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A linear finite-difference scheme for approximating Randers distances on Cartesian grids

Randers distances are an asymmetric generalization of Riemannian distances, and arise in optimal control problems subject to a drift term, among other applications. We show that Randers eikonal equation can be approximated by a logarithmic transformation of an anisotropic second order linear equation, generalizing Varadhan's formula for Riemannian manifolds. Based on this observation, we establish the convergence of a numerical method for computing Randers distances, from point sources or from a domain's boundary, on Cartesian grids of dimension 2 and 3, which is consistent at order 2/3, and uses tools from lowdimensional algorithmic geometry for best efficiency. We also propose a numerical method for optimal transport problems whose cost is a Randers distance, exploiting the linear structure of our discretization and generalizing previous works in the Riemannian case. Numerical experiments illustrate our results.

Introduction

A Randers metric is the sum of a Riemannian metric and of an anti-symmetric perturbation, suitably bounded and defined by linear form. By construction, a Randers metric is in general non-symmetric, and so is the associated path-length distance, see Remark 1.3 on terminology. Such metrics can account, in a very simple manner, for the fact that moving a vehicle uphill, or advancing a boat against water currents, costs more than the opposite operation. The asymmetry embedded in Randers metrics opens up numerous applications which cannot be addressed with the simpler Riemannian metrics, ranging from general relativity [START_REF] Randers | On an Asymmetrical Metric in the Four-Space of General Relativity[END_REF] to image segmentation [START_REF] Cohen | Finsler Geodesics Evolution Model for Region based Active Contours[END_REF], through quantum vortices [START_REF] Alama | On the Ginzburg-Landau model of a superconducting ball in a uniform field[END_REF] and path curvature penalization [START_REF] Chen | Global Minimum for a Finsler Elastica Minimal Path Approach[END_REF], see Remark 1.1.

In this paper, we present a numerical scheme for computing Randers distances by solving a linear second order Partial Differential Equation (PDE). Our approach is based on a generalization of Varadhan's formula [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF], which is commonly used to compute Riemannian distances [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]. Let us emphasize that Randers distances also obey a non-linear first order PDE [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], which can be solved directly numerically [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF], yet the linear structure of the PDE formulation considered in this paper has a number of computational advantages, including easier numerical implementation, faster computation in some cases, and smoothness of the numerical solution, see Remark 1.2. Some of our results, such as the identification of the optimal scaling of the relaxation parameter ε w.r.t. the grid scale h, and the proof of convergence in the case of point sources, are new as well in the special cases of isotropic and Riemannian metrics. We present an application to numerical optimal transportation, enabled by the linear structure of the discretization, with an asymmetric cost function defined as the Randers distance between the source and target, generalizing previous works limited to Riemannian costs [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF].

In order to make our statements more precise, we need to introduce some notations. Throughout this paper, Ω ⊂ R d denotes a smooth bounded and connected open domain, equipped with a metric F : Ω × R d → [0, ∞[, whose explicit form is discussed below [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF]. The corresponding path-length and distance are defined by length F (γ) := 

We denoted by γ an element of the collection Γ := Lip([0, 1], Ω) of locally Lipschitz paths within the domain closure, and by Γ y x ⊂ Γ the subset of paths from x ∈ Ω to y ∈ Ω. We assume in this paper that F has the structure of a Randers metric: there exists a field M : Ω → S ++ d of symmetric positive definite matrices, and a vector field ω : Ω → R d , both having Lipschitz regularity, and such that for all x ∈ Ω and all v ∈ R d one has

F x (v) := |v| M (x) + ω(x), v , where |ω(x)| M (x) -1 < 1. (2) 
We denoted by •, • the standard Euclidean scalar product, and by |v| M := v, M v the anisotropic (but symmetric) norm on R d defined by a symmetric positive definite matrix M . The smallness constraint (2, right) ensures that F x (v) > 0 for all v = 0, x ∈ Ω. Randers metrics include Riemannian metrics as a special case, when the vector field ω vanishes identically over the domain. See Fig. 3 for an illustration of their unit balls, distance maps, and minimal paths.

Our approach to the computation of Randers distances goes through the solution to a linear second order PDE, depending on a small parameter ε > 0, and some boundary data g ∈ C 0 (∂Ω, R)

u ε + 2ε b, ∇u ε -ε 2 Tr(A b ∇ 2 u ε ) = 0 in Ω, u ε = exp(-g/ε) on ∂Ω, (3) 
where A b is a field of symmetric positive definite matrices, and b is a vector field, depending in a simple algebraic manner on the Randers metric parameters M and ω, see [START_REF] Bonnans | Recherche opérationnelle. Aspects mathématiques et applications[END_REF] and [START_REF] Frédéric Bonnans | Second order monotone finite differences discretization of linear anisotropic differential operators[END_REF]. In the Riemannian special case one has A b = M -1 and b = ω = 0, consistently with [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF]. We establish in Theorem 2.12, following [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF], that for all x ∈ Ω u(x) := lim ε→0 -ε ln u ε (x) exists and satisfies u(x) = min

p∈∂Ω g(p) + dist F (p, x). (4) 
In other words, u is the Randers distance from the boundary ∂Ω, with initial time penalty g, see § 4 for the case of point sources. Equation ( 4) is a generalization to Randers metrics of the Varadhan formula [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF], and uses a logarithmic changes of variables often referred to as the Hopf-Cole transformation [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF], see §2.4 for more discussion. Note that one often considers the opposite problem, of reaching a boundary point p ∈ ∂Ω from x, which is equivalent up to replacing the vector field ω with its opposite in [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF], see Definition 2.3 and the discussion below.

The distance map u also obeys the first order non-linear Hamilton-Jacobi-Bellman equation

|∇u -ω| M -1 = 1 in Ω, u = g on ∂Ω, (5) 
in the sense of viscosity solutions (possibly with discontinuous boundary conditions) [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], which is numerically tractable [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF] as well. The point of this paper is however to study the linear approach (3) which has a number of advantages from the computational point of view, see Remark 1.2. For that purpose we present a finite difference discretization of (3) on the Cartesian grid Ω h := Ω ∩ hZ d , of dimension d ∈ {2, 3}, denoting by h > 0 the grid scale, and reading as follows: u + 2ε

1≤i≤I ρ i A -1 b b, e i δ e i h u -ε 2 1≤i≤I ρ i ∆ e i h u = 0 on Ω h , (6) 
where δ e h and ∆ e h denote the standard centered and second order finite differences [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF], modified close to ∂Ω to account for the Dirichlet boundary conditions, see [START_REF] Houston | The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin's method[END_REF] and [START_REF] Kannan | A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation[END_REF]. We denoted by ρ i (x) ≥ 0 and e i (x) ∈ Z d , 1 ≤ i ≤ I = d(d+1)/2 the weights and offsets of Selling's decomposition [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF][START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] of the matrix A b (x), a tool from lattice geometry which is convenient for the design of anisotropic finite differences schemes [START_REF] Fehrenbach | Sparse non-negative stencils for anisotropic diffusion[END_REF][START_REF] Mirebeau | Fast-marching methods for curvature penalized shortest paths[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF][START_REF] Bonnans | Monotone and second order consistent scheme for the two dimensional Pucci equation[END_REF] in dimension d ∈ {2, 3}, see Appendix B. Denoting by u h ε the solution of ( 6) we prove in Theorem 3.19 that -ε ln u h ε → u as (ε, h/ε) → 0. The case of point sources requires the additional assumption ε ln h → 0, and its proof involves fine properties of Selling's decomposition, see Theorem 4.1. The optimal consistency order is achieved when ε = h 2 3 , see Corollary 3.15. Finally we present in §5 an application to the numerical solution to Monge's optimal transport problem with a Rander's distance as cost: inf γ∈Π(µ,ν) Ω×Ω c(x, y) dγ(x, y), with c(x, y) := dist F (x, y), [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF] where µ and ν are given probability measures on Ω, and Π(µ, ν) is the set of probability measures on Ω × Ω whose first and second marginals coincide respectively with µ and ν. The proposed implementation relies on Sinkhorn's matrix scaling algorithm [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF], and the linear structure of (3). We emphasize that the matrix of costs (c(x, y)) x,y∈Ω h is never numerically constructed, and would not fit in computer memory, but instead that the adequate matrix-vector product are evaluated by solving finite difference equations similar to [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], in an efficient manner thanks to a preliminary sparse matrix factorization. Let us acknowledge here that, in contrast with the Riemannian case [START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], our approach does not extend to the quadratic cost c(x, y) = dist F (x, y) 2 . Indeed, the natural route to address the quadratic cost is through short time asymptotic estimates of the diffusion equation [START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], which is a linear PDE in the Riemannian setting but a non-linear PDE in Randers case [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF], see Remark 4.5. In contrast the linear cost (7, right) is addressed using the Poisson equation [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], which is linear in both the Riemannian and Randers setting. There are alternative numerical approaches to Monge's optimal transport problem, such as [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF] which uses a second order cone program, see Remark 5.2.

Contributions. We establish that the solution to a linear second order PDE converges, as a relaxation parameter ε → 0 and after a logarithmic transformation, to the Randers distance from the domain boundary. We propose a finite difference discretization of that linear PDE, on a Cartesian grid of scale h, and establish convergence of the numerical solutions as ε → 0 and h/ε → 0, with optimal consistency when ε = h

Outline. We recall in §2 the definition of Randers distances and introduce an extension of Varadhan's formula to Randers manifolds. We describe the coefficients of (3) in terms of the Randers metric [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF], and prove the convergence result [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF].

We study in §3 the linear finite-difference scheme [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. We show that a logarithmic transformation of the solution (6) solves another nonlinear scheme, for which we prove convergence and consistency with the non-linear PDE [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF]. We also discuss heuristic techniques introduced in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] to improve the numerical accuracy of the geodesic distance approximation, and extend them to Randers metrics.

We address in §4 the computation of the geodesic distance from a point source, and in §5 the discretization of the optimal transportation problem [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF], extending [START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF] which is limited to Riemannian distance costs.

Finally, we illustrate in §6 our results with numerical experiments, devoted to the computation of Randers distances and of the corresponding geodesic paths, and to the solution of the optimal transport problem (7) on a Randers manifold.

Remark 1.1 (Applications of Randers metrics). Randers metrics are arguably the simplest model of a non-symmetric metric [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF], often referred to as a quasi-metric, see Remark 1.3. They play a key role in Zermelo's problem [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF] of path planning subject to a drift, see §2.2, but also have numerous independent applications, of which we can only give a glimpse here. The common feature of these applications is that the paths are naturally endowed with an orientation.

The boundary of a simply connected image region, oriented counterclockwise, minimizes the classical Chan-Vese segmentation functional iff it is a minimal geodesic for a suitable Randers metric, leading to a robust numerical optimization method [START_REF] Cohen | Finsler Geodesics Evolution Model for Region based Active Contours[END_REF]. The Euler-Mumford elastica minimal path model, whose cost is defined by integrating the squared curvature (plus a constant), is a limiting case of a Randers model, which allows the numerical computation of global minimizers with applications to tubular structure extraction in images [START_REF] Chen | Global Minimum for a Finsler Elastica Minimal Path Approach[END_REF]. Quantum vortex filaments, in a suitable limit and under appropriate assumptions, follow Randers geodesics, where the asymmetric part of the metric is derived from the magnetic field [START_REF] Alama | On the Ginzburg-Landau model of a superconducting ball in a uniform field[END_REF]. Finally, let us mention that Randers metrics were introduced in the context of general relativity, where the trajectory orientation stems from the time coordinate induced by the Minkowski space-time quadratic form [START_REF] Randers | On an Asymmetrical Metric in the Four-Space of General Relativity[END_REF]. Remark 1.2 (Advantages of linear schemes for distance map computation). Distance maps are ubiquitous in mathematics and their applications, and a variety of approaches have been proposed for their numerical computation [START_REF] Crane | A Survey of Algorithms for Geodesic Paths and Distances[END_REF], including Randers distances [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF]. The use of a linear PDE (3), is here largely motivated by its application to the optimal transport problem [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF], but this approach has other advantages, see [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] for a more detailed discussion:

• (Ease of implementation) While we limit here our attention to domains discretized on Cartesian grids, geodesic distance computation also makes sense on manifolds presented as triangulations [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], patch based surfaces, etc. In that context, discretizing the non-linear PDE (5) can be challenging, whereas standard tools are often available for linear PDEs such as [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF].

• (Computation speed) Factorization techniques for sparse linear systems of equations are a subject of continued research, including non-symmetric Laplacian-like operators [START_REF] Michael B Cohen | Solving directed laplacian systems in nearly-linear time through sparse LU factorizations[END_REF] which are closely related to [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. Once this linear system is factored, it can be solved for a modest cost with a large number of right-hand sides, for instance to compute all pairwise Randers distances within a set of points, or when addressing the optimal transport problem (7) using Sinkhorn's matrix scaling algorithm as described in §5.

Elements of Randers geometry

A Randers metric is defined as the sum of a Riemannian metric, and of a suitably bounded linear term [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF]. We present in §2.1 these geometrical objects in more detail, making connections with Zermelo's navigation problem in §2.2, see [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF] for a review. The eikonal equation ( 5) is discussed in §2.3, and its linear variant (3) in §2.4. We establish in Theorem 2.12 the existence of a solution u ε to the linear PDE (3), and the convergence of u ε := -ε ln u ε to the value function of the arrival time problem (4) as the relaxation parameter ε > 0 vanishes. The proof, based on the theory of viscosity solutions to degenerate elliptic PDEs, is postponed to Appendix A. Before specializing to the case of Randers geometry, we briefly recall here the generic or Finslerian definition of a non-symmetric norm, dual-norm, metric, and path-length distance, and some of their elementary properties.

Definition 2.1. A function F : R d → R + is a norm iff it is convex, positively 1-homogeneous,
and vanishes only at the origin. The dual norm

F * : R d → R + is defined for all v ∈ R d by F * (v) := max{ v, w ; w ∈ R d , F (w) ≤ 1}. ( 8 
)
Note that Definition 2.1 implies the triangular inequality, since 

1 2 F (v + w) = F ( v+w 2 ) ≤ 1 2 (F (v)+F (w)) for any v, w ∈ R d ,
F * * = F identically on R d . Definition 2.3. A metric on a domain Ω ⊂ R d is a continuous map F : Ω × R d → R + , denoted (x, v) → F x (v), such that F x is a norm on R d for all x ∈ Ω.
The dual metric F * is defined pointwise from the dual norms. The related path length and distance are defined from (1) and denoted length F and dist F .

Let us emphasize that dist F (x, y) = dist F (y, x) in general, for x, y ∈ Ω, since norms and metrics are not assumed here to be symmetric. However the triangular inequality dist F (x, z) ≤ dist F (x, y) + dist F (y, z), and the separation axiom (dist F (x, y) = 0 iff x = y), hold for all x, y, z ∈ Ω under the conditions of Lemma 2.4 below. In the special case where F x = F is a constant metric, and [x, y] ⊂ Ω, one has dist F (x, y) = F (y -x).

Lemma 2.4 (Path-length distance). Let Ω ⊂ R d be a bounded connected domain with smooth boundary and equipped with a metric F. Then the extremum (1) defining dist F (x, y) is attained, for any x, y ∈ Ω, and defines a distance over Ω. Furthermore there exists 0 < c ≤ C such that c|x -y| ≤ dist F (x, y) ≤ C|x -y| for all x, y ∈ Ω.

Algebraic structure of Randers metrics

Randers norms are defined by analogy to Randers metrics (2), as the sum of a symmetric part defined from a symmetric positive definite matrix, and of an anti-symmetric linear part, subject to a compatibility condition.

Definition 2.5. A Randers norm F : R d → R d takes the form F (v) = |v| M + ω, v , where M ∈ S ++ d , and ω ∈ R d is subject to |ω| M -1 < 1.
The dual to a Randers norm also is a Randers norm, as shown in the following lemma, whose proof follows from the explicit expression established in [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF]Proposition 4.1] and the formula for the inverse of a 2 × 2 block matrix [START_REF] Lu | Inverses of 2x2 block matrices[END_REF].

Lemma 2.6 (Randers dual norm [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF]). The dual to a Randers norm F of parameters (M, ω) is also a Randers norm, of parameters (A, b) characterized by the following relation: denoting

α := 1 -ω, M -1 ω > 0, αA b b 1/α = M ω ω 1 -1 . (9) 
In the special case where ω = 0, one obtains A = M -1 , b = 0, and α = 1, recovering the well known fact that the dual to a Riemannian norm is also a Riemannian norm, defined by the inverse symmetric matrix. The positive definiteness, hence the invertibility, of the block matrix in (9, rhs) follows from the equivalences (11) below applied to (M, ω). The duality formula in [START_REF] Bonnans | Recherche opérationnelle. Aspects mathématiques et applications[END_REF] is only the first of a family of algebraic identities associated with Randers norms, presented in Lemma 2.7 below, and used to reformulate the PDEs (3) and [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF]. For that purpose, we need to introduce some notation. For any A ∈ S d , and any b ∈ R d we let

A b := A -bb . ( 10 
)
The Schur complement formula yields the following positive-definiteness equivalences: 

A b 0 ⇔ A b b 1 0 ⇔ (A 0 and |b| A -1 < 1). (11 
v ∈ R d |v| M + ω, v -1 ∝ |v| 2 Mω + 2 ω, v -1 ∝ |v -b| A -1 -1 (12) 
|v| A + b, v -1 ∝ |v| 2 A b + 2 b, v -1 ∝ |v -ω| M -1 -1 , (13) 
where x ∝ y means that sign(x) = sign(y), with sign : R → {-1, 0, 1} the sign function.

Proof. Note that the second line can be deduced from the first one, by exchanging the role of the Randers norm and of its dual norm. The positive definiteness of A b and M ω follows from [START_REF] Bonnans | Monotone and second order consistent scheme for the two dimensional Pucci equation[END_REF] and Definition 2.5. Under the assumptions of the lemma, one has the equivalences

|v| M + ω, v -1 ≤ 0 ⇔ |v| M ≤ 1 -ω, v ⇔ |v| 2 M ≤ (1 -ω, v ) 2 ⇔ |v| Mω + 2 ω, v -1 ≤ 0,
and likewise with strict inequalities, which implies (12, left equivalence). The only difficulty lies in the reverse implication of the second equivalence: we must exclude the case where |v| M ≤ ω, v -1, and indeed this is in contradiction with

| ω, v | ≤ |ω| M -1 |v| M < |v| M + 1 since |ω| M -1 < 1 by assumption.
Denoting by F the Randers norm of parameters M, ω, and by F * the dual norm, one has

|v -b| A -1 ≤ 1 ⇔ ∀w, w, v -b ≤ |w| A ⇔ ∀w, w, v ≤ |w| A + b, w := F * (w) ⇔ F (v) ≤ 1,
where implicitly w ∈ R d . In the last equivalence we used

F (v) = F * * (v) = max{ v, w ; F * (w) ≤ 1}.
A similar equivalence can be obtained with strict inequalities for any w = 0, which concludes the proof of (12, right equivalence) and of this lemma.

