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J. Frédéric Bonnans∗, Guillaume Bonnet†, Jean-Marie Mirebeau‡

March 21, 2022

Abstract

Randers distances are an asymmetric generalization of Riemannian distances, and arise
in optimal control problems subject to a drift term, among other applications. We show
that Randers eikonal equation can be approximated by a logarithmic transformation of an
anisotropic second order linear equation, generalizing Varadhan’s formula for Riemannian
manifolds. Based on this observation, we establish the convergence of a numerical method
for computing Randers distances, from point sources or from a domain’s boundary, on
Cartesian grids of dimension 2 and 3, which is consistent at order 2/3, and uses tools from low-
dimensional algorithmic geometry for best efficiency. We also propose a numerical method for
optimal transport problems whose cost is a Randers distance, exploiting the linear structure
of our discretization and generalizing previous works in the Riemannian case. Numerical
experiments illustrate our results.

1 Introduction

A Randers metric is the sum of a Riemannian metric and of an anti-symmetric perturbation,
suitably bounded and defined by linear form. By construction, a Randers metric is in general
non-symmetric, and so is the associated path-length distance, see Remark 1.3 on terminology.
Such metrics can account, in a very simple manner, for the fact that moving a vehicle uphill, or
advancing a boat against water currents, costs more than the opposite operation. The asymmetry
embedded in Randers metrics opens up numerous applications which cannot be addressed with
the simpler Riemannian metrics, ranging from general relativity [46] to image segmentation [18],
through quantum vortices [1] and path curvature penalization [14], see Remark 1.1.

In this paper, we present a numerical scheme for computing Randers distances by solving a
linear second order Partial Differential Equation (PDE). Our approach is based on a generalization
of Varadhan’s formula [52], which is commonly used to compute Riemannian distances [22]. Let
us emphasize that Randers distances also obey a non-linear first order PDE [3], which can be
solved directly numerically [40, 42], yet the linear structure of the PDE formulation considered in
this paper has a number of computational advantages, including easier numerical implementation,
faster computation in some cases, and smoothness of the numerical solution, see Remark 1.2.
Some of our results, such as the identification of the optimal scaling of the relaxation parameter ε
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w.r.t. the grid scale h, and the proof of convergence in the case of point sources, are new as well
in the special cases of isotropic and Riemannian metrics. We present an application to numerical
optimal transportation, enabled by the linear structure of the discretization, with an asymmetric
cost function defined as the Randers distance between the source and target, generalizing previous
works limited to Riemannian costs [25].

In order to make our statements more precise, we need to introduce some notations. Through-
out this paper, Ω ⊂ Rd denotes a smooth bounded and connected open domain, equipped with
a metric F : Ω × Rd → [0,∞[, whose explicit form is discussed below (2). The corresponding
path-length and distance are defined by

lengthF (γ) :=

∫ 1

0
Fγ(t)(γ

′(t)) dt, distF (x, y) := inf
γ∈Γyx

lengthF (γ). (1)

We denoted by γ an element of the collection Γ := Lip([0, 1],Ω) of locally Lipschitz paths within
the domain closure, and by Γyx ⊂ Γ the subset of paths from x ∈ Ω to y ∈ Ω. We assume in
this paper that F has the structure of a Randers metric: there exists a field M : Ω → S++

d

of symmetric positive definite matrices, and a vector field ω : Ω → Rd, both having Lipschitz
regularity, and such that for all x ∈ Ω and all v ∈ Rd one has

Fx(v) := |v|M(x) + 〈ω(x), v〉, where |ω(x)|M(x)−1 < 1. (2)

We denoted by 〈·, ·〉 the standard Euclidean scalar product, and by |v|M :=
√
〈v,Mv〉 the

anisotropic (but symmetric) norm on Rd defined by a symmetric positive definite matrix M . The
smallness constraint (2, right) ensures that Fx(v) > 0 for all v 6= 0, x ∈ Ω. Randers metrics
include Riemannian metrics as a special case, when the vector field ω vanishes identically over
the domain. See Fig. 3 for an illustration of their unit balls, distance maps, and minimal paths.

Our approach to the computation of Randers distances goes through the solution to a linear
second order PDE, depending on a small parameter ε > 0, and some boundary data g ∈ C0(∂Ω,R)

uε + 2ε〈b,∇uε〉 − ε2 Tr(Ab∇2uε) = 0 in Ω, uε = exp(−g/ε) on ∂Ω, (3)

where Ab is a field of symmetric positive definite matrices, and b is a vector field, depending in a
simple algebraic manner on the Randers metric parameters M and ω, see (9) and (10). In the
Riemannian special case one has Ab = M−1 and b = ω = 0, consistently with [52]. We establish
in Theorem 2.12, following [4], that for all x ∈ Ω

u(x) := lim
ε→0
−ε lnuε(x) exists and satisfies u(x) = min

p∈∂Ω
g(p) + distF (p, x). (4)

In other words, u is the Randers distance from the boundary ∂Ω, with initial time penalty
g, see §4 for the case of point sources. Equation (4) is a generalization to Randers metrics
of the Varadhan formula [52], and uses a logarithmic changes of variables often referred to as
the Hopf-Cole transformation [31], see §2.4 for more discussion. Note that one often considers
the opposite problem, of reaching a boundary point p ∈ ∂Ω from x, which is equivalent up to
replacing the vector field ω with its opposite in (2), see Definition 2.3 and the discussion below.
The distance map u also obeys the first order non-linear Hamilton-Jacobi-Bellman equation

|∇u− ω|M−1 = 1 in Ω, u = g on ∂Ω, (5)

in the sense of viscosity solutions (possibly with discontinuous boundary conditions) [3], which
is numerically tractable [40, 42] as well. The point of this paper is however to study the linear
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approach (3) which has a number of advantages from the computational point of view, see
Remark 1.2. For that purpose we present a finite difference discretization of (3) on the Cartesian
grid Ωh := Ω ∩ hZd, of dimension d ∈ {2, 3}, denoting by h > 0 the grid scale, and reading as
follows:

u+ 2ε
∑

1≤i≤I
ρi〈A−1

b b, ei〉 δ
ei
h u− ε2

∑
1≤i≤I

ρi∆
ei
h u = 0 on Ωh, (6)

where δeh and ∆e
h denote the standard centered and second order finite differences (31), modified

close to ∂Ω to account for the Dirichlet boundary conditions, see (32) and (33). We denoted by
ρi(x) ≥ 0 and ei(x) ∈ Zd, 1 ≤ i ≤ I = d(d+1)/2 the weights and offsets of Selling’s decomposition
[47, 20] of the matrix Ab(x), a tool from lattice geometry which is convenient for the design of
anisotropic finite differences schemes [29, 39, 42, 11] in dimension d ∈ {2, 3}, see Appendix B.
Denoting by uhε the solution of (6) we prove in Theorem 3.19 that −ε lnuhε → u as (ε, h/ε)→ 0.
The case of point sources requires the additional assumption ε lnh→ 0, and its proof involves
fine properties of Selling’s decomposition, see Theorem 4.1. The optimal consistency order is
achieved when ε = h

2
3 , see Corollary 3.15.

Finally we present in §5 an application to the numerical solution to Monge’s optimal transport
problem with a Rander’s distance as cost:

inf
γ∈Π(µ,ν)

∫
Ω×Ω

c(x, y) dγ(x, y), with c(x, y) := distF (x, y), (7)

where µ and ν are given probability measures on Ω, and Π(µ, ν) is the set of probability measures
on Ω× Ω whose first and second marginals coincide respectively with µ and ν. The proposed
implementation relies on Sinkhorn’s matrix scaling algorithm [49], and the linear structure of (3).
We emphasize that the matrix of costs (c(x, y))x,y∈Ωh is never numerically constructed, and would
not fit in computer memory, but instead that the adequate matrix-vector product are evaluated
by solving finite difference equations similar to (6), in an efficient manner thanks to a preliminary
sparse matrix factorization. Let us acknowledge here that, in contrast with the Riemannian
case [50], our approach does not extend to the quadratic cost c(x, y) = distF (x, y)2. Indeed, the
natural route to address the quadratic cost is through short time asymptotic estimates of the
diffusion equation [50], which is a linear PDE in the Riemannian setting but a non-linear PDE in
Randers case [44], see Remark 4.5. In contrast the linear cost (7, right) is addressed using the
Poisson equation (3), which is linear in both the Riemannian and Randers setting. There are
alternative numerical approaches to Monge’s optimal transport problem, such as [7] which uses a
second order cone program, see Remark 5.2.

Contributions. We establish that the solution to a linear second order PDE converges, as
a relaxation parameter ε→ 0 and after a logarithmic transformation, to the Randers distance
from the domain boundary. We propose a finite difference discretization of that linear PDE, on
a Cartesian grid of scale h, and establish convergence of the numerical solutions as ε→ 0 and
h/ε→ 0, with optimal consistency when ε = h

2
3 . We extend the approach to the case of point

sources, under the additional condition ε lnh → 0. Such a convergence analysis, for geodesic
distance computation methods based on the heat or Poisson PDEs, was presented as an open
problem in earlier works [24], which were in addition limited to the special case Riemannian
metrics. We propose a computational method for optimal transport with Randers distance as
cost. Numerical experiments illustrate our results.
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Outline. We recall in §2 the definition of Randers distances and introduce an extension of
Varadhan’s formula to Randers manifolds. We describe the coefficients of (3) in terms of the
Randers metric (2), and prove the convergence result (4).

We study in §3 the linear finite-difference scheme (6). We show that a logarithmic transfor-
mation of the solution (6) solves another nonlinear scheme, for which we prove convergence and
consistency with the non-linear PDE (5). We also discuss heuristic techniques introduced in [22]
to improve the numerical accuracy of the geodesic distance approximation, and extend them to
Randers metrics.

We address in §4 the computation of the geodesic distance from a point source, and in §5
the discretization of the optimal transportation problem (7), extending [50] which is limited to
Riemannian distance costs.

Finally, we illustrate in §6 our results with numerical experiments, devoted to the computation
of Randers distances and of the corresponding geodesic paths, and to the solution of the optimal
transport problem (7) on a Randers manifold.

Remark 1.1 (Applications of Randers metrics). Randers metrics are arguably the simplest model
of a non-symmetric metric [16], often referred to as a quasi-metric, see Remark 1.3. They play
a key role in Zermelo’s problem [2] of path planning subject to a drift, see §2.2, but also have
numerous independent applications, of which we can only give a glimpse here. The common
feature of these applications is that the paths are naturally endowed with an orientation.

The boundary of a simply connected image region, oriented counterclockwise, minimizes the
classical Chan-Vese segmentation functional iff it is a minimal geodesic for a suitable Randers
metric, leading to a robust numerical optimization method [18]. The Euler-Mumford elastica
minimal path model, whose cost is defined by integrating the squared curvature (plus a constant), is
a limiting case of a Randers model, which allows the numerical computation of global minimizers
with applications to tubular structure extraction in images [14]. Quantum vortex filaments, in a
suitable limit and under appropriate assumptions, follow Randers geodesics, where the asymmetric
part of the metric is derived from the magnetic field [1]. Finally, let us mention that Randers
metrics were introduced in the context of general relativity, where the trajectory orientation stems
from the time coordinate induced by the Minkowski space-time quadratic form [46].

Remark 1.2 (Advantages of linear schemes for distance map computation). Distance maps are
ubiquitous in mathematics and their applications, and a variety of approaches have been proposed
for their numerical computation [23], including Randers distances [40, 42]. The use of a linear
PDE (3), is here largely motivated by its application to the optimal transport problem (7), but
this approach has other advantages, see [22] for a more detailed discussion:

• (Ease of implementation) While we limit here our attention to domains discretized on
Cartesian grids, geodesic distance computation also makes sense on manifolds presented as
triangulations [22], patch based surfaces, etc. In that context, discretizing the non-linear
PDE (5) can be challenging, whereas standard tools are often available for linear PDEs such
as (6).

• (Computation speed) Factorization techniques for sparse linear systems of equations are a
subject of continued research, including non-symmetric Laplacian-like operators [19] which
are closely related to (6). Once this linear system is factored, it can be solved for a modest
cost with a large number of right-hand sides, for instance to compute all pairwise Randers
distances within a set of points, or when addressing the optimal transport problem (7) using
Sinkhorn’s matrix scaling algorithm as described in §5.
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• (Solution smoothness) The distance map u defined by (4) is non-differentiable across the
cut-locus1, and numerical solvers [40, 42] of the generalized eikonal PDE (5) produce non-
smooth approximations of it. In contrast, the solution to the linear equation (3) is smooth
and yields a natural regularization uε := −ε lnuε, for any ε > 0, of the limit distance map
u.

Remark 1.3 (quasi- prefix and asymmetric geometry). Non-symmetric norms, metrics and
distances are often referred to as quasi-norms, quasi-metrics and quasi-distances. However, we
drop the prefix “quasi” in this paper for the sake of readability and uniformity.

Conventions and notations. We denote by | · | the Euclidean norm on Rd, and by Sd, S+
d ,

and S++
d the sets of symmetric, symmetric positive semidefinite, and symmetric positive definite

matrices of size d × d respectively. Consistently with this notation, we let R+ := [0,∞[ and
R++ :=]0,∞[. For any A,B ∈ Sd, the relation A � B stands for A − B ∈ S+

d (resp. A � B
stands for A−B ∈ S++

d ), which is the Loewner order on symmetric matrices. For any A ∈ S++
d

and b ∈ Rd, we define

‖A‖ := sup
|x|≤1

|Ax|, |b|A :=
√
〈b, Ab〉.

From now on, we consider an open, bounded, connected, and nonempty domain Ω ⊂ Rd with a
W 3,∞ boundary. The unknowns to the partial differential equations, and to their discretization
schemes, are distinguished by typography: u for the linear second order PDEs (3) or numerical
scheme (6) and variants, and u for the non-linear PDE (5) and related.

2 Elements of Randers geometry

A Randers metric is defined as the sum of a Riemannian metric, and of a suitably bounded linear
term (2). We present in §2.1 these geometrical objects in more detail, making connections with
Zermelo’s navigation problem in §2.2, see [16] for a review. The eikonal equation (5) is discussed
in §2.3, and its linear variant (3) in §2.4. We establish in Theorem 2.12 the existence of a solution
uε to the linear PDE (3), and the convergence of uε := −ε lnuε to the value function of the
arrival time problem (4) as the relaxation parameter ε > 0 vanishes. The proof, based on the
theory of viscosity solutions to degenerate elliptic PDEs, is postponed to Appendix A.

Before specializing to the case of Randers geometry, we briefly recall here the generic or
Finslerian definition of a non-symmetric norm, dual-norm, metric, and path-length distance, and
some of their elementary properties.

Definition 2.1. A function F : Rd → R+ is a norm iff it is convex, positively 1-homogeneous,
and vanishes only at the origin. The dual norm F ∗ : Rd → R+ is defined for all v ∈ Rd by

F ∗(v) := max{〈v, w〉; w ∈ Rd, F (w) ≤ 1}. (8)

Note that Definition 2.1 implies the triangular inequality, since 1
2F (v + w) = F (v+w

2 ) ≤
1
2(F (v)+F (w)) for any v, w ∈ Rd, using successively the positive 1-homogeneity and the convexity
of F . The dual norm is equivalently characterized as F ∗(v) := max{〈v, w〉/F (w); |w| = 1}, by
homogeneity of F . Conventionally, Definition 2.1 defines a quasi -norm, whereas a norm is subject

1The cut locus is the set of points where the minimum (4, right) is attained by several minimal paths from the
boundary.
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to the additional symmetry axiom F (v) = F (−v) for all v ∈ Rd. However the prefix “quasi”
before norms, metrics and distances is dropped in this paper for readability, as already mentioned
in Remark 1.3. The following facts, stated without proof, are standard results of convex analysis
and Finsler geometry.

Lemma 2.2 (Norm duality). Any norm F on Rd is Lipschitz continuous on Rd, and as a result
the extremum in (8) is indeed attained, for any v ∈ Rd. The dual norm F ∗ is also a norm, and
furthermore one has F ∗∗ = F identically on Rd.

Definition 2.3. A metric on a domain Ω ⊂ Rd is a continuous map F : Ω× Rd → R+, denoted
(x, v) 7→ Fx(v), such that Fx is a norm on Rd for all x ∈ Ω. The dual metric F∗ is defined
pointwise from the dual norms. The related path length and distance are defined from (1) and
denoted lengthF and distF .

Let us emphasize that distF(x, y) 6= distF(y, x) in general, for x, y ∈ Ω, since norms and
metrics are not assumed here to be symmetric. However the triangular inequality distF (x, z) ≤
distF(x, y) + distF(y, z), and the separation axiom (distF(x, y) = 0 iff x = y), hold for all
x, y, z ∈ Ω under the conditions of Lemma 2.4 below. In the special case where Fx = F is a
constant metric, and [x, y] ⊂ Ω, one has distF (x, y) = F (y − x).

Lemma 2.4 (Path-length distance). Let Ω ⊂ Rd be a bounded connected domain with smooth
boundary and equipped with a metric F . Then the extremum (1) defining distF (x, y) is attained,
for any x, y ∈ Ω, and defines a distance over Ω. Furthermore there exists 0 < c ≤ C such that
c|x− y| ≤ distF (x, y) ≤ C|x− y| for all x, y ∈ Ω.

2.1 Algebraic structure of Randers metrics

Randers norms are defined by analogy to Randers metrics (2), as the sum of a symmetric part
defined from a symmetric positive definite matrix, and of an anti-symmetric linear part, subject
to a compatibility condition.

Definition 2.5. A Randers norm F : Rd → Rd takes the form F (v) = |v|M + 〈ω, v〉, where
M ∈ S++

d , and ω ∈ Rd is subject to |ω|M−1 < 1.

The dual to a Randers norm also is a Randers norm, as shown in the following lemma, whose
proof follows from the explicit expression established in [40, Proposition 4.1] and the formula for
the inverse of a 2× 2 block matrix [37].

Lemma 2.6 (Randers dual norm [40]). The dual to a Randers norm F of parameters (M,ω)
is also a Randers norm, of parameters (A, b) characterized by the following relation: denoting
α := 1− 〈ω,M−1ω〉 > 0, (

αA b
b> 1/α

)
=

(
M ω
ω> 1

)−1

. (9)

In the special case where ω = 0, one obtains A = M−1, b = 0, and α = 1, recovering the
well known fact that the dual to a Riemannian norm is also a Riemannian norm, defined by the
inverse symmetric matrix. The positive definiteness, hence the invertibility, of the block matrix
in (9, rhs) follows from the equivalences (11) below applied to (M,ω). The duality formula in (9)
is only the first of a family of algebraic identities associated with Randers norms, presented in
Lemma 2.7 below, and used to reformulate the PDEs (3) and (5). For that purpose, we need to
introduce some notation. For any A ∈ Sd, and any b ∈ Rd we let

Ab := A− bb>. (10)

6



The Schur complement formula yields the following positive-definiteness equivalences:

Ab � 0 ⇔
(
A b
b> 1

)
� 0 ⇔ (A � 0 and |b|A−1 < 1). (11)

If M : Ω→ S++
d and ω : Ω→ Rd are Lipschitz fields obeying |ω|M−1 < 1 pointwise on Ω (which

is compact by assumption), then the fields A : Ω→ S++
d and b : Ω→ Rd defined by Lemma 2.6 as

the dual Randers parameters are also Lipschitz, since matrix inversion is differentiable, and obey
the equivalent properties (11) pointwise on Ω. The following lemma provides several equivalent
characterizations of the unit ball associated with a Randers norm, and ends this subsection.

Lemma 2.7. Let (M,ω) denote the parameters of a Randers norm, and let (A, b) denote the
parameters of the dual Randers norm, see Lemma 2.6. Then for all v ∈ Rd[

|v|M + 〈ω, v〉 − 1
]
∝

[
|v|2Mω

+ 2〈ω, v〉 − 1
]
∝

[
|v − b|A−1 − 1

]
(12)[

|v|A + 〈b, v〉 − 1
]
∝

[
|v|2Ab + 2〈b, v〉 − 1

]
∝

[
|v − ω|M−1 − 1

]
, (13)

where x ∝ y means that sign(x) = sign(y), with sign : R→ {−1, 0, 1} the sign function.

