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In this paper, we discuss the bifurcation from infinity for nonlinear problem with a fractional -Laplacian in -fractional space ℍ , ; , whose bifurcation is directly linked to the signal ∫ 0 ( )

INTRODUCTION

Consider the nonlinear problem with a fractional -Laplacian given by (0) = ( -1); ( )

where D , ; 0+ (⋅) , D , ; (⋅) are -Hilfer fractional derivatives left-sided and right-sided of order 1 < < 1, type 0 ≤ ≤ 1, 1 < < -1, ∈ ∞ (Ω) and ( -1); 0+ (⋅) and ( -1); (⋅) are -Riemann-Liouville fractional integrals left-sided and right-sided, for all ∈ Ω = [0, ]. We also that ∈ ℍ , ; and > 0.

Fractional variational problems over the decade have been gaining prominence in the academic community. Currently, we can find many works that discuss important and non-trivial results about existence, non-existence, multiplicity of solutions of the fractional -Laplacian, fractional Dirichlet problems among others [START_REF] Fiscella | Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems[END_REF][START_REF] Bisci | On multiple solutions for nonlocal fractional problems via ∇-theorems[END_REF][START_REF] Claudianor | Existence of solutions for a class of fractional elliptic problems on exterior domains[END_REF][START_REF] Ledesma | Multiplicity result for non-homogeneous fractional Schrodinger-Kirchhoff-type equations in ℝ[END_REF] , and references therein. In 2020, Sousa et al. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] , through the -Hilfer fractional operator formulated fractional -Laplacian (problems) and discussed the properties of existence and non-existence of weak solutions to this problem, in addition to other important properties.

In 2017, Ledesma 6 , discussed results of the existence of non-trivial solutions using the mountain pass theorem for a fractional -Laplacian problem in ℝ . In 2019, Nyamoradi and Tersian 7 , attacked a fractional -Laplacian problem via critical point theory and variational method, in order to obtain a new criterion for the existence of solutions to the attacked problem. Numerous papers in this sense have been discussed, some of them, we highlight [START_REF] Claudianor | Existence of solutions for a class of fractional elliptic problems on exterior domains[END_REF][START_REF] Ledesma | Multiplicity result for non-homogeneous fractional Schrodinger-Kirchhoff-type equations in ℝ[END_REF][START_REF] Bartolo | Asymptotically linear fractional -Laplacian equations[END_REF] .

In 2016 Fiscella et. al 1 discuss bifurcation and multiplicity results for the following critical nonlocal fractional Laplacian problem

⎧ ⎪ ⎨ ⎪ ⎩ ∫ ℝ ( ( + ) + ( -) -2 ( )) ( ) = + | | 2 * -2 , in Ω = 0, in ℝ ∕Ω whose model ig given y the fractional Laplacian -(-Δ) 0 < < 1, Ω is an open bounded subset of ℝ , > 2 , with continuous boundary, is a positive real parameters, 2 * ∶= 2 ( -2 )
, is the fractional critical Sobolev exponent.

In 2019 Li and Sun [START_REF] Li | Existence results and bifurcation for nonlocal fractional problems with critical Sobolev exponent[END_REF] , investigate the existence and bifurcation of nontrivial solution for the following critical nonlocal problem

-L = ( , ) + | | 2 * -2 , in Ω = 0, in ℝ ∕Ω
where ∈ (0, 1), Ω is an open bounded subset of ℝ ( > 2 ) with continuous boundary, is a positive real parameter, 2 * ∶= 2 is the fractional critical Sobolev exponent, satisfies suitable growth condition and L is the integrodifferential operator defined as

L ( ) = ∫ ℝ ( ( + ) + ( -) -2 ( )) ( ) , ∈ ℝ . ( 2 
)
We can highlight is the great attention that has been given to papers related to the existence, multiplicity, bifurcation of solving problems involving Laplacian, in several directions [START_REF] Li | Existence results and bifurcation for nonlocal fractional problems with critical Sobolev exponent[END_REF][START_REF] Perera | Bifurcation and multiplicity results for critical fractional -Laplacian problems[END_REF][START_REF] Mishra | Bifurcation and multiplicity of solutions for the fractional Laplacian with critical exponential nonlinearity[END_REF][START_REF] Alsulami | Existence and multiplicity of solutions to fractional -Laplacian systems with concave-convex nonlinearities[END_REF] and reference therein. We highlight here papers in this sense, which involve classic fractional operators, such as: Riemann-Liouville, Caputo, Weyl [START_REF] Ledesma | Boundary value problem with fractional -Laplacian operator[END_REF][START_REF] César | Impulsive fractional boundary value problem with -Laplace operator[END_REF][START_REF] Ledesma | Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation[END_REF] . Recently, the paper of Sousa et al. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] , involving the non-local fractional operator, called, -Hilfer. This front of work related to the -Hilfer fractional operator, has recently started by a group of researchers: J. Vanterler, E. Capelas, J. Zuo, Donal O'Regan, Leandro Tavares and Cesar Ledesma [START_REF] Sousa | Existence and regularity of weak solutions for -Hilfer fractional boundary value problem[END_REF][START_REF] Sousa | A variational approach for a problem involving a -Hilfer fractiona operator[END_REF] . What has been noticed, is a wide path and open problems that deserve attention, as discussed in the papers, and in the work addressed here.