Zermelo's navigation problem

Zermelo [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF] considers a vehicle able to move at speed at most c(x) ∈ R ++ relative to a given medium, which itself is subject to a drift η(x) ∈ R d , where x ∈ Ω is the position. Typically, the vehicle is described as a boat subject to water currents, or as a flying object subject to air currents. The set admissible absolute velocities v at the point x is thus characterized by the following relation

|v -η(x)| ≤ c(x). (14) 
Given two endpoints x, y ∈ Ω, Zermelo's navigation problem asks for the smallest time T = T η c (x, y) ≥ 0 such that there exists γ ∈ Lip([0, T ], Ω) obeying |γ (t) -η(γ(t))| ≤ c(γ(t)) for a.e. t ∈ [0, T ], and γ(0) = x, γ(T ) = y. In other words, T η c (x, y) is the minimal time from x to y subject to the velocity constraints [START_REF] Chen | Global Minimum for a Finsler Elastica Minimal Path Approach[END_REF].

The vehicle described by Zermelo's problem is locally controllable at x ∈ Ω iff |η(x)| < c(x), in other words iff the drift velocity norm is smaller than the maximum relative vehicle speed. The following classical result [START_REF] Bao | Zermelo navigation on Riemannian manifolds[END_REF] shows that, under this assumption, Zermelo's problem can be reformulated as a Randers minimal path problem. Proof. Let M : Ω → S ++ d and ω : Ω → R d be parameters of the Randers metric F. The distance dist F (x, y) is the smallest time T for which there exists a path γ ∈ Lip([0, T ], Ω) obeying

1 ≥ F γ(t) (γ (t)) := |γ (t)| M (γ(t)) + ω(γ(t)), γ (t) for a.e. t ∈ [0, T ],
and γ(0) = x, γ(T ) = y. Indeed, this follows from the definition (1) and by reparametrization of any Lipschitz path at unit speed w.r.t. the metric F. From this point, the announced result follows from the equivalence of [START_REF] Chen | Global Minimum for a Finsler Elastica Minimal Path Approach[END_REF], established in [START_REF] Oscar | Spatially dispersionless, unconditionally stable FC-AD solvers for variable-coefficient PDEs[END_REF].

1 ≥ F x (v) := |v| M (x) + ω(x), v with

The Eikonal equation

Consider a domain Ω, equipped with a Randers metric F with Lipschitz coefficients on Ω, and a penalty function g ∈ C 0 (∂Ω, R). We are interested in the following value function u : Ω → R, corresponding to the minimal time to reach x ∈ Ω from a boundary point p ∈ ∂Ω, with initial time penalty g(p):

u(x) := min p∈∂Ω g(p) + dist F (p, x). (15) 
We prove in Theorem A.9 that (15) is a viscosity solution, see Definition A.2, to the first order non-linear PDE

F * x (∇u(x)) = 1 for all x ∈ Ω, u(x) = g(x) for all x ∈ ∂Ω. (16) 
The boundary condition u = g on ∂Ω is satisfied in a strong sense if g(x) ≤ g(p) + dist F (p, x) for all x, p ∈ ∂Ω, but in the weak sense of Definition A.2 otherwise. The comparison principle Theorem A.8 implies that the viscosity solution is uniquely determined in Ω.

Corollary 2.9. If F is a Randers metric of parameters M, ω, and dual parameters A, b, then the eikonal PDE (16, left) admits the following three equivalent formulations in Ω in the sense of viscosity solutions

|∇u| A + ∇u, b = 1, |∇u| 2 A b + 2 ∇u, b = 1, |∇u -ω| M -1 = 1. (17) 
Proof. The equation F * x (∇u(x)) = 1 is a shorthand for (17, left) at x ∈ Ω, see Definition 2.5 of a Randers norm. It is equivalent to (17, center and right) by [START_REF] Casas | Control of an elliptic problem with pointwise state constraints[END_REF].

In applications, computing the value function [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF] is often only a means to obtain the globally optimal path γ from ∂Ω to an arbitrary point x * ∈ Ω. This path can be extracted by solving, backwards in time, the following Ordinary Differential Equation (ODE), see e.g. [START_REF] Duits | Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis[END_REF]Appendix C] 

γ (t) = V (γ(t)),
where V (x) := dF * x (∇u(x))

for all x ∈ Ω. The ODE needs to be solved on the interval [0, T ] where T = u(x * ), with terminal condition γ(T ) = x * . By dF * x (w) we denote the derivative of F * x w.r.t. the variable w, where x ∈ Ω is fixed.

Corollary 2.10. The following expressions are positively proportional to the geodesic flow V defined by (18, right), at all points where u is differentiable

A∇u |∇u| A + b, A b ∇u + b, M -1 (∇u -ω). (19) 
Proof. Fix a point x ∈ Ω where u is differentiable, and denote v := ∇u(x). Introduce the Randers norm F * = F * x whose parameters are denoted A ∈ S ++ d and b ∈ R d , in such way that F * (v) = 1 by [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF]. Differentiating F * (v) = |v| A + b, v we obtain dF * (v) = Av/|v| A + b which yields (19, left). The three expressions (13) vanish, and their respective gradients w.r.t. v are

g 1 := Av/|v| A + b, g 2 := 2(A b v + b) and g 3 := M -1 (v -ω)/|v -ω| M -1 . These gradients are non-zero since v, g 1 = F * (v) = 1, v, g 2 = 1 + |v| 2 A b ≥ 1 and v -ω, g 3 = |v -ω| 2 M -1 = 1.
Since g 1 , g 2 and g 3 are orthogonal to the same level set, and point outward of it, they are positively proportional. The result follows.

Varadhan's formula

Varadhan's formula is based on a logarithmic transformation of the unknown [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF], also known as the Hopf-Cole transformation2 see [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF] and Remark 2.14, which turns the linear PDE [START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] into the non-linear PDE [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. The point of this transformation is that, with a proper scaling of the unknown and of the PDE coefficients, a relaxation parameter ε > 0 is eliminated from the boundary conditions and from all the PDE coefficients except one, of principal order. Lemma 2.11 (Logarithmic transformation). Let ε > 0, and let u ε be a viscosity solution to

u + 2ε ∇u, b -ε 2 Tr(A b ∇ 2 u) = 0 in Ω, u = exp(-g/ε) on ∂Ω, (20) 
where Ω ⊂ R d is a smooth bounded domain, A b : Ω → S ++ d and b : Ω → R d are Lipschitz, and ε > 0. Then u ε := -ε ln u ε is a viscosity solution to the PDE

|∇u| 2 A b + 2 ∇u, b -ε Tr(A b ∇ 2 u) = 1 in Ω, u = g on ∂Ω. (21) 
Lemma 2.11 is an immediate consequence of Corollary A.5 established in Appendix A. For later convenience, we introduce the following PDE operators on the domain Ω

L ε u := u + 2ε ∇u, b -ε 2 Tr(A b ∇ 2 u), S ε u := |∇u| 2 A b + 2 ∇u, b -ε Tr(A b ∇ 2 u) -1, (22) 
and observe that, formally, one has

S ε u = -e u ε L ε (e -u ε ).
The following result relies on the framework of viscosity solutions to take the limit ε → 0 in S ε , letting the second order "viscous" term -ε Tr(A b ∇ 2 u) vanish, and recovering in the limit a first order non-linear equation equivalent to the Randers eikonal equation, see Corollary 2.9. Theorem 2.12 (Vanishing viscosity limit). The PDE (20) admits a unique viscosity solution in Ω. In addition u ε := -ε ln u ε converges locally uniformly in Ω to the value function [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF], associated with the Randers metric F whose dual metric F * has parameters (A, b).

The elements of proof relying on the concept of viscosity solutions are postponed to Appendix A. In particular, uniqueness of the solution to [START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] follows from the comparison principle Proposition A.7, see [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]. Convergence as ε → 0 is established in Theorem A.12. We limit our attention here to the existence of a solution to [START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF], which is based on the interpretation of u ε as an expectation of a cost associated with a stochastic process, see Remark 2.13 for an alternative proof. Fix ε > 0, and introduce the stochastic process (X x,ε t ) t≥0 defined as

dX x,ε t = -2εb(X x,ε t ) dt + ε 2A b (X x,ε t ) dW t , X x,ε 0 = x, (23) 
where (W t ) t≥0 is a d-dimensional Wiener process. Define also the exit time τ x,ε by

τ x,ε := inf {t ≥ 0; X x,ε t ∈ Ω}.
Since Ω is bounded, and A b is positive definite, the exit time τ x,ε is almost surely finite. Thus X x,ε t is a Brownian motion starting at x, with drift 2εb, and whose fluctuations are scaled by ε √ 2A b . According to the Feynman-Kac formula, see Theorem A.11 in Appendix A, the following expectation is the unique solution to the PDE (20)

u ε (x) = E exp -τ x,ε - g(X x,ε τ x,ε ) ε . (24) 
In particular, u ε is positive. In the framework of the stochastic approach, Theorem 2.12 expresses the convergence as ε → 0 of the following soft-minimum

u ε (x) = -ε ln E exp -τ x,ε - g(X x,ε τ x,ε ) ε , (25) 
towards the minimum (15) defining the value function u. The heuristic interpretation is that the random paths [START_REF] Crane | A Survey of Algorithms for Geodesic Paths and Distances[END_REF] whose contribution to the expectancy value ( 25) is non-negligible, concentrate as ε → 0 along a minimal geodesic for [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF]. 

ε := b -ε 2 div(A b )
. This small perturbation is easily handled in the setting of viscosity solutions, and the same limit (4) is obtained as ε → 0. The divergence form Laplacian is often preferred in applications [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] since it is simpler to implement numerically on some geometries, such as triangulated surfaces using finite elements.

We discuss in the following how the divergence form variant leads, under suitable assumptions, to an alternative and perhaps more elementary proof of the wellposedness of [START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF]. On the other hand, the proof based on the stochastic expectancy formula (25) benefits an illuminating interpretation in terms of random paths which concentrate along geodesics as ε → 0, and fits in the framework of viscosity solutions which is ideally suited to study the vanishing viscosity limit.

Following [28, Section 3.1, Theorem 3.8 (i)], which is based on the Lax-Milgram theorem, the elliptic PDE Choosing σ = ε 2 A b , b := 2εb, µ = 1, f = 0, and g = exp(-g/ε), we see that p = 1 + O(ε) and σ 0 ≥ cε 2 and for some c > 0. Therefore (26, left) is fulfilled for sufficiently small ε > 0, which establishes the wellposedness of the variant of [START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] where Tr(A b ∇ 2 u) is replaced with div(A b ∇u).

-div(σ∇u) + b, ∇u + µu = f in Ω, u = g on ∂Ω is well posed when the coefficients σ ∈ L ∞ (Ω, S ++ d ), b ∈ L ∞ (Ω, R d ), µ ∈ L ∞ (Ω), f ∈ L 2 (Ω), g ∈ H
Choosing instead b = 2εb -ε 2 div(A b ) we obtain the wellposedness of (20) under the additional assumption div(div A b ) ∈ L ∞ (Ω). Once the existence of a solution to (20) is established, Schauder estimates imply that it is classical and belongs to C 2,α for any α ∈ [0, 1[, and thus in particular the viscosity and the variational solutions coincide. 

∂ t v + v, ∇ v = ν∆v, (27) 
with suitable initial and boundary conditions, and where ν ≥ 0 is known as the inverse Reynolds number. If ν = 0 then discontinuous solutions can be obtained in finite time from smooth initial conditions, and entropy conditions must be imposed to single out the correct physical solution [START_REF] De Lellis | Minimal entropy conditions for Burgers equation[END_REF]. The Hopf-Cole linearization of Burgers equation assumes that (i) ν > 0, and (ii-a) the dimension is d = 1 [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF], or (ii-b) the flow v is irrotational [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF] (this property is formally conserved over time by solutions of Burgers equation ( 27)). In that case there exists a potential u : R + × Ω → R such that v = ∇u, and obeying the following time-dependent Hamilton-Jacobi PDE

∂ t u + 1 2 |∇u| 2 = ν∆u. (28) 
This evolution equation is closely related to the static PDE (21) of interest in this paper. The PDE (28) is formally equivalent to the linear heat PDE, similarly to Lemma 2.11 and under the assumption that ν > 0, using the following logarithmic change of variables:

∂ t u = ∆u, where u := -2ν ln u. (29) 
Conversely, any solution to the heat equation ( 29) yields an irrotational solution to Burgers equation, thus producing a variety of explicit analytical solutions to this non-linear PDE [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF]. The Hopf-Cole transformation can also be used as a numerical tool to solve [START_REF] Duits | Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis[END_REF], either addressing the heat equation (29) via the Fast Fourier transform, or using more elaborate schemes intended to achieve stability in the vanishing viscosity limit as ν → 0 [START_REF] Ohwada | Cole-Hopf transformation as numerical tool for the Burgers equation[END_REF][START_REF] Kannan | A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation[END_REF]. The PDE solution obtained in the vanishing viscosity limit ν → 0 is studied in detail in the seminal paper [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF], and can be characterized by entropy conditions whose analysis [START_REF] De Lellis | Minimal entropy conditions for Burgers equation[END_REF] often relies on the HJB reformulation [START_REF] Ern | Theory and practice of finite elements[END_REF] and on the concept of viscosity solution.

Throughout this section, we denote by h > 0 the grid scale of the Cartesian discretization grid, which is fixed unless otherwise specified, and we define the discrete domain as

Ω h := Ω ∩ hZ d , Ω h := Ω h ∪ ∂Ω. (30) 
In our application, the values of u on ∂Ω are given by the Dirichlet boundary conditions, and the numerical implementation does not treat them as unknowns. For any u : Ω h → R, any x ∈ Ω h and any e ∈ Z d , we define the first order and second order centered finite differences operators as follows: assuming

[x -he, x + he] ⊂ Ω δ e h u(x) := u(x + he) -u(x -he) 2h , ∆ e h u(x) := u(x + he) -2u(x) + u(x -he) h 2 . ( 31 
)
If x is adjacent to ∂Ω, then (31) may involve values outside the domain Ω h , and thus be ill-defined.

In order to address this issue, we consider u : Ω h → R which is also defined on the domain boundary. The following finite difference expressions make sense for arbitrary x ∈ Ω h , e ∈ Z d , and they reduce to (31

) if [x -he, x + he] ⊂ Ω: δ e h u(x) := 1 2 u(x + h e x e) -u(x) h e x - u(x -h -e x e) -u(x) h -e x , (32) 
∆ e h u(x) := 2 h e x + h -e x u(x + h e x e) -u(x) h e x + u(x -h -e x e) -u(x) h -e x , (33) 
where we denoted

h e x := min{η > 0; x + ηe ∈ Ω h }. (34) 
Note that h e x ∈]0, h] by construction. If u ∈ C 4 (Ω) then one has the consistency relation

δ e h u(x) = ∇u(x), e + O(h r ), ∆ e h u(x) = e, ∇ 2 u(x)e + O(h r ),
where r = 2 if [x -he, x + he] ⊂ Ω, and r = 1 otherwise. In the next proposition we obtain, by linear combination, consistent finite differences approximations of linear PDE operators of order one and two.

Proposition 3.1. Let D ∈ S d , and let ω ∈ R d . Consider weights ρ i and offsets e i ∈ Z d , for all

1 ≤ i ≤ I, such that D = 1≤i≤I ρ i e i e i . (35) 
Then for u ∈ C 4 (Ω) and x ∈ Ω h one has

1≤i≤I ρ i δ e i h u(x) e i = D∇u(x) + O(h r ), 1≤i≤I ρ i ∆ e i h u(x) = Tr(D∇ 2 u(x)) + O(h r ), ( 36 
)
where r = 2 if [x -he i , x + he i ] ⊂ Ω for all 1 ≤ i ≤ I, and r = 1 otherwise.

As an immediate application, we define a finite difference discretization L ε h of the linear operator L ε defined in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]. For any u : Ω h → R we let

L ε h u := u + 2ε 1≤i≤I ρ i A -1 b b, e i δ e i h u -ε 2 1≤i≤I ρ i ∆ e i h u, (37) 
with boundary condition u = exp(-g/ε) on ∂Ω. The weights ρ i = ρ i (x) and offsets e i = e i (x), 1 ≤ i ≤ I, provide a decomposition of the matrix A b = A b (x) in the sense of [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF]. Note that for the schemes [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] to be well-defined, it is crucial that the offsets involved in [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF] have integer coordinates, and therefore the similar looking eigenvalue-eigenvector decomposition typically cannot be used since it involves arbitrary unit vectors. Obtaining a suitable decomposition is thus non-trivial in general, and it is also not unique. We rely in this paper on Selling's decomposition, which is defined in dimension d ∈ {2, 3}, and has the additional benefit of producing non-negative weights (ρ i ) 1≤i≤I and thus a discrete degenerate elliptic scheme, see §3.1 below.

Remark 3.2 (Approximation of the gradient, improved reconstruction, following [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]). The proof techniques used in this paper establish the uniform convergence of u ε h = -ε ln u ε h as (ε, h/ε) → 0, but unfortunately say nothing of its gradient. Therefore, the gradient reconstruction techniques presented below should be only regarded as heuristics. The geodesic backtracking method used in the numerical experiments §6, which is based on [START_REF] Cohen | Finsler Geodesics Evolution Model for Region based Active Contours[END_REF] and this gradient estimation, likewise does not come with any theoretical guarantee unfortunately.