Proof. Note that the second line can be deduced from the first one, by exchanging the role of the
Randers norm and of its dual norm. The positive definiteness of Ab and Mω follows from (11)
and Definition 2.5. Under the assumptions of the lemma, one has the equivalences

|v|M + 〈ω, v〉 − 1 ≤ 0 ⇔ |v|M ≤ 1− 〈ω, v〉 ⇔ |v|2M ≤ (1− 〈ω, v〉)2 ⇔ |v|Mω + 2〈ω, v〉 − 1 ≤ 0,

and likewise with strict inequalities, which implies (12, left equivalence). The only difficulty lies in
the reverse implication of the second equivalence: we must exclude the case where |v|M ≤ 〈ω, v〉−1,
and indeed this is in contradiction with |〈ω, v〉| ≤ |ω|M−1 |v|M < |v|M + 1 since |ω|M−1 < 1 by
assumption.

Denoting by F the Randers norm of parameters M,ω, and by F ∗ the dual norm, one has

|v − b|A−1 ≤ 1⇔
(
∀w, 〈w, v − b〉 ≤ |w|A

)
⇔
(
∀w, 〈w, v〉 ≤ |w|A + 〈b, w〉 := F ∗(w)

)
⇔ F (v) ≤ 1,

where implicitly w ∈ Rd. In the last equivalence we used F (v) = F ∗∗(v) = max{〈v, w〉;F ∗(w) ≤
1}. A similar equivalence can be obtained with strict inequalities for any w 6= 0, which concludes
the proof of (12, right equivalence) and of this lemma.

2.2 Zermelo’s navigation problem

Zermelo [2] considers a vehicle able to move at speed at most c(x) ∈ R++ relative to a given
medium, which itself is subject to a drift η(x) ∈ Rd, where x ∈ Ω is the position. Typically,
the vehicle is described as a boat subject to water currents, or as a flying object subject to air
currents. The set admissible absolute velocities v at the point x is thus characterized by the
following relation

|v − η(x)| ≤ c(x). (14)

Given two endpoints x, y ∈ Ω, Zermelo’s navigation problem asks for the smallest time T =
T ηc (x, y) ≥ 0 such that there exists γ ∈ Lip([0, T ],Ω) obeying |γ′(t)− η(γ(t))| ≤ c(γ(t)) for a.e.
t ∈ [0, T ], and γ(0) = x, γ(T ) = y. In other words, T ηc (x, y) is the minimal time from x to y
subject to the velocity constraints (14).
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The vehicle described by Zermelo’s problem is locally controllable at x ∈ Ω iff |η(x)| < c(x),
in other words iff the drift velocity norm is smaller than the maximum relative vehicle speed.
The following classical result [2] shows that, under this assumption, Zermelo’s problem can be
reformulated as a Randers minimal path problem.

Proposition 2.8. Let c : Ω → R, and η : Ω → Rd be continuous and obey c > 0 and |η| < c,
pointwise on Ω. Consider the Randers metric F∗ of parameters A = c2Id and b = η on Ω, as
well as its dual F∗∗ = F . Then for all x, y ∈ Ω

T ηc (x, y) = distF (x, y).

Proof. Let M : Ω → S++
d and ω : Ω → Rd be parameters of the Randers metric F . The

distance distF (x, y) is the smallest time T for which there exists a path γ ∈ Lip([0, T ],Ω) obeying
1 ≥ Fγ(t)(γ

′(t)) := |γ′(t)|M(γ(t)) + 〈ω(γ(t)), γ′(t)〉 for a.e. t ∈ [0, T ], and γ(0) = x, γ(T ) = y.
Indeed, this follows from the definition (1) and by reparametrization of any Lipschitz path at unit
speed w.r.t. the metric F . From this point, the announced result follows from the equivalence of
1 ≥ Fx(v) := |v|M(x) + 〈ω(x), v〉 with (14), established in (12).

2.3 The Eikonal equation

Consider a domain Ω, equipped with a Randers metric F with Lipschitz coefficients on Ω, and a
penalty function g ∈ C0(∂Ω,R). We are interested in the following value function u : Ω → R,
corresponding to the minimal time to reach x ∈ Ω from a boundary point p ∈ ∂Ω, with initial
time penalty g(p):

u(x) := min
p∈∂Ω

g(p) + distF (p, x). (15)

We prove in Theorem A.9 that (15) is a viscosity solution, see Definition A.2, to the first order
non-linear PDE

F∗x(∇u(x)) = 1 for all x ∈ Ω, u(x) = g(x) for all x ∈ ∂Ω. (16)

The boundary condition u = g on ∂Ω is satisfied in a strong sense if g(x) ≤ g(p) + distF(p, x)
for all x, p ∈ ∂Ω, but in the weak sense of Definition A.2 otherwise. The comparison principle
Theorem A.8 implies that the viscosity solution is uniquely determined in Ω.

Corollary 2.9. If F is a Randers metric of parameters M,ω, and dual parameters A, b, then the
eikonal PDE (16, left) admits the following three equivalent formulations in Ω in the sense of
viscosity solutions

|∇u|A + 〈∇u, b〉 = 1, |∇u|2Ab + 2〈∇u, b〉 = 1, |∇u− ω|M−1 = 1. (17)

Proof. The equation F∗x(∇u(x)) = 1 is a shorthand for (17, left) at x ∈ Ω, see Definition 2.5 of a
Randers norm. It is equivalent to (17, center and right) by (13).

In applications, computing the value function (15) is often only a means to obtain the globally
optimal path γ from ∂Ω to an arbitrary point x∗ ∈ Ω. This path can be extracted by solving,
backwards in time, the following Ordinary Differential Equation (ODE), see e.g. [27, Appendix C]

γ′(t) = V (γ(t)), where V (x) := dF∗x(∇u(x)) (18)

for all x ∈ Ω. The ODE needs to be solved on the interval [0, T ] where T = u(x∗), with terminal
condition γ(T ) = x∗. By dF∗x(w) we denote the derivative of F∗x w.r.t. the variable w, where
x ∈ Ω is fixed.
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Corollary 2.10. The following expressions are positively proportional to the geodesic flow V
defined by (18, right), at all points where u is differentiable

A∇u

|∇u|A
+ b, Ab∇u + b, M−1(∇u− ω). (19)

Proof. Fix a point x ∈ Ω where u is differentiable, and denote v := ∇u(x). Introduce the
Randers norm F ∗ = F∗x whose parameters are denoted A ∈ S++

d and b ∈ Rd, in such way that
F ∗(v) = 1 by (16). Differentiating F ∗(v) = |v|A + 〈b, v〉 we obtain dF ∗(v) = Av/|v|A + b which
yields (19, left). The three expressions (13) vanish, and their respective gradients w.r.t. v are
g1 := Av/|v|A + b, g2 := 2(Abv + b) and g3 := M−1(v − ω)/|v − ω|M−1 . These gradients are
non-zero since 〈v, g1〉 = F ∗(v) = 1, 〈v, g2〉 = 1+ |v|2Ab ≥ 1 and 〈v−ω, g3〉 = |v−ω|2M−1 = 1. Since
g1, g2 and g3 are orthogonal to the same level set, and point outward of it, they are positively
proportional. The result follows.

2.4 Varadhan’s formula

Varadhan’s formula is based on a logarithmic transformation of the unknown [52], also known
as the Hopf-Cole transformation2 see [31] and Remark 2.14, which turns the linear PDE (20)
into the non-linear PDE (21). The point of this transformation is that, with a proper scaling of
the unknown and of the PDE coefficients, a relaxation parameter ε > 0 is eliminated from the
boundary conditions and from all the PDE coefficients except one, of principal order.

Lemma 2.11 (Logarithmic transformation). Let ε > 0, and let uε be a viscosity solution to

u+ 2ε〈∇u, b〉 − ε2 Tr(Ab∇2u) = 0 in Ω, u = exp(−g/ε) on ∂Ω, (20)

where Ω ⊂ Rd is a smooth bounded domain, Ab : Ω → S++
d and b : Ω → Rd are Lipschitz, and

ε > 0. Then uε := −ε lnuε is a viscosity solution to the PDE

|∇u|2Ab + 2〈∇u, b〉 − εTr(Ab∇2u) = 1 in Ω, u = g on ∂Ω. (21)

Lemma 2.11 is an immediate consequence of Corollary A.5 established in Appendix A. For
later convenience, we introduce the following PDE operators on the domain Ω

Lεu := u+ 2ε〈∇u, b〉 − ε2 Tr(Ab∇2u), Sεu := |∇u|2Ab + 2〈∇u, b〉 − εTr(Ab∇2u)− 1, (22)

and observe that, formally, one has Sεu = −e
u
εLε(e−

u
ε ). The following result relies on the

framework of viscosity solutions to take the limit ε→ 0 in Sε, letting the second order “viscous”
term −εTr(Ab∇2u) vanish, and recovering in the limit a first order non-linear equation equivalent
to the Randers eikonal equation, see Corollary 2.9.

Theorem 2.12 (Vanishing viscosity limit). The PDE (20) admits a unique viscosity solution
in Ω. In addition uε := −ε lnuε converges locally uniformly in Ω to the value function (15),
associated with the Randers metric F whose dual metric F∗ has parameters (A, b).

The elements of proof relying on the concept of viscosity solutions are postponed to Ap-
pendix A. In particular, uniqueness of the solution to (20) follows from the comparison principle
Proposition A.7, see [4]. Convergence as ε → 0 is established in Theorem A.12. We limit our

2In this paper, the Hopf-Cole transformation stands for the change of unknown u := −ε lnu, rather than
u = −ε∇ lnu which is often found in the literature, see Remark 2.14.
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attention here to the existence of a solution to (20), which is based on the interpretation of uε as
an expectation of a cost associated with a stochastic process, see Remark 2.13 for an alternative
proof. Fix ε > 0, and introduce the stochastic process (Xx,ε

t )t≥0 defined as

dXx,ε
t = −2εb(Xx,ε

t ) dt+ ε
√

2Ab(X
x,ε
t ) dWt, Xx,ε

0 = x, (23)

where (Wt)t≥0 is a d-dimensional Wiener process. Define also the exit time τx,ε by

τx,ε := inf {t ≥ 0; Xx,ε
t 6∈ Ω}.

Since Ω is bounded, and Ab is positive definite, the exit time τx,ε is almost surely finite. Thus
Xx,ε
t is a Brownian motion starting at x, with drift 2εb, and whose fluctuations are scaled by

ε
√

2Ab. According to the Feynman-Kac formula, see Theorem A.11 in Appendix A, the following
expectation is the unique solution to the PDE (20)

uε(x) = E
[
exp

(
−τx,ε − g(Xx,ε

τx,ε)

ε

)]
. (24)

In particular, uε is positive. In the framework of the stochastic approach, Theorem 2.12 expresses
the convergence as ε→ 0 of the following soft-minimum

uε(x) = −ε ln

(
E
[
exp

(
−τx,ε − g(Xx,ε

τx,ε)

ε

)])
, (25)

towards the minimum (15) defining the value function u. The heuristic interpretation is that the
random paths (23) whose contribution to the expectancy value (25) is non-negligible, concentrate
as ε→ 0 along a minimal geodesic for (15).

Remark 2.13 (Divergence form Laplacian). One may replace in (20) the non-divergence form
anisotropic Laplacian with the divergence form variant

div(Ab∇u) = Tr(Ab∇2u) + 〈div(Ab),∇u〉,

where div(Ab) denotes column-wise divergence, assuming that Ab is continuously differentiable.
Indeed, this amounts to replacing in (20) the vector field b defining the first order term with
bε := b− ε

2 div(Ab). This small perturbation is easily handled in the setting of viscosity solutions,
and the same limit (4) is obtained as ε→ 0. The divergence form Laplacian is often preferred
in applications [22] since it is simpler to implement numerically on some geometries, such as
triangulated surfaces using finite elements.

We discuss in the following how the divergence form variant leads, under suitable assumptions,
to an alternative and perhaps more elementary proof of the wellposedness of (20). On the
other hand, the proof based on the stochastic expectancy formula (25) benefits an illuminating
interpretation in terms of random paths which concentrate along geodesics as ε→ 0, and fits in
the framework of viscosity solutions which is ideally suited to study the vanishing viscosity limit.

Following [28, Section 3.1, Theorem 3.8 (i)], which is based on the Lax-Milgram theorem, the
elliptic PDE

−div(σ∇u) + 〈b̃,∇u〉+ µu = f in Ω, u = g̃ on ∂Ω

is well posed when the coefficients σ ∈ L∞(Ω, S++
d ), b̃ ∈ L∞(Ω,Rd), µ ∈ L∞(Ω), f ∈ L2(Ω),

g̃ ∈ H
1
2 (∂Ω), obey the following compatibility condition, where cΩ > 0 denotes the Poincare

inequality constant of the domain:

σ0 + min{0, p
cΩ
} > 0, where σ0 := inf

x∈Ω
λmin(σ(x)), and p := inf

x∈Ω

(
µ(x)− 1

2
div b̃(x)

)
. (26)
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Choosing σ = ε2Ab, b̃ := 2εb, µ = 1, f = 0, and g̃ = exp(−g/ε), we see that p = 1 +O(ε) and
σ0 ≥ cε2 and for some c > 0. Therefore (26, left) is fulfilled for sufficiently small ε > 0, which
establishes the wellposedness of the variant of (20) where Tr(Ab∇2u) is replaced with div(Ab∇u).
Choosing instead b̃ = 2εb− ε2 div(Ab) we obtain the wellposedness of (20) under the additional
assumption div(divAb) ∈ L∞(Ω). Once the existence of a solution to (20) is established, Schauder
estimates imply that it is classical and belongs to C2,α for any α ∈ [0, 1[, and thus in particular
the viscosity and the variational solutions coincide.

Remark 2.14 (Burgers equation and the Hopf-Cole transformation). The non-linear PDE of
Burgers arises in various contexts, ranging from fluid mechanics to traffic flow, and is also
a model equation to study the interaction of the advection and diffusion operators, and the
formation of shock waves. The d-dimensional instantiation of Burgers PDE asks for a vector field
v : R+ × Ω→ Rd defined on a domain Ω ⊂ Rd and such that

∂tv + 〈v,∇〉v = ν∆v, (27)

with suitable initial and boundary conditions, and where ν ≥ 0 is known as the inverse Reynolds
number. If ν = 0 then discontinuous solutions can be obtained in finite time from smooth initial
conditions, and entropy conditions must be imposed to single out the correct physical solution [26].
The Hopf-Cole linearization of Burgers equation assumes that (i) ν > 0, and (ii-a) the dimension
is d = 1 [31], or (ii-b) the flow v is irrotational [15] (this property is formally conserved over time
by solutions of Burgers equation (27)). In that case there exists a potential u : R+ × Ω→ R such
that v = ∇u, and obeying the following time-dependent Hamilton-Jacobi PDE

∂tu + 1
2 |∇u|2 = ν∆u. (28)

This evolution equation is closely related to the static PDE (21) of interest in this paper. The
PDE (28) is formally equivalent to the linear heat PDE, similarly to Lemma 2.11 and under the
assumption that ν > 0, using the following logarithmic change of variables:

∂tu = ∆u, where u := −2ν lnu. (29)

Conversely, any solution to the heat equation (29) yields an irrotational solution to Burgers
equation, thus producing a variety of explicit analytical solutions to this non-linear PDE [15]. The
Hopf-Cole transformation can also be used as a numerical tool to solve (27), either addressing the
heat equation (29) via the Fast Fourier transform, or using more elaborate schemes intended to
achieve stability in the vanishing viscosity limit as ν → 0 [45, 33]. The PDE solution obtained
in the vanishing viscosity limit ν → 0 is studied in detail in the seminal paper [31], and can be
characterized by entropy conditions whose analysis [26] often relies on the HJB reformulation (28)
and on the concept of viscosity solution.

3 The numerical scheme

We present a numerical implementation of the linear second order PDE (3) based on discrete
degenerate elliptic finite differences, on a Cartesian discretization grid. This approach is chosen for
the simplicity of its implementation and of the convergence analysis. Alternative discretizations
may also be considered, for instance using finite elements on triangulated manifolds, see [22] and
Remark 2.13; however, we are not aware of a convergence analysis under mesh refinement in this
setting.
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Throughout this section, we denote by h > 0 the grid scale of the Cartesian discretization
grid, which is fixed unless otherwise specified, and we define the discrete domain as

Ωh := Ω ∩ hZd, Ωh := Ωh ∪ ∂Ω. (30)

In our application, the values of u on ∂Ω are given by the Dirichlet boundary conditions, and the
numerical implementation does not treat them as unknowns. For any u : Ωh → R, any x ∈ Ωh

and any e ∈ Zd, we define the first order and second order centered finite differences operators as
follows: assuming [x− he, x+ he] ⊂ Ω

δ
e
hu(x) :=

u(x+ he)− u(x− he)
2h

, ∆e
hu(x) :=

u(x+ he)− 2u(x) + u(x− he)
h2

. (31)

If x is adjacent to ∂Ω, then (31) may involve values outside the domain Ωh, and thus be ill-defined.
In order to address this issue, we consider u : Ωh → R which is also defined on the domain
boundary. The following finite difference expressions make sense for arbitrary x ∈ Ωh, e ∈ Zd,
and they reduce to (31) if [x− he, x+ he] ⊂ Ω:

δ
e
hu(x) :=

1

2

(u(x+ hexe)− u(x)

hex
− u(x− h−ex e)− u(x)

h−ex

)
, (32)

∆e
hu(x) :=

2

hex + h−ex

(u(x+ hexe)− u(x)

hex
+
u(x− h−ex e)− u(x)

h−ex

)
, (33)

where we denoted
hex := min{η > 0; x+ ηe ∈ Ωh}. (34)

Note that hex ∈]0, h] by construction. If u ∈ C4(Ω) then one has the consistency relation

δ
e
hu(x) = 〈∇u(x), e〉+O(hr), ∆e

hu(x) = 〈e,∇2u(x)e〉+O(hr),

where r = 2 if [x− he, x+ he] ⊂ Ω, and r = 1 otherwise. In the next proposition we obtain, by
linear combination, consistent finite differences approximations of linear PDE operators of order
one and two.

Proposition 3.1. Let D ∈ Sd, and let ω ∈ Rd. Consider weights ρi and offsets ei ∈ Zd, for all
1 ≤ i ≤ I, such that

D =
∑

1≤i≤I
ρieie

>
i . (35)

Then for u ∈ C4(Ω) and x ∈ Ωh one has∑
1≤i≤I

ρi
(
δ
ei
h u(x)

)
ei = D∇u(x) +O(hr),

∑
1≤i≤I

ρi∆
ei
h u(x) = Tr(D∇2u(x)) +O(hr), (36)

where r = 2 if [x− hei, x+ hei] ⊂ Ω for all 1 ≤ i ≤ I, and r = 1 otherwise.

As an immediate application, we define a finite difference discretization Lεh of the linear
operator Lε defined in (22). For any u : Ωh → R we let

Lεhu := u+ 2ε
∑

1≤i≤I
ρi〈A−1

b b, ei〉 δ
ei
h u− ε2

∑
1≤i≤I

ρi∆
ei
h u, (37)

with boundary condition u = exp(−g/ε) on ∂Ω. The weights ρi = ρi(x) and offsets ei = ei(x),
1 ≤ i ≤ I, provide a decomposition of the matrix Ab = Ab(x) in the sense of (35). Note that for
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the schemes (36) to be well-defined, it is crucial that the offsets involved in (35) have integer
coordinates, and therefore the similar looking eigenvalue-eigenvector decomposition typically
cannot be used since it involves arbitrary unit vectors. Obtaining a suitable decomposition is thus
non-trivial in general, and it is also not unique. We rely in this paper on Selling’s decomposition,
which is defined in dimension d ∈ {2, 3}, and has the additional benefit of producing non-negative
weights (ρi)1≤i≤I and thus a discrete degenerate elliptic scheme, see §3.1 below.

Remark 3.2 (Approximation of the gradient, improved reconstruction, following [22]). The proof
techniques used in this paper establish the uniform convergence of uεh = −ε lnuεh as (ε, h/ε)→ 0,
but unfortunately say nothing of its gradient. Therefore, the gradient reconstruction techniques
presented below should be only regarded as heuristics. The geodesic backtracking method used in
the numerical experiments §6, which is based on (18) and this gradient estimation, likewise does
not come with any theoretical guarantee unfortunately.