The existence of solutions of the problem (1), is given by the following result:

Theorem 1. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] Suppose that there exists ̄ > 0 such that for any < ̄ , we have -( ) ⊆ -. Then, 1. There is a minimizing point for in + , 2. There is a minimizing point for in -, proving that -( ) is non-empty.

The following notations: -( ), -( ), + ( ), -and + , will be presented in a later section. Definition 1. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] 

Let 0 < ≤ 1, 0 ≤ ≤ 1 and 1 < < ∞, The -fractional derivative space ℍ , ; ∶= ℍ , ; ([0, ] , ℝ) is defined by the closure of ∞ 0 ([0, ] , ℝ)
, and is given by

ℍ , ; = ∈ ([0, ] , ℝ) ; D , ; 0+ ∈ ([0, ] , ℝ) , ( -1) 
0+ (0) = ( -1) ( ) = 0 = ∞ 0 ([0, ] , ℝ) (3) 
with the following norm

‖ ‖ ℍ , ; = ‖ ‖ + ‖ ‖ ‖ D , ; 0+ ‖ ‖ ‖ 1∕ . ( 4 
)
Theorem 2. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] Let (⋅) be an increasing and positive monotone function on ( , ), having a continuous derivative

′ (⋅) ≠ 0, on ( , ). If 0 < ≤ 1 and 0 ≤ ≤ 1, then ∫ D , ; + ( ) ( ) dx = ∫ ( ) ′ ( ) D , ; + ( ) ′ ( ) dx
for any ∈ 1 and ∈ 1 satisfying the boundary conditions ( ) = ( ) = 0.

D , ; 0+ ( ) D , ; 0+ ( ) dx -∫ 0 | ( )| -2 ( ) ( ) dx -∫ 0 ( ) | ( )| -1 ( ) ( )dx. (8) 
Consider the eigenvalue problem associated with -fractional -Laplacian operator is given by 5

⎧ ⎪ ⎨ ⎪ ⎩ D , ; | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) = | ( )| -2 ( ), for ∈ [0, ] ( -1); 0+ (0) = ( -1); ( ) = 0. (9) 
Note that,

1 = min ∈ℍ , ; ∫ 0 | | | D , ; 0+ ( ) | | | dx ∫ 0 | ( )| dx , ≠ 0.
The direction of bifurcation being determined by the sing

∫ 0 ( ) | | 1 | | +1 dx
, where 1 is the positive principal eigenvalue corresponding to 1 .

The main purpose of this paper to discuss bifurcation from infinity using the sign of the integral

∫ 0 ( ) | | 1 | | +1 dx with
1 < < -1 and notice how these facts are related to the properties of the Nehari manifold for the problem (1). This paper is a continuation of the paper [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] . In the rest, the paper is divided as follows. In section 2, we present the definition of the -Hilfer fractional derivative and some properties of the Nehari manifold and fibering maps. In section 3, we discuss the bifurcation from infinity.

PRELIMINARIES AND NEHARI MANIFOLD

Let -1 < < , with ∈ ℕ, = [ , ] be an interval such that -∞ ≤ < ≤ ∞ and let , ∈ ([ , ], ℝ) be two functions, such that is increasing and ′ ( ) ≠ 0, for all ∈ . The left-sided -Hilfer fractional derivative , ; + (⋅) of function , of order and type 0 ≤ ≤ 1 is defined by [START_REF] Sousa | On the -Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: -Hilfer fractional operator[END_REF] 