An approximate gradient V ε h : Ω h → R d of the solution u ε h of (37) can be estimated using (36, left):

V ε h (x) := A b (x) -1 1≤i≤I ρ i δ e i h u ε h (x)e i , V ε h (x) := -V ε h (x) |V ε h (x)| A(x) -b(x), V ε h (x) , (38) 
The vector field V ε h is meant to approximate the gradient of Randers distance u from the boundary (4): it is negatively proportional to V ε h , reflecting the fact that logarithmic transformation is decreasing, and is normalized consistently with Randers eikonal equation ( 16). An empirical observation of [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], in the context of isotropic and Riemannian metrics which are special cases of Randers metrics (and using a different discretization), is that V ε h is for suitable parameters h, ε an excellent approximation of ∇u. In particular, it can be used for geodesic backtracking via [START_REF] Cohen | Finsler Geodesics Evolution Model for Region based Active Contours[END_REF] and [START_REF] Michael B Cohen | Solving directed laplacian systems in nearly-linear time through sparse LU factorizations[END_REF]. Following [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] we may also obtain an empirically improved reconstruction v ε h : Ω h → R of the Randers distance by minimizing

x∈Ω h 1≤|i|≤I ρ i δ e i h v(x) -e i , V ε h (x) 2 , ( 39 
)
which is consistent with 2 Ω |∇v -V ε h | 2 A b
, where ρ -i := ρ i and e -i := e i for all 1 ≤ i ≤ I, and where the first order upwind finite difference δ e h is defined in [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF]. Equations (38, left) and (39) also make sense if one replaces the weights and offsets (ρ i , e i ) I i=1 and matrix A b used in the numerical scheme [START_REF] Lu | Inverses of 2x2 block matrices[END_REF], with unit weights and the canonical basis and the identity matrix. However, the latter (and simpler) choice yields slightly less accurate results empirically as evidenced in our numerical experiments §6. In Figs. 4 and5 we refer to these post-processed distance maps as u A b h and u I 2 h respectively. Remark 3.3 (Alternative discretizations, including finite elements). At the foundation of this paper is a second order linear PDE (3), an anisotropic variant of the static convection diffusion equation, which can be discretized using a variety of methods. Those eventually lead to a linear system of equations Lu = r, where L is a matrix of shape N × N , denoting by N the number of discretization points. The r.h.s. r ∈ R N is non-negative and accounts for the boundary condition exp(-g/ε) on ∂Ω as in (3), or for an arbitrary point source in Ω as in §4. For our application to geodesic distance computation using the Hopf-Cole logarithmic change of variables, a basic necessity is that the solution u ∈ R N is positive. This is best ensured if L -1 has positive entries, which itself is ensured if L is a nonsingular M -matrix. The numerical scheme proposed in this paper uses Selling's decomposition of the matrix field A b , see Theorem 3.9, to achieve discrete degenerate ellipticity (DDE), see Definition 3.4, which implies the M -matrix property as desired. Keeping in mind the M -matrix requirement, let us consider some alternative discretization methods.

• Finite elements yield an M -matrix, for the two dimensional usual Laplacian operator, if the triangulation has acute interior angles. For the anisotropic Laplacian div(A b ∇u) the geometric condition becomes v

1 -v 0 , M(v * )(v 2 -v 0 ) ≥ 0 where M := A -1 b , v 0 , v 1 , v 2
are the vertices of an arbitrary triangle of the mesh, and v * := (v 0 + v 1 + v 2 )/3 is its barycenter. Generating a mesh of a domain Ω obeying this acuteness condition w.r.t. a varying metric M : Ω → S ++ d is a challenging problem. The established guarantees are far from this objective [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF], and there are likely obstructions to the corresponding three dimensional problem. Interestingly, in the special case where the set of vertices is a two dimensional Cartesian grid, the discretized Dirichlet energy defined by finite elements on the anisotropic triangulation of [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF] is equivalent to the energy associated to a finite differences scheme using Selling's offsets [START_REF] Fehrenbach | Sparse non-negative stencils for anisotropic diffusion[END_REF]Theorem 1] as in this paper, showing that the two adaptive discretization procedures are closely related.

• Narrow stencil finite differences schemes use a fixed set of neighbors on the Cartesian grid. These methods in general cannot produce DDE discretizations of the anisotropic laplacian div(A b ∇u) or Tr(A b ∇u) when the anisotropy of A b is pronounced and is not aligned with the coordinate axes. This obstruction holds even if A b is constant. For instance the DDE property may be achieved with the common two dimensional eight point stencil, only if

A b A -1 b ≤ (1 + √ 2)
2 under a general anisotropy orientation. In addition, [START_REF] Mirebeau | Minimal stencils for discretizations of anisotropic PDEs preserving causality or the maximum principle[END_REF]Theorem 1.3] shows that Selling's decomposition yields the narrowest possible stencil (in two dimensions, and in the sense of convex hull inclusion) ensuring the DDE property.

• Wide stencil semi-lagrangian schemes [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] use finite differences over an intermediate scale

k such that h k 1, often k ≈ √ h.
They obey the DDE property, and bypass Selling's decomposition. However these methods suffer from a low order consistency with the PDE, and slow convergence rates of the solution, making them ill suited for applications.

Finally, let us acknowledge that the requirement that L -1 has positive entries can empirically be alleviated if one is willing to replace the point source with a small Gaussian distribution, or to use the heat method of Remark 4.5 which only requires that L -n has positive entries for a sufficiently large number n of time steps. However the latter is more costly due to the time dependency, is limited to Riemannian metrics, and no convergence analysis under mesh refinement has been published to our knowledge. Numerical experiments using the heat method, based on finite elements on surface meshes with some badly shaped triangles, are presented in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF].

Discrete degenerate ellipticity

Discrete degenerate ellipticity is a counterpart to the degenerate ellipticity property of Hamilton-Jacobi-Bellman PDE operators [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], which is at the foundation of the theory of viscosity solutions, see Definition A.1. Definition 3.4 (Discrete degenerate ellipticity [START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF]). Let X be a finite set, and let U := R X . A (finite difference) scheme on X is a function F : U → U. Such a function can be written in the form F u(x) := F (x, u(x), (u(x) -u(y)) y∈X\{x} ), and the scheme is said discrete degenerate elliptic (DDE) if F is non-decreasing w.r.t. the second variable, and w.r.t. the third variable componentwise. The scheme is said elliptic if u → F u -λu is degenerate elliptic for some λ > 0.

Similarly to its continuous counterpart, discrete ellipticity implies a comparison principle, used in the proof of the existence and uniqueness of solutions to discretized PDEs, and of their convergence to the continuous solutions as the grid scale is refined §3.3. For completeness, we present the proof of two basic but fundamental properties of discrete elliptic operators, see e.g. [START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF] for additional discussion. Lemma 3.5 (Discrete comparison principle). Let F be an elliptic finite differences scheme on a finite set X, and let u, v :

X → R. If F u ≤ F v on X, then u ≤ v on X. Proof. Let x * ∈ X be such that u(x * ) -v(x * ) is maximal, so that u(x * ) -u(y) ≥ v(x * ) -v(y) for all y ∈ X. Assume for contradiction that u(x * ) > v(x * ), otherwise the result is proved. Then, by discrete degenerate ellipticity of F -λ Id, we obtain F u(x * ) -λu(x * ) ≥ F v(x * ) -λv(x * ), thus 0 < λ(u(x * ) -v(x * )) ≤ F u(x * ) -F v(x * ) ≤ 0, which proves the result by contradiction.
We say that u is a sub-solution (resp. super-solution, resp. solution) of the scheme F , if F u ≤ 0 (resp. F u ≥ 0, resp. F u = 0) on X.

Corollary 3.6 (Solution to elliptic linear operators). If F is an affine (i.e. linear plus constant) and elliptic scheme on a finite set X, then there exists a unique solution u : X → R to F u = 0.

Proof. If F u = F v on X then u = v, by Lemma 3.5. Thus F : R X → R X is injective, hence by linearity it is bijective, and there exists a unique solution to F u = 0.

The finite difference schemes [START_REF] Houston | The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin's method[END_REF], [START_REF] Kannan | A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation[END_REF], and (37) considered in this paper formally involve a function defined on the uncountable set Ω h = Ω h ∪ ∂Ω, which does not comply with the finiteness assumption in Definition 3.4. However this obstruction is only superficial, since only finitely many boundary values of u are actually involved these schemes, for any given h > 0. Alternatively, one may consider the Dirichlet boundary values of u as given constants rather than unknown variables in the scheme.

The simplest DDE operator is the opposite -δ e h of the upwind finite difference δ e h on Ω h , where h > 0 and e ∈ Z d , which is defined as

δ e h u(x) := u(x + he) -u(x) h . (40) 
The operator δ e h is modified similarly to (32) and ( 33) if [x, x + he] ⊂ Ω, and is first order consistent with a directional derivative: for any u : Ω h → R and any

x ∈ Ω h δ e h u(x) := u(x + h e x e) -u(x) h e x , δ e h u(x) = e, ∇u(x) + O(h). (41) 
The opposite -∆ e h of the second order finite difference operator ∆ e h is also DDE. The centered finite difference operator δ e h is not DDE, but linear combinations with ∆ e h whose coefficients have suitable signs and obey suitable bounds satisfy this property, as shown in the next lemma. For that purpose, we observe the relations

∆ e h u(x) = 2 h e x + h -e x δ e h u(x) + δ -e h u(x) , δ e h u(x) = 1 2 δ e h u(x) -δ -e h u(x) . ( 42 
)
Lemma 3.7. Let e ∈ Z d , and h > 0. The finite difference scheme -∆ e h is unconditionally DDE, and the linear combination µδ e h -λ∆ e h is DDE when h|µ| ≤ 2λ.

Proof. In view of (42) one has the equality of schemes µδ e h -λ∆ e h = -αδ e h -βδ -e h , where α :

X → R is defined by α(x) := 2λ/(h e x + h -e x ) -µ/2 which is non-negative if h|µ| ≤ 2λ, since 0 < h ±e x ≤ h. Likewise β(x) := 2λ/(h e x + h -e x ) + µ/2 ≥ 0 if h|µ| ≤ 2λ.
We conclude by observing that DDE schemes form a cone: linear combinations with non-negative coefficients of DDE schemes are DDE.

Corollary 3.8. The finite difference scheme L ε h defined by (37) is elliptic, with λ = 1, if ρ i ≥ 0 and h| A -1 b b, e i | ≤ ε for all 1 ≤ i ≤ I. Proof. Under these assumptions, the finite difference scheme u → L ε h u -u is the sum of the finite difference operators ερ i (2µ i δ

e i h u -ε∆ e i h )
where µ i = A -1 b b, e i , for all 1 ≤ i ≤ I. By Lemma 3.7, which applies regardless of the fact that ρ i and e i depend on the point x ∈ Ω h , each of these elementary operators is DDE when

ρ i ≥ 0 and h|µ i | ≤ ε. Hence L ε h -Id is DDE, and therefore L ε h is elliptic with λ = 1 by Definition 3.4.
As announced in the introduction of this section, and in order to benefit from Lemma 3.5 and Corollary 3.6, we do want the discrete operator L ε h to be DDE. For that purpose, we introduce Selling's decomposition [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF][START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] of a positive definite matrix D ∈ S ++ d , where d ∈ {2, 3}, which is efficiently computable numerically via Selling's algorithm. In view of their key role in our numerical scheme, Selling's constructions and some of their properties are presented in more detail in Appendix B. Theorem 3.9 (Selling [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF], this version [START_REF] Mirebeau | Fast-marching methods for curvature penalized shortest paths[END_REF]). Let D ∈ S ++ d , where d ∈ {2, 3}. Then there exists non-negative weights ρ i ≥ 0, and offsets e i ∈ Z d , where

1 ≤ i ≤ I := d(d + 1)/2, such that D = 1≤i≤I ρ i e i e i , |e i | ≤ 2C d µ(D), ∀1 ≤ i ≤ I,
where C 2 = 2, C 3 = 2 √ 3, and µ(D) := D D -1 is the anisotropy ratio of D.

In the rest of this section, we assume that the weights and offsets (ρ i (x), e i (x)) I i=1 used to define the scheme L ε h , see [START_REF] Lu | Inverses of 2x2 block matrices[END_REF], are obtained from Selling's decomposition of the matrix A b (x), for all x ∈ Ω h . For the sake of readability, the dependency of ρ i and e i w.r.t. the base point x is often left implicit in the equations. The following proposition, stated without proof, immediately follows from Corollary 3.8 and Theorem 3.9.

Proposition 3.10. The scheme L ε h is elliptic provided that Ch ≤ ε, where

C := 2C d max x∈Ω µ(A b (x)) |A -1 b (x)b(x)|.
The construction of finite difference schemes for linear and semi-linear PDEs using Selling's algorithm, and the compatibility conditions ensuring the DDE property, are discussed in more detail in [START_REF] Frédéric Bonnans | Second order monotone finite differences discretization of linear anisotropic differential operators[END_REF]. More precisely, it is shown that Selling's decomposition yields an optimal finite differences discretization of linear second order operators such as L ε , in the sense that the stencil envelope Hull{±e i ; 1 ≤ i ≤ I} is the smallest possible one (in dimension d = 2), and that the restriction on the grid scale h in Corollary 3.8 is the weakest possible (up to a fixed multiplicative constant, in dimension d ∈ {2, 3}), among all possible DDE and second order consistent discretizations. In contrast to [START_REF] Frédéric Bonnans | Second order monotone finite differences discretization of linear anisotropic differential operators[END_REF], the main focus of the present paper is not the characterization of the minimal conditions under which the DDE property holds : we rather provide a simple sufficient condition in Proposition 3.10, and then use the DDE property to establish the convergence of a numerical method.

Finally, let us mention an alternative discretization of the PDE operator L ε defined in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], using upwind finite differences for the first order term, which is unconditionally stable but has a lower consistency order

L ε,+ h u := u -2ε 1≤j≤d | b, f j |δ -σ j f j h u -ε 2 1≤i≤I ρ i ∆ e i h u, (43) 
where (f j ) d j=1 is the canonical basis of R d , and σ j is the sign of b, f j .

Logarithmic transformation

We use a logarithmic transformation of the unknown to study the convergence of the solutions to the discrete schemes ( 37) and ( 43) as the relaxation parameter ε and the grid scale h tend to zero suitably, mimicking the approach used in the continuous case, see §2.4. Our first step is to describe the effect of the logarithmic/exponential transformation on a finite difference scheme.

Proposition 3.11. Let h > 0 and ε > 0. Let F be a DDE scheme on Ω h , such that F u(x) is a linear function of u for all x ∈ Ω h , with boundary condition u = exp(-g/ε) on ∂Ω, where u : Ω h → R. We define the exponentially transformed scheme F ε as follows:

F ε u(x) := -e u(x) ε F e -u ε (x) (44) 
= F x, -1, exp u(x) -u(y) ε -1 y∈X\{x} ,
for any x ∈ Ω h , with boundary condition u = g on ∂Ω, where u : Ω h → R. The scheme F ε is DDE, and furthermore if u is a sub-solution (resp. super-solution) of F ε , then u := exp(-u/ε) is a super-solution (resp. sub-solution) of F .

Proof. The two expressions of F ε u(x) given in [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF], where x ∈ Ω h , are equivalent in view of the linearity of F . The discrete degenerate ellipticity of F ε follows from the same property of F , and from the fact that t ∈ R → exp(t/ε) -1 is non-decreasing.

Proposition 3.11 uses the scheme unknown transformation u = exp(-u/ε), in other words the inverse of the Hopf-Cole logarithmic transformation [START_REF] Hopf | The partial differential equation ut+ uux= µxx[END_REF], which is classical in the study of relations between the heat, Poisson, and eikonal equations [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF][START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]. Beware however that, since the mapping t → exp(-t/ε) is decreasing, it exchanges the notions of sub-solutions and super-solutions, as in the final statement of Proposition 3.11. The exponentially transformed upwind finite difference is denoted δ e,ε h , and reads

δ e,ε h u(x) = 1 h 1 -exp u(x) -u(x + he) ε , (45) 
where x ∈ Ω h , e ∈ Z d , and assuming [x, x + he] ⊂ Ω. Otherwise replace h with h e x in the above expression, see [START_REF] Komiya | Elementary proof for Sion's minimax theorem[END_REF]. The next lemma approximates [START_REF] Ohwada | Cole-Hopf transformation as numerical tool for the Burgers equation[END_REF] in terms of the derivatives of u. Lemma 3.12. Let u ∈ C 3 (Ω) and 0 < h ≤ ε ≤ 1. Then for any x ∈ Ω h , and bounded e ∈ Z d ,

δ e,ε h u(x) = 1 ε ∇u(x), e + h 2ε e, ∇ 2 u(x)e - h 2ε 2 ∇u(x), e 2 + h 2 6ε 3 ∇u(x), e 3 +O h 2 ε 2 + h 3 ε 4 , (46) 
assuming [x, x + he] ⊂ Ω. Otherwise, replace h with h ε x in the above expression.

Proof. The announced result immediately follows from [START_REF] Ohwada | Cole-Hopf transformation as numerical tool for the Burgers equation[END_REF] and the Taylor expansion 1exp(-s) = s -1 2 s 2 + 1 6 s 3 + O(s 4 ), where s is defined by εs = u(x + he) -u(x) = h ∇u(x), e + 1 2 h 2 e, ∇ 2 u(x)e + O(h 3 ).

The exponentially transformed second order and first order centered finite difference operators are denoted ∆ e,ε h and δ e,ε h , and their Taylor expansion is deduced from that of δ e,ε h via [START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF]. The assumption 0 < h ≤ ε ≤ 1 of Lemma 3.12 serves to eliminate spurious negligible terms in the Taylor expansion, and is asymptotically satisfied in convergence analysis Theorem 3.19 which requires ε → 0 and h/ε → 0. Note that if ε = O( √ h), as considered in Corollary 3.15 below, then the remainder in (46) (resp. ( 47) and ( 49) below) simplifies to O(h 3 /ε 4 ) (resp. O(h r /ε 2+r ) and O(h r /ε r )).

Corollary 3.13. Under the assumptions of Lemma 3.12, one has

∆ e,ε h u(x) = 1 ε e, ∇u(x)e - 1 ε 2 ∇u(x), e 2 + O h ε 2 + h r ε 2+r , (47) 
δ e,ε h u(x) = 1 ε ∇u(x), e + O h r ε 1+r
, where r = 2 if [x -he, x + he] ⊂ Ω, and r = 1 otherwise.