An approximate gradient V ε
h : Ωh → Rd of the solution uεh of (37) can be estimated using (36,

left):

V ε
h (x) := Ab(x)−1

∑
1≤i≤I

ρi δ
ei
h u

ε
h(x)ei, Vε

h(x) :=
−V ε

h (x)

|V ε
h (x)|A(x) − 〈b(x), V ε

h (x)〉
, (38)

The vector field Vε
h is meant to approximate the gradient of Randers distance u from the boundary

(4): it is negatively proportional to V ε
h , reflecting the fact that logarithmic transformation is

decreasing, and is normalized consistently with Randers eikonal equation (16). An empirical
observation of [22], in the context of isotropic and Riemannian metrics which are special cases of
Randers metrics (and using a different discretization), is that Vε

h is for suitable parameters h, ε
an excellent approximation of ∇u. In particular, it can be used for geodesic backtracking via (18)
and (19). Following [22] we may also obtain an empirically improved reconstruction vεh : Ωh → R
of the Randers distance by minimizing∑

x∈Ωh

∑
1≤|i|≤I

ρi
∣∣δeih v(x)− 〈ei,Vε

h(x)〉
∣∣2, (39)

which is consistent with 2
∫

Ω |∇v − Vε
h|2Ab, where ρ−i := ρi and e−i := ei for all 1 ≤ i ≤ I,

and where the first order upwind finite difference δeh is defined in (40). Equations (38, left) and
(39) also make sense if one replaces the weights and offsets (ρi, ei)

I
i=1 and matrix Ab used in the

numerical scheme (37), with unit weights and the canonical basis and the identity matrix. However,
the latter (and simpler) choice yields slightly less accurate results empirically as evidenced in our
numerical experiments §6. In Figs. 4 and 5 we refer to these post-processed distance maps as uAbh
and uI2h respectively.

Remark 3.3 (Alternative discretizations, including finite elements). At the foundation of this
paper is a second order linear PDE (3), an anisotropic variant of the static convection diffusion
equation, which can be discretized using a variety of methods. Those eventually lead to a linear
system of equations Lu = r, where L is a matrix of shape N ×N , denoting by N the number of
discretization points. The r.h.s. r ∈ RN is non-negative and accounts for the boundary condition
exp(−g/ε) on ∂Ω as in (3), or for an arbitrary point source in Ω as in §4. For our application to
geodesic distance computation using the Hopf-Cole logarithmic change of variables, a basic necessity
is that the solution u ∈ RN is positive. This is best ensured if L−1 has positive entries, which itself
is ensured if L is a nonsingular M -matrix. The numerical scheme proposed in this paper uses
Selling’s decomposition of the matrix field Ab, see Theorem 3.9, to achieve discrete degenerate
ellipticity (DDE), see Definition 3.4, which implies the M -matrix property as desired. Keeping in
mind the M -matrix requirement, let us consider some alternative discretization methods.
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• Finite elements yield an M -matrix, for the two dimensional usual Laplacian operator, if
the triangulation has acute interior angles. For the anisotropic Laplacian div(Ab∇u) the
geometric condition becomes 〈v1 − v0,M(v∗)(v2 − v0)〉 ≥ 0 where M := A−1

b , v0, v1, v2

are the vertices of an arbitrary triangle of the mesh, and v∗ := (v0 + v1 + v2)/3 is its
barycenter. Generating a mesh of a domain Ω obeying this acuteness condition w.r.t. a
varying metric M : Ω → S++

d is a challenging problem. The established guarantees are
far from this objective [35], and there are likely obstructions to the corresponding three
dimensional problem. Interestingly, in the special case where the set of vertices is a two
dimensional Cartesian grid, the discretized Dirichlet energy defined by finite elements on the
anisotropic triangulation of [35] is equivalent to the energy associated to a finite differences
scheme using Selling’s offsets [29, Theorem 1] as in this paper, showing that the two adaptive
discretization procedures are closely related.

• Narrow stencil finite differences schemes use a fixed set of neighbors on the Cartesian
grid. These methods in general cannot produce DDE discretizations of the anisotropic
laplacian div(Ab∇u) or Tr(Ab∇u) when the anisotropy of Ab is pronounced and is not
aligned with the coordinate axes. This obstruction holds even if Ab is constant. For instance
the DDE property may be achieved with the common two dimensional eight point stencil,
only if ‖Ab‖‖A−1

b ‖ ≤ (1 +
√

2)2 under a general anisotropy orientation. In addition, [41,
Theorem 1.3] shows that Selling’s decomposition yields the narrowest possible stencil (in two
dimensions, and in the sense of convex hull inclusion) ensuring the DDE property.

• Wide stencil semi-lagrangian schemes [6] use finite differences over an intermediate scale
k such that h� k � 1, often k ≈

√
h. They obey the DDE property, and bypass Selling’s

decomposition. However these methods suffer from a low order consistency with the PDE,
and slow convergence rates of the solution, making them ill suited for applications.

Finally, let us acknowledge that the requirement that L−1 has positive entries can empirically be
alleviated if one is willing to replace the point source with a small Gaussian distribution, or to use
the heat method of Remark 4.5 which only requires that L−n has positive entries for a sufficiently
large number n of time steps. However the latter is more costly due to the time dependency, is
limited to Riemannian metrics, and no convergence analysis under mesh refinement has been
published to our knowledge. Numerical experiments using the heat method, based on finite elements
on surface meshes with some badly shaped triangles, are presented in [22].

3.1 Discrete degenerate ellipticity

Discrete degenerate ellipticity is a counterpart to the degenerate ellipticity property of Hamilton-
Jacobi-Bellman PDE operators [21, 43], which is at the foundation of the theory of viscosity
solutions, see Definition A.1.

Definition 3.4 (Discrete degenerate ellipticity [43]). Let X be a finite set, and let U := RX . A
(finite difference) scheme on X is a function F : U→ U. Such a function can be written in the
form

Fu(x) := F̃ (x, u(x), (u(x)− u(y))y∈X\{x}),

and the scheme is said discrete degenerate elliptic (DDE) if F̃ is non-decreasing w.r.t. the second
variable, and w.r.t. the third variable componentwise. The scheme is said elliptic if u 7→ Fu− λu
is degenerate elliptic for some λ > 0.
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Similarly to its continuous counterpart, discrete ellipticity implies a comparison principle,
used in the proof of the existence and uniqueness of solutions to discretized PDEs, and of their
convergence to the continuous solutions as the grid scale is refined §3.3. For completeness, we
present the proof of two basic but fundamental properties of discrete elliptic operators, see e.g.
[43] for additional discussion.

Lemma 3.5 (Discrete comparison principle). Let F be an elliptic finite differences scheme on a
finite set X, and let u, v : X → R. If Fu ≤ Fv on X, then u ≤ v on X.

Proof. Let x∗ ∈ X be such that u(x∗)− v(x∗) is maximal, so that u(x∗)−u(y) ≥ v(x∗)− v(y) for
all y ∈ X. Assume for contradiction that u(x∗) > v(x∗), otherwise the result is proved. Then, by
discrete degenerate ellipticity of F − λ Id, we obtain Fu(x∗)− λu(x∗) ≥ Fv(x∗)− λv(x∗), thus
0 < λ(u(x∗)− v(x∗)) ≤ Fu(x∗)− Fv(x∗) ≤ 0, which proves the result by contradiction.

We say that u is a sub-solution (resp. super-solution, resp. solution) of the scheme F , if
Fu ≤ 0 (resp. Fu ≥ 0, resp. Fu = 0) on X.

Corollary 3.6 (Solution to elliptic linear operators). If F is an affine (i.e. linear plus constant)
and elliptic scheme on a finite set X, then there exists a unique solution u : X → R to Fu = 0.

Proof. If Fu = Fv on X then u = v, by Lemma 3.5. Thus F : RX → RX is injective, hence by
linearity it is bijective, and there exists a unique solution to Fu = 0.

The finite difference schemes (32), (33), and (37) considered in this paper formally involve a
function defined on the uncountable set Ωh = Ωh ∪ ∂Ω, which does not comply with the finiteness
assumption in Definition 3.4. However this obstruction is only superficial, since only finitely many
boundary values of u are actually involved these schemes, for any given h > 0. Alternatively,
one may consider the Dirichlet boundary values of u as given constants rather than unknown
variables in the scheme.

The simplest DDE operator is the opposite −δeh of the upwind finite difference δeh on Ωh,
where h > 0 and e ∈ Zd, which is defined as

δehu(x) :=
u(x+ he)− u(x)

h
. (40)

The operator δeh is modified similarly to (32) and (33) if [x, x + he] 6⊂ Ω, and is first order
consistent with a directional derivative: for any u : Ωh → R and any x ∈ Ωh

δehu(x) :=
u(x+ hexe)− u(x)

hex
, δehu(x) = 〈e,∇u(x)〉+O(h). (41)

The opposite −∆e
h of the second order finite difference operator ∆e

h is also DDE. The centered
finite difference operator δeh is not DDE, but linear combinations with ∆e

h whose coefficients have
suitable signs and obey suitable bounds satisfy this property, as shown in the next lemma. For
that purpose, we observe the relations

∆e
hu(x) =

2

hex + h−ex

(
δehu(x) + δ−eh u(x)

)
, δ

e
hu(x) =

1

2

(
δehu(x)− δ−eh u(x)

)
. (42)

Lemma 3.7. Let e ∈ Zd, and h > 0. The finite difference scheme −∆e
h is unconditionally DDE,

and the linear combination µδeh − λ∆e
h is DDE when h|µ| ≤ 2λ.
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Proof. In view of (42) one has the equality of schemes µδeh − λ∆e
h = −αδeh − βδ−eh , where

α : X → R is defined by α(x) := 2λ/(hex + h−ex )− µ/2 which is non-negative if h|µ| ≤ 2λ, since
0 < h±ex ≤ h. Likewise β(x) := 2λ/(hex + h−ex ) + µ/2 ≥ 0 if h|µ| ≤ 2λ. We conclude by observing
that DDE schemes form a cone: linear combinations with non-negative coefficients of DDE
schemes are DDE.

Corollary 3.8. The finite difference scheme Lεh defined by (37) is elliptic, with λ = 1, if ρi ≥ 0
and h|〈A−1

b b, ei〉| ≤ ε for all 1 ≤ i ≤ I.

Proof. Under these assumptions, the finite difference scheme u 7→ Lεhu− u is the sum of the finite
difference operators ερi(2µiδ

ei
h u− ε∆

ei
h ) where µi = 〈A−1

b b, ei〉, for all 1 ≤ i ≤ I. By Lemma 3.7,
which applies regardless of the fact that ρi and ei depend on the point x ∈ Ωh, each of these
elementary operators is DDE when ρi ≥ 0 and h|µi| ≤ ε. Hence Lεh − Id is DDE, and therefore
Lεh is elliptic with λ = 1 by Definition 3.4.

As announced in the introduction of this section, and in order to benefit from Lemma 3.5
and Corollary 3.6, we do want the discrete operator Lεh to be DDE. For that purpose, we introduce
Selling’s decomposition [47, 20] of a positive definite matrix D ∈ S++

d , where d ∈ {2, 3}, which
is efficiently computable numerically via Selling’s algorithm. In view of their key role in our
numerical scheme, Selling’s constructions and some of their properties are presented in more
detail in Appendix B.

Theorem 3.9 (Selling [47], this version [39]). Let D ∈ S++
d , where d ∈ {2, 3}. Then there exists

non-negative weights ρi ≥ 0, and offsets ei ∈ Zd, where 1 ≤ i ≤ I := d(d+ 1)/2, such that

D =
∑

1≤i≤I
ρieie

>
i , |ei| ≤ 2Cd µ(D), ∀1 ≤ i ≤ I,

where C2 = 2, C3 = 2
√

3, and µ(D) :=
√
‖D‖‖D−1‖ is the anisotropy ratio of D.

In the rest of this section, we assume that the weights and offsets (ρi(x), ei(x))Ii=1 used to
define the scheme Lεh, see (37), are obtained from Selling’s decomposition of the matrix Ab(x),
for all x ∈ Ωh. For the sake of readability, the dependency of ρi and ei w.r.t. the base point x is
often left implicit in the equations. The following proposition, stated without proof, immediately
follows from Corollary 3.8 and Theorem 3.9.

Proposition 3.10. The scheme Lεh is elliptic provided that Ch ≤ ε, where

C := 2Cd max
x∈Ω

µ(Ab(x)) |A−1
b (x)b(x)|.

The construction of finite difference schemes for linear and semi-linear PDEs using Selling’s
algorithm, and the compatibility conditions ensuring the DDE property, are discussed in more
detail in [10]. More precisely, it is shown that Selling’s decomposition yields an optimal finite
differences discretization of linear second order operators such as Lε, in the sense that the
stencil envelope Hull{±ei; 1 ≤ i ≤ I} is the smallest possible one (in dimension d = 2), and
that the restriction on the grid scale h in Corollary 3.8 is the weakest possible (up to a fixed
multiplicative constant, in dimension d ∈ {2, 3}), among all possible DDE and second order
consistent discretizations. In contrast to [10], the main focus of the present paper is not the
characterization of the minimal conditions under which the DDE property holds : we rather
provide a simple sufficient condition in Proposition 3.10, and then use the DDE property to
establish the convergence of a numerical method.

16



Finally, let us mention an alternative discretization of the PDE operator Lε defined in (22),
using upwind finite differences for the first order term, which is unconditionally stable but has a
lower consistency order

Lε,+h u := u− 2ε
∑

1≤j≤d
|〈b, fj〉|δ

−σjfj
h u− ε2

∑
1≤i≤I

ρi∆
ei
h u, (43)

where (fj)
d
j=1 is the canonical basis of Rd, and σj is the sign of 〈b, fj〉.

3.2 Logarithmic transformation

We use a logarithmic transformation of the unknown to study the convergence of the solutions to
the discrete schemes (37) and (43) as the relaxation parameter ε and the grid scale h tend to
zero suitably, mimicking the approach used in the continuous case, see §2.4. Our first step is to
describe the effect of the logarithmic/exponential transformation on a finite difference scheme.

Proposition 3.11. Let h > 0 and ε > 0. Let F be a DDE scheme on Ωh, such that Fu(x) is
a linear function of u for all x ∈ Ωh, with boundary condition u = exp(−g/ε) on ∂Ω, where
u : Ωh → R. We define the exponentially transformed scheme F ε as follows:

F εu(x) := −e
u(x)
ε
[
Fe

−u
ε
]
(x) (44)

= F̃
(
x,−1,

[
exp

(u(x)− u(y)

ε

)
− 1
]
y∈X\{x}

)
,

for any x ∈ Ωh, with boundary condition u = g on ∂Ω, where u : Ωh → R. The scheme F ε is
DDE, and furthermore if u is a sub-solution (resp. super-solution) of F ε, then u := exp(−u/ε) is
a super-solution (resp. sub-solution) of F .

Proof. The two expressions of F εu(x) given in (44), where x ∈ Ωh, are equivalent in view of the
linearity of F̃ . The discrete degenerate ellipticity of F ε follows from the same property of F , and
from the fact that t ∈ R 7→ exp(t/ε)− 1 is non-decreasing.

Proposition 3.11 uses the scheme unknown transformation u = exp(−u/ε), in other words
the inverse of the Hopf-Cole logarithmic transformation [31], which is classical in the study
of relations between the heat, Poisson, and eikonal equations [52, 22]. Beware however that,
since the mapping t 7→ exp(−t/ε) is decreasing, it exchanges the notions of sub-solutions and
super-solutions, as in the final statement of Proposition 3.11. The exponentially transformed
upwind finite difference is denoted δe,εh , and reads

δe,εh u(x) =
1

h

(
1− exp

(u(x)− u(x+ he)

ε

))
, (45)

where x ∈ Ωh, e ∈ Zd, and assuming [x, x+ he] ⊂ Ω. Otherwise replace h with hex in the above
expression, see (34). The next lemma approximates (45) in terms of the derivatives of u.

Lemma 3.12. Let u ∈ C3(Ω) and 0 < h ≤ ε ≤ 1. Then for any x ∈ Ωh, and bounded e ∈ Zd,

δe,εh u(x) =
1

ε
〈∇u(x), e〉+ h

2ε
〈e,∇2u(x)e〉− h

2ε2
〈∇u(x), e〉2+

h2

6ε3
〈∇u(x), e〉3+O

(h2

ε2
+
h3

ε4

)
, (46)

assuming [x, x+ he] ⊂ Ω. Otherwise, replace h with hεx in the above expression.
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Proof. The announced result immediately follows from (45) and the Taylor expansion 1 −
exp(−s) = s− 1

2s
2 + 1

6s
3 +O(s4), where s is defined by εs = u(x+ he)− u(x) = h〈∇u(x), e〉+

1
2h

2〈e,∇2u(x)e〉+O(h3).

The exponentially transformed second order and first order centered finite difference operators
are denoted ∆e,ε

h and δe,εh , and their Taylor expansion is deduced from that of δe,εh via (42). The
assumption 0 < h ≤ ε ≤ 1 of Lemma 3.12 serves to eliminate spurious negligible terms in the
Taylor expansion, and is asymptotically satisfied in convergence analysis Theorem 3.19 which
requires ε→ 0 and h/ε→ 0. Note that if ε = O(

√
h), as considered in Corollary 3.15 below, then

the remainder in (46) (resp. (47) and (49) below) simplifies to O(h3/ε4) (resp. O(hr/ε2+r) and
O(hr/εr)).

Corollary 3.13. Under the assumptions of Lemma 3.12, one has

∆e,ε
h u(x) =

1

ε
〈e,∇u(x)e〉 − 1

ε2
〈∇u(x), e〉2 +O

( h
ε2

+
hr

ε2+r

)
, (47)

δ
e,ε
h u(x) =

1

ε
〈∇u(x), e〉+O

( hr
ε1+r

)
,

where r = 2 if [x− he, x+ he] ⊂ Ω, and r = 1 otherwise.

Proof. The operators ∆e,ε
h and δe,εh can be expressed in terms of the corresponding upwind

finite difference operators δ±e,εh , similarly to their original counterparts (42). The announced
result follows by inserting the Taylor expansion obtained in Lemma 3.12. In the case where
[x − he, x + he] ⊂ Ω, the expansion of ∆e,ε

h = 1
h(δe,εh + δ−e,εh ) benefits form the cancellation

of the term 〈∇u(x), e〉3 in (46) which is anti-symmetric w.r.t. e, and likewise the expansion of
δ
e,ε
h = 1

2(δe,εh − δ
−e,ε
h ) benefits from the cancellation of the terms 〈∇u, e〉2 and 〈e,∇2u e〉 in (46)

which are symmetric w.r.t. e.

Consistently with the continuous case (22), we denote by Sεh the exponential transformation
of the finite differences scheme Lεh defined by (37). In other words, following Proposition 3.11

Sεhu := −e
u
εLεhe−

u
ε (48)

on Ωh, with boundary condition u = g on ∂Ω.

Proposition 3.14 (Consistency with the regularized eikonal equation). For any u ∈ C3(Ω), any
0 < h ≤ ε ≤ 1, and any x ∈ Ωh one has

Sεhu(x) = Sεu(x) +O(h+ hr/εr), where Sεu := |∇u|2Ab + 2〈b,∇u〉 − 1− εTr(Ab∇2u),

(49)

and where r = 2 if [x− hei, x+ hei] ⊂ Ω for all 1 ≤ i ≤ I, and r = 1 otherwise.

Proof. Denoting µi := ρi〈A−1
b b, ei〉 we obtain as announced, using Corollary 3.13 in the second

line,

Sεhu(x) = 1 + 2ε
∑

1≤i≤I
µiδ

ei
h u(x)− ε2

∑
1≤i≤I

ρi∆
ei
h u(x)

≈ 1 + 2
∑

1≤i≤I
µi〈ei,∇u(x)〉+

∑
1≤i≤I

ρi〈ei,∇u(x)〉2 − ε
∑

1≤i≤I
ρi〈ei∇2u(x)ei〉

= 1 + 2
〈 ∑

1≤i≤I
µiei, ∇u(x)

〉
+ Tr

((
∇u(x)∇u(x)> − ε∇2u(x)

) ∑
1≤i≤I

ρieie
>
i

)
= 1 + 2〈b,∇u(x)〉+ |∇u(x)|2Ab(x) − εTr(Ab(x)∇2u(x)),

where ≈ denotes equality up to a O(h+ hr/εr) error.
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We obtain a consistency order of 2/3 in the domain interior, and 1/2 close to the boundary,
by choosing ε as an optimal power of h (respectively ε = h2/3 and ε = h1/2).

