, in 3D, X ⊂ Z 3 can be seen as a subset of the unit cubes, called voxels, whose centers correspond to points of X.

Because of this process D, the resulting object may have different properties than those of the original continuous one. An illustration is given Fig. 1(b) in which a connected continuous object X leads, after D, to a disconnected digital object X. In this context, various studies have been proposed for topological preservation of digitized objects under the Gauss digitization D [START_REF] Latecki | Preserving topology by a digitization process[END_REF][START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF][START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Pavlidis | Algorithms for Graphics and Image Processing[END_REF][START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Stelldinger | Towards a general sampling theory for shape preservation[END_REF][START_REF] Stelldinger | Digitization of non-regular shapes in arbitrary dimensions[END_REF]. This is, however, out of scope of the present document. We refer the readers to the cited papers for more details about conditions for topological equivalence of objects by the digitization process D.

Ray casting algorithm

In this section, we present the main idea of the original ray casting algorithm which will be used for computing the Gauss digitization of polygonal objects. Point-in-polygon [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF][START_REF] Haines | Point in Polygon Strategies[END_REF], also called point location, is basic problem of computational geometry, and has been considered in many geometry processing applications such as computer vision, computer graphics, geographical information systems, computer aided design, . . . Roughly speaking, the problem consists in verifying whether a given point in the planes lies inside, outside or on the boundary of a polygonal object. Several solutions have been developed for solving this problem such has triangle tests [START_REF] Badouel | An Efficient Ray-Polygon Intersection[END_REF][START_REF] Berlin | Efficiency considerations in image synthesis[END_REF], angle summation test (also called winding number) [START_REF] Gatilov | Efficient angle summation algorithm for point inclusion test and its robustness[END_REF][START_REF] Hormann | The point in polygon problem for arbitrary polygons[END_REF], and crossings test [START_REF] Shimrat | Algorithm 112: Position of point relative to polygon[END_REF][START_REF] Vandewettering | Point in polygon, one more time[END_REF].

Among the point-in-polygon algorithms, we are interested in the crossing number test, also known as the even-odd algorithm or the ray casting algorithm. The method is originally proposed by Shimrat in [START_REF] Shimrat | Algorithm 112: Position of point relative to polygon[END_REF]. The idea of this method is to cast a ray from the test point in a fixed direction (the positive x-direction is commonly used), and compute the crossings number -intersection points-of the ray with the polygon edges. The point is on the outside of the polygon if the crossing number is even, and inside otherwise (see Fig. 2(a)).

This method works well whenever the rays intersect the edges only. It may fail if the considered ray passes through the polygon vertices, called the degenerate cases, as illustrated in Fig. 2(b). To tackle this issue, a solution has been presented in [START_REF]An Introduction to Ray Tracing[END_REF][START_REF] Preparata | [END_REF] by considering that the vertex must be always infinitesimally above the ray. As a consequence, no vertex of the polygon is intersected the ray. Other solution consists in casting multiple rays [START_REF] Brecheisen | Flexible gpu-based multivolume ray-casting[END_REF] at the test point, then combining them to provide a solution (see Fig. 2(c)), e.g., via a majority vote. These solutions work in general, but still the parameters -the infinitesimal value, the number of the casting rays and their directions-have to be carefully chosen to avoid other degenerate cases, and not to increase the running time of the whole process.

Hereafter, we present a method for the Gauss digitization of polygonal objects. The method relies on the ray casting algorithm with some modifications allowing to handle the degenerate cases. In particular, it is free-parameter and could be performed in exact calculus. 4 Gauss digitization for simple polygons

Problem formulation

Let P be a polygon embedded in R 2 . We denote δP the boundary of P , also called polyline.

Definition 4.1 A polygon P is called simple, also called Jordan polygon, if its boundary δP form a Jordan curve.

Roughly speaking, simple polygon is a polygon that does not intersect itself and has no hole (see Fig. 3). Such a polygon has a well-defined interior and exterior. Typically, simple polygons are topologically equivalent to a disk.

The point-in-polygon problem can be reformulated as follows: Let P be a simple polygon and p be a point in the plane. The point-in-polygon consists in determining whether p ∈ P . Definition 4.2 Let P ⊂ R 2 be a simple polygon. The Gauss digitization of P , denoted by D(P), is the set of all integer points p ∈ Z 2 lies interior to P .

D(P) = P ∩ Z 2 (2)
Examples of the Gauss Digitization of simple polygons are given in Fig. 4. Note that, in order to compute D(P), it is -impossible and-not necessary to check all points p ∈ Z 2 but only those inside the bounding box of δP .

Proposed algorithm

We slightly modify the ray casting algorithm in the literature in order to handle the degenerate cases. More precisely, a ray is cast from the test point in a direction such that it hits no vertex of the polyline. A dichotomic search is used to find such a direction. Specifically, we repeat the selection of a direction (e.g., the middle) from two given directions (e.g., the positive x-and y-directions) until we find a direction which does not pass by any vertex of the polyline. The modified ray casting algorithm is given in Algorithm 1, and the whole procedure of the Gauss digitization for simple polygons is summarized in Algorithm 2. In particular, if the input polygon has integer / rational coordinates, then the proposed procedure works in exact computation (and thus without numerical errors).