Proof. The operators ∆ e,ε h and δ e,ε h can be expressed in terms of the corresponding upwind finite difference operators δ ±e,ε h , similarly to their original counterparts [START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF]. The announced result follows by inserting the Taylor expansion obtained in Lemma 3.12. In the case where

[x -he, x + he] ⊂ Ω, the expansion of ∆ e,ε h = 1 h (δ e,ε h + δ -e,ε h
) benefits form the cancellation of the term ∇u(x), e 3 in ( 46) which is anti-symmetric w.r.t. e, and likewise the expansion of δ

e,ε h = 1 2 (δ e,ε h -δ -e,ε h
) benefits from the cancellation of the terms ∇u, e 2 and e, ∇ 2 u e in (46) which are symmetric w.r.t. e.

Consistently with the continuous case [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], we denote by S ε h the exponential transformation of the finite differences scheme L ε h defined by [START_REF] Lu | Inverses of 2x2 block matrices[END_REF]. In other words, following Proposition 3.11

S ε h u := -e u ε L ε h e -u ε (48) 
on Ω h , with boundary condition u = g on ∂Ω.

Proposition 3.14 (Consistency with the regularized eikonal equation). For any u ∈ C 3 (Ω), any 0 < h ≤ ε ≤ 1, and any x ∈ Ω h one has

S ε h u(x) = S ε u(x) + O(h + h r /ε r ), where S ε u := |∇u| 2 A b + 2 b, ∇u -1 -ε Tr(A b ∇ 2 u), (49) 
and where r = 2 if [x -he i , x + he i ] ⊂ Ω for all 1 ≤ i ≤ I, and r = 1 otherwise.

Proof. Denoting µ i := ρ i A -1 b b, e i we obtain as announced, using Corollary 3.13 in the second line,

S ε h u(x) = 1 + 2ε 1≤i≤I µ i δ e i h u(x) -ε 2 1≤i≤I ρ i ∆ e i h u(x) ≈ 1 + 2 1≤i≤I µ i e i , ∇u(x) + 1≤i≤I ρ i e i , ∇u(x) 2 -ε 1≤i≤I ρ i e i ∇ 2 u(x)e i = 1 + 2 1≤i≤I µ i e i , ∇u(x) + Tr ∇u(x)∇u(x) -ε∇ 2 u(x) 1≤i≤I ρ i e i e i = 1 + 2 b, ∇u(x) + |∇u(x)| 2 A b (x) -ε Tr(A b (x)∇ 2 u(x))
, where ≈ denotes equality up to a O(h + h r /ε r ) error.

We obtain a consistency order of 2/3 in the domain interior, and 1/2 close to the boundary, by choosing ε as an optimal power of h (respectively ε = h 2/3 and ε = h 1/2 ). Corollary 3.15 (Consistency with the eikonal equation). For any u ∈ C 3 (Ω), any 0 < h ≤ ε ≤ 1, and any x ∈ Ω h one has

S h α h u(x) = Su(x) + O(h α ),
where

Su := |∇u| 2 A b + 2 b, ∇u -1,
and where α = 2/3 if [x -he i , x + he i ] ⊂ Ω for all 1 ≤ i ≤ I, and α = 1/2 otherwise.

Proof. One has

S ε u = Su -ε Tr(A b ∇ 2 u), and therefore S ε h u(x) = Su + O(ε + h + h r ε -r
), where r is defined pointwise as in Proposition 3.14. Observing that α = r/(1 + r), and inserting ε = h α in this expression, one obtains the announced result.

The choice of parameter ε suggested by Corollary 3.15, when the solution u is sufficiently smooth, is a conservative value ε ≈ √ h on a boundary layer along ∂Ω, and a smaller value ε ≈ h
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elsewhere. Nevertheless, we use for simplicity a single value of ε on the whole domain in our numerical experiments §6. The theoretical analysis of the convergence rates of the method, and of the actual effect of a differentiated choice of ε on those rates, is not developed in this paper and is an opportunity for future work.

The upwind scheme L ε,+ h obeys Proposition 3.14 but with r = 1 over all Ω h , and likewise Corollary 3.15 but with α = 1/2 over all Ω h , leading to the parameter choice ε ≈ √ h. Note that the choice ε = h α with α = r 1+r , considered in Corollary 3.15, minimizes the error term σ(h, ε)

:= ε + h + h r ε -r up to a fixed multiplicative constant. Indeed σ(h, h α ) = O(h α ) whereas σ(h, ε) = ε + h + h r ε -r ≥ αε + (1 -α)h r ε -r ≥ ε α (h r /ε r ) 1-α = h α ,
where the concavity of the logarithm was used for the second inequality. The parameter scaling h = cε, where c > 0 is a small but fixed positive constant, is commonly considered in applications [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] and appears to produce usable results in practice, but is not consistent asymptotically since σ(h, ch) → c r . This non-consistency leads to non-convergence, as illustrated by the following explicit solution: in the simplified setting where d = 1, A = 1 and b = 0, one easily checks that S ε h admits the solution u(x) = λx (with suitable boundary conditions) where the slope λ obeys

e cλ + e -cλ = 2 + c 2 thus |λ| = 1 -c 2 /24 + O(c 4 ), (50) 
with c = h/ε. The correct slope |λ| = 1 is thus only obtained as c = h/ε → 0.

Convergence

We establish the convergence of the logarithmically transformed solution to the numerical scheme L ε h , towards the solution of Randers eikonal equation as ε → 0 and h/ε → 0, see Theorem 3.19 which was announced in the introduction. The proof follows the lines of [6, Theorem 2.1], and requires some preliminary steps establishing the stability and consistency of the proposed scheme. The arguments apply without modification to the less accurate but unconditionally stable scheme L ε,+ h . Note that, formally, the schemes S ε h and L ε h are defined over Ω h := Ω h ∪ ∂Ω. In particular S ε h u(x) = u(x) -g(x) and L ε h u(x) = u(x) -exp(-g(x)/ε) for all x ∈ ∂Ω and u, u : Ω h → R.

Lemma 3.16. The scheme S ε h admits a constant sub-solution u : Ω h → R defined as u(x) := g min , where g min := min y∈∂Ω g(y).

For any p ∈ R d with |p| sufficiently large, and for (ε, h/ε) small enough, the scheme S ε h admits a super-solution u : Ω h → R defined as the affine map u(x) := p, x + c max , where c max := max y∈∂Ω g(y) -p, y .

Proof. Case of the sub-solution. One has S ε h u(x) = -1 for all x ∈ Ω h , in view of ( 37) and ( 44). In addition S ε h u(x) = g min -g(x) ≤ 0 for all x ∈ ∂Ω, hence u is a sub-solution of S ε h . Case of the super-solution. If |p| is sufficiently large, then for all x ∈ Ω

|p| 2 A b (x) + 2 b(x), p -1 ≥ c 0 > 0. (51) 
Indeed, recall that the matrix field A b : Ω → S ++ d is pointwise positive definite [START_REF] Bonnans | Monotone and second order consistent scheme for the two dimensional Pucci equation[END_REF], and continuous over the compact set Ω, hence the smaller eigenvalue of A b (x) is positively bounded below over x ∈ Ω. Then by Proposition 3.14, one has

S ε h u(x) ≥ c 0 + O(h + h r /ε r ) for all x ∈ Ω h , which is non-negative for (ε, h/ε) small enough. In addition S ε h u(x) = c max + p, x -g(x) ≥ 0 for all x ∈ ∂Ω, hence u is a super-solution of S ε h .
As a consequence of Lemma 3.16, we establish in the next result that the scheme S ε h admit a unique solution, uniformly bounded as (ε, h/ε) → 0.

Corollary 3.17 (Stability). For sufficiently small (ε, h/ε), the scheme L ε h admits a unique solution u ε h , which is positive, and S ε h admits a unique solution u ε h , which obeys u ε h = -ε ln u ε h and satisfies u ≤ u ε h ≤ u on Ω h , where u and u are from Lemma 3.16.

Proof. By Proposition 3.11, the maps u ε := exp(-u/ε) and u ε := exp(-u/ε), where u and u are from Lemma 3.16, are respectively a super-solution and a sub-solution to the scheme L ε h , which is elliptic by Proposition 3.10. Since that scheme is also linear, it admits a unique solution u ε h by Corollary 3.6, obeying u ε ≤ u ε h ≤ u ε by Lemma 3.5. Note that Corollary 3.6 and Lemma 3.5 apply here regardless of the fact that the domain Ω h = Ω h ∪ ∂Ω is infinite, because the finite difference scheme L ε h only uses finitely many boundary values. We conclude that u ε h is positive since u ε is positive, that u ε h := -ε ln u ε h is the unique solution to S ε h by Proposition 3.11, and that u ≤ u ε h ≤ u on Ω h by monotony of the logarithm. The result follows.

Lemma 3.18 (Consistency up to the boundary). For any ϕ ∈ C 3 (Ω) and any x ∈ Ω one has lim sup

(ε,h/ε)→0,ξ→0 y∈Ω h , y→x S ε h [ϕ + ξ](y) ≤ Sϕ(x) if x ∈ Ω, max{Sϕ(x), ϕ(x) -g(x)} if x ∈ ∂Ω. lim inf (ε,h/ε)→0,ξ→0 y∈Ω h , y→x S ε h [ϕ + ξ](y) ≥ Sϕ(x) if x ∈ Ω, min{Sϕ(x), ϕ(x) -g(x)} if x ∈ ∂Ω.
Proof. For any h > 0, x ∈ Ω h , and ξ ∈ R, one has by Proposition 3.14

S ε h [ϕ + ξ](x) = S ε h ϕ(x) = Sϕ(x) + O(ε + h + (h/ε) r ),
where r ∈ {1, 2}. In particular r ≥ 1 and therefore ε + (h/ε) r → 0 as (ε, h/ε) → 0. On the other hand,

S ε h [ϕ + ξ](x) = ϕ(x) -g(x) + ξ → ϕ(x) -g(x)
as ξ → 0. The announced result follows from these observations, and from the uniform continuity of the mappings x ∈ Ω → Sϕ(x) := |∇ϕ(x)| 2 A b (x) + 2 b, ∇ϕ(x) -1 and x ∈ ∂Ω → ϕ(x) -g(x).

Theorem 3.19 (Convergence). As (ε, h/ε) → 0 the quantity u ε h := -ε ln u ε h , where L ε h u ε h = 0, converges uniformly on compact subsets of Ω to the viscosity solution u of (16).

Proof. Define for all

x ∈ Ω v(x) := lim sup (ε,h/ε)→0, y→x u ε h (x) = sup lim sup n→∞ u εn hn (y n ); (ε n , h n /ε n ) → 0, y n → x, y n ∈ Ω hn ,
and likewise v(x) := lim inf u h (x) as (ε, h/ε) → 0 and y → x. By Corollary 3.17, v and v are well-defined and bounded : u ≤ v ≤ v ≤ u on Ω where u and u are from Lemma 3.16. By Lemma 3.18 and following the proof of [6, Theorem 2.1], v and v are respectively a sub-solution and a super-solution to the operator S, or equivalently to [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF]. By the continuous comparison principle Theorem A.8, one has v ≤ u * ≤ u * ≤ v on Ω, where u * (x) := lim inf y→x u(y) and u * (x) := lim sup y→x u(y) are the lower and upper semi-continuous envelopes of the unique viscosity solution u of [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF]. By definition v ≥ v on Ω, thus v = u = v on Ω, and the locally uniform convergence follows from the definitions of v and v.

Randers distance from a point

In this section, we adapt the numerical scheme presented in §3 so as to compute Randers distance from a point source, instead of the distance from the boundary. Point sources appear to be the most common setting in applications [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF][START_REF] Yang | Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[END_REF][START_REF] Yang | Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric[END_REF] where the Poisson equation is used to numerically estimate a geodesic distance. However the convergence of the numerical method in this case does not appear to be backed by previous works, not least because the corresponding PDE is ill posed, see Remark 4.4. To our knowledge, the convergence results Theorems 4.1 and 4.2 presented in this section are thus also new for isotropic and Riemannian metrics, which are special cases of Randers metrics of the form F x (v) = c(x)|v| and F x (v) = |v| M (x) respectively, where c : Ω → R ++ and M : Ω → S ++ d , and thus validate previous numerical practice. Such convergence under mesh refinement of geodesic distance estimation methods based on the heat or Poisson equation is listed as an open question in [START_REF] Crane | The heat method for distance computation[END_REF].

We assume that the domain Ω is connected, and contains the origin which w.l.o.g. is the point source of interest, in addition to the previously assumed boundedness and W 3,∞ boundary. For all ε > 0, h > 0, and u : Ω h → R we let

Lε h u(x) =      L ε h u(x) if x ∈ Ω h \ {0}, u(x) -1 if x = 0, u(x) if x ∈ ∂Ω. (52) 
The main result of this section, Theorem 4.1 below, justifies the use of the Poisson method, i.e. solving the linear scheme Lε h , to approximate Randers geodesic distance from the origin.

Theorem 4.1. The solution to Lε h u ε h = 0 obeys, locally uniformly in Ω x

-ε ln u ε h (x) → dist F (0, x), as (ε, h/ε, ε ln h) → 0.
Note that Lε h is a discrete elliptic operator when h/ε is sufficiently small, see Proposition 3.10, hence the equation Lε h u ε h = 0 does admit a unique solution by Corollary 3.6. Under the same conditions, the matrix of L ε h admits an inverse, whose coefficients are estimated in the following result.

Theorem 4.2. Denote by L ε h ∈ R Ω h ×Ω h the matrix of the linear operator L ε h on Ω h , with null boundary conditions on ∂Ω. Then locally uniformly on Ω × Ω (x, y) one has

-ε ln[(L ε h ) -1 xy ] → dist F (x, y), as (ε, h/ε, ε ln h) → 0.
As evidenced by the constraint ε ln h → 0, Theorems 4.1 and 4.2 have no immediate counterparts in the continuous setting where ε > 0 and h = 0 formally, see also Remark 4.4. Contrast this with the smooth boundary case, where Theorem 2.12 corresponds to Theorem 3.19 with h = 0. The proofs are presented in the rest of this section. In the case of Theorem 4.1, it consists in building sub-solutions and a super-solutions to the operator Lε h , on disk or ring domains around the origin depending on the problem scales h, ε and r, where the radius r > 0 is fixed but small, see §4.1 to 4.3 and Fig. 1. Sub-solutions (resp. super-solutions) over these sub-domains are glued together using the following lemma, which immediately follows from the DDE property Definition 3.4. Lemma 4.3. Let F be a DDE scheme on a finite set X, let x ∈ X, and let u, v :

X → R. If F u(x) ≤ 0 and either (u(x) ≥ v(x) or F v(x) ≤ 0), then F [max{u, v}](x) ≤ 0. Likewise if F u(x) ≥ 0 and either (u(x) ≤ v(x) or F v(x) ≥ 0), then F [min{u, v}](x) ≥ 0.
Remark 4.4 (Continuous setting). The numerical scheme (52) does not discretize a well posed PDE. Indeed, Dirichlet boundary conditions cannot be enforced at isolated points of elliptic PDEs in dimension d ≥ 2. The most closely related well posed PDE reads, in the sense of distributions,

L ε u(x) = δ 0 (x) in Ω, u = 0 on ∂Ω, (53) 
where δ 0 denotes the Dirac mass at the origin. The PDE (53) admits a solution [START_REF] Casas | Control of an elliptic problem with pointwise state constraints[END_REF]Theorem 4] in the Sobolev space W 1,s (Ω), for all s

∈ [1, 2[ in dimension d = 2 (resp. s ∈ [1, 3/2[ in dimension d = 3
). The solution is unbounded near 0. Let us emphasize that W 1,s has a Banach structure, for all s = 2, in contrast with H 1 = W 1,2 which has a Hilbert structure and defines the standard framework of the Lax-Milgram theorem and the Finite Element Method (FEM). Extending the FEM to Banach Sobolev spaces is an area of active research [START_REF] Houston | The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin's method[END_REF], which is beyond the scope of this work. We do not further discuss [START_REF] Villani | Optimal transport: old and new[END_REF], which is understood in the sense of distributions, and thus belongs to a framework distinct from the setting of viscosity solutions considered in this paper.

Remark 4.5 (Heat method). In the Riemannian case (ω = 0) an alternative approach to geodesic distance computation from a point source relies on the short time asymptotics of the heat kernel

-4t ln u(t, x) = dist F (x * , x) 2 + o(1), where ∂ t u = div(D∇u), (54) 
and u(0, •) = δ x * is the Dirac mass at the source point [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF]. Numerically, the heat equation is solved over a short time interval, using a series of implicit time steps, each of which is equivalent to a Poisson equation [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]. To the extent of our knowledge, solving a single Poisson equation is preferred over the heat method in applications, since it is computationally less expensive, and less susceptible to raise floating point underflow errors, in addition to being more general in view of the extension to Randers metrics presented in this paper. An advantage of the heat equation is however that it allows efficient implementations of optimal transport with quadratic cost [START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF] in the spirit of §5.

A natural generalization of (54, right) to manifolds [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF] equipped with a Finsler metric F, reads

∂ t u(t, x) = div ∂ v H(x, ∇u(t, x)) ,
where

H(x, v) := 1 2 F * x (v) 2 , (55) 
with again u(0, •) = δ x * , and where F * denotes the dual metric, see Definition 2.3. This PDE can be reformulated as a gradient flow, in two different manners [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF]. In this setting and under suitable assumptions, the heat kernel asymptotics (54, left) extend to Finsler manifolds, see [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF]Example 5.5]. However, discretizing the non-linear and time dependent PDE (55) is non-trivial, and also defeats the purpose of this paper which is to consider linear schemes for Randers distance computation. (If non-linear PDEs are considered, then one may as well solve Randers eikonal PDE (5) directly, see [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF].)

Notations. The Euclidean ball, its boundary the sphere, and its intersection with the grid, are denoted

B(x, r) := {y ∈ R d ; |y -x| < r}, S(x, r) := ∂B(x, r), B h (x, r) := B(x, r) ∩ hZ d ,
where the parameters are center x ∈ R d , the radius r > 0, and the grid scale h > 0. We use the convention B(r) := B(0, r), S(r) := S(0, r), B h (r) := B h (0, r). We introduce constants 0 < c F ≤ C F and R F , which exist by Lemma 2.4, such that for all x, y ∈ Ω

c F |x -y| ≤ dist F (x, y) ≤ C F |x -y|, dist F (x, y) ≤ R F . (56) 
Recall that the numerical scheme L ε h is defined in terms of a Lipschitz symmetric matrix field A and vector field b which are the parameters of the dual Randers metric. Selling's decomposition of A b := A -bb , see [START_REF] Frédéric Bonnans | Second order monotone finite differences discretization of linear anisotropic differential operators[END_REF], which is uniformly positive definite, is denoted

A b (x) = 1≤i≤I ρ i (x)e i e i ,
where

|e i | ≤ R S , 1 ≤ i ≤ I, (57) 
where the bound R S on the offsets exists in view of Theorem 3.9, and I is a suitable integer. The shorthand "C = C(M F )" means that a constant C, appearing in an estimate, can be expressed or bounded in terms of the following problem parameters

M F := max{c -1 F , C F , R F , R S , A ∞ , b ∞ , A -1 b ∞ , Lip(A b )},
where A ∞ := sup{ A(x) ; x ∈ Ω}, and Lip(A b ) is the Lipschitz regularity constant of the matrix field A b .