Corollary 3.15 (Consistency with the eikonal equation). For any u ∈ C3(Ω), any 0 < h ≤ ε ≤ 1,
and any x ∈ Ωh one has

Shαh u(x) = Su(x) +O(hα), where Su := |∇u|2Ab + 2〈b,∇u〉 − 1,

and where α = 2/3 if [x− hei, x+ hei] ⊂ Ω for all 1 ≤ i ≤ I, and α = 1/2 otherwise.

Proof. One has Sεu = Su− εTr(Ab∇2u), and therefore Sεhu(x) = Su +O(ε+ h+ hrε−r), where
r is defined pointwise as in Proposition 3.14. Observing that α = r/(1 + r), and inserting ε = hα

in this expression, one obtains the announced result.

The choice of parameter ε suggested by Corollary 3.15, when the solution u is sufficiently
smooth, is a conservative value ε ≈

√
h on a boundary layer along ∂Ω, and a smaller value ε ≈ h

2
3

elsewhere. Nevertheless, we use for simplicity a single value of ε on the whole domain in our
numerical experiments §6. The theoretical analysis of the convergence rates of the method, and
of the actual effect of a differentiated choice of ε on those rates, is not developed in this paper
and is an opportunity for future work.

The upwind scheme Lε,+h obeys Proposition 3.14 but with r = 1 over all Ωh, and likewise
Corollary 3.15 but with α = 1/2 over all Ωh, leading to the parameter choice ε ≈

√
h.

Note that the choice ε = hα with α = r
1+r , considered in Corollary 3.15, minimizes the error

term σ(h, ε) := ε + h + hrε−r up to a fixed multiplicative constant. Indeed σ(h, hα) = O(hα)
whereas σ(h, ε) = ε+ h+ hrε−r ≥ αε+ (1− α)hrε−r ≥ εα(hr/εr)1−α = hα, where the concavity
of the logarithm was used for the second inequality. The parameter scaling h = cε, where c > 0
is a small but fixed positive constant, is commonly considered in applications [22] and appears to
produce usable results in practice, but is not consistent asymptotically since σ(h, ch)→ cr. This
non-consistency leads to non-convergence, as illustrated by the following explicit solution: in the
simplified setting where d = 1, A = 1 and b = 0, one easily checks that Sεh admits the solution
u(x) = λx (with suitable boundary conditions) where the slope λ obeys

ecλ + e−cλ = 2 + c2 thus |λ| = 1− c2/24 +O(c4), (50)

with c = h/ε. The correct slope |λ| = 1 is thus only obtained as c = h/ε→ 0.

3.3 Convergence

We establish the convergence of the logarithmically transformed solution to the numerical scheme
Lεh, towards the solution of Randers eikonal equation as ε→ 0 and h/ε→ 0, see Theorem 3.19
which was announced in the introduction. The proof follows the lines of [6, Theorem 2.1], and
requires some preliminary steps establishing the stability and consistency of the proposed scheme.
The arguments apply without modification to the less accurate but unconditionally stable scheme
Lε,+h .

Note that, formally, the schemes Sεh and Lεh are defined over Ωh := Ωh ∪ ∂Ω. In particular
Sεhu(x) = u(x)− g(x) and Lεhu(x) = u(x)− exp(−g(x)/ε) for all x ∈ ∂Ω and u,u : Ωh → R.

Lemma 3.16. The scheme Sεh admits a constant sub-solution u : Ωh → R defined as

u(x) := gmin, where gmin := min
y∈∂Ω

g(y).
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For any p ∈ Rd with |p| sufficiently large, and for (ε, h/ε) small enough, the scheme Sεh admits a
super-solution u : Ωh → R defined as the affine map

u(x) := 〈p, x〉+ cmax, where cmax := max
y∈∂Ω

(
g(y)− 〈p, y〉

)
.

Proof. Case of the sub-solution. One has Sεhu(x) = −1 for all x ∈ Ωh, in view of (37) and (44).
In addition Sεhu(x) = gmin − g(x) ≤ 0 for all x ∈ ∂Ω, hence u is a sub-solution of Sεh.

Case of the super-solution. If |p| is sufficiently large, then for all x ∈ Ω

|p|2Ab(x) + 2〈b(x), p〉 − 1 ≥ c0 > 0. (51)

Indeed, recall that the matrix field Ab : Ω → S++
d is pointwise positive definite (11), and

continuous over the compact set Ω, hence the smaller eigenvalue of Ab(x) is positively bounded
below over x ∈ Ω. Then by Proposition 3.14, one has Sεhu(x) ≥ c0 +O(h+ hr/εr) for all x ∈ Ωh,
which is non-negative for (ε, h/ε) small enough. In addition Sεhu(x) = cmax + 〈p, x〉 − g(x) ≥ 0
for all x ∈ ∂Ω, hence u is a super-solution of Sεh.

As a consequence of Lemma 3.16, we establish in the next result that the scheme Sεh admit a
unique solution, uniformly bounded as (ε, h/ε)→ 0.

Corollary 3.17 (Stability). For sufficiently small (ε, h/ε), the scheme Lεh admits a unique
solution uεh, which is positive, and Sεh admits a unique solution uεh, which obeys uεh = −ε lnuεh
and satisfies u ≤ uεh ≤ u on Ωh, where u and u are from Lemma 3.16.

Proof. By Proposition 3.11, the maps uε := exp(−u/ε) and uε := exp(−u/ε), where u and u are
from Lemma 3.16, are respectively a super-solution and a sub-solution to the scheme Lεh, which
is elliptic by Proposition 3.10. Since that scheme is also linear, it admits a unique solution uεh
by Corollary 3.6, obeying uε ≤ uεh ≤ uε by Lemma 3.5. Note that Corollary 3.6 and Lemma 3.5
apply here regardless of the fact that the domain Ωh = Ωh ∪ ∂Ω is infinite, because the finite
difference scheme Lεh only uses finitely many boundary values. We conclude that uεh is positive
since uε is positive, that uεh := −ε lnuεh is the unique solution to Sεh by Proposition 3.11, and
that u ≤ uεh ≤ u on Ωh by monotony of the logarithm. The result follows.

Lemma 3.18 (Consistency up to the boundary). For any ϕ ∈ C3(Ω) and any x ∈ Ω one has

lim sup
(ε,h/ε)→0,ξ→0

y∈Ωh, y→x

Sεh[ϕ+ ξ](y) ≤

{
Sϕ(x) if x ∈ Ω,

max{Sϕ(x), ϕ(x)− g(x)} if x ∈ ∂Ω.

lim inf
(ε,h/ε)→0,ξ→0

y∈Ωh, y→x

Sεh[ϕ+ ξ](y) ≥

{
Sϕ(x) if x ∈ Ω,

min{Sϕ(x), ϕ(x)− g(x)} if x ∈ ∂Ω.

Proof. For any h > 0, x ∈ Ωh, and ξ ∈ R, one has by Proposition 3.14

Sεh[ϕ+ ξ](x) = Sεhϕ(x) = Sϕ(x) +O(ε+ h+ (h/ε)r),

where r ∈ {1, 2}. In particular r ≥ 1 and therefore ε+ (h/ε)r → 0 as (ε, h/ε)→ 0. On the other
hand, Sεh[ϕ + ξ](x) = ϕ(x) − g(x) + ξ → ϕ(x) − g(x) as ξ → 0. The announced result follows
from these observations, and from the uniform continuity of the mappings x ∈ Ω 7→ Sϕ(x) :=
|∇ϕ(x)|2Ab(x) + 2〈b,∇ϕ(x)〉 − 1 and x ∈ ∂Ω 7→ ϕ(x)− g(x).
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Theorem 3.19 (Convergence). As (ε, h/ε) → 0 the quantity uεh := −ε lnuεh, where Lεhuεh = 0,
converges uniformly on compact subsets of Ω to the viscosity solution u of (16).

Proof. Define for all x ∈ Ω

v(x) := lim sup
(ε,h/ε)→0, y→x

uεh(x)
(

= sup
{

lim sup
n→∞

uεnhn(yn); (εn, hn/εn)→ 0, yn → x, yn ∈ Ωhn

})
,

and likewise v(x) := lim inf uh(x) as (ε, h/ε) → 0 and y → x. By Corollary 3.17, v and v are
well-defined and bounded : u ≤ v ≤ v ≤ u on Ω where u and u are from Lemma 3.16. By
Lemma 3.18 and following the proof of [6, Theorem 2.1], v and v are respectively a sub-solution
and a super-solution to the operator S, or equivalently to (16).

By the continuous comparison principle Theorem A.8, one has v ≤ u∗ ≤ u∗ ≤ v on Ω, where
u∗(x) := lim infy→x u(y) and u∗(x) := lim supy→x u(y) are the lower and upper semi-continuous
envelopes of the unique viscosity solution u of (16). By definition v ≥ v on Ω, thus v = u = v
on Ω, and the locally uniform convergence follows from the definitions of v and v.

4 Randers distance from a point

In this section, we adapt the numerical scheme presented in §3 so as to compute Randers distance
from a point source, instead of the distance from the boundary. Point sources appear to be the
most common setting in applications [22, 55, 54] where the Poisson equation is used to numerically
estimate a geodesic distance. However the convergence of the numerical method in this case does
not appear to be backed by previous works, not least because the corresponding PDE is ill posed,
see Remark 4.4. To our knowledge, the convergence results Theorems 4.1 and 4.2 presented in
this section are thus also new for isotropic and Riemannian metrics, which are special cases of
Randers metrics of the form Fx(v) = c(x)|v| and Fx(v) = |v|M(x) respectively, where c : Ω→ R++

and M : Ω→ S++
d , and thus validate previous numerical practice. Such convergence under mesh

refinement of geodesic distance estimation methods based on the heat or Poisson equation is
listed as an open question in [24].

We assume that the domain Ω is connected, and contains the origin which w.l.o.g. is the point
source of interest, in addition to the previously assumed boundedness and W 3,∞ boundary. For
all ε > 0, h > 0, and u : Ωh → R we let

L̃εhu(x) =


Lεhu(x) if x ∈ Ωh \ {0},
u(x)− 1 if x = 0,

u(x) if x ∈ ∂Ω.

(52)

The main result of this section, Theorem 4.1 below, justifies the use of the Poisson method, i.e.
solving the linear scheme L̃εh, to approximate Randers geodesic distance from the origin.

Theorem 4.1. The solution to L̃εhuεh = 0 obeys, locally uniformly in Ω 3 x

−ε lnuεh(x)→ distF (0, x), as (ε, h/ε, ε lnh)→ 0.

Note that L̃εh is a discrete elliptic operator when h/ε is sufficiently small, see Proposition 3.10,
hence the equation L̃εhuεh = 0 does admit a unique solution by Corollary 3.6. Under the same
conditions, the matrix of Lεh admits an inverse, whose coefficients are estimated in the following
result.
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Theorem 4.2. Denote by Lεh ∈ RΩh×Ωh the matrix of the linear operator Lεh on Ωh, with null
boundary conditions on ∂Ω. Then locally uniformly on Ω× Ω 3 (x, y) one has

−ε ln[(Lεh)−1
xy ]→ distF (x, y), as (ε, h/ε, ε lnh)→ 0.

As evidenced by the constraint ε lnh→ 0, Theorems 4.1 and 4.2 have no immediate counter-
parts in the continuous setting where ε > 0 and h = 0 formally, see also Remark 4.4. Contrast
this with the smooth boundary case, where Theorem 2.12 corresponds to Theorem 3.19 with
h = 0. The proofs are presented in the rest of this section. In the case of Theorem 4.1, it consists
in building sub-solutions and a super-solutions to the operator L̃εh, on disk or ring domains
around the origin depending on the problem scales h, ε and r, where the radius r > 0 is fixed but
small, see §4.1 to 4.3 and Fig. 1. Sub-solutions (resp. super-solutions) over these sub-domains are
glued together using the following lemma, which immediately follows from the DDE property
Definition 3.4.

Lemma 4.3. Let F be a DDE scheme on a finite set X, let x ∈ X, and let u, v : X → R.
If Fu(x) ≤ 0 and either (u(x) ≥ v(x) or Fv(x) ≤ 0), then F [max{u, v}](x) ≤ 0. Likewise if
Fu(x) ≥ 0 and either (u(x) ≤ v(x) or Fv(x) ≥ 0), then F [min{u, v}](x) ≥ 0.

Remark 4.4 (Continuous setting). The numerical scheme (52) does not discretize a well posed
PDE. Indeed, Dirichlet boundary conditions cannot be enforced at isolated points of elliptic PDEs
in dimension d ≥ 2. The most closely related well posed PDE reads, in the sense of distributions,

Lεu(x) = δ0(x) in Ω, u = 0 on ∂Ω, (53)

where δ0 denotes the Dirac mass at the origin. The PDE (53) admits a solution [13, Theorem 4]
in the Sobolev space W 1,s(Ω), for all s ∈ [1, 2[ in dimension d = 2 (resp. s ∈ [1, 3/2[ in dimension
d = 3). The solution is unbounded near 0. Let us emphasize that W 1,s has a Banach structure,
for all s 6= 2, in contrast with H1 = W 1,2 which has a Hilbert structure and defines the standard
framework of the Lax-Milgram theorem and the Finite Element Method (FEM). Extending the
FEM to Banach Sobolev spaces is an area of active research [32], which is beyond the scope of this
work. We do not further discuss (53), which is understood in the sense of distributions, and thus
belongs to a framework distinct from the setting of viscosity solutions considered in this paper.

Remark 4.5 (Heat method). In the Riemannian case (ω = 0) an alternative approach to geodesic
distance computation from a point source relies on the short time asymptotics of the heat kernel

−4t lnu(t, x) = distF (x∗, x)2 + o(1), where ∂tu = div(D∇u), (54)

and u(0, ·) = δx∗ is the Dirac mass at the source point [52]. Numerically, the heat equation is
solved over a short time interval, using a series of implicit time steps, each of which is equivalent
to a Poisson equation [22]. To the extent of our knowledge, solving a single Poisson equation is
preferred over the heat method in applications, since it is computationally less expensive, and less
susceptible to raise floating point underflow errors, in addition to being more general in view of
the extension to Randers metrics presented in this paper. An advantage of the heat equation is
however that it allows efficient implementations of optimal transport with quadratic cost [50] in
the spirit of §5.

A natural generalization of (54, right) to manifolds [44] equipped with a Finsler metric F ,
reads

∂tu(t, x) = div
(
∂vH(x,∇u(t, x))

)
, where H(x, v) := 1

2F
∗
x(v)2, (55)
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with again u(0, ·) = δx∗, and where F∗ denotes the dual metric, see Definition 2.3. This PDE
can be reformulated as a gradient flow, in two different manners [44]. In this setting and under
suitable assumptions, the heat kernel asymptotics (54, left) extend to Finsler manifolds, see [44,
Example 5.5]. However, discretizing the non-linear and time dependent PDE (55) is non-trivial,
and also defeats the purpose of this paper which is to consider linear schemes for Randers distance
computation. (If non-linear PDEs are considered, then one may as well solve Randers eikonal
PDE (5) directly, see [40, 42].)

Notations. The Euclidean ball, its boundary the sphere, and its intersection with the grid, are
denoted

B(x, r) := {y ∈ Rd; |y − x| < r}, S(x, r) := ∂B(x, r), Bh(x, r) := B(x, r) ∩ hZd,

where the parameters are center x ∈ Rd, the radius r > 0, and the grid scale h > 0. We
use the convention B(r) := B(0, r), S(r) := S(0, r), Bh(r) := Bh(0, r). We introduce constants
0 < cF ≤ CF and RF , which exist by Lemma 2.4, such that for all x, y ∈ Ω

cF |x− y| ≤ distF (x, y) ≤ CF |x− y|, distF (x, y) ≤ RF . (56)

Recall that the numerical scheme Lεh is defined in terms of a Lipschitz symmetric matrix field A
and vector field b which are the parameters of the dual Randers metric. Selling’s decomposition
of Ab := A− bb>, see (10), which is uniformly positive definite, is denoted

Ab(x) =
∑

1≤i≤I
ρi(x)eie

>
i , where |ei| ≤ RS , 1 ≤ i ≤ I, (57)

where the bound RS on the offsets exists in view of Theorem 3.9, and I is a suitable integer. The
shorthand “C = C(MF )” means that a constant C, appearing in an estimate, can be expressed
or bounded in terms of the following problem parameters

MF := max{c−1
F , CF , RF , RS , ‖A‖∞, ‖b‖∞, ‖A−1

b ‖∞, Lip(Ab)},

where ‖A‖∞ := sup{‖A(x)‖; x ∈ Ω}, and Lip(Ab) is the Lipschitz regularity constant of the
matrix field Ab.

4.1 Viscosity regime

We construct a solution to the scheme (52) far enough from the point source singularity, at points
x ∈ Ωh such that |x| ≥ r, where r is independent of ε and h, by using the results developed in §3.
For that purpose, a radius r > 0 is fixed in the rest of this section, unless otherwise specified, and
such that B(6r) ⊂ Ω. The erosion with radius r of the domain Ω, and its intersection with the
grid, are defined as

int(Ω, r) := {x ∈ Ω; B(x, r) ⊂ Ω}, inth(Ω, r) := int(Ω, r) ∩ hZd.

Lemma 4.6. For each ε > 0 and h > 0 let uεh be the solution to

Lεhu = 0 on Ωh \ B(r), u = 1 on S(r) u = exp(−RF/ε) on ∂Ω. (58)

Then for (ε, h/ε) sufficiently small, and denoting uεh := −ε lnuεh, one has with C = C(MF )

|uεh(x)− distF (0, x)| ≤ Cr on inth(Ω, r) \ B(2r). (59)
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Proof. Applying Theorem 3.19 to the domain Ω \ B(r) we obtain the uniform convergence of uεh
over the relatively compact subset int(Ω, r) \ B(2r) as (ε, h/ε)→ 0. More precisely

max
{
|uεh(x)− u(x)|; x ∈ inth(Ω, r) \ B(2r)

}
→ 0, as (ε, h/ε)→ 0.

The limit u : Ω \ B(r)→ R is defined as

u(x) = min
{

min
p∈S(r)

distF (p, x), RF + min
q∈∂Ω

distF (q, x)
}

= min
p∈S(r)

distF (p, x),

where the second equality follows from (56, right). Observing that | distF (p, x)− distF (0, x)| ≤
CF |p| ≤ CF r for all p ∈ S(r), see (56, left), we conclude the proof.

Corollary 4.7. For (ε, h/ε) sufficiently small, there exists uεh : Ωh → R such that L̃εhuεh ≥ 0 and
uεh(x) := −ε lnuεh(x) ≥ distF (0, x)− Cr on inth(Ω, r), where C = C(MF ).

Proof. From Lemma 4.6 introduce uεh = −ε lnuεh obeying (59) for sufficiently small (ε, h/ε), with
constant C0 = C0(MF ). Then let

uεh(x) :=

{
1 if x ∈ Bh(2r),

min{1, uεh(x) exp(C1r/ε)} if x ∈ Ωh \ Bh(2r),
(60)

where C1 = C0 + 3CF . By construction one has uεh(0) = 1, and uεh(x) ≥ 0 on ∂Ω, so that
L̃εhuεh ≥ 0 at these boundary points. By choice of the constant C1 and in view of (59), one
has 1 ≤ uεh(x) exp(Cr/ε) on Bh(3r) \ Bh(2r). Note that provided h ≤ r/RS the expression
of Lεhuεh(x) at any x ∈ Ωh \ B(3r) only involves values of uεh in Ωh \ B(2r). By Lemma 4.3,
and since the constant 1 is a super-solution to Lεh, we obtain that Lεhuεh ≥ 0, as announced.
Finally, one has uεh(x) ≥ uεh(x) − C1r ≥ distF(0, x) − (C0 + C1)r on inth(Ω, r) \ Bh(2r), and
uεh(x) ≥ 0 ≥ distF (0, x)− 2CFr on Bh(2r), which concludes the proof.

4.2 Taylor expansion regime

We construct explicit sub-solutions to the scheme (52), at points h . |x| . ε and ε . |x| . r,
which are radial functions with respectively a power and exponential profile. For that purpose,
we need to estimate the derivatives of such functions.

Lemma 4.8. Let f ∈ C2(R++,R), let µ ∈ R, and let u(x) := exp(−µf(|x|)) for all x ∈ Rd \ {0}.
Then one has with n(x) := x/|x|, omitting the arguments of f, f ′, f ′′, f ′′′ and n

∇u(x)

u(x)
= −µf ′n, ∇2u(x)

u(x)
= µ2f ′2nn> +O

(
µ|f ′′|+ µ|f ′|

|x|
)
,

∇3u(x)

u(x)
= O

(
µ3|f ′|3 + µ2|f ′||f ′′|+ µ2|f ′|2

|x|
+
µ|f ′′|
|x|

+ µ|f ′′′|+ µ|f ′|
|x|2

)
,

with absolute constants underlying the O notation.