D , ; 0+ ( ) ∶= ( -); 0+ 1 ′ ( ) (1-)( -); 0+ ( ), (10) 
where ; 0+ (⋅), with = ( -) or = (1 -)( -), are the -Riemann-Liouville fractional integrals. The right-sided -Hilfer fractional derivatives D , ; (⋅) is defined in an analogous form [START_REF] Sousa | On the -Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: -Hilfer fractional operator[END_REF] . Theorem 3. [START_REF] Szulkin | Ljusternik-Schnirelmann theory on 1 -manifolds[END_REF] Suppose that is a closed symmetric 1 -submanifold of a real Banach space and 0 ∉ . Suppose also that ∈ 1 ( , ℝ) is even and bounded below. Define Consider the following functional

( ) = 1 ∫ 0 | | | D , ; 0+ ( ) | | | dx.
Note that  ∈ 1 ℍ , ; , ℝ and the -Hilfer fractional -Laplace operator 2.  ′ is a mapping of type ( + ), namely , if ⇀ in ℍ , ; and lim sup

D , ; | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) ,
→∞ ⟨  ′ , - ⟩ ≤ 0, then → in ℍ , ; .
Proof. Indeed, for a ∈ ℍ , ; , we obtain

‖ ‖  ′ ( ) ‖ ‖ ℍ , ; * = sup ‖ ‖ ℍ , ; ≤1 | | | ⟨  ′ ( ) , ⟩ | | | ≤ sup ‖ ‖ ℍ , ; ⎛ ⎜ ⎜ ⎝ ∫ 0 | | | D , ; 0+ ( ) | | | ( -1) dx ⎞ ⎟ ⎟ ⎠ 1∕ ⎛ ⎜ ⎜ ⎝ ∫ 0 | | | D , ; 0+ ( ) | | | dx ⎞ ⎟ ⎟ ⎠ 1∕ ≤ ‖ ‖ ∕ ℍ , ; .
Furthermore, for any , ∈ ℍ , ; by direct computation, yields

⟨ ′ ( ) -′ ( ) , - ⟩ = ‖ ‖ ℍ , ; + ‖ ‖ ℍ , ; -∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx -∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx.
By Holder inequality, it holds that

∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx ≤ ‖ ‖ -1 ℍ , ; ‖ ‖ ℍ , ;
and

∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx ≤ ‖ ‖ -1 ℍ , ; ‖ ‖ ℍ , ;
.

Therefore, we obtain

⟨  ′ ( ) - ′ ( ) , - ⟩ ≥ ‖ ‖ -1 ℍ , ; -‖ ‖ -1 ℍ , ; ‖ ‖ ℍ , ; -‖ ‖ ℍ , ;
.

Let ∈ℕ ⊂ ℍ , ; such that  is bounded and  ′ → 0 as → ∞.
Then there exists a constant > 0 such that

| | |  | | | ≤ and ‖ ‖ ‖  ‖ ‖ ‖ ℍ , ; * ≤ . ( 11 
)
Therefore, if ≠ then inequality (11) implies that  ′ is strictly monotone.

Let

∈ℕ be a sequence in ℍ , ; such that → and lim sup

→+∞ ⟨  ′ ( ) , - ⟩ ≤ 0.
Since ℍ , ; is uniformly convex space, weak convergence and norm convergence imply strong convergence. Therefore, we only need to show that ‖ ‖ ‖ ‖ℍ , ; → ‖ ‖ ℍ , ; . In fact, since  ′ ( ) is an element of ℍ , ; * , then by weak convergence

lim →+∞ ⟨  ′ ( ) , - ⟩ = 0.
Therefore, using the inequality (11), we have

0 ≥ lim sup →+∞ ⟨  ′ -′ ( ) , - ⟩ ≥ lim sup →+∞ ‖ ‖ ‖ ‖ -1 ℍ , ; -‖ ‖ -1 ℍ , ; ‖ ‖ ‖ ‖ℍ , ; -‖ ‖ , ; ≥ 0. Then, ‖ ‖ ‖ ‖ℍ , ; → ‖ ‖ ℍ , ; , which implies that → in ℍ , ;
. Thus, we concluded the proof.