Viscosity regime

We construct a solution to the scheme (52) far enough from the point source singularity, at points x ∈ Ω h such that |x| ≥ r, where r is independent of ε and h, by using the results developed in §3.

For that purpose, a radius r > 0 is fixed in the rest of this section, unless otherwise specified, and such that B(6r) ⊂ Ω. The erosion with radius r of the domain Ω, and its intersection with the grid, are defined as

int(Ω, r) := {x ∈ Ω; B(x, r) ⊂ Ω}, int h (Ω, r) := int(Ω, r) ∩ hZ d .
Lemma 4.6. For each ε > 0 and h > 0 let u ε h be the solution to

L ε h u = 0 on Ω h \ B(r), u = 1 on S(r) u = exp(-R F /ε) on ∂Ω. ( 58 
)
Then for (ε, h/ε) sufficiently small, and denoting

u ε h := -ε ln u ε h , one has with C = C(M F ) |u ε h (x) -dist F (0, x)| ≤ Cr on int h (Ω, r) \ B(2r). ( 59 
)
Proof. Applying Theorem 3.19 to the domain Ω \ B(r) we obtain the uniform convergence of u ε h over the relatively compact subset int(Ω, r) \ B(2r) as (ε, h/ε) → 0. More precisely

max |u ε h (x) -u(x)|; x ∈ int h (Ω, r) \ B(2r) → 0, as (ε, h/ε) → 0.
The limit u : Ω \ B(r) → R is defined as

u(x) = min min p∈S(r) dist F (p, x), R F + min q∈∂Ω dist F (q, x) = min p∈S(r) dist F (p, x),
where the second equality follows from (56, right). Observing that

| dist F (p, x) -dist F (0, x)| ≤ C F |p| ≤ C F r
for all p ∈ S(r), see (56, left), we conclude the proof.

Corollary 4.7. For (ε, h/ε) sufficiently small, there exists

u ε h : Ω h → R such that Lε h u ε h ≥ 0 and u ε h (x) := -ε ln u ε h (x) ≥ dist F (0, x) -Cr on int h (Ω, r), where C = C(M F ). Proof. From Lemma 4.6 introduce u ε h = -ε ln u ε h obeying (59) for sufficiently small (ε, h/ε), with constant C 0 = C 0 (M F ). Then let u ε h (x) := 1 if x ∈ B h (2r), min{1, u ε h (x) exp(C 1 r/ε)} if x ∈ Ω h \ B h (2r), (60) 
where

C 1 = C 0 + 3C F .
By construction one has u ε h (0) = 1, and u ε h (x) ≥ 0 on ∂Ω, so that Lε h u ε h ≥ 0 at these boundary points. By choice of the constant C 1 and in view of (59), one has

1 ≤ u ε h (x) exp(Cr/ε) on B h (3r) \ B h (2r). Note that provided h ≤ r/R S the expression of L ε h u ε h (x) at any x ∈ Ω h \ B(3r) only involves values of u ε h in Ω h \ B(2r)
. By Lemma 4.3, and since the constant 1 is a super-solution to L ε h , we obtain that L ε h u ε h ≥ 0, as announced. Finally, one has

u ε h (x) ≥ u ε h (x) -C 1 r ≥ dist F (0, x) -(C 0 + C 1 )r on int h (Ω, r) \ B h (2r)
, and u ε h (x) ≥ 0 ≥ dist F (0, x) -2C F r on B h (2r), which concludes the proof.

Taylor expansion regime

We construct explicit sub-solutions to the scheme (52), at points h |x| ε and ε |x| r, which are radial functions with respectively a power and exponential profile. For that purpose, we need to estimate the derivatives of such functions. 

(x) u(x) = -µf n, ∇ 2 u(x) u(x) = µ 2 f 2 nn + O µ|f | + µ|f | |x| , ∇ 3 u(x) u(x) = O µ 3 |f | 3 + µ 2 |f ||f | + µ 2 |f | 2 |x| + µ|f | |x| + µ|f | + µ|f | |x| 2 ,
with absolute constants underlying the O notation.

Proof. The expression of ∇u(x) follows from the standard rules for the differentiation of an exponential function ∇(exp •g) = (exp •g)∇g, and of a radial function ∇g(|x|) = g (|x|)n(x).

The announced estimate of ∇ 2 u follows from the full expression u(x) -1 ∇ 2 u(x) = µ 2 f 2 nnµf nn -µf (Id -nn )/|x|, which is obtained using the Leibniz rule for the differentiation of a product, and recalling that the Jacobian matrix of n(x) is (Id -nn )/|x|. Differentiating once more yields the expression of ∇ 3 u, from which the announced estimate follows.

Corollary 4.9. Define u(x) := exp(-λ|x|/ε) where λ

≥ 1, ε > 0. If x ∈ Ω h , ε ≤ |x| ≤ 5r and 2R S h ≤ ε then u(x) -1 L ε h u(x) ≤ 1 -λ 2 |n(x)| 2 A b (x) + C 0 (λ + λ 3 h/ε). (61) 
In particular, L ε h u(x) ≤ 0 if λ ≥ C 1 and λh/ε ≤ c 2 , where C 0 , C 1 , c 2 > 0 only depend on M F .

Proof. Applying Lemma 4.8 to the identity function f : r ∈ R ++ → r, and parameter µ := λ/ε (note that µ ≥ 1/ε), we obtain whenever |x| ≥ ε/2

∇u(x) u(x) = O(µ), ∇ 2 u(x) u(x) = µ 2 nn + O( µ ε ), ∇ 3 u(x) u(x) = O(µ 3 ). If |x| ≥ ε and |e| ≤ R S , then any y ∈ [x -he, x + he] obeys |y| ≥ ε/2. Therefore δ e h u(x) u(x) = O(µR S + hµ 2 R 2 S ), ∆ e h u(x) u(x) = µ 2 n, e 2 + O( µ ε R 2 S + hµ 3 R 3 S ),
with again absolute constants underlying the O notation. Inserting these estimates in the scheme expression we obtain omitting the argument of ρ i , A -1 b b and n

L ε h u(x) u(x) ≤ 1 + 2εC 1≤i≤I ρ i | A -1 b b, e i |(µ + hµ 2 ) + ε 2 1≤i≤I ρ i [-µ 2 n, e i 2 + C( µ ε + hµ 3 )],
where C depends only on R S . This establishes (61) observing that I i=1 ρ i n, e 

L ε h u(x) u(x) ≤ 1 - ε 2 µ 2 |x| 2 |n(x)| 2 A b (x) + C 0 ε 2 µ |x| 2 + hε 2 µ 3 |x| 3 . ( 62 
)
In particular

L ε h u(x) ≤ 0 if µ ≥ C 1 and µh/ε ≤ c 2 , where C 0 , C 1 , c 2 > 0 only depend on M F .
Proof. We apply Lemma 4.8 to the logarithm function f = ln, obtaining

∇u(y) u(y) = O( µ |y| ), ∇ 2 u(y) u(y) = µ 2 nn |y| 2 + O( µ |y| 2 ), ∇ 3 u(y) u(y) = O( µ 3 |y| 3 ). If |x| ≥ 2R S h and |e| ≤ R S , then any y ∈ [x -he, x + he] obeys |y| ≥ |x|/2. Therefore δ e h u(x) u(x) = O µ |x| + hµ 2 |x| 2 , ∆ e h u(x) u(x) = µ 2 n, e 2 |x| 2 + O µ |x| 2 + hµ 3 |x| 3 .
Inserting these estimates in the scheme expression [START_REF] Lu | Inverses of 2x2 block matrices[END_REF], we conclude similarly to Corollary 4.9.

Finite neighborhood regime

We produce a sub-solution to the scheme Lε h which is useful in the immediate neighborhood of the origin, where |x| h. The construction is not based on the approach of viscosity solutions, or on a Taylor expansion, but on the discrete structure of the scheme. For that purpose, we establish additional properties of its coefficients (57), suitably normalized: the first d offsets form a basis of Z d , and the corresponding weights are bounded below in a neighborhood of the source point. This implies that the stencils of our numerical scheme are locally connected, and allows to construct a subsolution in Corollary 4.13. The proof is based on the spanning property of Selling's decomposition, see Proposition B.8, which is used here for the first time in the context of PDE numerical analysis. Proposition 4.11. Up to reordering the terms (ρ i , e i ) I i=1 of Selling's decomposition (57) of the matrix field A b , and grouping duplicate and opposite offsets (e i ) I i=1 , one has for all |x| ≤ r S

min{ρ 1 (x), • • • , ρ d (x)} ≥ ρ S , det(e 1 , • • • , e d ) = 1, ( 63 
)
where the constants ρ S > 0 and r S > 0 only depend on M F .

Proof. Up to grouping duplicates and opposites, we may assume that the vectors ±e 1 , • • • , ±e I are pairwise distinct. Thus by Proposition B.5 one has for all x, y ∈ Ω and all 1 ≤ i ≤ I In the rest of this section, we assume that (ρ i , e i ) I i=1 are ordered in such way that (63) holds. We also denote ρ -i := ρ i and e -i := -e i for all 1 ≤ i ≤ I. Hence for any x ∈ Ω h such that

|ρ i (x) -ρ i (y)| ≤ C|x -y|, (64) 
B(x, R S h) ⊂ Ω h L ε h u(x) = α ε h (x)u(x) - 1≤|i|≤I β ε h,i (x)u(x + he i ),
where the coefficients are

α ε h (x) := 1 + 2 ε 2 h 2 1≤i≤I ρ i (x), β ε h,i (x) := ρ i (x) ε 2 h 2 - ε h A b (x) -1 b(x), e i . ( 65 
) Note that α ε h (x) ≤ 1 + 2(ε/h) 2 Tr(A b ) ∞ , since I i=1 ρ i (x) ≤ I i=1 ρ i (x)|e i | 2 = Tr(A b (x)).
In the next lemma, we denote by |x| 1 the sum of the absolute values of the coefficients of a vector x ∈ R d . S , and the equivalence of N with the Euclidean norm follows.

Figure 1: Each subfigure displays ∂Ω as a solid curve, Ω h := Ω ∩ hZ d as dots, and the region associated to a subdomain Ω ε,i h ⊂ Ω h in color, where i = 0, • • • , 3 from left to right. The global discrete subsolution u ε h : Ω h → R is defined (67) as the weighted maximum of four discrete subsolutions u ε,i h : Ω ε,i h → R, where 0 ≤ i ≤ 3. The intersection of two successive subdomains,

Ω ε,i h ∩ Ω ε,i+1
h where 0 ≤ i ≤ 2, is a non-empty annulus centered on the origin, intersected with the grid. The subsolutions on the subdomains, from left to right, are: u ε,0 h obtained by solving a modified scheme, u ε,1 h an exponential profile, u ε,2 h an inverse power profile, and u ε,3 h a construction based on the scheme stencil structure at the origin, see §4.4.

Let z ∈ Z d \ {0}, and let λ 1 , • • • , λ d ∈ Z be the coordinates of z in the basis e 1 , • • • , e d , in other words (λ 1 , • • • , λ d ) = G -1 z. Since z = 0,
one at least of these coordinates is non-zero. We thus assume w.l.o.g. that λ 1 > 0, up to a change of sign and permutation of the axes. Then

N (z -e 1 ) = |λ 1 -1| + |λ 2 | + • • • + |λ d | = -1 + |λ 1 | + • • • + |λ d | = N (z) -1, which concludes the proof.
Corollary 4.13. Define u(x) := exp(-νN (x)/h), where the function N is defined in Lemma 4.12. Then Lε h u(x) ≤ 0 on B h (r S ), provided ν ≥ ν 0 = ν 0 (M F ), B(x, R S h) ⊂ Ω, and h/ε is sufficiently small.

Proof. Note that

β ε h,i (x) ≥ ρ i (x)ε 2 /(2h 2 ) ≥ 0, for all 1 ≤ i ≤ I, when h/ε ≤ c := 1/(2 A -1 b b ∞ R S ). In particular β ε h,i (x) ≥ ρ S ε 2 /(2h 2 ) if |x| ≤ r S and 1 ≤ |i| ≤ d.
By Lemma 4.12 there exists 1 ≤ |i| ≤ d such that N (x + he i ) = N (x) -h, and therefore u(x + he i ) ≥ e ν u(x). Thus

L ε h u(x) u(x) ≤ α ε h (x) -β ε h,i (x) u(x + he i ) u(x) ≤ 1 + 2 Tr(A b ) ∞ ε 2 h 2 -e ν ρ S 2 
ε 2 h 2 . ( 66 
)
The result follows, by assuming in addition that h ≤ ε and choosing ν 0 such that e ν 0 :=

2(1 + 2 Tr(A b ) ∞ )/ρ S .

Gluing the sub-solutions

In the previous subsections, we have produced four sub-solutions to the operator Lε h , on different subsets of the domain Ω h defined according to the distance to the origin, see Lemma 4.6 and Corollaries 4.9, 4.10, and 4.13, and Fig. 1. We glue here these partial sub-solutions using Lemma 4.3, to produce a global sub-solution on Ω h and conclude the proof of Theorem 4.1. For that purpose, we introduce four mappings u ε,i h defined on adequate subdomains Ω ε,i h ⊂ Ω h , 1 ≤ i ≤ 4, and depending on the scale parameters (ε, h) as well as constants (λ, µ, ν, ξ) specified later.

• u ε,0 h (x) := v ε h (x) -exp(-R F /ε), and Ω ε,0 h := Ω h \ B h (2r)
, where v ε h solves (58).

• u ε,1 h (x) = exp(-λ|x|/ε), and

Ω ε,1 h := B h (5r) \ B h (ε). • u ε,2 h (x) = |x| -µ , and Ω ε,2 h = B h (4ε) \ B h (2R S h).
• u ε,3 h (x) = exp(-νN (x)/h), and Ω ε,3 h = B h (ξh), where N is from Lemma 4.12.

Proposition 4.14. For any (ε, h/ε) sufficiently small one has Lε h u ε h ≤ 0 on Ω h , where

u ε h (x) := max{u ε,3 h (x), α 2 h µ u ε,2 h (x), α 1 ( h ε ) µ u ε,1 h (x), α 0 ( h ε ) µ e -3λ r ε u ε,0 h (x)}, (67) 
for all x ∈ Ω h , and where the quantity

u ε,i h (x) is only considered 3 in the maximum if x ∈ Ω ε,i h . The constants (λ, µ, ν, ξ, α 0 , α 1 , α 2 ) only depend on M F .
Proof. By Corollaries 4.9, 4.10, and 4.13 one may choose the constants λ, µ, ν such that Lh ε u ε,i h ≤ 0 on Ω ε,i h for all 1 ≤ i ≤ 3 and (ε, h/ε) sufficiently small. Furthermore, this property is preserved if λ, µ or ν is increased. Also Lh ε u ε,0 h ≤ 0 on Ω ε,0 h , by noting that the positive constant exp(-R F /ε) subtracted in its definition accounts for the null boundary conditions of Lε h , compare ( 52) with (58). Since the operator Lε h is linear on Ω h \ {0}, see [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF], the product of a sub-solution with a positive constant remains a sub-solution (outside the origin). Hence (67) is a maximum of 4 sub-solutions on their respective domains.

We next proceed to prove estimates of the following form: for any

x ∈ Ω ε,i h ∩ Ω ε,i+1 h m ε,i h u ε,i h (x) ≤ (resp. ≥) u ε,i+1 h (x) when B h (x, R S h) ⊂ Ω ε,i h (resp. Ω ε,i+1 h ), (68) 
where m ε,i h is a suitable function of the scale parameters, specified later in the proof. Thus by Lemma 4.3,

u ε h (x) := max{u ε,3 h (x), m ε,2 h u ε,2 h (x), m ε,2 h m ε,1 h u ε,1 h (x), m ε,2 h m ε,1 h m ε,0 h u ε,0 h (x)}
is a sub-solution, where again u ε,i h is only considered on Ω ε,i h , which is the announced result.

Indeed, if B h (x, R S h) ⊂ Ω ε,i h then one has L ε h u ε,i h (x) ≤ 0, whereas if B h (x, R S h) ⊂ Ω ε,i h then (68) shows that u ε h (x)
is not defined from u ε,i h (x). The estimates (68) follow from basic upper and lower bounds of the involved functions, and of the norms of the relevant points x. Namely

u ε,0 h (x) ≤ 1, u ε,1 h (x) ≥ exp(-3λr/ε), when 2r ≤ |x| ≤ 3r. u ε,0 h (x) ≥ exp(-Cr/ε), u ε,1 h (x) ≤ exp(-4λr/ε), when 4r ≤ |x| ≤ 5r.
The upper bound on u ε,0 h is derived from the maximum principle, and the lower bound from Lemma 4.6, with C = C(M F ) and for sufficiently small (ε, h/ε). This establishes (68, i = 0) with m ε,0 h = exp(-3λr/ε), up to increasing λ so that λ ≥ C. Likewise

u ε,1 h (x) ≤ exp(-λ), u ε,2 h (x) ≥ (2ε) -µ , when ε ≤ |x| ≤ 2ε. u ε,1 h (x) ≥ exp(-4λ), u ε,2 h (x) ≤ (3ε) -µ , when 3ε ≤ |x| ≤ 4ε.
This establishes (68, i = 1) with m ε,1 h = e λ (2ε) -µ , up to increasing µ so that (3/2) µ ≥ e 3λ . Lastly

u ε,2 h (x) ≤ (2R S h) -µ , u ε,3 h (x) ≥ exp(-3R S C N ν), when 2R S h ≤ |x| ≤ 3R S h. u ε,2 h (x) ≥ (ξR S h) -µ , u ε,3 h (x) ≤ exp(-(ξ -R S )c N ν), when (ξ -R S )h ≤ |x| ≤ ξR S h,
where c N and C N are the equivalence constants in Lemma 4.12. We define ξ by (ξ -R S )c N -3R S C N = 1. This establishes (68, i = 2) with m ε,2 h = e -3R S C N µ (2R S h) µ , up to increasing ν so that e ν ≥ (ξ/(2R S )) µ , in view of the expression of ξ, which concludes the proof.