Proof. The expression of ∇u(x) follows from the standard rules for the differentiation of an
exponential function ∇(exp ◦g) = (exp ◦g)∇g, and of a radial function ∇g(|x|) = g′(|x|)n(x).
The announced estimate of ∇2u follows from the full expression u(x)−1∇2u(x) = µ2f ′2nn> −
µf ′′nn> − µf ′(Id−nn>)/|x|, which is obtained using the Leibniz rule for the differentiation of a
product, and recalling that the Jacobian matrix of n(x) is (Id−nn>)/|x|. Differentiating once
more yields the expression of ∇3u, from which the announced estimate follows.
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Corollary 4.9. Define u(x) := exp(−λ|x|/ε) where λ ≥ 1, ε > 0. If x ∈ Ωh, ε ≤ |x| ≤ 5r and
2RSh ≤ ε then

u(x)−1Lεhu(x) ≤ 1− λ2|n(x)|2Ab(x) + C0(λ+ λ3h/ε). (61)

In particular, Lεhu(x) ≤ 0 if λ ≥ C1 and λh/ε ≤ c2, where C0, C1, c2 > 0 only depend on MF .

Proof. Applying Lemma 4.8 to the identity function f : r ∈ R++ 7→ r, and parameter µ := λ/ε
(note that µ ≥ 1/ε), we obtain whenever |x| ≥ ε/2

∇u(x)

u(x)
= O(µ),

∇2u(x)

u(x)
= µ2nn> +O(

µ

ε
),

∇3u(x)

u(x)
= O(µ3).

If |x| ≥ ε and |e| ≤ RS , then any y ∈ [x− he, x+ he] obeys |y| ≥ ε/2. Therefore

δ
e
hu(x)

u(x)
= O(µRS + hµ2R2

S),
∆e
hu(x)

u(x)
= µ2〈n, e〉2 +O(

µ

ε
R2
S + hµ3R3

S),

with again absolute constants underlying the O notation. Inserting these estimates in the scheme
expression we obtain omitting the argument of ρi, A−1

b b and n

Lεhu(x)

u(x)
≤ 1 + 2εC

∑
1≤i≤I

ρi|〈A−1
b b, ei〉|(µ+ hµ2) + ε2

∑
1≤i≤I

ρi[−µ2〈n, ei〉2 + C(
µ

ε
+ hµ3)],

where C depends only on RS . This establishes (61) observing that
∑I

i=1 ρi〈n, ei〉2 = Tr(Abnn
>) =

|n|2Ab , and that
∑I

i=1 ρi ≤ ‖Tr(Ab)‖∞. Since Ab is uniformly positive definite over Ω and n is a unit
vector, one has |n|2Ab ≥ c0 = c0(MF ) > 0, and the result follows with C1 = max{4C0/c0,

√
2/c0}

and c2 = c0/4C0.

Corollary 4.10. Define u(x) := |x|−µ, where µ ≥ 1. If x ∈ Ωh and 2RSh ≤ |x| ≤ 4ε then

Lεhu(x)

u(x)
≤ 1− ε2µ2

|x|2
|n(x)|2Ab(x) + C0

(ε2µ

|x|2
+
hε2µ3

|x|3
)
. (62)

In particular Lεhu(x) ≤ 0 if µ ≥ C1 and µh/ε ≤ c2, where C0, C1, c2 > 0 only depend on MF .

Proof. We apply Lemma 4.8 to the logarithm function f = ln, obtaining

∇u(y)

u(y)
= O(

µ

|y|
),

∇2u(y)

u(y)
=
µ2nn>

|y|2
+O(

µ

|y|2
),

∇3u(y)

u(y)
= O(

µ3

|y|3
).

If |x| ≥ 2RSh and |e| ≤ RS , then any y ∈ [x− he, x+ he] obeys |y| ≥ |x|/2. Therefore

δ
e
hu(x)

u(x)
= O

( µ
|x|

+
hµ2

|x|2
)
,

∆e
hu(x)

u(x)
=
µ2〈n, e〉2

|x|2
+O

( µ

|x|2
+
hµ3

|x|3
)
.

Inserting these estimates in the scheme expression (37), we conclude similarly to Corollary 4.9.
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4.3 Finite neighborhood regime

We produce a sub-solution to the scheme L̃εh which is useful in the immediate neighborhood of
the origin, where |x| . h. The construction is not based on the approach of viscosity solutions,
or on a Taylor expansion, but on the discrete structure of the scheme. For that purpose, we
establish additional properties of its coefficients (57), suitably normalized: the first d offsets form
a basis of Zd, and the corresponding weights are bounded below in a neighborhood of the source
point. This implies that the stencils of our numerical scheme are locally connected, and allows to
construct a subsolution in Corollary 4.13. The proof is based on the spanning property of Selling’s
decomposition, see Proposition B.8, which is used here for the first time in the context of PDE
numerical analysis.

Proposition 4.11. Up to reordering the terms (ρi, ei)
I
i=1 of Selling’s decomposition (57) of the

matrix field Ab, and grouping duplicate and opposite offsets (ei)
I
i=1, one has for all |x| ≤ rS

min{ρ1(x), · · · , ρd(x)} ≥ ρS , det(e1, · · · , ed) = 1, (63)

where the constants ρS > 0 and rS > 0 only depend on MF .

Proof. Up to grouping duplicates and opposites, we may assume that the vectors ±e1, · · · ,±eI
are pairwise distinct. Thus by Proposition B.5 one has for all x, y ∈ Ω and all 1 ≤ i ≤ I

|ρi(x)− ρi(y)| ≤ C|x− y|, (64)

where C = C(MF). Then by Proposition B.8, and up to reordering (ρi, ei)
I
i=1, one has

det(e1, · · · , ed) = 1 and ρi(0) ≥ 2ρS for all 1 ≤ i ≤ d, where ρS only depends on ‖Ab(0)‖
and ‖Ab(0)−1‖. The announced result follows, by choosing rS := ρS/C.

In the rest of this section, we assume that (ρi, ei)
I
i=1 are ordered in such way that (63) holds.

We also denote ρ−i := ρi and e−i := −ei for all 1 ≤ i ≤ I. Hence for any x ∈ Ωh such that
B(x,RSh) ⊂ Ωh

Lεhu(x) = αεh(x)u(x)−
∑

1≤|i|≤I

βεh,i(x)u(x+ hei),

where the coefficients are

αεh(x) := 1 + 2
ε2

h2

∑
1≤i≤I

ρi(x), βεh,i(x) := ρi(x)
( ε2

h2
− ε

h
〈Ab(x)−1b(x), ei〉

)
. (65)

Note that αεh(x) ≤ 1 + 2(ε/h)2‖Tr(Ab)‖∞, since
∑I

i=1 ρi(x) ≤
∑I

i=1 ρi(x)|ei|2 = Tr(Ab(x)). In
the next lemma, we denote by |x|1 the sum of the absolute values of the coefficients of a vector
x ∈ Rd.

Lemma 4.12. Let G ∈ GL(Zd) be the matrix of columns e1, · · · , ed, and let N(x) := |G−1x|1.
Then for any z ∈ Zd \ {0} there exists 1 ≤ |i| ≤ d such that N(z + ei) = N(z)− 1. In addition
c|x| ≤ N(x) ≤ C|x| where the constants C, c > 0 only depend on MF .

Proof. The matrix G has integer coefficients by construction, and det(G) = 1 by (63, left) hence its
inverse is the adjugate matrix G−1 = co(G)> which also has integer coefficients, thus G ∈ GL(Zd)
as announced. Since the coefficients of G are bounded by RS , those of the adjugate matrix G−1

are bounded by (d− 1)!Rd−1
S , and the equivalence of N with the Euclidean norm follows.
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Figure 1: Each subfigure displays ∂Ω as a solid curve, Ωh := Ω ∩ hZd as dots, and the region
associated to a subdomain Ωε,i

h ⊂ Ωh in color, where i = 0, · · · , 3 from left to right. The global
discrete subsolution uεh : Ωh → R is defined (67) as the weighted maximum of four discrete
subsolutions uε,ih : Ωε,i

h → R, where 0 ≤ i ≤ 3. The intersection of two successive subdomains,
Ωε,i
h ∩ Ωε,i+1

h where 0 ≤ i ≤ 2, is a non-empty annulus centered on the origin, intersected with
the grid. The subsolutions on the subdomains, from left to right, are: uε,0h obtained by solving a
modified scheme, uε,1h an exponential profile, uε,2h an inverse power profile, and uε,3h a construction
based on the scheme stencil structure at the origin, see §4.4.

Let z ∈ Zd \ {0}, and let λ1, · · · , λd ∈ Z be the coordinates of z in the basis e1, · · · , ed, in
other words (λ1, · · · , λd)> = G−1z. Since z 6= 0, one at least of these coordinates is non-zero.
We thus assume w.l.o.g. that λ1 > 0, up to a change of sign and permutation of the axes. Then
N(z − e1) = |λ1 − 1|+ |λ2|+ · · ·+ |λd| = −1 + |λ1|+ · · ·+ |λd| = N(z)− 1, which concludes the
proof.

Corollary 4.13. Define u(x) := exp(−νN(x)/h), where the function N is defined in Lemma 4.12.
Then L̃εhu(x) ≤ 0 on Bh(rS), provided ν ≥ ν0 = ν0(MF ), B(x,RSh) ⊂ Ω, and h/ε is sufficiently
small.

Proof. Note that βεh,i(x) ≥ ρi(x)ε2/(2h2) ≥ 0, for all 1 ≤ i ≤ I, when h/ε ≤ c := 1/(2‖A−1
b b‖∞RS).

In particular βεh,i(x) ≥ ρSε
2/(2h2) if |x| ≤ rS and 1 ≤ |i| ≤ d. By Lemma 4.12 there exists

1 ≤ |i| ≤ d such that N(x+ hei) = N(x)− h, and therefore u(x+ hei) ≥ eνu(x). Thus

Lεhu(x)

u(x)
≤ αεh(x)− βεh,i(x)

u(x+ hei)

u(x)
≤ 1 + 2‖Tr(Ab)‖∞

ε2

h2
− eν ρS

2

ε2

h2
. (66)

The result follows, by assuming in addition that h ≤ ε and choosing ν0 such that eν0 :=
2(1 + 2‖Tr(Ab)‖∞)/ρS .

4.4 Gluing the sub-solutions

In the previous subsections, we have produced four sub-solutions to the operator L̃εh, on different
subsets of the domain Ωh defined according to the distance to the origin, see Lemma 4.6
and Corollaries 4.9, 4.10, and 4.13, and Fig. 1. We glue here these partial sub-solutions using
Lemma 4.3, to produce a global sub-solution on Ωh and conclude the proof of Theorem 4.1.
For that purpose, we introduce four mappings uε,ih defined on adequate subdomains Ωε,i

h ⊂ Ωh,
1 ≤ i ≤ 4, and depending on the scale parameters (ε, h) as well as constants (λ, µ, ν, ξ) specified
later.
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• uε,0h (x) := vεh(x)− exp(−RF/ε), and Ωε,0
h := Ωh \ Bh(2r), where vεh solves (58).

• uε,1h (x) = exp(−λ|x|/ε), and Ωε,1
h := Bh(5r) \ Bh(ε).

• uε,2h (x) = |x|−µ, and Ωε,2
h = Bh(4ε) \ Bh(2RSh).

• uε,3h (x) = exp(−νN(x)/h), and Ωε,3
h = Bh(ξh), where N is from Lemma 4.12.

Proposition 4.14. For any (ε, h/ε) sufficiently small one has L̃εhuεh ≤ 0 on Ωh, where

uεh(x) := max{uε,3h (x), α2h
µ uε,2h (x), α1(hε )µ uε,1h (x), α0(hε )µe−3λ r

ε uε,0h (x)}, (67)

for all x ∈ Ωh, and where the quantity uε,ih (x) is only considered3 in the maximum if x ∈ Ωε,i
h .

The constants (λ, µ, ν, ξ, α0, α1, α2) only depend on MF .

Proof. By Corollaries 4.9, 4.10, and 4.13 one may choose the constants λ, µ, ν such that L̃hεu
ε,i
h ≤ 0

on Ωε,i
h for all 1 ≤ i ≤ 3 and (ε, h/ε) sufficiently small. Furthermore, this property is preserved if

λ, µ or ν is increased. Also L̃hεu
ε,0
h ≤ 0 on Ωε,0

h , by noting that the positive constant exp(−RF/ε)
subtracted in its definition accounts for the null boundary conditions of L̃εh, compare (52) with
(58). Since the operator L̃εh is linear on Ωh \ {0}, see (52), the product of a sub-solution with
a positive constant remains a sub-solution (outside the origin). Hence (67) is a maximum of 4
sub-solutions on their respective domains.

We next proceed to prove estimates of the following form: for any x ∈ Ωε,i
h ∩ Ωε,i+1

h

mε,i
h u

ε,i
h (x) ≤ (resp. ≥)uε,i+1

h (x) when Bh(x,RSh) 6⊂ Ωε,i
h (resp. Ωε,i+1

h ), (68)

where mε,i
h is a suitable function of the scale parameters, specified later in the proof. Thus by

Lemma 4.3,

uεh(x) := max{uε,3h (x), mε,2
h uε,2h (x), mε,2

h mε,1
h uε,1h (x), mε,2

h mε,1
h mε,0

h uε,0h (x)}

is a sub-solution, where again uε,ih is only considered on Ωε,i
h , which is the announced result.

Indeed, if Bh(x,RSh) ⊂ Ωε,i
h then one has Lεhu

ε,i
h (x) ≤ 0, whereas if Bh(x,RSh) 6⊂ Ωε,i

h then (68)
shows that uεh(x) is not defined from uε,ih (x).

The estimates (68) follow from basic upper and lower bounds of the involved functions, and
of the norms of the relevant points x. Namely

uε,0h (x) ≤ 1, uε,1h (x) ≥ exp(−3λr/ε), when 2r ≤ |x| ≤ 3r.

uε,0h (x) ≥ exp(−Cr/ε), uε,1h (x) ≤ exp(−4λr/ε), when 4r ≤ |x| ≤ 5r.

The upper bound on uε,0h is derived from the maximum principle, and the lower bound from
Lemma 4.6, with C = C(MF ) and for sufficiently small (ε, h/ε). This establishes (68, i = 0) with
mε,0
h = exp(−3λr/ε), up to increasing λ so that λ ≥ C. Likewise

uε,1h (x) ≤ exp(−λ), uε,2h (x) ≥ (2ε)−µ, when ε ≤ |x| ≤ 2ε.

uε,1h (x) ≥ exp(−4λ), uε,2h (x) ≤ (3ε)−µ, when 3ε ≤ |x| ≤ 4ε.

3Equivalently, one could use the convention uε,ih (x) = −∞ whenever x /∈ Ωε,ih .
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This establishes (68, i = 1) with mε,1
h = eλ(2ε)−µ, up to increasing µ so that (3/2)µ ≥ e3λ. Lastly

uε,2h (x) ≤ (2RSh)−µ, uε,3h (x) ≥ exp(−3RSCNν), when 2RSh ≤ |x| ≤ 3RSh.

uε,2h (x) ≥ (ξRSh)−µ, uε,3h (x) ≤ exp(−(ξ −RS)cNν), when (ξ −RS)h ≤ |x| ≤ ξRSh,

where cN and CN are the equivalence constants in Lemma 4.12. We define ξ by (ξ −RS)cN −
3RSCN = 1. This establishes (68, i = 2) with mε,2

h = e−3RSCNµ(2RSh)µ, up to increasing ν so
that eν ≥ (ξ/(2RS))µ, in view of the expression of ξ, which concludes the proof.

Corollary 4.15. For (ε, h/ε) sufficiently small, there exists uεh : Ωh → R such that L̃εhuεh ≤ 0
and uεh(x) := −ε lnuεh(x) ≤ distF (0, x) + C(r + ε ln(ε/h)) on inth(Ω, r), where C = C(MF ).

Proof. We distinguish two cases. (i) If the maximum in (67) is attained by the last term,
then the announced result follows Lemma 4.6 and the expression of the multiplicative factor
α0(h/ε)µ exp(−3λr/ε). (ii) If the maximum in (67) is attained by one of the first three terms,
then |x| ≤ 5r and the announced result follows from the explicit expressions of uε,1h , uε,2h , uε,3h as
well as distF (0, x) ≤ 5CFr.

Proof of Theorem 4.1. For sufficiently small (ε, h/ε), we obtain from the comparison principle
Lemma 3.5 and with the mappings uεh and uεh of Corollaries 4.7 and 4.15 respectively that

distF (0, x)− Cr ≤ uεh(x) ≤ uεh(x) ≤ uεh(x) ≤ distF (0, x) + C(r + ε ln(ε/h)), (69)

on inth(Ω, r), where C = C(MF ). Since the parameter r > 0 is arbitrary4, except for the constraint
B(6r) ⊂ Ω, we conclude as announced that uεh(x) → distF(0, x) locally uniformly on Ω as
(ε, h/ε, ε ln(ε/h))→ 0. The result follows, noting that ε ln(ε/h) ≤ ε| lnh| when 0 < h ≤ ε ≤ 1.

4.5 Convergence on Ω× Ω and inverse matrix

We establish Theorem 4.2, which relates the Randers distance with the inverse matrix of our finite
differences scheme. For that purpose, we use the following convention: if U(x;x∗) if a bivariate
discrete mapping, defined for all (x, x∗) ∈ Ωh × Ωh, and if F is a finite differences scheme of the
form of Definition 3.4, then FU(x;x∗) := F̃ (x, U(x;x∗), [U(x;x∗)− U(y;x∗)]y∈X\{x}). In other
words, the numerical scheme sees U as a function of its first variable x only.

Lemma 4.16. For any (ε, h/ε) sufficiently small, and any x∗ ∈ Bh(r/2), one has L̃εhU εh(x;x∗) ≤ 0
on Ωh \ {x∗}, where for all x ∈ Ωh

U
ε
h(x;x∗) := max{uε,3h (x), α2h

µ uε,2h (x− x∗), α1(h/ε)µ uε,1h (x− x∗), α0(h/ε)µe−3λr/ε uε,0h (x− x∗)},

and where the quantity uε,ih (x − x∗) is only considered in the maximum if x − x∗ ∈ Ωε,i
h . The

constants (λ, µ, ν, ξ, α0, α1, α2) only depend on MF . In addition Uε
h(x;x∗) := −ε lnU

ε
h(x;x∗) ≤

distF (0, x) + C(r + ε ln(ε/h)) for all (x, x∗) ∈ inth(Ω, r)× Bh(r/2), where C = C(MF ).

Proof. The proofs of Proposition 4.14 and Corollary 4.7 adapt in a straightforward manner to a
point source x∗ sufficiently close to the origin, as here, rather than the origin itself.

Proposition 4.17 (Convergence in the product space). Denote by U εh : Ωh×Ωh → R the solution
to

LεhU εh(x; x∗) = 0, ∀x ∈ Ωh \ {x∗}, U εh(x∗; x∗) = 1 U εh(x;x∗) = 0,∀x ∈ ∂Ω. (70)

Then locally uniformly on Ω× Ω one has −ε lnU εh(x;x∗)→ distF (x∗, x) as (ε, h/ε, ε lnh)→ 0.
4Note nevertheless that (69) requires that ε ≤ δ and h/ε ≤ δ, where δ depends on MF and r.
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Proof. First note that x ∈ Ωh 7→ U(x;x∗), for any given x∗ ∈ Ωh, solves a linear problem
which is elliptic when h/ε is sufficiently small, hence has a unique solution, see Corollary 3.6
and Proposition 3.10.

Let r > 0 be such that B(6r) ⊂ Ω. Then for (ε, h/ε) sufficiently small and for all (x, x∗) ∈
inth(Ω, r)×Bh(r/2) one has by Corollary 4.7 and Lemma 4.16 and for some constant C = C(MF )

distF (0, x)− Cr ≤ U
ε
h(x;x∗) ≤ Uε

h(x;x∗) ≤ uεh(x) ≤ distF (0, x) + C(r + ε ln( εh)), (71)

and therefore |U(x;x∗)− distF (x∗, x)| ≤ (2C +CF )r when in addition ε ln(ε/h) ≤ r, noting that
|distF (x∗, x)− distF (0, x)| ≤ CFr.