We start our analysis by considering the eigenvalue problem Eq.( 9). We means by a weak solution of Eq.( 9), any ∈ ℍ , ; such that

∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx = ∫ 0 | ( )| -2 ( ) ( )dx (12) 
for every ∈ ℍ , ; . It is easy to see that, if ( , ) is a solution of Eq.( 9) and ≠ 0, then

= ( ) = ∫ 0 | | | D , ; 0+ ( ) | | | dx ∫ 0 | ( )| dx , (13) 
and > 0. First, we define , Ψ ∶ ℍ , ; → ℝ by

 ( ) ∶= 1 ∫ 0 | | | D , ; 0+ ( ) | | | dx and Ψ ( ) ∶= 1 ∫ 0 | ( )| dx,
so using Lemma 1 we have , Ψ ∈ 1 ℍ , ; , ℝ ,  and Ψ are even and

 ′ ( ) ∶= ∫ 0 | | | D , ; 0+ ( ) | | | -2 D , ; 0+ ( ) D , ; 0+ ( ) dx, Ψ ′ ( ) ∶= ∫ 0 | ( )| -2 ( ) ( ) dx
for all , ∈ ℍ , ; . Also, for any > 0 set

( ) ∶=  -1 ( ) = ∈ ℍ , ; ∶  ( ) =
then ( ) is a 1 sub-manifold of ℍ , ; since is a regular value of . Its obvious that, the functional Ψ ∶= Ψ ( ) ∶ ( ) → ℝ defined on ( ) is a 1 functional. Therefore, if is a critical point of Ψ on ( ), then ( , ) is a solution of Eq.( 9) (see [START_REF] Zhang | Solvability for a coupled system of fractional differential equations with impulses at resonance[END_REF] , pp.292). Also, we know that  ′ is of type + , i.e., if → in ℍ , ; and

lim sup →∞ ⟨  ′ - ′ ( ) , - ⟩ ≤ 0, then → in ℍ , ;
(see Theorem 4). Furthermore Ψ ′ is completely continuous and by a standard argument, it follows that Ψ satisfies Palais-Smale condition on ( ). Now, we define the following Hence, for each , Θ ( ) and Δ ( ) are nonempty, and Δ ( ) ⊂ Δ.

∑ = ⊂ ℍ , ; ∖ {0} ∶ is compact and -= ∑ = ∈ ∑ ∶ ( ) ≥ , =
Let ∈ Θ ( ), then

 ∶= ∫ 0 | | | D , ; 0+ ( ) | | | dx = and Ψ ∶= ∫ 0 | | ( ) | | dx = ( ) ,
We can divide into three sets:

+ = ⎧ ⎪ ⎨ ⎪ ⎩ ∈ ; ∫ 0 ( ) | ( )| +1 dx > 0 ⎫ ⎪ ⎬ ⎪ ⎭ , -= ⎧ ⎪ ⎨ ⎪ ⎩ ∈ ; ∫ 0 ( ) | ( )| +1 dx < 0 ⎫ ⎪ ⎬ ⎪ ⎭ and 0 = ⎧ ⎪ ⎨ ⎪ ⎩ ∈ ; ∫ 0 ( ) | ( )| +1 dx = 0 ⎫ ⎪ ⎬ ⎪ ⎭
, where + , -and 0 correspond to the points of local minimum, local maximum and inflection of , respectively.

The analysis of the behavior of is in relation to the sign of

( ) = ∫ 0 | | | D , ; 0+ ( ) | | | -| ( )| dx and ( ) = ∫ 0 ( ) | ( )| +1 dx.
Let ∈ ℍ , ; and ′ ( ) = 0, and we conclude that 5 :

1. If ( ) and ( ) have the same sign, then has a unique critical point,

= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫ 0 ( ) | ( )| +1 dx ∫ 0 | | | D , ; 0+ ( ) | | | -| ( )| dx ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 1 -(1+ )
. This critical point is a minimum when ∈ + if, and only if, ( ) > 0. It is a maximum point when ∈ -if, and only if, ( ) < 0. Similarly, we can define -( ) and -when we replace "> 0" by "< 0" and 0 ( ) and 0 when we replace "> 0" by "= 0". We have the following results:

1. If ∈ + ( ) ∩ + , then  → ( ) has a local minimum at = and ∈ + .

2. If ∈ -( ) ∩ -, then  → ( ) has a local maximum at = and ∈ -.

3. If ∈ + ( ) ∩ -, then  → ( ) is strictly increasing and no multiple of is in .

4. If ∈ -( ) ∩ + , then  → ( ) is strictly decreasing and no multiple of is in . Theorem 7. [START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] Suppose that there exists ̄ , such that for any < ̄ , we have -( ) ⊆ -. Then, for all < ̄ , we get 1. 0 ( ) ⊆ -and, so, 0 ( ) ∩ 0 = ∅, 2. + is bounded,