Corollary 4.15. For (ε, h/ε) sufficiently small, there exists

u ε h : Ω h → R such that Lε h u ε h ≤ 0 and u ε h (x) := -ε ln u ε h (x) ≤ dist F (0, x) + C(r + ε ln(ε/h)) on int h (Ω, r)
, where C = C(M F ). Proof. We distinguish two cases. (i) If the maximum in (67) is attained by the last term, then the announced result follows Lemma 4.6 and the expression of the multiplicative factor α 0 (h/ε) µ exp(-3λr/ε). (ii) If the maximum in ( 67) is attained by one of the first three terms, then |x| ≤ 5r and the announced result follows from the explicit expressions of u ε,1 h , u ε,2 h , u ε,3 h as well as dist F (0, x) ≤ 5C F r.

Proof of Theorem 4.1. For sufficiently small (ε, h/ε), we obtain from the comparison principle Lemma 3.5 and with the mappings u ε h and u ε h of Corollaries 4.7 and 4.15 respectively that dist

F (0, x) -Cr ≤ u ε h (x) ≤ u ε h (x) ≤ u ε h (x) ≤ dist F (0, x) + C(r + ε ln(ε/h)), (69) 
on int h (Ω, r), where C = C(M F ). Since the parameter r > 0 is arbitrary4 , except for the constraint B(6r) ⊂ Ω, we conclude as announced that u ε h (x) → dist F (0, x) locally uniformly on Ω as (ε, h/ε, ε ln(ε/h)) → 0. The result follows, noting that ε ln(ε/h) ≤ ε| ln h| when 0 < h ≤ ε ≤ 1.

Convergence on Ω × Ω and inverse matrix

We establish Theorem 4.2, which relates the Randers distance with the inverse matrix of our finite differences scheme. For that purpose, we use the following convention: if U (x; x * ) if a bivariate discrete mapping, defined for all (x, x * ) ∈ Ω h × Ω h , and if F is a finite differences scheme of the form of Definition 3.4, then F U (x; x * ) := F (x, U (x; x * ), [U (x; x * ) -U (y; x * )] y∈X\{x} ). In other words, the numerical scheme sees U as a function of its first variable x only. Lemma 4.16. For any (ε, h/ε) sufficiently small, and any

x * ∈ B h (r/2), one has Lε h U ε h (x; x * ) ≤ 0 on Ω h \ {x * }, where for all x ∈ Ω h U ε h (x; x * ) := max{u ε,3 h (x), α 2 h µ u ε,2 h (x -x * ), α 1 (h/ε) µ u ε,1 h (x -x * ), α 0 (h/ε) µ e -3λr/ε u ε,0 h (x -x * )},
and where the quantity

u ε,i h (x -x * ) is only considered in the maximum if x -x * ∈ Ω ε,i h . The constants (λ, µ, ν, ξ, α 0 , α 1 , α 2 ) only depend on M F . In addition U ε h (x; x * ) := -ε ln U ε h (x; x * ) ≤ dist F (0, x) + C(r + ε ln(ε/h)) for all (x, x * ) ∈ int h (Ω, r) × B h (r/2), where C = C(M F ).
Proof. The proofs of Proposition 4.14 and Corollary 4.7 adapt in a straightforward manner to a point source x * sufficiently close to the origin, as here, rather than the origin itself. Proposition 4.17 (Convergence in the product space). Denote by

U ε h : Ω h × Ω h → R the solution to L ε h U ε h (x; x * ) = 0, ∀x ∈ Ω h \ {x * }, U ε h (x * ; x * ) = 1 U ε h (x; x * ) = 0, ∀x ∈ ∂Ω. (70) 
Then locally uniformly on

Ω × Ω one has -ε ln U ε h (x; x * ) → dist F (x * , x) as (ε, h/ε, ε ln h) → 0.
Proof. First note that x ∈ Ω h → U (x; x * ), for any given x * ∈ Ω h , solves a linear problem which is elliptic when h/ε is sufficiently small, hence has a unique solution, see Corollary 3.6 and Proposition 3.10. Let r > 0 be such that B(6r) ⊂ Ω. Then for (ε, h/ε) sufficiently small and for all (x, x * ) ∈ int h (Ω, r) × B h (r/2) one has by Corollary 4.7 and Lemma 4.16 and for some constant

C = C(M F ) dist F (0, x) -Cr ≤ U ε h (x; x * ) ≤ U ε h (x; x * ) ≤ u ε h (x) ≤ dist F (0, x) + C(r + ε ln( ε h )), (71) 
and therefore |U(x;

x * ) -dist F (x * , x)| ≤ (2C + C F )r when in addition ε ln(ε/h) ≤ r, noting that | dist F (x * , x) -dist F (0, x)| ≤ C F r. Now let K * ⊂ Ω be a compact set.
Up to reducing r one can find a finite cover K * ⊂ ∪ J j=1 B(y j , r/2) such that B(y j , 6r) ⊂ Ω for all 1 ≤ j ≤ J. Applying the above reasoning to each ball B h (y j , r/2),

1 ≤ j ≤ J, instead of B h (r/2), we obtain |U(x; x * ) -dist F (x * , x)| ≤ (2C + C F )r for all (x, x * ) ∈ int h (Ω, r) × (K * ∩ hZ d ), when (ε, h/ε, ε ln h) is
small enough. Since r can be chosen arbitrarily small, the result follows.

Lemma 4.18. If h/ε is sufficiently small, then for all

x * ∈ Ω h such that B(x * , R S h) ⊂ Ω one has 1 ≤ L ε h U ε h (x * ; x * ) ≤ 1 + C ε 2 h 2 where C = 2 Tr(A b ) ∞ .
Proof. We assume that C 0 h ≤ ε where

C 0 = A -1 b b ∞ R S ,

and obtain by Proposition 3.10 that

L ε h is DDE. By the comparison principle, one has 0 ≤ U ε h (x; x * ) ≤ 1 for all x ∈ Ω h . Thus 1 ≤ L ε h U ε h (x * , x * ) ≤ a ε h (x * ), with the notations (65), since β ε h,i (x * ) ≥ 0 for all 1 ≤ i ≤ I. The result follows. Proof of inverse matrix convergence, Theorem 4.2. By definition of L ε h and U ε h (L ε h ) -1 x * x = U ε h (x; x * ) L ε h U ε h (x * ; x * )
.

Thus ε| ln[(L ε h ) -1 x * x ]-ln U ε h (x; x * )| ≤ ε ln(1+Cε 2 /h 2 )
, under the conditions of Lemma 4.18. Noting that ε ln(1 + Cε 2 /h 2 ) → 0 as (ε, h/ε, ε ln h) → 0, and that -ε ln U ε h (x; x * ) → dist F (x * , x) locally uniformly by Proposition 4.17, we conclude the proof.

Application to regularized optimal transport

In this section, we describe a numerical approach to the 1-Wasserstein optimal transport problem, with cost defined as a Randers distance, and with entropic relaxation. The use of such asymmetric cost functions is motivated by various applications as discussed in the introduction of §6, whereas the entropic relaxation can be regarded as a side effect of the chosen numerical approach. Given probability measures µ, ν ∈ P(Ω), the addressed problem reads

W ε (µ, ν) := inf P ∈Π(µ,ν) Ω×Ω C(x, y) dP (x, y) -ε Ent(P ), (72) 
where ε ≥ 0 is the entropic relaxation parameter, and where Π(µ, ν) is the set of probability measures on Ω × Ω whose first and second marginals coincide respectively with µ and ν, known as transport plans between µ and ν. The transport cost and entropy are defined as C(x, y) := dist F (x, y), Ent(P ) := -Ω×Ω ln dP (x, y) e dP 0 (x, y) dP (x, y)

where F is a Randers metric on the domain Ω, subject to the well posedness assumptions listed in the last paragraph of §1, and P 0 is a reference measure on Ω × Ω. The Euler constant e appearing in Ent(P ) only changes the entropy by an additive constant, since P has total mass one, and allows simplifying later calculations.

As mentioned in the introduction, our approach extends [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] from Riemannian to nonsymmetric Randers metrics. However, the quadratic cost dist F (x, y) 2 corresponding to the 2-Wasserstein distance cannot be addressed in our setting, see Remark 4.5. Let us also acknowledge that the effect of entropic relaxation cannot be ignored in the numerical implementation of this class of methods: indeed, empirically, the transport plan is blurred over a radius O(ε), while ε itself must be substantially larger than the discretization grid scale, see Theorem 3.19. Nevertheless such a smoothing is not necessarily an issue in applications [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], and the estimation of the Wasserstein distance itself as ε → 0 can be accelerated by suitable techniques [START_REF] Chizat | Faster Wasserstein Distance Estimation with the Sinkhorn Divergence[END_REF].

Remark 5.1 (Properties of the optimal transport problem with a Finsler distance as cost). When the entropic relaxation parameter ε vanishes, (72) defines the Wassertein-1 distance W 1 (µ, ν) := W 0 (µ, ν) associated with Randers geodesic distance dist F on the ground space Ω. This quantity satisfies the triangular inequality: W 1 (µ, ξ) ≤ W 1 (µ, ν) + W 1 (ν, ξ) for any µ, ν, ξ ∈ P(Ω), but is in general not symmetric: W 1 (µ, ν) = W 1 (ν, µ), similarly to Randers distance. In addition, since Randers distance is equivalent to the Euclidean distance on the ground space, namely c|x -y| ≤ dist F (x, y) ≤ C|x -y| for some C, c > 0 by Lemma 2.4, we obtain that W 1 is equivalent to the classical Monge-Kantorovich or earth-mover distance, with the same equivalence constants. As a result, it characterizes the weak- * convergence of measures: W 1 (µ n , µ) → 0 iff µ n µ. Finally, let us mention that the existence and uniqueness theory of optimal transport mappings T : X → Y does not apply to the Wasserstein-1 optimal transport problem [START_REF] Ma | Regularity of Potential Functions of the Optimal Transportation Problem[END_REF], even in the simpler case C(x, y) = |x -y| where the cost function is Euclidean.

Remark 5.2 (Numerical methods for Monge's problem based on the flow interpretation). The Wasserstein-1 distance W 1 (µ, ν) := W 0 (µ, ν) admits several reformulations: following [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF] one has

W 1 (µ, ν) = sup f :Ω→R Ω f dµ -dν subject to |∇f -ω| 2 M -1 ≤ 1 on Ω, (74) 
= inf

σ∈L 1 (Ω,R 2 ) Ω |σ| M + ω, σ dx subject to div σ = µ -ν on Ω, (75) 
where µ and ν are identified with their Lebesgue densities in the second line. In the Kantorovich-Rubinstein formula (74), the constraint (74, right) expresses that the Kantorovich potential f is 1-Lipschitz w.r.t. Randers distance dist F , similarly to (5). Beckmann's minimal flow interpretation (75) is obtained by duality, involves Rander's metric F in (75, left), and is proved equivalent in [START_REF] Feldman | Uniqueness and transport density in Monge's mass transportation problem[END_REF]. Using a standard finite differences or finite elements discretization of the gradient and divergence operators, these two reformulations yield second order cone programs, a generalization of linear programming which allows certain types of convex quadratic constraints. They are numerically tractable, using augmented Lagrangian methods as in [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF] or interior point methods. See [START_REF] Solomon | Earth mover's distances on discrete surfaces[END_REF] for other optimization methods, and applications to geometric data processing.

In comparison, the proposed scheme solves a slightly different problem: Schrödinger's entropic relaxation W ε for some ε > 0, which can be regarded as an advantage or an inconvenient depending on the application. It also requires solving a single sparse linear system, with several rhs see §5.2, which makes it very efficient and easy to scale up to 10 5 unknowns in a few seconds as illustrated in the numerical experiments §6.

Kantorovich duality

We assume in the following that µ and ν are supported on a finite set X ⊂ Ω, and the support of P 0 is X × X. In this setting we present Kantorovich's dual formulation of the optimal transport problem (72), and its numerical solution by Sinkhorn's algorithm. With a slight abuse of notation, we identify a measure µ on the finite set X (resp. P on X × X), which is a weighted sum of Dirac masses µ = x∈X µ x δ x , with the corresponding non-negative vector (µ x ) x∈X (resp. matrix (P xy ) x,y∈X ). With this convention, the set of probability measures on X, and of transport plans between two such probabilities, are defined as

P(X) := {µ ∈ R X + ; µ 1 = 1}, Π(µ, ν) := {P ∈ R X×X + ; P 1 = µ, P 1 = ν}, (76) 
where R + := [0, ∞[ denotes the set of non-negative reals, and 

1 = (1, • • • , 1) ∈ R X .
where A, B := Tr(A B) = x,y∈X A xy B xy . In (77) and below, the fraction bar, the logarithm and the exponential function apply componentwise to vectors and matrices. We assume that the reference measure P 0 = (P 0 xy ) has positive entries, and use the standard convention 0 × ∞ = 0 in the definition of the entropic term if some entries of P ∈ Π(µ, ν) vanish. Noting that s ∈ R ++ → s ln s is convex and has a vertical tangent at the origin, we find that the minimization problem (77) is convex and that the optimal P has positive entries whenever ε > 0.

Kantorovich duality introduces potentials ϕ, ψ ∈ R X to account for the equality constraints in (76), and uses Sion's minimax theorem [START_REF] Komiya | Elementary proof for Sion's minimax theorem[END_REF] to re-order the sup and inf:

W ε (µ, ν) = inf P ∈R X×X + P, C + ε P, ln P eP 0 + sup ϕ,ψ∈R X ϕ, µ -P 1 + ψ, ν -P 1 = sup ϕ,ψ∈R X ϕ, µ + ψ, ν + inf P ∈R X×X + P, C + ε ln P eP 0 -ϕ1 -1ψ = sup ϕ,ψ∈R X ϕ, µ + ψ, ν -ε P 0 , exp ϕ1 + 1ψ -C ε . (78) 
The third line was obtained by solving, component-wise and in closed form, the minimization w.r.t. P . Namely, the convex one dimensional mapping p ∈ R ++ → p C xy + ε ln p/(eP 0 xy ) -ϕ x -ψ y attains its minimum for

P xy = P 0 xy exp[(ϕ x + ψ y -C xy )/ε]. (79) 
Note that the objective function of the maximization problem (78) is strictly concave.

Sinkhorn's algorithm, and efficient computation

Sinkhorn's algorithm [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF] is based on an exponential change of variables in the concave maximization problem (78): denoting Φ = exp(ϕ/ε) and Ψ := exp(ψ/ε) we obtain

W ε (µ, ν; C) = ε max Φ,Ψ∈R X ++ ln Φ, µ + ln Ψ, ν -Φ , K ε Ψ , where K ε xy := P 0 xy exp(-C xy /ε), (80) 
and we denoted K ε = (K ε xy ) x,y∈X . We made the dependency of W ε (µ, ν) w.r.t. the ground cost function C explicit in (80), because a modified cost is considered in the end of this subsection and §5.3. Note that (80) is concave w.r.t. Φ or Ψ separately, but not jointly, in contrast with (78). It can be numerically solved using alternate maximization, in other words successively solving w.r.t. the unknown Φ with Ψ fixed (resp. w.r.t. Ψ with Φ fixed). This approach is known as Sinkhorn's algorithm [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF], and is particularly simple and efficient since the optimal value w.r.t. either of these variables has a closed form, when the other variable is fixed. More precisely, given an arbitrary Ψ 0 ∈ R X ++ one defines for all n ≥ 0

Φ n := µ K ε Ψ n , Ψ n+1 := ν K ε Φ n , (81) 
where, as in (77), the fraction bar denotes a componentwise division operation. Then the sequence (Φ n , Ψ n ) n≥0 converges geometrically to a maximizer of (80), see [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF].

The more computationally intensive part of Sinkhorn's algorithm (81) is to repeatedly compute the matrix-vector products K ε Φ n and K ε Ψ n in (81), since the matrix K ε is dense and large. An efficient way to approximate those products using Varadhan's formula was proposed in [START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], when the ground cost function is defined as a Riemannian distance or its square. We adapt here this approach to a ground cost C(x, y) := dist F defined as a Randers distance, on a Cartesian grid domain.

For that purpose, we define the modified cost function: for all points x, y of the domain

X := Ω h C ε h (x, y) := -ε ln[(L ε h ) -1 xy ], C ε h (x, y) = dist F (x, y) + o(1) as (ε, h/ε, ε ln h) → 0. (82) 
We denoted by L ε h the matrix of our linear discretization scheme [START_REF] Lu | Inverses of 2x2 block matrices[END_REF] with null Dirichlet boundary conditions. Note that the positivity of the inverse matrix (L ε h ) -1 , and the convergence (82, right) which holds locally uniformly on Ω × Ω, are established in Theorem 4.2. We also define P 0 ≡ 1 as the counting measure on Ω h × Ω h .

The quantity W ε (µ h , ν h ; C ε h ), where µ h , ν h ∈ P(Ω h ), is thus defined via (80) in terms of the kernel

K ε = (L ε h ) -1 . (83) 
Sinkhorn's algorithm (81) in this context involves repeated linear solves (L ε h ) -1 Ψ n and (L ε h ) -Φ n , which are considerably less memory intensive than the dense matrix product with K ε , and also have a lower computational complexity especially if one uses a sparse pre-factorization of the matrix L ε h .