Now let K∗ ⊂ Ω be a compact set. Up to reducing r one can find a finite cover K∗ ⊂
∪Jj=1B(yj , r/2) such that B(yj , 6r) ⊂ Ω for all 1 ≤ j ≤ J . Applying the above reasoning to each
ball Bh(yj , r/2), 1 ≤ j ≤ J , instead of Bh(r/2), we obtain |U(x;x∗)−distF (x∗, x)| ≤ (2C +CF )r
for all (x, x∗) ∈ inth(Ω, r) × (K∗ ∩ hZd), when (ε, h/ε, ε lnh) is small enough. Since r can be
chosen arbitrarily small, the result follows.

Lemma 4.18. If h/ε is sufficiently small, then for all x∗ ∈ Ωh such that B(x∗, RSh) ⊂ Ω one
has 1 ≤ LεhU εh(x∗;x∗) ≤ 1 + C ε2

h2
where C = 2‖Tr(Ab)‖∞.

Proof. We assume that C0h ≤ ε where C0 = ‖A−1
b b‖∞RS , and obtain by Proposition 3.10 that

Lεh is DDE. By the comparison principle, one has 0 ≤ U εh(x;x∗) ≤ 1 for all x ∈ Ωh. Thus
1 ≤ LεhU εh(x∗, x∗) ≤ aεh(x∗), with the notations (65), since βεh,i(x∗) ≥ 0 for all 1 ≤ i ≤ I. The
result follows.

Proof of inverse matrix convergence, Theorem 4.2. By definition of Lεh and U εh

(Lεh)−1
x∗x =

U εh(x;x∗)

LεhU εh(x∗;x∗)
.

Thus ε| ln[(Lεh)−1
x∗x]− lnU εh(x;x∗)| ≤ ε ln(1+Cε2/h2), under the conditions of Lemma 4.18. Noting

that ε ln(1 + Cε2/h2)→ 0 as (ε, h/ε, ε lnh)→ 0, and that −ε lnU εh(x;x∗)→ distF (x∗, x) locally
uniformly by Proposition 4.17, we conclude the proof.

5 Application to regularized optimal transport

In this section, we describe a numerical approach to the 1-Wasserstein optimal transport problem,
with cost defined as a Randers distance, and with entropic relaxation. The use of such asymmetric
cost functions is motivated by various applications as discussed in the introduction of §6, whereas
the entropic relaxation can be regarded as a side effect of the chosen numerical approach. Given
probability measures µ, ν ∈ P(Ω), the addressed problem reads

Wε(µ, ν) := inf
P∈Π(µ,ν)

∫
Ω×Ω

C(x, y) dP (x, y)− εEnt(P ), (72)

where ε ≥ 0 is the entropic relaxation parameter, and where Π(µ, ν) is the set of probability
measures on Ω× Ω whose first and second marginals coincide respectively with µ and ν, known
as transport plans between µ and ν. The transport cost and entropy are defined as

C(x, y) := distF (x, y), Ent(P ) := −
∫

Ω×Ω
ln
( dP (x, y)

edP0(x, y)

)
dP (x, y) (73)

30



where F is a Randers metric on the domain Ω, subject to the well posedness assumptions listed in
the last paragraph of §1, and P0 is a reference measure on Ω×Ω. The Euler constant e appearing
in Ent(P ) only changes the entropy by an additive constant, since P has total mass one, and
allows simplifying later calculations.

As mentioned in the introduction, our approach extends [25] from Riemannian to non-
symmetric Randers metrics. However, the quadratic cost distF(x, y)2 corresponding to the 2-
Wasserstein distance cannot be addressed in our setting, see Remark 4.5. Let us also acknowledge
that the effect of entropic relaxation cannot be ignored in the numerical implementation of
this class of methods: indeed, empirically, the transport plan is blurred over a radius O(ε),
while ε itself must be substantially larger than the discretization grid scale, see Theorem 3.19.
Nevertheless such a smoothing is not necessarily an issue in applications [25], and the estimation
of the Wasserstein distance itself as ε→ 0 can be accelerated by suitable techniques [17].

Remark 5.1 (Properties of the optimal transport problem with a Finsler distance as cost). When
the entropic relaxation parameter ε vanishes, (72) defines the Wassertein-1 distance W 1(µ, ν) :=
W0(µ, ν) associated with Randers geodesic distance distF on the ground space Ω. This quantity
satisfies the triangular inequality: W 1(µ, ξ) ≤ W 1(µ, ν) + W 1(ν, ξ) for any µ, ν, ξ ∈ P(Ω), but
is in general not symmetric: W 1(µ, ν) 6= W 1(ν, µ), similarly to Randers distance. In addition,
since Randers distance is equivalent to the Euclidean distance on the ground space, namely
c|x−y| ≤ distF (x, y) ≤ C|x−y| for some C, c > 0 by Lemma 2.4, we obtain that W 1 is equivalent
to the classical Monge-Kantorovich or earth-mover distance, with the same equivalence constants.
As a result, it characterizes the weak-∗ convergence of measures: W 1(µn, µ)→ 0 iff µn ⇀ µ.

Finally, let us mention that the existence and uniqueness theory of optimal transport mappings
T : X → Y does not apply to the Wasserstein-1 optimal transport problem [38], even in the
simpler case C(x, y) = |x− y| where the cost function is Euclidean.

Remark 5.2 (Numerical methods for Monge’s problem based on the flow interpretation). The
Wasserstein-1 distance W 1(µ, ν) := W0(µ, ν) admits several reformulations: following [7] one has

W 1(µ, ν) = sup
f :Ω→R

∫
Ω
f
(
dµ− dν

)
subject to |∇f − ω|2M−1 ≤ 1 on Ω, (74)

= inf
σ∈L1(Ω,R2)

∫
Ω

(
|σ|M + 〈ω, σ〉

)
dx subject to div σ = µ− ν on Ω, (75)

where µ and ν are identified with their Lebesgue densities in the second line. In the Kan-
torovich–Rubinstein formula (74), the constraint (74, right) expresses that the Kantorovich
potential f is 1-Lipschitz w.r.t. Randers distance distF , similarly to (5). Beckmann’s minimal
flow interpretation (75) is obtained by duality, involves Rander’s metric F in (75, left), and is
proved equivalent in [30].

Using a standard finite differences or finite elements discretization of the gradient and di-
vergence operators, these two reformulations yield second order cone programs, a generalization
of linear programming which allows certain types of convex quadratic constraints. They are
numerically tractable, using augmented Lagrangian methods as in [7] or interior point methods.
See [51] for other optimization methods, and applications to geometric data processing.

In comparison, the proposed scheme solves a slightly different problem: Schrödinger’s entropic
relaxation Wε for some ε > 0, which can be regarded as an advantage or an inconvenient depending
on the application. It also requires solving a single sparse linear system, with several rhs see §5.2,
which makes it very efficient and easy to scale up to 105 unknowns in a few seconds as illustrated
in the numerical experiments §6.
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5.1 Kantorovich duality

We assume in the following that µ and ν are supported on a finite set X ⊂ Ω, and the support of
P0 is X ×X. In this setting we present Kantorovich’s dual formulation of the optimal transport
problem (72), and its numerical solution by Sinkhorn’s algorithm. With a slight abuse of notation,
we identify a measure µ on the finite set X (resp. P on X × X), which is a weighted sum of
Dirac masses µ =

∑
x∈X µxδx, with the corresponding non-negative vector (µx)x∈X (resp. matrix

(Pxy)x,y∈X). With this convention, the set of probability measures on X, and of transport plans
between two such probabilities, are defined as

P(X) := {µ ∈ RX+ ; µ>1 = 1}, Π(µ, ν) := {P ∈ RX×X+ ; P1 = µ, P>1 = ν}, (76)

where R+ := [0,∞[ denotes the set of non-negative reals, and 1 = (1, · · · , 1)> ∈ RX . In particular,
µ>1 =

∑
x∈X µx, P1 = (

∑
y∈X Pxy)x∈X , and P

>1 = (
∑

x∈X Pxy)y∈X . In this discrete setting,
the optimal transport problem (72) reads

Wε(µ, ν) = inf
P∈Π(µ,ν)

〈〈P,C〉〉+ ε 〈〈P, ln
( P
eP0

)
〉〉, (77)

where 〈〈A,B〉〉 := Tr(A>B) =
∑

x,y∈X AxyBxy. In (77) and below, the fraction bar, the logarithm
and the exponential function apply componentwise to vectors and matrices. We assume that the
reference measure P0 = (P 0

xy) has positive entries, and use the standard convention 0×∞ = 0
in the definition of the entropic term if some entries of P ∈ Π(µ, ν) vanish. Noting that
s ∈ R++ 7→ s ln s is convex and has a vertical tangent at the origin, we find that the minimization
problem (77) is convex and that the optimal P has positive entries whenever ε > 0.

Kantorovich duality introduces potentials ϕ,ψ ∈ RX to account for the equality constraints
in (76), and uses Sion’s minimax theorem [34] to re-order the sup and inf:

Wε(µ, ν) = inf
P∈RX×X+

(
〈〈P,C〉〉+ ε 〈〈P, ln

( P
eP0

)
〉〉+ sup

ϕ,ψ∈RX
〈ϕ, µ− P1〉+ 〈ψ, ν − P>1〉

)
= sup

ϕ,ψ∈RX

(
〈ϕ, µ〉+ 〈ψ, ν〉+ inf

P∈RX×X+

〈〈P, C + ε ln
( P
eP0

)
− ϕ1> − 1ψ>〉〉

)
= sup

ϕ,ψ∈RX
〈ϕ, µ〉+ 〈ψ, ν〉 − ε 〈〈P0, exp

(ϕ1> + 1ψ> − C
ε

)
〉〉. (78)

The third line was obtained by solving, component-wise and in closed form, the minimization w.r.t.
P . Namely, the convex one dimensional mapping p ∈ R++ 7→ p

(
Cxy + ε ln

[
p/(eP 0

xy)
]
− ϕx − ψy

)
attains its minimum for

Pxy = P 0
xy exp[(ϕx + ψy − Cxy)/ε]. (79)

Note that the objective function of the maximization problem (78) is strictly concave.

5.2 Sinkhorn’s algorithm, and efficient computation

Sinkhorn’s algorithm [49] is based on an exponential change of variables in the concave maxi-
mization problem (78): denoting Φ = exp(ϕ/ε) and Ψ := exp(ψ/ε) we obtain

Wε(µ, ν;C) = ε max
Φ,Ψ∈RX++

〈ln Φ, µ〉+ 〈ln Ψ, ν〉 − 〈Φ>,KεΨ〉, where Kε
xy := P 0

xy exp(−Cxy/ε),

(80)
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and we denoted Kε = (Kε
xy)x,y∈X . We made the dependency of Wε(µ, ν) w.r.t. the ground cost

function C explicit in (80), because a modified cost is considered in the end of this subsection
and §5.3. Note that (80) is concave w.r.t. Φ or Ψ separately, but not jointly, in contrast with (78).
It can be numerically solved using alternate maximization, in other words successively solving
w.r.t. the unknown Φ with Ψ fixed (resp. w.r.t. Ψ with Φ fixed). This approach is known as
Sinkhorn’s algorithm [49], and is particularly simple and efficient since the optimal value w.r.t.
either of these variables has a closed form, when the other variable is fixed. More precisely, given
an arbitrary Ψ0 ∈ RX++ one defines for all n ≥ 0

Φn :=
µ

KεΨn
, Ψn+1 :=

ν

K>ε Φn
, (81)

where, as in (77), the fraction bar denotes a componentwise division operation. Then the sequence
(Φn,Ψn)n≥0 converges geometrically to a maximizer of (80), see [49].

The more computationally intensive part of Sinkhorn’s algorithm (81) is to repeatedly compute
the matrix-vector products KεΦn and K>ε Ψn in (81), since the matrix Kε is dense and large. An
efficient way to approximate those products using Varadhan’s formula was proposed in [50], when
the ground cost function is defined as a Riemannian distance or its square. We adapt here this
approach to a ground cost C(x, y) := distF defined as a Randers distance, on a Cartesian grid
domain.

For that purpose, we define the modified cost function: for all points x, y of the domain
X := Ωh

Cεh(x, y) := −ε ln[(Lεh)−1
xy ], Cεh(x, y) = distF (x, y) + o(1) as (ε, h/ε, ε lnh)→ 0. (82)

We denoted by Lεh the matrix of our linear discretization scheme (37) with null Dirichlet boundary
conditions. Note that the positivity of the inverse matrix (Lεh)−1, and the convergence (82, right)
which holds locally uniformly on Ω×Ω, are established in Theorem 4.2. We also define P0 ≡ 1 as
the counting measure on Ωh × Ωh.

The quantity Wε(µh, νh;Cεh), where µh, νh ∈ P(Ωh), is thus defined via (80) in terms of the
kernel

Kε = (Lεh)−1. (83)

Sinkhorn’s algorithm (81) in this context involves repeated linear solves (Lεh)−1Ψn and (Lεh)−>Φn,
which are considerably less memory intensive than the dense matrix product with Kε, and also
have a lower computational complexity especially if one uses a sparse pre-factorization of the
matrix Lεh.

5.3 Convergence

We establish that the transport cost Wε(µh, νh;Cεh), numerically evaluated by the implementation
of Sinkhorn’s algorithm presented in §5.2, converges as (ε, h/ε, ε lnh)→ 0 to the 1-Wasserstein
optimal transport cost associated with the Randers metric. Note that there are a number of
classical and closely related questions that could be raised in this context, such as establishing the
convergence of the Kantorovich potentials, but they are out of the scope of this paper. We refer
the interested reader to [36] for a survey of the connections and convergence results between the
optimal transport problem and Schrödinger’s entropic relaxation in the continuous setting, and
to [8] for convergence rates of the potentials of the discrete problems (under strong assumptions
on the domain and the ground cost function, which are not satisfied in our setting).
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Lemma 5.3 (Upper and lower bounds on the discrete entropy). Let X be a finite set with N
elements, and let µ ∈ P(X). Then 0 ≥

∑
x∈X µx lnµx ≥ − lnN , with the usual convention

0 ln 0 = 0.

We omit the proof, which is a classical convexity argument, and note that the upper bound is
attained for the Dirac mass concentrated at a single point, and the lower bound is attained for
the uniform probability.

Corollary 5.4. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded, open, connected domain, with a W 3,∞

boundary. Let µ, ν ∈ P(Ω) be supported on a compact subset K of Ω. Let F be a Randers metric
on Ω, and let C := distF : Ω× Ω→ R.

For all h > 0 let Ωh := Ω∩hZd. Let µh, νh ∈ P(Ωh) be supported on K and weakly∗ converging
µh ⇀ µ, νh ⇀ ν, as h→ 0. Consider the ground cost Cεh (82) on Ωh × Ωh, and define P0 as the
counting measure. Then

Wε(µh, νh;Cεh)→W0(µ, ν;C), as (ε, h/ε, ε lnh)→ 0. (84)

Proof. By Lemma 5.3, one has |Ent(P )| = O(lnh) for all transport plans P ∈ Π(µh, νh), since
the finite set Ωh × Ωh has O(h−2d) elements. Therefore

|W0(µh, νh;Cεh)−Wε(µh, νh;Cεh)| = O(ε lnh). (85)

For all x, y ∈ Ω define C̃εh(x, y) := Cεh(xh, yh), where xh, yh ∈ Ωh are the closest grid points
to x and y respectively (chosen arbitrarily in case of a tie). Then C̃εh converges uniformly as
(ε, h/ε, ε lnh)→ 0 to the continuous cost function C on the compact set K ×K, by Theorem 4.2.
From this point, a direct application of [53, Theorem 5.20, Stability of optimal transport] shows
that W0(µh, νh;Cεh) = W0(µh, νh; C̃εh) → W0(µ, ν;C) as (ε, h/ε, ε lnh) → 0. Combining this
result with the estimate (85), we establish (84) as announced.

6 Numerical results

We illustrate the numerical methods presented in this paper, for Randers distance computation
and numerical optimal transport, with synthetic numerical experiments in dimension d = 2.
Geodesic distance computation based on solving the heat or Poisson PDEs has already numerous
applications [22, 55, 54] and is part of established algorithmic geometry libraries such as CGAL®.
Likewise Wasserstein distance computation based on entropic relaxation is an established numerical
approach [25, 50, 17]. The contributions of this paper are thus mostly theoretical, see §7.

Randers distances are the simplest geometric model of an asymmetric distance, and have
a number of applications discussed in Remark 1.1. The approach presented in this paper for
Randers distance computation is applied in [54] to image segmentation problems, using numerical
codes provided by the last author and with due acknowledgement5. In the optimal transport
setting, Randers geometry is likewise relevant when the mass transport cost is naturally strongly
asymmetric. As an artificial example, one may consider Monge’s earth moving problem on a
non-flat terrain, where moving mass uphill is more costly than downhill. Another example, which
was a motivation for our analysis but is postponed for future works, is related to the deployment
of a fleet of unmanned aerial vehicles (UAVs) for observation in the context of the prevention and
monitoring of forest fires. This could be modeled as the optimal transport of a family of Dirac

5However [54, §2.2] attempts to relate the numerical method with the Finsler heat equation (55). This is
incorrect in our belief, and was published without the knowledge of the authors of this paper.
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masses, located at the UAVs initial positions, onto a probability distribution over the terrain,
defined as the likelihood of a fire start inferred from the type of vegetation and the dryness
conditions. When the terrain is mountainous, and the weather is windy, the UAVs displacement
costs are strongly asymmetrical, and could be modeled by Randers distances.

In this numerical section, we compare in several occasions the results of the centered scheme Lεh
(37) emphasized in this paper, with those of the upwind scheme Lε,+h (43) which is unconditionally
stable but is also less accurate. We limit our experiments to two-dimensional problems, consistently
with the literature, and although our theoretical results apply in dimension three as well, due to
the overwhelming cost of solving three-dimensional Laplacian-like linear systems at the considered
grid scales.

The PDE domain Ω for the experiments presented in this section is either the square (−1, 1)2

or the two-dimensional unit ball {x ∈ R2; |x| < 1}. It is discretized on a regular Cartesian grid,
using finite differences modified as in (33) to account for the (null) boundary conditions on ∂Ω.
The grid scale h = 0.00625 commonly used in the experiments below corresponds to a grid of size
320× 320 (intersected with Ω). In the first two problems we numerically approximate

u(x) := min
y∈Y

distF (x, y), (86)

where Y is a finite set of target points, and F is a Randers metric on Ω which is described in terms
of the parameters A, b of its dual, see Lemma 2.6. From the convergence analysis standpoint, the
case of finitely many isolated point sources is a straightforward generalization of the case of a
single one considered §4, and considering targets instead of sources amounts to a change of sign
in the asymmetric part of the metric as discussed below (4).

In our experiments, the largest contributor to computation time is the factorization of the
sparse linear systems, using the SuperLU routine provided with the scipy Python package. In
contrast, the preliminary step of scheme construction (including Selling’s algorithm to decompose
the matrix Ab(x) at each point x ∈ Ωh, and sparse matrix assembly) only accounts for fraction of
this cost, and the subsequent solve operation is approximately 10× faster than matrix factorization.
In the application to optimal transport, which is based on Sinkhorn’s algorithm (81), the same
linear system needs to be solved multiple times, and thus a single matrix factorization is followed
by 13 to 54 solve operations. The SuperLU factorization time when using a 320×320 discretization
grid (thus ≈ 105 unknowns) ranges from 1.3s to 2.8s depending on the test case, on a laptop
equipped with a 2.3 GHz Intel Core i5 dual-core processor.

Remark 6.1 (Fast Fourier Transform (FFT)). A PDE which is (i) linear, (ii) has constant
coefficients, (iii) has suitable boundary conditions, and (iv) is discretized on a Cartesian grid, can
often be efficiently solved using FFT. The Poisson equation (3) considered here fulfills (i) and (iv),
whereas (iii) is debatable. However (ii) fails unless the Randers metric has constant coefficients.
The extension of the FFT to PDEs with varying coefficients is an area of active research [12],
which is outside the scope of this work. In any case, FFT schemes lack the discrete degenerate
ellipticity property Definition 3.4 which is a key ingredient in establishing the convergence of the
proposed numerical method in the vanishing viscosity limit ε→ 0.