  ≥ and is compact . If Γ ≠ ∅ for some ≥ 1 and if satisfies ( ) (Palais-Smale) for all = , = 1, ⋯ , , then has at least distinct pairs of critical points. Lemma 1.[START_REF] Sousa | The Nehari manifold for a -Hilfer fractional -Laplacian[END_REF] Let 0 < < 1 and 0 ≤ ≤ 1.1. The functional is well defined on ℍ , ; .2. The functional is of class 1 ℍ , ; , ℝ .Now we analyze the properties of the -Hilfer fractional -Laplace operator D , ;

  is the derivative of  in the weak sense, namely ⟨ ′ ( ) , ⟩ ℍ , ; = ∫ for any , ∈ ℍ , ; . Theorem 4. 1.  ′ ∶ ℍ , ; → ℍ , ; * is bounded and strictly monotone operator.

1 , 2 ,

 12 ..., where ( ) is the genus of and , = 1, 2, ... clearly, ( ) > 0 and 1 ( ) ≥ 2 ( ) ≥ ⋅ ⋅ ⋅ ≥ ( ) ≥ ⋅ ⋅ ⋅. By the Ljusternik-Schrirelman theory on 1 -manifolds 20 , we have the following theorem. Theorem 5. 1. ( ) → 0 as → ∞. 2. ( ) is a critical value of Ψ on ( ) and the Ljusternik-Schrirelman result holds.SetΔ = { ∈ ℝ ∶ is an eigenvalue of Eq.(9)} , Θ ( ) = ∈ ( ) ∶ is a critical point of Ψ and Ψ ( ) = ( ) , Δ ( ) = ( ) ∶ ∈ Θ, where ( ) is defined in Eq.(13).

2 .

 2 If ( ) and ( ) have opposite signs, then has no inflection points, so there are no multiples of in .Therefore, we define (here ‖ . ‖ = ‖ . ‖ ℍ , ; )

and this implies that

as → ∞ and , is a solution of Eq.( 9), for any ∈ ℕ. Therefore, we can get the following result.

Theorem 6. Δ is nonempty infinite set and sup Δ = +∞.

Then the problem Eq.( 9) has a unique of eigenvalue where 1 is the first eigenvalue of Eq.( 9) and

Now, we present some results about the Nehari manifold structure and fibering map analysis, related to problem (1). Let us consider real functions of positive variables as follows: ( ) ∶  → ( ) ( > 0), and these functions are known as fibering maps for each ∈ ℍ , ; and from Eq.( 7), yields (note that D , ;

Applying the derivative on both sides of Eq.( 14) (in relation to ), we have

Finally, applying the derivative on both sides of Eq.( 15) (in relation to ), we obtain

It is natural to divide the Nehari manifold into three distinct sets. Note that Eq.( 15) and Eq.( 16), yields

and as > 0, 1 < < -1, we have

3. 0 ∉ -and -is closed, 4. + ∩ -= ∅.

BIFURCATION FROM INFINITY

Since -( ) = ∅ for < 1 , from Theorem 1, that there is a minimizer of in + whenever < 1 . Now, we study the asymptotic behavior of the minimizes on + as → - 1 .

Υ + for all 1 > and so 1 1 ∈ + . Now

Taking limit → - 1 in Eq.( 17), we have (note < -1) lim

Then, for each < 1 there exists a minimizer in + such that lim

Proof. Let < 1 and ∈ + a minimizer. Then, we have lim

Let us now turn our attention to the case where ∫

In this case the hypothesis of Theorem 7 is maintained in some way, the right of = 1 . More precisely, we have the following result:

Proof. Suppose by absurdity that for 1 , 2 > 0 exists

We taking 1 = 2 = 1 e ∈ℕ∕{1} a strictly sequence such that 1 ≤ ≤ 1 + 1 . Thus, for each ∈ ℕ∕ {1},

Observe that

Thus, if

implies that 1 ∈ -( ).

In addition, it has already been seen that = 1 implies that

. Also note that we can take the sequence

+1 dx < 0 and 1 be like Lemma 2. So whenever 1 ≤ ≤ 1 + 1 , there exists minimizer and of in + and -respectively.

Proof. Note that 1 ∈ -( ) and so we have to -( ) ≠ ∅ whenever > 1 . From Lemma 2, we obtain the hypotheses of Theorem 1 with ̂ = 1 + 1 and so the result follows.

The next result shows that when ∫ Proof. Let be ∈ -. So = ( ) for some ∈ -( ) ∩ -. Now, by means of the Lemma 2, there exists 1 and 2 > 0,

Then, we have note 
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