Convergence

We establish that the transport cost W ε (µ h , ν h ; C ε h ), numerically evaluated by the implementation of Sinkhorn's algorithm presented in §5.2, converges as (ε, h/ε, ε ln h) → 0 to the 1-Wasserstein optimal transport cost associated with the Randers metric. Note that there are a number of classical and closely related questions that could be raised in this context, such as establishing the convergence of the Kantorovich potentials, but they are out of the scope of this paper. We refer the interested reader to [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] for a survey of the connections and convergence results between the optimal transport problem and Schrödinger's entropic relaxation in the continuous setting, and to [START_REF] Robert | The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampère equations[END_REF] for convergence rates of the potentials of the discrete problems (under strong assumptions on the domain and the ground cost function, which are not satisfied in our setting). Lemma 5.3 (Upper and lower bounds on the discrete entropy). Let X be a finite set with N elements, and let µ ∈ P(X). Then 0 ≥ x∈X µ x ln µ x ≥ -ln N , with the usual convention 0 ln 0 = 0. We omit the proof, which is a classical convexity argument, and note that the upper bound is attained for the Dirac mass concentrated at a single point, and the lower bound is attained for the uniform probability. For all h > 0 let Ω h := Ω∩hZ d . Let µ h , ν h ∈ P(Ω h ) be supported on K and weakly * converging µ h µ, ν h ν, as h → 0. Consider the ground cost C ε h (82) on Ω h × Ω h , and define P 0 as the counting measure. Then

W ε (µ h , ν h ; C ε h ) → W 0 (µ, ν; C), as (ε, h/ε, ε ln h) → 0. (84) 
Proof. By Lemma 5.3, one has | Ent(P )| = O(ln h) for all transport plans P ∈ Π(µ h , ν h ), since the finite set

Ω h × Ω h has O(h -2d ) elements. Therefore |W 0 (µ h , ν h ; C ε h ) -W ε (µ h , ν h ; C ε h )| = O(ε ln h). (85) 
For all x, y ∈ Ω define Cε h (x, y) := C ε h (x h , y h ), where x h , y h ∈ Ω h are the closest grid points to x and y respectively (chosen arbitrarily in case of a tie). Then Cε h converges uniformly as (ε, h/ε, ε ln h) → 0 to the continuous cost function C on the compact set K × K, by Theorem 4.2. From this point, a direct application of [53, Theorem 5.20, Stability of optimal transport] shows that W 0 (µ h , ν h ; C ε h ) = W 0 (µ h , ν h ; Cε h ) → W 0 (µ, ν; C) as (ε, h/ε, ε ln h) → 0. Combining this result with the estimate (85), we establish (84) as announced.

Numerical results

We illustrate the numerical methods presented in this paper, for Randers distance computation and numerical optimal transport, with synthetic numerical experiments in dimension d = 2. Geodesic distance computation based on solving the heat or Poisson PDEs has already numerous applications [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF][START_REF] Yang | Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[END_REF][START_REF] Yang | Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric[END_REF] and is part of established algorithmic geometry libraries such as CGAL ® . Likewise Wasserstein distance computation based on entropic relaxation is an established numerical approach [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF][START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF][START_REF] Chizat | Faster Wasserstein Distance Estimation with the Sinkhorn Divergence[END_REF]. The contributions of this paper are thus mostly theoretical, see §7.

Randers distances are the simplest geometric model of an asymmetric distance, and have a number of applications discussed in Remark 1.1. The approach presented in this paper for Randers distance computation is applied in [START_REF] Yang | Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric[END_REF] to image segmentation problems, using numerical codes provided by the last author and with due acknowledgement 5 . In the optimal transport setting, Randers geometry is likewise relevant when the mass transport cost is naturally strongly asymmetric. As an artificial example, one may consider Monge's earth moving problem on a non-flat terrain, where moving mass uphill is more costly than downhill. Another example, which was a motivation for our analysis but is postponed for future works, is related to the deployment of a fleet of unmanned aerial vehicles (UAVs) for observation in the context of the prevention and monitoring of forest fires. This could be modeled as the optimal transport of a family of Dirac masses, located at the UAVs initial positions, onto a probability distribution over the terrain, defined as the likelihood of a fire start inferred from the type of vegetation and the dryness conditions. When the terrain is mountainous, and the weather is windy, the UAVs displacement costs are strongly asymmetrical, and could be modeled by Randers distances.

In this numerical section, we compare in several occasions the results of the centered scheme L ε h [START_REF] Lu | Inverses of 2x2 block matrices[END_REF] emphasized in this paper, with those of the upwind scheme L ε,+ h (43) which is unconditionally stable but is also less accurate. We limit our experiments to two-dimensional problems, consistently with the literature, and although our theoretical results apply in dimension three as well, due to the overwhelming cost of solving three-dimensional Laplacian-like linear systems at the considered grid scales.

The PDE domain Ω for the experiments presented in this section is either the square (-1, 1) 2 or the two-dimensional unit ball {x ∈ R 2 ; |x| < 1}. It is discretized on a regular Cartesian grid, using finite differences modified as in [START_REF] Kannan | A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation[END_REF] to account for the (null) boundary conditions on ∂Ω. The grid scale h = 0.00625 commonly used in the experiments below corresponds to a grid of size 320 × 320 (intersected with Ω). In the first two problems we numerically approximate

u(x) := min y∈Y dist F (x, y), ( 86 
)
where Y is a finite set of target points, and F is a Randers metric on Ω which is described in terms of the parameters A, b of its dual, see Lemma 2.6. From the convergence analysis standpoint, the case of finitely many isolated point sources is a straightforward generalization of the case of a single one considered §4, and considering targets instead of sources amounts to a change of sign in the asymmetric part of the metric as discussed below (4).

In our experiments, the largest contributor to computation time is the factorization of the sparse linear systems, using the SuperLU routine provided with the scipy Python package. In contrast, the preliminary step of scheme construction (including Selling's algorithm to decompose the matrix A b (x) at each point x ∈ Ω h , and sparse matrix assembly) only accounts for fraction of this cost, and the subsequent solve operation is approximately 10× faster than matrix factorization. In the application to optimal transport, which is based on Sinkhorn's algorithm (81), the same linear system needs to be solved multiple times, and thus a single matrix factorization is followed by 13 to 54 solve operations. The SuperLU factorization time when using a 320×320 discretization grid (thus ≈ 10 5 unknowns) ranges from 1.3s to 2.8s depending on the test case, on a laptop equipped with a 2.3 GHz Intel Core i5 dual-core processor. Remark 6.1 (Fast Fourier Transform (FFT)). A PDE which is (i) linear, (ii) has constant coefficients, (iii) has suitable boundary conditions, and (iv) is discretized on a Cartesian grid, can often be efficiently solved using FFT. The Poisson equation (3) considered here fulfills (i) and (iv), whereas (iii) is debatable. However (ii) fails unless the Randers metric has constant coefficients. The extension of the FFT to PDEs with varying coefficients is an area of active research [START_REF] Oscar | Spatially dispersionless, unconditionally stable FC-AD solvers for variable-coefficient PDEs[END_REF], which is outside the scope of this work. In any case, FFT schemes lack the discrete degenerate ellipticity property Definition 3.4 which is a key ingredient in establishing the convergence of the proposed numerical method in the vanishing viscosity limit ε → 0.

In applications of the heat method to geodesic distance computation [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF][START_REF] Yang | Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[END_REF][START_REF] Yang | Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric[END_REF], the metric (isotropic, Riemannian or Randers) always varies over the domain (otherwise the distance is given by an explicit formula), which rules out (ii) and the FFT. In applications to optimal transport via Sinkhorn's algorithm, constant metrics are often considered, and in this special case the FFT approach may be preferred [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. 

Since the metric is constant and the domain is convex, the geodesic distance is explicit: dist F (x, y) = F (y -x) where F x (v) = F (v) for all x ∈ Ω, and the minimal paths are straight lines, see the discussion below Definition 2.3. In particular (86) can be evaluated exactly, which allows estimating convergence rates. The exact Randers distance from Y , and the pointwise approximation errors achieved when approximating it using the centered scheme (37) and the upwind scheme [START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], are illustrated on Fig. 2. We present on Figure (3, top left) Tissot's indicatrix of the metric F, which is a representation of the sets {x

+ v; v ∈ R 2 , F x (v) = r}, (88) 
associated to a number of points x ∈ Ω and for a suitable radius r > 0. In Randers case, the set (88) is an ellipse which is not centered on the point x, and which admits several equivalent characterizations see Lemma 2. 

-2x 1 x 2 |x| -x 1 x 2 -2x 1 x 2 |x| -x 1 x 2 1 + 2x 2 1 |x| + x 2 1   , b(x) := 0, ( 90 
)
where A is as in (89) and b is chosen as zero in order for those parameters to define a Riemannian metric.

Numerical convergence rates. We discuss the convergence of some approximations of the exact distance function u, defined by the metric parameters and target points (87), on the square (-1, 1) 2 . The l ∞ and l 1 errors between u and one of its approximations u ε h are respectively Figure 4: l 1 and l ∞ error between the exact distance u, with parameters (87), and its numerical approximation, as a function of the grid scale h. Left: the upwind scheme L ε,+ h (43) works best with ε ≈ h 1/2 . Center: the centered scheme is more accurate and works best with ε ≈ h 2/3 . The accuracy of the centered scheme solution is improved with a post-processing step, see Remark 3.2, which works best using the same stencil as the finite difference scheme (right, bottom), rather than an axis aligned stencil (right, top 

where we excluded some boundary layer (-1, 1) 2 \ [-0.8, 0.8] 2 from the PDE domain Ω = (-1, 1) 2 , consistently with the fact that Theorem 4.1 only guarantees uniform convergence on compact subsets of Ω. We display on Fig. 4 the convergence curves for the centered L ε h (37) and the (unconditionally stable but less accurate) upwind scheme L ε,+ h [START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], and for ε = 1 2 h α where α ∈ {1/2, 2/3}. Empirically, the centered scheme works best when α = 2/3, and the upwind scheme when α = 1/2. This experiment illustrates and empirically confirms Corollary 3.15, which establishes that the minimal consistency error with the eikonal equation is achieved when ε ≈ h α , where α = 2/3 for the centered scheme, and α = 1/2 for the upwind scheme. Note however that the empirical solution error appears to be higher than the scheme consistency error, which is O(h α ), see Corollary 3.15. This is likely a consequence of the singularity of the solution at the source points, since the expected convergence rate O(h 2 3 ) is obtained in the case of the distance to a closed curve, see the next paragraph and Fig. 6.

The post-processing step discussed in Remark 3.2, and adapted from [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], allows to improve the accuracy of our numerical solution of the Randers eikonal equation solution, as illustrated Figure 5: Absolute difference between the exact distance map u associated with the parameters (87) and its numerical approximation u ε h (left), the improved reconstruction using an axis-aligned stencil (center), or using the stencil of the finite difference scheme (right), see Remark 3.2. Grid scale h = 0.00625 and ε = 0.5h 2/3 . on Fig. 4 and5. This post-processing works best when using the stencil of the finite difference scheme, as opposed to a basic axis-aligned stencil, see Fig. 5 and the last sentence of Remark 3. 

with ρ := 0.7 and with b(0) := 0. In other words, following Zermelo's interpretation §2.2, we compute the travel time of a vehicle whose speed is 1 in all directions, relative to a medium whose local speed at x ∈ Ω is defined as b(x). Note that b ∞ = ρ < 1, so the the model is locally controllable. This is a variation on the classical test case [48, Figures 4 and5], where we replaced the point source boundary condition with a Dirichlet boundary condition, and the square domain with a partly rounded domain, so as to illustrate the applicability of our numerical scheme in this context.

While the exact solution to the considered problem is not known, we compare our results with the ones obtained using the eikonal solver [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF], which is a fast marching method for two dimensional Finsler metrics based on completely different discretization principles, on a finer grid of the form Ω h , h = 0.003125. The l ∞ and l 1 errors in Fig. 6 are defined respectively as

max x∈Ω h |u ε h (x) -u(x)|, h 2 
x∈Ω h |u ε h (x) -u(x)|,
without excluding a boundary layer from Ω as in (91). At small grid scales, we observe convergence at the order 2/3, consistently with the order of consistency 2/3 stated in Corollary 3.15.

Optimal transport problems. On Fig. 7, we solve numerically the optimal transport problem (72), where µ and ν are uniform probability measures on [-0.7, -0.1] × [-0.5, 0.1] and [0.1, 0.7] × [-0.1, 0.5] respectively. We use Sinkhorn's algorithm (81) to numerically approximate the exponential Kantorovich potentials Φ, Ψ ∈ R Ω h + maximizing (80), using the efficient approximation (83) of the product with the kernel K ε = exp(-dist F (x, y)/ε). The arrows on the figure follow Randers geodesics and illustrate a numerical approximation of the mapping σ : Ω h → Ω defined by σ(x) := 1 µ x y∈Ω h P xy y,

where (P xy ) x,y∈Ω h is the optimal coupling measure (79) for the optimal transport problem (77). Thus σ(x) is the barycenter of the image by the transport plan of the Dirac mass at x. The numerical evaluation of σ involves a product with the kernel K ε which again is efficiently approximated using (83). Note that the coupling measure P is typically not supported on a graph, not even approximately, and that σ is not a one to one mapping. In particular, σ does not approximate a translation in Figure (7, top left). This behavior reflects the specific properties of the 1-Wasserstein distance, as opposed to the p-Wasserstein distance for p > 1, and it is not related to our numerical approximation procedure. Figure (7, top right) displays the error between the approximation W ε h (µ, ν) of the Wasserstein distance obtained with grid scale h > 0 and entropic relaxation ε = 1 2 h 2 3 , and the exact optimal transport cost corresponding to the continuous problem without relaxation ε = h = 0.

Conclusions

In this paper, we introduced and studied a numerical scheme for approximating geodesic distances by solving a linear finite differences scheme, with an application to Schrödinger's entropic relaxation of the optimal transport problem. The approach builds on previous works [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF][START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF][START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF][START_REF] Solomon | Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[END_REF][START_REF] Yang | Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[END_REF][START_REF] Yang | Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric[END_REF], and brings the following contributions: (i) justification of the distance computation method in the case of point sources, which is a common setting in applications, (ii) identification of the optimal parameter scaling ε = h 2 3 , in contrast with the commonly used scaling h = cε which is inconsistent asymptotically (50), (iii) extension of these methods to asymmetric geometries defined by Randers metrics.

Our numerical scheme obeys the discrete degenerate ellipticity property, and thus benefits from comparison principles, numerical stability, and a convergence proof in the setting of viscosity solutions. For that purpose we use adaptive finite differences whose offsets depend on the PDE parameters and are obtained via a tool from discrete geometry known as Selling's decomposition of positive definite matrices [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF][START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF]. Our convergence proof (in the case of a point source) exploits fine properties of Selling's decomposition: uniqueness, Lipschitz regularity, and spanning property (which implies the local connectivity of the stencils derived from it), for the first time in the context of PDE analysis -whereas previous works only relied on the positivity and consistency properties of this decomposition [START_REF] Fehrenbach | Sparse non-negative stencils for anisotropic diffusion[END_REF][START_REF] Bonnans | Monotone and second order consistent scheme for the two dimensional Pucci equation[END_REF][START_REF] Frédéric Bonnans | Second order monotone finite differences discretization of linear anisotropic differential operators[END_REF][START_REF] Mirebeau | Fast-marching methods for curvature penalized shortest paths[END_REF][START_REF] Mirebeau | Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms[END_REF]. Future work will be devoted to investigating their relevance in other applications to numerical analysis, and possible substitutes in dimension d ≥ 4 where Selling's decomposition does not apply.
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 1 γ(t) (γ (t)) dt, dist F (x, y) := inf γ∈Γ y x length F (γ).

  ) If M : Ω → S ++ d and ω : Ω → R d are Lipschitz fields obeying |ω| M -1 < 1 pointwise on Ω (which is compact by assumption), then the fields A : Ω → S ++ d and b : Ω → R d defined by Lemma 2.6 as the dual Randers parameters are also Lipschitz, since matrix inversion is differentiable, and obey the equivalent properties (11) pointwise on Ω. The following lemma provides several equivalent characterizations of the unit ball associated with a Randers norm, and ends this subsection. Lemma 2.7. Let (M, ω) denote the parameters of a Randers norm, and let (A, b) denote the parameters of the dual Randers norm, see Lemma 2.6. Then for all

Proposition 2 . 8 .

 28 Let c : Ω → R, and η : Ω → R d be continuous and obey c > 0 and |η| < c, pointwise on Ω. Consider the Randers metric F * of parameters A = c 2 I d and b = η on Ω, as well as its dual F * * = F. Then for all x, y ∈ Ω T η c (x, y) = dist F (x, y).

Remark 2 . 13 (

 213 Divergence form Laplacian). One may replace in (20) the non-divergence form anisotropic Laplacian with the divergence form variant div(A b ∇u) = Tr(A b ∇ 2 u) + div(A b ), ∇u , where div(A b ) denotes column-wise divergence, assuming that A b is continuously differentiable. Indeed, this amounts to replacing in (20) the vector field b defining the first order term with b

1 2 (

 2 ∂Ω), obey the following compatibility condition, where c Ω > 0 denotes the Poincare inequality constant of the domain: σ 0 + min{0, p c Ω } > 0, where σ 0 := inf x∈Ω λ min (σ(x)), and p := inf x∈Ω µ(x) -1 2 div b(x) . (26)

Remark 2 . 14 (

 214 Burgers equation and the Hopf-Cole transformation). The non-linear PDE of Burgers arises in various contexts, ranging from fluid mechanics to traffic flow, and is also a model equation to study the interaction of the advection and diffusion operators, and the formation of shock waves. The d-dimensional instantiation of Burgers PDE asks for a vector field v : R + × Ω → R d defined on a domain Ω ⊂ R d and such that

Lemma 4 . 8 .

 48 Let f ∈ C 2 (R ++ , R), let µ ∈ R,and let u(x) := exp(-µf (|x|)) for all x ∈ R d \ {0}. Then one has with n(x) := x/|x|, omitting the arguments of f, f , f , f and n ∇u

i 2 =

 2 Tr(A b nn ) = |n| 2 A b , and that I i=1 ρ i ≤ Tr(A b ) ∞ . Since A b is uniformly positive definite over Ω and n is a unit vector, one has |n| 2 A b ≥ c 0 = c 0 (M F ) > 0, and the result follows with C 1 = max{4C 0 /c 0 , 2/c 0 } and c 2 = c 0 /4C 0 . Corollary 4.10. Define u(x) := |x| -µ , where µ ≥ 1. If x ∈ Ω h and 2R S h ≤ |x| ≤ 4ε then

  where C = C(M F ). Then by Proposition B.8, and up to reordering (ρ i , e i ) I i=1 , one has det(e 1 , • • • , e d ) = 1 and ρ i (0) ≥ 2ρ S for all 1 ≤ i ≤ d, where ρ S only depends on A b (0) and A b (0) -1 . The announced result follows, by choosing r S := ρ S /C.

Lemma 4 . 12 .