Complexity analysis: For a given point p and a simple polygon P , the verification of p ∈ P costs O(n log n) [START_REF] Huang | On the complexity of point-in-polygon algorithms[END_REF] for n is the number of polygon vertices. The dichotomic search is also O(n log n). Therefore, the overall complexity of the Gauss digitization of P is O(mn log n) for m is the size of the bounding box of P .

Implementation: The method is implemented in C++ and uses Dgtal library [START_REF]DGtal: Digital Geometry tools and algorithms library[END_REF] to output images. Note that this implementation is based on the solution given at https:// www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/ with the modification explained previously. The code is available at: https://github.com/ngophuc/GaussDigitization

Experiments

Some experimental results of the Gauss digitization of polygonal objects are given in Fig. 5. Three different ray-casting methods are perform for the experiments:

• The first one is to use only on ray from the test point in the positive x-direction, and report the result according to the crossing numbers.

• The second is to use two rays from the test point in the positive x-and y-directions, and reports the result if at least one of the ray satisfies the crossing numbers.

• The third one is the proposed method which first finds the ray hitting no vertex of the polygon, then reports the result of the ray according to its crossing numbers.

On can observe that the results obtained by the first two methods are incorrect and contain many artifacts related to the ray casting directions. Indeed, it is mainly caused by the degenerate cases, as explained in Sec. 3. With the proposed modification of the ray casting method, we obtain a much better and correct results.

Conclusion

In this paper we presented a modified version of ray casting algorithm to handle the degenerate cases. The method is used to compute the Gauss digitization of simple polygons. The method is very simple and easy to implement. It has a complexity of O(mn log n) for n is the number of polygon vertices and m is the size of the bounding box of the polygon. This algorithm could be used in [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Ngo | Discrete regular polygons for digital shape rigid motion via polygonization[END_REF] for topology-preserving rigid motion of digital objects.

In future works, we would like to extend the method into 3D for the polyhedra and to integrate the code to the Dgtal library [START_REF]DGtal: Digital Geometry tools and algorithms library[END_REF].

Figure 1 :

 1 Figure 1: Left: Continuous object X ⊂ R 2 . Middle: Gauss digitization of X , X = X ∩ Z 2 . Right:The digital object X represented by pixels. Due to the resolution of the discrete grid, the Gauss digitization may lead to a disconnection between X and X as shown in the below example.

Figure 2 :

 2 Figure 2: Ray casting algorithm. (a) Simple cases: the rays intersect the polygon edges. (b) Degenerate cases: the rays pass by the polygon vertices which could produce completely incorrect results. (c) Multiple casting rays for handling the degenerate cases. Polygons are in gray and the black polyline is its border, the black arrows are the casting rays.

Figure 3 :

 3 Figure 3: Examples of polygon: (a) is simple polygon, (b) and (c) are not simple polygons.

Figure 4 :Algorithm 1 : 2 done ← f alse 3 while done = f alse do 4 done ← true 5 d 2 6 8 d 2 ← d 9 return d Algorithm 2 : 1 Output: 2 G 3 (6 p 7 d 1 ← 8 d 2 ← 9 d 11 G

 4123452829212367182911 Figure 4: Gauss digitization of simple polygons: (a) convex polygon, (b) and (c) concave polygons.In (c) the Gauss digitization cause a disconnected digitized set. Polygons are in gray and the black polyline is its border, the black points are the digitized set.

Figure 5 :

 5 Figure5: Gauss digitization of polygonal objects using ray casting algorithm. Left: Results obtained by using 1 ray in the positive x-direction. Middle: Results obtained by using 2 rays in the positive x-and y-directions. Right: Results obtained by the modified ray casting algorithm. The input polylines are in red, and the grey pixels are the digitized objects.

18 Function orientation Input: Three points p,q and r Output: A value indication the orientation of ordered triplet (p, q, r)

v ← (q.y -p.y) * (r.x -q.x) -(q.x -p.x) * (r.y -q.y) if v = 0 then return 0 // three point are colinear return (val > 0) ? 1 : 2 // 1 if clockwise and 2 for counterclockwise orientation 23 Function doIntersect Input: Four points p 1 , q 1 , p 2 and q 2 Output: Boolean indicating whether the line segment p 1 q 1 intersects the line segment

) then return true; // p 1 , q 1 and p 2 are colinear and p 2 lies on segment p 1 q 1 if (o 1 = 0 & onSegment(p 1 , p 2 , q 1)) = true then return true // p 1 , q 1 and p 2 are colinear and q 2 lies on segment p 1 q 1 if (o 2 = 0 & onSegment(p 1 , q 2 , q 1)) = true then return true // p 2 , q 2 and p 1 are colinear and p 1 lies on segment p 2 q 2 if (o 3 = 0 & onSegment(p 2 , p 1 , q 2)) = true then return true // p 2 , q 2 and p 1 are colinear and q 1 lies on segment p 2 q 2 if (o 4 = 0 & onSegment(p 2 , q 1 , q 2)) = true then return true return false