In applications of the heat method to geodesic distance computation [22, 55, 54], the metric
(isotropic, Riemannian or Randers) always varies over the domain (otherwise the distance is given
by an explicit formula), which rules out (ii) and the FFT. In applications to optimal transport
via Sinkhorn’s algorithm, constant metrics are often considered, and in this special case the FFT
approach may be preferred [25].

35



Figure 2: Randers distance with parameters (87). Left: exact solution. Center: approximation
error when using the upwind scheme Lε,+h (43), with ε = h1/2. Right: approximation error when
using the centered scheme Lεh (37), with ε = h2/3. In all cases h = 0.00625. Points from the
target set Y are displayed in red.

Randers metric with constant coefficients. We consider a finite set Y of target points and
a Randers metric whose dual F∗ is defined by the following coefficients A, b

A :=

(
0.5 0.6
0.6 1.0

)
, b :=

(
0.3
0.4

)
, Y :=

{(
−0.6
0.6

)
,

(
−0.6
−0.6

)
,

(
0.6
−0.6

)
,

(
0.6
0.6

)}
. (87)

Since the metric is constant and the domain is convex, the geodesic distance is explicit:
distF(x, y) = F (y − x) where Fx(v) = F (v) for all x ∈ Ω, and the minimal paths are straight
lines, see the discussion below Definition 2.3. In particular (86) can be evaluated exactly, which
allows estimating convergence rates.

The exact Randers distance from Y , and the pointwise approximation errors achieved when
approximating it using the centered scheme (37) and the upwind scheme (43), are illustrated
on Fig. 2. We present on Figure (3, top left) Tissot’s indicatrix of the metric F , which is a
representation of the sets

{x+ v; v ∈ R2, Fx(v) = r}, (88)

associated to a number of points x ∈ Ω and for a suitable radius r > 0. In Randers case, the
set (88) is an ellipse which is not centered on the point x, and which admits several equivalent
characterizations see Lemma 2.7. The numerical approximation of Randers distance obtained with
the centered scheme is illustrated on Figure (3, top right), while the numerical approximations of
minimal paths from Y obtained by solving the ODE (18) are shown Figure (3, top center).

Randers metric with variable coefficients. A single target point is considered Y = {(0.8, 0)},
and the dual metric parameters are defined at x = (x1, x2) ∈ Ω as

A(x) :=
xx>

|x|2
+ (1 + |x|)2x

⊥(x⊥)>

|x|2
=

 1 +
2x22
|x| + x2

2 −2x1x2
|x| − x1x2

−2x1x2
|x| − x1x2 1 +

2x21
|x| + x2

1

 , b(x) := x⊥ =

(
−x2

x1

)
,

(89)

using the extension by continuity A(0) := Id. Note that these parameters obey the compatibility
condition |b(x)|A(x)−1 = (1 + |x|)−1 < 1. Numerical results are shown Figure (3, center). For
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Figure 3: Representation of the Randers metric and approximations of minimal paths and of the
Randers distance for parameters (87) (top), (89) (center), and (90) (bottom), with h = 0.00625
and ε = 0.5h2/3.

comparison with the Riemannian case, we also consider, in Figure (3, bottom), the dual metric
parameters

A(x) :=
xx>

|x|2
+ (1 + |x|)2x

⊥(x⊥)>

|x|2
=

 1 +
2x22
|x| + x2

2 −2x1x2
|x| − x1x2

−2x1x2
|x| − x1x2 1 +

2x21
|x| + x2

1

 , b(x) := 0, (90)

where A is as in (89) and b is chosen as zero in order for those parameters to define a Riemannian
metric.

Numerical convergence rates. We discuss the convergence of some approximations of the
exact distance function u, defined by the metric parameters and target points (87), on the square
(−1, 1)2. The l∞ and l1 errors between u and one of its approximations uεh are respectively
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Figure 4: l1 and l∞ error between the exact distance u, with parameters (87), and its numerical
approximation, as a function of the grid scale h. Left: the upwind scheme Lε,+h (43) works best
with ε ≈ h1/2. Center: the centered scheme is more accurate and works best with ε ≈ h2/3. The
accuracy of the centered scheme solution is improved with a post-processing step, see Remark 3.2,
which works best using the same stencil as the finite difference scheme (right, bottom), rather
than an axis aligned stencil (right, top).

defined as

max
x∈Ωh∩[−0.8,0.8]2

|uεh(x)− u(x)|, h2
∑

x∈Ωh∩[−0.8,0.8]2

|uεh(x)− u(x)|, (91)

where we excluded some boundary layer (−1, 1)2 \ [−0.8, 0.8]2 from the PDE domain Ω = (−1, 1)2,
consistently with the fact that Theorem 4.1 only guarantees uniform convergence on compact
subsets of Ω. We display on Fig. 4 the convergence curves for the centered Lεh (37) and the
(unconditionally stable but less accurate) upwind scheme Lε,+h (43), and for ε = 1

2h
α where

α ∈ {1/2, 2/3}. Empirically, the centered scheme works best when α = 2/3, and the upwind
scheme when α = 1/2. This experiment illustrates and empirically confirms Corollary 3.15, which
establishes that the minimal consistency error with the eikonal equation is achieved when ε ≈ hα,
where α = 2/3 for the centered scheme, and α = 1/2 for the upwind scheme. Note however that
the empirical solution error appears to be higher than the scheme consistency error, which is
O(hα), see Corollary 3.15. This is likely a consequence of the singularity of the solution at the
source points, since the expected convergence rate O(h

2
3 ) is obtained in the case of the distance

to a closed curve, see the next paragraph and Fig. 6.
The post-processing step discussed in Remark 3.2, and adapted from [22], allows to improve

the accuracy of our numerical solution of the Randers eikonal equation solution, as illustrated
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Figure 5: Absolute difference between the exact distance map u associated with the parameters
(87) and its numerical approximation uεh (left), the improved reconstruction using an axis-aligned
stencil (center), or using the stencil of the finite difference scheme (right), see Remark 3.2. Grid
scale h = 0.00625 and ε = 0.5h2/3.

on Fig. 4 and 5. This post-processing works best when using the stencil of the finite difference
scheme, as opposed to a basic axis-aligned stencil, see Fig. 5 and the last sentence of Remark 3.2.
It allows to achieve the expected convergence rate O(h

2
3 ).

Figure 6: Randers distance from the boundary of a domain, with parameters (92). Left: reference
solution, computed using the eikonal solver [40]. Center: error between the solution obtained
using the centered scheme Lεh and the reference solution, for h = 0.00625 and ε = 0.5h2/3. Right:
error depending on h, for ε = 0.5h2/3.

Distance from a closed curve. In Fig. 6, we consider the problem of approximating the
Randers distance from the boundary of a domain Ω := (0, 1)2 ∪ {x ∈ R2 | |x| < 1}, in order to
illustrate Theorem 3.19, rather than Theorem 4.1 which is about the case of isolated source or
target points. The boundary of the domain Ω is not smooth as assumed in Theorem 3.19, but
this does not cause any problems in practice. We consider a Randers metric defined by the dual
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parameters

A(x) :=

(
1 0
0 1

)
, b(x) := ρ sin(2πx1) sin(2πx2)

x

|x|
, (92)

with ρ := 0.7 and with b(0) := 0. In other words, following Zermelo’s interpretation §2.2, we
compute the travel time of a vehicle whose speed is 1 in all directions, relative to a medium whose
local speed at x ∈ Ω is defined as b(x). Note that ‖b‖∞ = ρ < 1, so the the model is locally
controllable. This is a variation on the classical test case [48, Figures 4 and 5], where we replaced
the point source boundary condition with a Dirichlet boundary condition, and the square domain
with a partly rounded domain, so as to illustrate the applicability of our numerical scheme in this
context.

While the exact solution to the considered problem is not known, we compare our results
with the ones obtained using the eikonal solver [40], which is a fast marching method for two
dimensional Finsler metrics based on completely different discretization principles, on a finer grid
of the form Ωh, h = 0.003125. The l∞ and l1 errors in Fig. 6 are defined respectively as

max
x∈Ωh

|uεh(x)− u(x)|, h2
∑
x∈Ωh

|uεh(x)− u(x)|,

without excluding a boundary layer from Ω as in (91). At small grid scales, we observe convergence
at the order 2/3, consistently with the order of consistency 2/3 stated in Corollary 3.15.

Optimal transport problems. On Fig. 7, we solve numerically the optimal transport problem
(72), where µ and ν are uniform probability measures on [−0.7,−0.1]× [−0.5, 0.1] and [0.1, 0.7]×
[−0.1, 0.5] respectively. We use Sinkhorn’s algorithm (81) to numerically approximate the
exponential Kantorovich potentials Φ,Ψ ∈ RΩh

+ maximizing (80), using the efficient approximation
(83) of the product with the kernel Kε = exp(−distF (x, y)/ε). The arrows on the figure follow
Randers geodesics and illustrate a numerical approximation of the mapping σ : Ωh → Ω defined
by

σ(x) :=
1

µx

∑
y∈Ωh

Pxyy, (93)

where (Pxy)x,y∈Ωh is the optimal coupling measure (79) for the optimal transport problem
(77). Thus σ(x) is the barycenter of the image by the transport plan of the Dirac mass at x.
The numerical evaluation of σ involves a product with the kernel Kε which again is efficiently
approximated using (83). Note that the coupling measure P is typically not supported on a
graph, not even approximately, and that σ is not a one to one mapping. In particular, σ does not
approximate a translation in Figure (7, top left). This behavior reflects the specific properties
of the 1-Wasserstein distance, as opposed to the p-Wasserstein distance for p > 1, and it is
not related to our numerical approximation procedure. Figure (7, top right) displays the error
between the approximation W ε

h(µ, ν) of the Wasserstein distance obtained with grid scale h > 0

and entropic relaxation ε = 1
2h

2
3 , and the exact optimal transport cost corresponding to the

continuous problem without relaxation ε = h = 0.

7 Conclusions

In this paper, we introduced and studied a numerical scheme for approximating geodesic distances
by solving a linear finite differences scheme, with an application to Schrödinger’s entropic relaxation
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Figure 7: Numerical solution of the optimal transport problem (72). Top left: manifold parameters
(87), grid scale h = 0.00625. Bottom left: parameters (89), grid scale h = 0.00625. Bottom right:
parameters (90), grid scale h = 0.00625. Top right: convergence toward the exact Wasserstein
distance as h→ 0, with parameters (87). In all cases, ε = 0.5h

2
3 .

of the optimal transport problem. The approach builds on previous works [52, 22, 25, 50, 55, 54],
and brings the following contributions: (i) justification of the distance computation method in
the case of point sources, which is a common setting in applications, (ii) identification of the
optimal parameter scaling ε = h

2
3 , in contrast with the commonly used scaling h = cε which

is inconsistent asymptotically (50), (iii) extension of these methods to asymmetric geometries
defined by Randers metrics.

Our numerical scheme obeys the discrete degenerate ellipticity property, and thus benefits
from comparison principles, numerical stability, and a convergence proof in the setting of viscosity
solutions. For that purpose we use adaptive finite differences whose offsets depend on the PDE
parameters and are obtained via a tool from discrete geometry known as Selling’s decomposition
of positive definite matrices [47, 20]. Our convergence proof (in the case of a point source) exploits
fine properties of Selling’s decomposition: uniqueness, Lipschitz regularity, and spanning property
(which implies the local connectivity of the stencils derived from it), for the first time in the
context of PDE analysis - whereas previous works only relied on the positivity and consistency
properties of this decomposition [29, 11, 10, 39, 42]. Future work will be devoted to investigating
their relevance in other applications to numerical analysis, and possible substitutes in dimension
d ≥ 4 where Selling’s decomposition does not apply.
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A Viscosity solutions

In this appendix, we establish the existence, uniqueness, comparison principles and convergence
properties announced in §2 for the following three PDEs:

u+ 2ε〈∇u, b〉 − ε2 Tr(Ab∇2u) = 0 in Ω, u− exp(−g/ε) = 0 on ∂Ω, (94)
|∇u|A + 〈∇u, b〉 − 1 = 0 in Ω, u− g = 0 on ∂Ω, (95)

|∇u|2Ab + 2〈∇u, b〉 − εTr(Ab∇2u)− 1 = 0 in Ω, u− g = 0 on ∂Ω. (96)

The linear PDE (94), introduced in (3), is the foundation of our approach to Randers distance
computation. The Randers eikonal PDE (95), which can be rephrased in many equivalent forms,
see (5) and Corollary 2.9, characterizes Randers distance from the domain boundary with initial
time penalty g. Finally (96) makes the link between the first two equations, being equivalent for
any ε > 0 to (94) up to a logarithmic transformation of the unknown, and being equivalent for
ε = 0 to (95) by Corollary 2.9. We recall that, by assumption, Ω is a bounded, connected and
open domain with a W 3,∞ boundary and g ∈ C(∂Ω). The fields A : Ω→ S++

d and b : Ω→ Rd
are Lipschitz, and Ab := A− bb> is pointwise positive definite over Ω.

The content of this section is presented in the appendix because it often mirrors similar results
presented in the discrete setting of §3 which we have chosen to emphasize, and because several key
results are obtained by specialization of [4, 5, 3, 21]. We present in Appendix A.1 the concepts
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of degenerate elliptic operator and of viscosity solution to a PDE, and we justify the change of
unknown known as the logarithmic transformation. The comparison principle, established in
Appendix A.2 for the PDEs of interest, implies the uniqueness and boundedness of their solutions
in Ω. We prove in Appendix A.3 the validity of the explicit solutions to (94) and (95) defined as
a distance map (15) and as the expectation (24) of the stochastic process (23), and we establish
convergence as ε→ 0.

A.1 Degenerate ellipticity, change of unknowns

The PDEs considered in this appendix (94) to (96) benefit from a common structure, known as
degenerate ellipticity [21, 43], introduced in Definition A.1 below and whose discrete counterpart
is presented in Definition 3.4.

Definition A.1 (Degenerate ellipticity). An operator F : Ω × R × Rd × Sd → R, denoted
F (x, t, p,X), is said degenerate elliptic6 if it is (i) non-decreasing w.r.t. the second variable t,
and (ii) non-increasing w.r.t. the last variable X for the Loewner order. The operator F is said
elliptic if F (x, t, p,X)− δt is degenerate elliptic for some constant δ > 0.

The Dirichlet problem for a degenerate elliptic equation writes as

F (x, u(x),∇u(x),∇2u(x)) = 0 in Ω, u(x)− ψ(x) = 0 on ∂Ω, (97)

where ψ : ∂Ω→ R. For example when considering equation (95), one should choose

F (x, t, p,X) = |p|A(x) + 〈p, b(x)〉 − 1, ψ(x) = g(x).

This specific operator F is degenerate elliptic, since F (x, t, p,X) does not depend on either t or
X, and thus obeys the required monotony conditions. Equation (96) is likewise defined by a
degenerate elliptic operator, because the matrix field Ab is positive semi-definite. Equation (94)
is elliptic thanks to the additional zeroth order term.

In the discrete setting, a comparison principle can be directly derived from the definition
of ellipticity, see Lemma 3.5, and the related notions of sub-solution and super-solution are
straightforward. Some additional care is however needed in the continuous case, see Definition A.2,
Proposition A.7 and Theorem A.8 below. For any bounded function u : Ω → Rd, we denote
respectively by u∗ : Ω→ R and u∗ : Ω→ R its upper semicontinuous and lower semicontinuous
envelopes, defined by

u∗(x) := lim sup
y∈Ω, y→x

u(y), u∗(x) := lim inf
y∈Ω, y→x

u(y). (98)

Definition A.2 (Viscosity solution). Let F : Ω× R× Rd × Sd → R be a continuous degenerate
elliptic operator and let ψ ∈ C(∂Ω). A bounded function u : Ω→ R is a viscosity sub-solution to
(97) if for any ϕ ∈ C2(Ω) and any local maximum x ∈ Ω of u∗ − ϕ,{

F (x, u∗(x),∇ϕ(x),∇2ϕ(x)) ≤ 0 if x ∈ Ω,

min{u∗(x)− ψ(x), F (x, u∗(x),∇ϕ(x),∇2ϕ(x)} ≤ 0 if x ∈ ∂Ω.

It is a viscosity super-solution if for any ϕ ∈ C2(Ω) and any local minimum x ∈ Ω of u∗ − ϕ,{
F (x, u∗(x),∇ϕ(x),∇2ϕ(x)) ≥ 0 if x ∈ Ω,

max{u∗(x)− ψ(x), F (x, u∗(x),∇ϕ(x),∇2ϕ(x)} ≥ 0 if x ∈ ∂Ω.

It is a viscosity solution if it is both a viscosity sub-solution and super-solution.
6Or proper degenerate elliptic in the wording of [21]. For consistency with the discrete case Definition 3.4, and

following [43], we drop the ‘proper’ qualifier.
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Definition A.2 encompasses discontinuous solutions u, obeying the boundary conditions in a
weak sense, which allows implementing outflow boundary conditions in the case of the eikonal
equation (95) by using large enough boundary data g. A well-known property of viscosity solutions
is their stability under monotone changes of variables.

Proposition A.3. Let F : Ω×R×Rd ×Sd → R be a continuous degenerate elliptic operator, let
ψ ∈ C(∂Ω), let I, J ⊂ R be open intervals, let η : I → J be a strictly increasing C2-diffeomorphism,
and let v : Ω→ I be bounded away7 from ∂I. Define the continuous degenerate elliptic operator
G : Ω× R× Rd × Sd → R and boundary condition χ : ∂Ω→ R by

G(x, t, p,X) := F (x, η(t), η′(t)p, η′′(t)p⊗ p+ η′(t)X), χ(x) := η−1(ψ(x)).

Then u := η ◦ v is a viscosity sub-solution (respectively super-solution) to (97) if and only if v is a
viscosity sub-solution (respectively super-solution) to

G(x, v(x),∇v(x),∇2v(x)) = 0 in Ω, v(x)− χ(x) = 0 on ∂Ω. (99)

Proof. We only show the result for sub-solutions, since the case of super-solutions is similar. We
assume that v is a sub-solution to (99) and prove that u is a sub-solution to (97). The proof of
the converse is the same, using that

F (x, t, p,X) = G(x, η−1(t), (η−1)′(t)p, (η−1)′′(t)p⊗ p+ (η−1)′(t)X).

The assumption that v is bounded away from ∂I implies that v∗ and v∗ are valued in I, hence
u∗ = (η ◦ v)∗ = η ◦ v∗ is valued in J and likewise for u∗, by continuity of η. Let ϕ ∈ C2(Ω) and
x ∈ Ω be a local maximum of u∗ − ϕ. Without loss of generality, we may assume that ϕ(Ω) ⊂ J .
Let ϕ̃ := η−1 ◦ ϕ. Using that η is strictly increasing, and ϕ = η ◦ ϕ̃, we deduce that x is a local
maximum of v∗ − ϕ̃. We conclude the proof by noticing that for all x ∈ Ω

F (x, u∗(x),∇ϕ(x),∇2ϕ(x)) = G(x, v∗(x),∇ϕ̃(x),∇2ϕ̃(x)).

In addition, if x ∈ ∂Ω, then u∗(x)− ψ(x) and v∗(x)− η−1(ψ(x)) have the same sign.

Remark A.4. Sign changes exchange the notions of sub-solution and super-solution. More
precisely, u = −v is a viscosity sub-solution (resp. super-solution) to (97) iff v is a viscosity
super-solution (resp. sub-solution) to (99) with

G(x, t, p,X) := −F (x,−t,−p,−X), χ(x) = −ψ(x).

Combining Proposition A.3 and Remark A.4 allows to address the decreasing change of
unknown u = exp(−u/ε) considered by Varadhan [52], see Lemma 2.11. Note the discrete
counterpart Proposition 3.11 of this result.

Corollary A.5. Let u : Ω → R, and let u := exp(−u/ε). Then u is a sub-solution (resp.
super-solution) to (96) iff u is a super-solution (resp. sub-solution) to (94).

Proof. The PDE (94) corresponds to (97) with the following operator and boundary conditions

F (x, t, p,X) = t+ 2ε〈p, b(x)〉 − ε2 Tr(Ab(x)X), ψ(x) = exp(−g(x)/ε).

7In other words, v : Ω→ I0 where I0 is a compact subset of I.
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Applying successively Proposition A.3 with the increasing diffeomorphism η(t) := − exp(−t/ε),
and Remark A.4, yields the boundary conditions χ(x) = −η−1(ψ(x)) = g(x) and the operator

G(x, t, p,X) = −F (x,−η(t),−η′(t)p,−η′′(t)p⊗ p− η′(t)X)

= −F
(
x, e−

t
ε , −1

εe
− t
ε p, 1

ε2
e−

t
ε p⊗ p− 1

εe
− t
εX
)

= −e−
t
ε
(
1− 2〈p, b(x)〉 − 〈p,Ab(x)p〉+ εTr(Ab(x)X)

)
.