 412 Let G ∈ GL(Z d ) be the matrix of columns e 1 , • • • , e d , and let N (x) := |G -1 x| 1 . Then for any z ∈ Z d \ {0} there exists 1 ≤ |i| ≤ d such that N (z + e i ) = N (z) -1. In addition c|x| ≤ N (x) ≤ C|x| where the constants C, c > 0 only depend on M F . Proof. The matrix G has integer coefficients by construction, and det(G) = 1 by (63, left) hence its inverse is the adjugate matrix G -1 = co(G) which also has integer coefficients, thus G ∈ GL(Z d ) as announced. Since the coefficients of G are bounded by R S , those of the adjugate matrix G -1 are bounded by (d -1)!R d-1

Corollary 5 . 4 .

 54 Let Ω ⊂ R d , d ∈ {2, 3}, be a bounded, open, connected domain, with a W 3,∞ boundary. Let µ, ν ∈ P(Ω) be supported on a compact subset K of Ω. Let F be a Randers metric on Ω, and let C := dist F : Ω × Ω → R.
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 2 Figure2: Randers distance with parameters (87). Left: exact solution. Center: approximation error when using the upwind scheme L ε,+ h[START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], with ε = h 1/2 . Right: approximation error when using the centered scheme L ε h[START_REF] Lu | Inverses of 2x2 block matrices[END_REF], with ε = h 2/3 . In all cases h = 0.00625. Points from the target set Y are displayed in red.
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 7222211 The numerical approximation of Randers distance obtained with the centered scheme is illustrated on Figure (3, top right), while the numerical approximations of minimal paths from Y obtained by solving the ODE (18) are shown Figure (3, top center).Randers metric with variable coefficients. A single target point is considered Y = {(0.8, 0)}, and the dual metric parameters are defined at x = (x 1 , x 2 ) ∈ Ω asA(x) := xx |x| 2 + (1 + |x|) 2 x ⊥ (x ⊥ ) 2x 1 x 2 |x| -x 1 x 2 1 + 2x , b(x) := x ⊥ = -(89)using the extension by continuity A(0) := Id. Note that these parameters obey the compatibility condition |b(x)| A(x) -1 = (1 + |x|) -1 < 1. Numerical results are shown Figure(3, center). For

Figure 3 :

 3 Figure 3: Representation of the Randers metric and approximations of minimal paths and of the Randers distance for parameters (87) (top), (89) (center), and (90) (bottom), with h = 0.00625 and ε = 0.5h 2/3 .

2 .

 2 It allows to achieve the expected convergence rate O(h 2 3 ).

Figure 6 :

 6 Figure 6: Randers distance from the boundary of a domain, with parameters (92). Left: reference solution, computed using the eikonal solver[START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF]. Center: error between the solution obtained using the centered scheme L ε h and the reference solution, for h = 0.00625 and ε = 0.5h 2/3 . Right: error depending on h, for ε = 0.5h 2/3 .

Figure 7 :

 7 Figure 7: Numerical solution of the optimal transport problem (72). Top left: manifold parameters (87), grid scale h = 0.00625. Bottom left: parameters (89), grid scale h = 0.00625. Bottom right: parameters (90), grid scale h = 0.00625. Top right: convergence toward the exact Wasserstein distance as h → 0, with parameters (87). In all cases, ε = 0.5h 2 3 .

  

  R d . However the prefix "quasi" before norms, metrics and distances is dropped in this paper for readability, as already mentioned in Remark 1.3. The following facts, stated without proof, are standard results of convex analysis and Finsler geometry. Lemma 2.2 (Norm duality). Any norm F on R d is Lipschitz continuous on R d , and as a result the extremum in (8) is indeed attained, for any v ∈ R d . The dual norm F * is also a norm, and furthermore one has

using successively the positive 1-homogeneity and the convexity of F . The dual norm is equivalently characterized as F * (v) := max{ v, w /F (w); |w| = 1}, by homogeneity of F . Conventionally, Definition 2.1 defines a quasi-norm, whereas a norm is subject to the additional symmetry axiom F (v) = F (-v) for all v ∈

  In particular, µ 1 = x∈X µ x , P 1 = ( y∈X P xy ) x∈X , and P 1 = ( x∈X P xy ) y∈X . In this discrete setting, the optimal transport problem (72) reads

	W ε (µ, ν) = inf P ∈Π(µ,ν)	P, C + ε P, ln	P eP 0	,

  ).

	defined as				
	max x∈Ω h ∩[-0.8,0.8] 2	|u ε h (x) -u(x)|,	h 2	x∈Ω h ∩[-0.8,0.8] 2	|u ε h (x) -u(x)|,

. We extend the approach to the case of point sources, under the additional condition ε ln h → 0. Such a convergence analysis, for geodesic distance computation methods based on the heat or Poisson PDEs, was presented as an open problem in earlier works[START_REF] Crane | The heat method for distance computation[END_REF], which were in addition limited to the special case Riemannian metrics. We propose a computational method for optimal transport with Randers distance as cost. Numerical experiments illustrate our results.

The cut locus is the set of points where the minimum (4, right) is attained by several minimal paths from the boundary.

In this paper, the Hopf-Cole transformation stands for the change of unknown u := -ε ln u, rather than u = -ε∇ ln u which is often found in the literature, see Remark 2.14.

We present a numerical implementation of the linear second order PDE (3) based on discrete degenerate elliptic finite differences, on a Cartesian discretization grid. This approach is chosen for the simplicity of its implementation and of the convergence analysis. Alternative discretizations may also be considered, for instance using finite elements on triangulated manifolds, see[START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] and Remark 2.13; however, we are not aware of a convergence analysis under mesh refinement in this setting.

Equivalently, one could use the convention u ε,i h (x) = -∞ whenever x / ∈ Ω ε,i h .

Note nevertheless that (69) requires that ε ≤ δ and h/ε ≤ δ, where δ depends on MF and r.

However [54, §2.2] attempts to relate the numerical method with the Finsler heat equation[START_REF] Yang | Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[END_REF]. This is incorrect in our belief, and was published without the knowledge of the authors of this paper.

Or proper degenerate elliptic in the wording of[START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. For consistency with the discrete case Definition 3.4, and following[START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], we drop the 'proper' qualifier.

In other words, v : Ω → I0 where I0 is a compact subset of I.

The first author was partially supported by the FiME Lab Research Initiative (Institut Europlace de Finance).

A Viscosity solutions

In this appendix, we establish the existence, uniqueness, comparison principles and convergence properties announced in §2 for the following three PDEs:

The linear PDE (94), introduced in (3), is the foundation of our approach to Randers distance computation. The Randers eikonal PDE (95), which can be rephrased in many equivalent forms, see [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF] and Corollary 2.9, characterizes Randers distance from the domain boundary with initial time penalty g. Finally (96) makes the link between the first two equations, being equivalent for any ε > 0 to (94) up to a logarithmic transformation of the unknown, and being equivalent for ε = 0 to (95) by Corollary 2.9. We recall that, by assumption, Ω is a bounded, connected and open domain with a W 3,∞ boundary and g ∈ C(∂Ω). The fields A : Ω → S ++ The content of this section is presented in the appendix because it often mirrors similar results presented in the discrete setting of §3 which we have chosen to emphasize, and because several key results are obtained by specialization of [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF][START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. We present in Appendix A.1 the concepts of degenerate elliptic operator and of viscosity solution to a PDE, and we justify the change of unknown known as the logarithmic transformation. The comparison principle, established in Appendix A.2 for the PDEs of implies the uniqueness and boundedness of their solutions in Ω. We prove in Appendix A.3 the validity of the explicit solutions to (94) and (95) defined as a distance map [START_REF] Chen | The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system[END_REF] and as the expectation [START_REF] Crane | The heat method for distance computation[END_REF] of the stochastic process [START_REF] Crane | A Survey of Algorithms for Geodesic Paths and Distances[END_REF], and we establish convergence as ε → 0.

A.1 Degenerate ellipticity, change of unknowns

The PDEs considered in this appendix (94) to (96) benefit from a common structure, known as degenerate ellipticity [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Oberman | Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems[END_REF], introduced in Definition A.1 below and whose discrete counterpart is presented in Definition 3.4. 6 if it is (i) non-decreasing w.r.t. the second variable t, and (ii) non-increasing w.r.t. the last variable X for the Loewner order. The operator F is said elliptic if F (x, t, p, X) -δt is degenerate elliptic for some constant δ > 0.

The Dirichlet problem for a degenerate elliptic equation writes as

where ψ : ∂Ω → R. For example when considering equation (95), one should choose

This specific operator F is degenerate elliptic, since F (x, t, p, X) does not depend on either t or X, and thus obeys the required monotony conditions. Equation ( 96) is likewise defined by a degenerate elliptic operator, because the matrix field A b is positive semi-definite. Equation ( 94) is elliptic thanks to the additional zeroth order term.

In the discrete setting, a comparison principle can be directly derived from the definition of ellipticity, see Lemma 3.5, and the related notions of sub-solution and super-solution are straightforward. Some additional care is however needed in the continuous case, see Definition A.2, Proposition A.7 and Theorem A.8 below. For any bounded function u : Ω → R d , we denote respectively by u * : Ω → R and u * : Ω → R its upper semicontinuous and lower semicontinuous envelopes, defined by

It is a viscosity super-solution if for any ϕ ∈ C 2 (Ω) and any local minimum

It is a viscosity solution if it is both a viscosity sub-solution and super-solution.

Definition A.2 encompasses discontinuous solutions u, obeying the boundary conditions in a weak sense, which allows implementing outflow boundary conditions in the case of the eikonal equation (95) by using large enough boundary data g. A property of viscosity solutions is their stability under monotone changes of variables.

R be a continuous degenerate elliptic operator, let ψ ∈ C(∂Ω), let I, J ⊂ R be open intervals, let η : I → J be a strictly increasing C 2 -diffeomorphism, and let v : Ω → I be bounded away 7 from ∂I. Define the continuous degenerate elliptic operator

Then u := η • v is a viscosity sub-solution (respectively super-solution) to (97) if and only if v is a viscosity sub-solution (respectively super-solution) to

Proof. We only show the result for sub-solutions, since the case of super-solutions is similar. We assume that v is a sub-solution to (99) and prove that u is a sub-solution to (97). The proof of the converse is the same, using that

The assumption that v is bounded away from ∂I implies that v * and v * are valued in I, hence

valued in J and likewise for u * , by continuity of η. Let ϕ ∈ C 2 (Ω) and x ∈ Ω be a local maximum of u * -ϕ. Without loss of generality, we may assume that ϕ(Ω) ⊂ J. Let φ := η -1 • ϕ. Using that η is strictly increasing, and ϕ = η • φ, we deduce that x is a local maximum of v * -φ. We conclude the proof by noticing that for all x ∈ Ω

In addition, if x ∈ ∂Ω, then u * (x) -ψ(x) and v * (x) -η -1 (ψ(x)) have the same sign.

Remark A.4. Sign changes exchange the notions of sub-solution and super-solution. More precisely, u = -v is a viscosity sub-solution (resp. super-solution) to (97) iff v is a viscosity super-solution (resp. sub-solution) to (99) with

Combining Proposition A.3 and Remark A.4 allows to address the decreasing change of unknown u = exp(-u/ε) considered by Varadhan [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF], see Lemma 2.11. Note the discrete counterpart Proposition 3.11 of this result.

Corollary A.5. Let u : Ω → R, and let u := exp(-u/ε). Then u is a sub-solution (resp. super-solution) to (96) iff u is a super-solution (resp. sub-solution) to (94).

Proof. The PDE (94) corresponds to (97) with the following operator and boundary conditions

Applying successively Proposition A.3 with the increasing diffeomorphism η(t) := -exp(-t/ε), and Remark A.4, yields the boundary conditions χ(x) = -η -1 (ψ(x)) = g(x) and the operator

Simplifying by the positive factor e -t ε , and distributing the minus sign, we recognize (96).

A.2 The comparison principle

The linear PDE (94) and Randers eikonal equation ( 95) admit a strong comparison principle, which in particular implies that their viscosity solutions are uniquely determined on Ω -though not on ∂Ω. The proofs, presented in Proposition A.7 and Theorem A.8 below, are obtained as a specialization of [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF]. For that purpose, we reformulate the first order term of (95) in Bellman form, based on the following identity: for all x ∈ Ω and all w ∈ R d

where

Lemma A.6. The mappings A Regarding the last property, we observe that choosing α = A

since

The comparison principle established in [5, Theorem 2.1] encompasses both the second order linear PDE (94), and the first order non-linear PDE (95) considered in this paper, although a reformulation is needed in the latter case.

Proposition A.7. Let u and u be respectively a sub-solution and a super-solution of the linear PDE (94), for some ε > 0. Then u * ≤ u * in Ω.

Proof. The announced result is a direct application of [5, Theorem 2.1], using that A Theorem A.8. Let u, u : Ω → R be respectively a sub-solution and a super-solution of (95). Then u * ≤ u * in Ω. 8 More directly, if the eigenvalues of A ∈ S ++ d lie in ]0, 2r[, then one has the series expansion

Proof. Since (95) involves an operator which is degenerate elliptic but not elliptic, see Definition A.1, we perform the Kruzhkov exponential change of variables and define v := -exp(-u) and v := -exp(-u). By Proposition A.3, v and v are respectively a viscosity sub-solution and super-solution to

The boundary ∂Ω is of class W 3,∞ , and the boundary data -exp(-g) ∈ C(∂Ω), consistently with the framework of [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications[END_REF]. Furthermore, the PDE can be rewritten as sup 

A.3 Explicit solutions, and convergence

We establish that viscosity solutions to Randers eikonal equation ( 95) and to the linear PDE (94) may be explicitly obtained as the distance from the boundary (4) with suitable penalty term, and as the expectation of a stochastic process [START_REF] Crane | The heat method for distance computation[END_REF]. We also prove bounds for these solutions, see Theorems A.9 and A.11, and conclude the proof of Varadhan's formula for Randers metrics in Theorem A.12. where γ = γ α x is defined by γ(0) = x and γ (t) = b(γ(t), α(t)) for all 0 ≤ t ≤ T , and where α is implicitly assumed to be measurable. Now, for any v ∈ R d one obtains, omitting the argument x in M (x), ω(x), A(x) and b(x) for readability

where the first equivalence holds by definition, the second is established in Lemma 2.7, the third follows from |A 1 2 α| A -1 = |α| for any α ∈ R d , and the last is obtained by choosing α = -α. Thus

Noting that any Lipschitz path can be reparametrized at constant speed w.r.t. the metric F, and have its orientation reversed (from x to ∂Ω), we obtain that v(x) = u(x), which concludes the proof.

We obtain a sub-solution and a super-solution to the PDE (96), independent of the relaxation parameter, similarly to the discrete case in Lemma 3. [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF] Lemma A.10. The PDE (96) admits, for any ε ≥ 0, the constant sub-solution u : x ∈ Ω → g min , where g min := min{g(y); y ∈ ∂Ω}. It also admits the affine super-solution u : x ∈ Ω → p, x + c max , for any p ∈ R d such that |p| is sufficiently large, where c max := max{g(y) -p, y ; y ∈ ∂Ω}.

, provided |p| is sufficiently large, since A b and b are bounded over Ω, and A b is uniformly positive definite. The constants g min and c max are chosen so as to comply with the boundary conditions. Theorem A.11. For any ε > 0, the function u ε : Ω → R -defined by ( 24) is a viscosity solution to (94). In addition, u ε is positive, and u ≤ u ε ≤ u in Ω, where u ε := -ε ln(u ε ) and u and u are from Lemma A.10.

Proof. Since A By Corollary A.5, u ε := exp(-u/ε) and u ε := exp(-u/ε) are respectively a sub-solution and a super-solution to (94). Thus

. Therefore u ε is positive, as announced, and we conclude using the monotony of the logarithm.

We are able to complete the proof of formula ( 25) by making rigorous the passing to the limit between problems (96) and ( 95). Note that we follow a standard sketch of proof, already used in [4, Proposition II.6] for example.

Theorem A.12. With the notations of Theorem A.11, and denoting by u the solution to [START_REF] Cheng | Finsler geometry. An approach via Randers spaces[END_REF], one has u ε → u uniformly on compact subsets of Ω, as ε → 0.

Proof. By Theorem A.11, u ε is bounded above and below, uniformly on Ω and uniformly w.r.t. ε > 0. Therefore the following limit is well-defined, for any x ∈ Ω 

The locally uniform convergence of u ε to u on Ω follows from the definitions of v and v.

B Selling's decomposition of positive definite matrices

This appendix is devoted to a brief description of Selling's decomposition of symmetric positive definite matrices [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF][START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF] 

for all 0 ≤ k ≤ d, where δ ij denotes Kronecker's symbol. In dimension d = 2 (resp. d = 3), if {i, j, k} = {0, 1, 2} (resp. {i, j, k, l} = {0, 1, 2, 3}), one easily checks that e ij = ±v ⊥ k (resp. e ij = ±v k × v l ). Selling's formula and are classical [START_REF] Selling | Uber die binären und ternären quadratischen Formen[END_REF][START_REF] Conway | Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices[END_REF][START_REF] Mirebeau | Fast-marching methods for curvature penalized shortest paths[END_REF]], yet their (short) proofs are presented for completeness, since they are core elements of our numerical scheme.

Proof. By (103) we obtain v i , Dv j = v i , D v j for all 0 ≤ i < j ≤ d, where D denotes (104, rhs). Thus v i , Dv i = v i , D v i by linearity and since

is known as Selling's decomposition of D. Selling's algorithm provides a constructive proof of existence of such a D-obtuse superbase, in dimension d ∈ {2, 3}.

Repeating this operation yields a D-obtuse superbase in finitely many steps. We conclude this appendix by establishing, in Proposition B.8, that some offsets of Selling's decomposition, associated with weights suitably bounded below, span the integer lattice Z d by linear combinations with integer coefficients. This implies that the stencils of our numerical scheme (37) define a locally connected graph, a property used in §4.3 to control its solution in the neighborhood of a point source.

Lemma B.6. Let (v 0 , • • • , v d ) be a superbase of Z d , and let (i k , j k ) d k=1 be such that 0

up to a change of basis, so that v 0 = (-1, • • • , -1) . Then e 0j = -v j for all 1 ≤ j ≤ d, and e ij = v i -v j for all 1 ≤ i < j ≤ d. Each of the vectors e ij , 0 ≤ i < j ≤ d, thus features at most once the coefficient 1, and at most once the coefficient -1, the other coefficients being 0. The announced result then follows from [9, Proposition 2.37], which is a classical characterization from Poincare of some unimodular matrices.