Simplifying by the positive factor e−
t
ε , and distributing the minus sign, we recognize (96).

A.2 The comparison principle

The linear PDE (94) and Randers eikonal equation (95) admit a strong comparison principle,
which in particular implies that their viscosity solutions are uniquely determined on Ω — though
not on ∂Ω. The proofs, presented in Proposition A.7 and Theorem A.8 below, are obtained as a
specialization of [5]. For that purpose, we reformulate the first order term of (95) in Bellman
form, based on the following identity: for all x ∈ Ω and all w ∈ Rd

|w|A(x) + 〈w, b(x)〉 = sup
α∈Bd

−〈w, b(x, α)〉, where b(x, α) := A
1
2 (x)α− b(x), (100)

where Bd := {x ∈ Rd; ‖x‖ ≤ 1} denotes the closed unit ball.

Lemma A.6. The mappings A
1
2 , A

1
2
b : Ω → S++

d are Lipschitz continuous. The mapping
b : Ω× Bd → Rd defined by (100, right) is Lipschitz continuous. In addition, for each x ∈ Ω and
p ∈ Rd \ {0} there exists α ∈ Bd such that 〈b(x, α), p〉 > 0.

Proof. Recall that the mappings A,Ab : Ω 7→ S++
d are Lipschitz continuous, and note that their

lower eigenvalues are bounded away from zero by compactness. Since the matrix square root√
· : S++

d → S++
d is C∞, as follows from holomorphic functional calculus8, we obtain that A1/2

and A1/2
b are Lipschitz continuous on Ω as well. The announced regularity of b follows.

Regarding the last property, we observe that choosing α = A
1
2 (x)p/|A

1
2 (x)p| yields

〈b(x, α), p〉 = 〈α−A−
1
2 (x)b(x), A

1
2 (x)p〉 ≥

(
1− |A−

1
2 (x)b(x)|

)
|A

1
2 (x)p| > 0, (101)

since |A−
1
2 (x)b(x)| = |b(x)|A(x)−1 < 1 over Ω by assumption.

The comparison principle established in [5, Theorem 2.1] encompasses both the second order
linear PDE (94), and the first order non-linear PDE (95) considered in this paper, although a
reformulation is needed in the latter case.

Proposition A.7. Let u and u be respectively a sub-solution and a super-solution of the linear
PDE (94), for some ε > 0. Then u∗ ≤ u∗ in Ω.

Proof. The announced result is a direct application of [5, Theorem 2.1], using that A1/2
b : Rd →

S++
d and b : Rd → Rd are Lipschitz continuous, ∂Ω is of class W 3,∞, and g ∈ C(∂Ω).

Theorem A.8. Let u, u : Ω → R be respectively a sub-solution and a super-solution of (95).
Then u∗ ≤ u∗ in Ω.

8More directly, if the eigenvalues of A ∈ S++
d lie in ]0, 2r[, then one has the series expansion

√
A =√

r
∑
k≥0 ak(A/r − Id)k, where

√
1 + t =

∑
k≥0 akt

k for all t ∈]− 1, 1[.

48



Proof. Since (95) involves an operator which is degenerate elliptic but not elliptic, see Defini-
tion A.1, we perform the Kruzhkov exponential change of variables and define v := − exp(−u)
and v := − exp(−u). By Proposition A.3, v and v are respectively a viscosity sub-solution and
super-solution to

|∇v(x)|A(x) + 〈∇v(x), b(x)〉+ v(x) = 0 in Ω, v(x) + exp(−g(x)) = 0 on ∂Ω.

The boundary ∂Ω is of class W 3,∞, and the boundary data − exp(−g) ∈ C(∂Ω), consistently with
the framework of [5]. Furthermore, the PDE can be rewritten as supα∈Bd −〈b(x, α),∇v(x)〉 +
v(x) = 0 in Ω, and the required regularity properties of b are established in Lemma A.6, as
well as the additional condition which amounts to a local controllability property. Then by [5,
Theorem 2.1], we obtain v∗ ≤ v∗ in Ω, and therefore u∗ ≤ u∗ in Ω as announced.

A.3 Explicit solutions, and convergence

We establish that viscosity solutions to Randers eikonal equation (95) and to the linear PDE (94)
may be explicitly obtained as the distance from the boundary (4) with suitable penalty term,
and as the expectation of a stochastic process (24). We also prove bounds for these solutions, see
Theorems A.9 and A.11, and conclude the proof of Varadhan’s formula for Randers metrics in
Theorem A.12.

Theorem A.9. Denote by F the Randers metric of parameters (M,ω) dual to (A, b), see
Lemma 2.6. Then u : x ∈ Ω 7→ minp∈∂Ω distF (p, x) + g(p) is a bounded viscosity solution to (95).

Proof. The boundedness of u follows from the equivalence of the Randers distance with the
Euclidean distance, see Lemma 2.4. Since g ∈ C(∂Ω) and the control function b is Lipschitz
continuous, the results [3, Theorem V.4.13 and Remark V.4.14] yield a viscosity solution v to
(95) in the form

v(x) = inf{T + g(γαx (T )); T ≥ 0, α : [0, T ]→ Bd, γαx (T ) ∈ ∂Ω} (102)

where γ = γαx is defined by γ(0) = x and γ′(t) = b(γ(t), α(t)) for all 0 ≤ t ≤ T , and where α is
implicitly assumed to be measurable. Now, for any v ∈ Rd one obtains, omitting the argument x
in M(x), ω(x), A(x) and b(x) for readability

Fx(v) ≤ 1⇔ |v|M + 〈ω, v〉 ≤ 1⇔ |v − b|A−1 ≤ 1⇔ ∃α̃ ∈ Bd, v − b = A
1
2 α̃⇔ ∃α ∈ Bd, v = −b(x, α),

where the first equivalence holds by definition, the second is established in Lemma 2.7, the third
follows from |A

1
2 α̃|A−1 = |α̃| for any α̃ ∈ Rd, and the last is obtained by choosing α = −α̃. Thus

v(x) = inf{T + g(γ(T ));T ≥ 0,∃γ ∈ Lip([0, T ],Ω), γ(0) = x, γ(T ) ∈ ∂Ω,

Fγ(t)(−γ′(t)) ≤ 1, for a.e. t ∈ [0, T ]}.

Noting that any Lipschitz path can be reparametrized at constant speed w.r.t. the metric F , and
have its orientation reversed (from x to ∂Ω), we obtain that v(x) = u(x), which concludes the
proof.

We obtain a sub-solution and a super-solution to the PDE (96), independent of the relaxation
parameter, similarly to the discrete case in Lemma 3.16

Lemma A.10. The PDE (96) admits, for any ε ≥ 0, the constant sub-solution u : x ∈ Ω 7→ gmin,
where gmin := min{g(y); y ∈ ∂Ω}. It also admits the affine super-solution u : x ∈ Ω 7→ 〈p, x〉+
cmax, for any p ∈ Rd such that |p| is sufficiently large, where cmax := max{g(y)− 〈p, y〉; y ∈ ∂Ω}.
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Proof. Denote Sεu := |∇u|2Ab + 2〈∇u, b〉 − εTr(Ab∇2u) − 1 the operator of (96). Clearly
Sεu = −1 < 0 in Ω, whereas Sεu(x) = |p|2Ab(x) + 2〈p, b(x)〉 − 1 ≥ c0 > 0 for all x ∈ Ω, provided
|p| is sufficiently large, since Ab and b are bounded over Ω, and Ab is uniformly positive definite.
The constants gmin and cmax are chosen so as to comply with the boundary conditions.

Theorem A.11. For any ε > 0, the function uε : Ω→ R− defined by (24) is a viscosity solution
to (94). In addition, uε is positive, and u ≤ uε ≤ u in Ω, where uε := −ε ln(uε) and u and u are
from Lemma A.10.

Proof. Since A1/2
b : Rd → S++

d and b : Rd → Rd are Lipschitz continuous, ∂Ω is of class W 3,∞,
and g ∈ C(∂Ω), [5, Theorem 3.1] implies that uε is a viscosity solution to (94).

By Corollary A.5, uε := exp(−u/ε) and uε := exp(−u/ε) are respectively a sub-solution and
a super-solution to (94). Thus uε ≤ (uε)∗ ≤ uε ≤ (uε)

∗ ≤ uε in Ω by Theorem A.8. Therefore uε
is positive, as announced, and we conclude using the monotony of the logarithm.

We are able to complete the proof of formula (25) by making rigorous the passing to the limit
between problems (96) and (95). Note that we follow a standard sketch of proof, already used in
[4, Proposition II.6] for example.

Theorem A.12. With the notations of Theorem A.11, and denoting by u the solution to (16),
one has uε → u uniformly on compact subsets of Ω, as ε→ 0.

Proof. By Theorem A.11, uε is bounded above and below, uniformly on Ω and uniformly w.r.t.
ε > 0. Therefore the following limit is well-defined, for any x ∈ Ω

v(x) := lim sup
ε→0,y→x

uε(y)
(

= lim
δ→0

sup
{
uη(y); 0 < η ≤ δ, |y − x| ≤ δ

})
,

and likewise v(x) := lim inf uε(y) as ε→ 0 and y → x. Thus we can apply [21, Lemma 6.1 and
Remark 6.3] to functions (uε)∗ and (uε)

∗, and deduce that v and v are respectively a viscosity
subsolution and supersolution to (96) with ε = 0, or equivalently to (95) by Corollary 2.9. Hence
by Theorem A.8, v ≤ u∗ ≤ u∗ ≤ v on Ω. By definition, v ≥ v on Ω. Therefore v = v = v on Ω.
The locally uniform convergence of uε to u on Ω follows from the definitions of v and v.

B Selling’s decomposition of positive definite matrices

This appendix is devoted to a brief description of Selling’s decomposition of symmetric positive
definite matrices [47, 20] of dimension d ∈ {2, 3}, a tool from algorithmic geometry which is
convenient when discretizing anisotropic PDEs on Cartesian grids [29, 39, 42, 10], here used in §3.1.
Selling’s formula and algorithm are presented in Lemma B.2 and Proposition B.3. Two properties
of the resulting normalized decomposition (106), established in Propositions B.5 and B.8, are
used in §4.3 for the first time in the context of PDE numerical analysis.

Definition B.1. A superbase of Zd is a family (v0, · · · , vd) ∈ (Zd)d+1 such that v0 + · · ·+ vd = 0
and |det(v1, · · · , vd)| = 1. It is said D-obtuse, where D ∈ S++

d , iff 〈vi, Dvj〉 ≤ 0 for all
0 ≤ i < j ≤ d.

To each superbase (v0, · · · , vd) of Zd, we associate the family of vectors eij ∈ Zd, 0 ≤ i < j ≤ d
defined by the linear relations

〈eij , vk〉 = δik − δjk, (103)
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for all 0 ≤ k ≤ d, where δij denotes Kronecker’s symbol. In dimension d = 2 (resp. d = 3),
if {i, j, k} = {0, 1, 2} (resp. {i, j, k, l} = {0, 1, 2, 3}), one easily checks that eij = ±v⊥k (resp.
eij = ±vk × vl). Selling’s formula and algorithm are classical [47, 20, 39], yet their (short) proofs
are presented for completeness, since they are core elements of our numerical scheme.

Lemma B.2 (Selling’s formula). Let D ∈ Sd and let (v0, · · · , vd) be a superbase of Zd. Then

D = −
∑

0≤i<j≤d
〈vi, Dvj〉eije>ij . (104)

Proof. By (103) we obtain 〈vi, Dvj〉 = 〈vi, D′vj〉 for all 0 ≤ i < j ≤ d, where D′ denotes (104,
rhs). Thus 〈vi, Dvi〉 = 〈vi, D′vi〉 by linearity and since vi = −(v0 + · · ·+ vi−1 + vi+1 + · · ·+ vd).
It follows that D = D′, since (v1, · · · , vd) is a basis, which concludes the proof.

If D ∈ S++
d and (v0, · · · , vd) is D-obtuse, then (104) is known as Selling’s decomposition of

D. Selling’s algorithm provides a constructive proof of existence of such a D-obtuse superbase, in
dimension d ∈ {2, 3}.

Proposition B.3 (Selling’s algorithm). Let b = (v0, · · · , vd) be a superbase of Zd, d ∈ {2, 3},
and let D ∈ S++

d . If b is not D-obtuse, permute it so that 〈v0, Dv1〉 > 0 and update it as follows

b← (−v0, v1, v0 − v1) if d = 2, b← (−v0, v1, v2 + v0, v3 + v0) if d = 3. (105)

Repeating this operation yields a D-obtuse superbase in finitely many steps.

Proof. Define E(b) =
∑d

i=0 ‖vi‖2D. If b = (v0, · · · , vd) is such that δ := 〈v0, Dv1〉 > 0, and if b′ is
defined by (105) then one easily checks that b′ also is a superbase and that E(b′) = E(b)− Cdδ,
where C2 = 4 and C3 = 2. There are only finitely many superbases of Zd whose energy E is below
any given bound, since their elements have integer coordinates and since D is positive definite.
Hence Selling’s algorithm must terminate, which happens when the iteration condition fails, i.e.
when a D-obtuse superbase b is obtained. This concludes the proof.

The elements of a D-obtuse superbase, and the corresponding offsets in Selling’s formula, are
bounded in terms of the anisotropy ratio µ(D) :=

√
‖D‖‖D−1‖, as shown in the next result.

Proposition B.4. Let D ∈ S++
d , and let b = (v0, · · · , vd) be a D-obtuse superbase, where

d ∈ {2, 3}. Then |vi| ≤ Cµ(D), 0 < i < d, and |eij | ≤ 2Cµ(D), 0 ≤ i < j ≤ d, where C = 2 if
d = 2 (resp. C = 2

√
3 if d = 3). In fact, one has the slightly stronger estimates |vi|D ≤ C‖D‖

1
2

and |eij |D−1 ≤ 2C‖D−1‖
1
2 .

Proof. The bounds |vi| ≤ Cµ(D) and |eij | ≤ 2Cµ(D) are established in [39, Proposition 4.8
and Theorem 4.11]. Inspecting the proof of these results, one obtains the other announced
estimates. Specifically, |vi|D ≤ C‖D‖

1
2 is established in the last line of [39, Proposition 4.8].

Using this refined estimate (instead of |vi| ≤ Cµ(D)) in the proof of [39, Theorem 4.11] yields
|eij |D−1 ≤ 2C‖D−1‖

1
2 (instead of |eij | ≤ 2Cµ(D)). The result follows.

Selling’s decomposition of a matrix D ∈ S++
d , d ∈ {2, 3}, is obtained by applying Selling’s

formula Lemma B.2 to a D-obtuse superbase, whose existence is ensured by Selling’s algorithm
Proposition B.3. This description is constructive and used in all our numerical experiments, since
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it is efficient enough for the moderately ill-conditioned matrices encountered in our applications.
We normalize Selling’s decomposition as follows, up to replacing some offsets with their opposites:

D =
∑
e∈Zd

ρ(e;D) ee>, where Zd := {e ∈ Zd; e �lex 0}, (106)

where �lex stands for the lexicographic ordering. (Note that exactly one of e �lex 0 or −e �lex 0
holds for each e ∈ Zd \ {0}.) The weights [ρ(e;D)]e∈Zd are known as Selling parameters [20],
and depend on D but not on the choice of D-obtuse superbase, see e.g. [10, Remark 2.13] for
a proof. In view of Selling’s formula (104), one has ρ(e;D) = 0 except for at most d(d + 1)/2
offsets e ∈ Zd. In addition, ρ(e;D) = 0 if |e| > 2Cµ(D), by Proposition B.4.

Proposition B.5 (Lipschitz regularity). For any e ∈ Zd, d ∈ {2, 3}, the mapping D ∈ S++
d 7→

ρ(e;D) is locally Lipschitz with constant C2µ(D)2, where C is from Proposition B.4.

Proof. Let b = (v0, · · · , vd) be a superbase of Zd, and define Sb := {D ∈ S++
d ; b is D-obtuse}.

For each 0 ≤ i < j ≤ d let ẽij := ±eij , where the sign is chosen so that ẽij ∈ Zd. By (104) one
has ρ(D; ẽij) = −〈vi, Dvj〉 for all D ∈ Sb, which is a linear function of D with Lipschitz constant
at most |vi||vj | ≤ C2µ(D)2 by Proposition B.4. In addition, ρ(D; e) = 0 for all D ∈ Sb and all
e ∈ Zd \ {ẽij ; 0 ≤ i < j ≤ d}, thus D 7→ ρ(e;D) is Lipschitz with the announced constant over
the set Sb. The announced result follows since S++

d is the union of the closed and convex sets
Sb associated to superbases b of Zd, by Proposition B.3, and since this union is locally finite by
Proposition B.4

We conclude this appendix by establishing, in Proposition B.8, that some offsets of Selling’s
decomposition, associated with weights suitably bounded below, span the integer lattice Zd by
linear combinations with integer coefficients. This implies that the stencils of our numerical
scheme (37) define a locally connected graph, a property used in §4.3 to control its solution in
the neighborhood of a point source.

Lemma B.6. Let (v0, · · · , vd) be a superbase of Zd, and let (ik, jk)dk=1 be such that 0 ≤ ik < jk ≤ d
for all 0 ≤ k ≤ d. Then det(ei1j1 , · · · , eidjd) ∈ {−1, 0, 1}.

Proof. By Definition B.1, (v1, · · · , vd) is a basis of Zd. We may thus assume that (v1, · · · , vd) is
the canonical basis of Zd, up to a change of basis, so that v0 = (−1, · · · ,−1)>. Then e0j = −vj
for all 1 ≤ j ≤ d, and eij = vi − vj for all 1 ≤ i < j ≤ d. Each of the vectors eij , 0 ≤ i < j ≤ d,
thus features at most once the coefficient 1, and at most once the coefficient −1, the other
coefficients being 0. The announced result then follows from [9, Proposition 2.37], which is a
classical characterization from Poincare of some unimodular matrices.

Lemma B.7. Let D ∈ S++
d , and let e1, · · · , eI ∈ Rd be such that D =

∑I
i=1 eie

>
i . Then there

exists 1 ≤ i1 < · · · < id ≤ I such that
∑d

k=1 eike
>
ik
≥ cD, where c = c(d, I) > 0.

Proof. Without loss of generality, up to a linear change of coordinates, one may assume that
D = Id is the d× d identity matrix. Define the set Ξ ⊂ (Rd)I and function Λ : Ξ→ R by

Ξ :=
{

(ei)
I
i=1 ∈ (Rd)I ;

∑
1≤i≤I

eie
>
i = Id

}
, Λ

(
(ei)

I
i=1

)
= max

i1<···<id
λmin

( ∑
1≤k≤d

eike
>
ik

)
,

where λmin denotes the smallest eigenvalue. Any family (ei)
I
i=1 ∈ Ξ spans Rd, thus a basis

(ei1 , · · · , eid) can be extracted from it, and therefore Λ((ei)
I
i=1) ≥ λmin(

∑d
k=1 eike

>
ik

) > 0. Denot-
ing by c(I, d) the lower bound of Λ over Ξ, which is positive since Ξ is compact and since Λ is
continuous and positive over Ξ, we conclude the proof.
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Proposition B.8 (Spanning property). For any D ∈ S++
d , d ∈ {2, 3}, there exists e1, · · · , ed ∈ Zd

such that, for some absolute constant c > 0

det(e1, · · · , ed) = 1, min
1≤i≤d

ρ(ei;D) ≥ c‖D−1‖−1.

Proof. From (106) and Lemma B.7 there exists e1, · · · , ed ∈ Zd such that
∑d

i=1 ρieie
>
i ≥ cD,

where ρi := ρ(ei;D) and c = c(d, I) > 0 is an absolute constant since d ∈ {2, 3} and I = d(d+1)/2.
Let v be a non-zero vector orthogonal to e2, · · · , ed. Then c|v|2D ≤ ρ1〈v, e1〉2 ≤ ρ1|v|2D|e1|2D−1 ≤
(2C)2ρ1|v|2D‖D−1‖ by Proposition B.4. Thus ρ1 ≥ (c/(2C)2)‖D−1‖−1, and likewise for ρ2, · · · , ρd,
which concludes the proof.
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