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A linear finite-difference scheme for approximating Randers
distances on Cartesian grids

Frédéric Bonnans∗ Guillaume Bonnet† Jean-Marie Mirebeau‡

Abstract

Using an extension of Varadhan’s formula to Randers manifolds, we notice that Randers distances
may be approximated by a logarithmic transformation of a linear second-order partial differential
equation. Following an idea introduced by Crane, Weischedel, and Wardetzky in the case of Riemannian
distances, we study a numerical method for approximating Randers distances which involves a
discretization of this linear equation. We propose to use Selling’s formula, which originates from the
theory of low-dimensional lattice geometry, to build a monotone and linear finite-difference scheme.
By injecting the logarithmic transformation in this linear scheme, we are able to prove convergence of
this numerical method to the Randers distance, as well as consistency to the order two thirds far from
the boundary of the considered domain. We explain how this method may be used to approximate
optimal transport distances, how has been previously done in the Riemannian case.

1 Introduction
One variant of Varadhan’s formula [12] states that if x and y are two points of a Riemannian manifold
M, whose distance and Laplace-Beltrami operator we denote respectively by distM and ∆M, then

distM(x, y) = − lim
t→0

√
t log(Pt(x, y)),

where the kernel Pt is such that g =
∫
M Pt(·, y)f(y) dy whenever f , g : M→ R satisfy (Id− t∆M)g = f .

Authors of [7] proposed to use Varadhan’s formula to approximate the gradient field of the distance
function to a point onM, and to recover the distance function itself as a postprocessing step, for better
accuracy. In [11], Varadhan’s formula is used, together with Sinkhorn’s matrix scaling algorithm [8], to
solve the optimal transport problem

inf
γ∈Π(µ,ν)

∫
M×M

distM(x, y) dγ(x, y),

where µ and ν are probability measures onM and Π(µ, ν) is the set of probability measures onM×M
whose first and second marginals coincide respectively with µ and ν. We extend those works to the case
of Randers manifolds.

In section 2, we recall the definition of Randers distances and introduce an extension of Varadhan’s
formula to Randers manifolds. We show that the logarithm of the solution of a particular linear second-order
partial differential equation is approximately proportional to the corresponding Randers distance.

In section 3, we define a linear finite-difference scheme for this linear equation. We show that the
result of applying the logarithmic transformation of section 2 to the solution of this scheme may be seen
as the solution to another, nonlinear, scheme, whose we prove convergence and consistency with the
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Hamilton-Jacobi equation of the Randers distance. We also explain how the techniques introduced in [7]
to improve numerical results may apply to our case.

In section 4, following [11], we explain how the numerical scheme proposed in section 3 may be used in
the numerical resolution of optimal transport problems.

In section 5, we illustrate our results by numerical experiments in which we approximate Randers
distances to finite sets, the associated minimal paths, and the 1-Wasserstein distance on some Randers
manifolds.

2 Setting
We denote by | · | the Euclidean norm on Rd, by Bd(0, 1) the unit ball of Rd, and, respectively, by Sd, S+

d ,
and S++

d the sets of symmetric, symmetric positive semidefinite, and symmetric positive definite matrices
of size d. For any A ∈ S++

d and b ∈ Rd, we define

|A| := sup
x∈Bd(0,1)

|Ax|, |b|A := 〈b, Ab〉1/2.

For any bounded matrix field A : Rd → S++
d and bounded vector field b : Rd → Rd, we define

‖A‖∞ := sup
x∈Rd

|A(x)|, ‖b‖∞ := sup
x∈Rd

|b(x)|.

From now on, we consider an open, bounded, connected, and nonempty domain Ω ⊂ Rd with a W 3,∞

boundary, a matrix field A : Rd → S++
d , and a vector field b : Rd → Rd. We assume A and b are bounded,

Lipschitz continuous, and that there is 0 < δ < 1 such that for any x ∈ Rd,

|b(x)|A−1(x) ≤ δ. (1)

We also define the matrix field Ab : Rd → Sd by

Ab(x) := A(x)− b(x)⊗ b(x).

The following proposition applies to A(x), b(x), and Ab(x) for any x ∈ Rd, and in particular shows that
Ab(x) ∈ S++

d :

Proposition 2.1. Let A ∈ S++
d and b ∈ Rd be such that |b|A−1 < 1, and let Ab := A − b ⊗ b. Then

Ab ∈ S++
d and for any p ∈ Rd,

|p|A ≤ 1 + 〈b, p〉 ⇐⇒ |p|2Ab ≤ 1 + 2〈b, p〉,
|p|A ≥ 1 + 〈b, p〉 ⇐⇒ |p|2Ab ≥ 1 + 2〈b, p〉.

Proof. For any p ∈ Rd \ {0},

〈p,Abp〉 = |p|2A − 〈b, p〉2 = |p|2A − 〈A−1/2b, A1/2p〉2 ≥ (1− |b|2A−1)|p|2A > 0.

Thus Ab ∈ S++
d and for any p ∈ Rd, |p|2Ab = |p|2A − 〈b, p〉2 ≥ 0, hence |p|A ≥ |〈b, p〉|. Then, still for any

p ∈ Rd,
|p|A ≤ |1 + 〈b, p〉| =⇒ |〈b, p〉| ≤ |1 + 〈b, p〉| =⇒ 1 + 〈b, p〉 > 0,

hence

|p|A ≤ |1 + 〈b, p〉| =⇒ |p|A ≤ 1 + 〈b, p〉, (2)
|p|A < |1 + 〈b, p〉| =⇒ |p|A < 1 + 〈b, p〉. (3)

Therefore, using (2) for the first equivalence,

|p|A ≤ 1 + 〈b, p〉 ⇐⇒ |p|2A ≤ |1 + 〈b, p〉|2

⇐⇒ |p|2A ≤ 1 + 〈b, p〉2 + 2〈b, p〉
⇐⇒ |p|2Ab ≤ 1 + 2〈b, p〉.

This chain of equivalences is still true for the nonstrict converse inequality, using the contrapositive of
(3).
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2.1 The Randers distance
For any x ∈ Ω and integrable function α : R+ → Rd, we define the path γx,α : R+ → Rd and the exit time
τx,α ∈ R+ by

γx,α(t) := x+

∫ t

0

A1/2(γx,α(s))α(s) + b(γx,α(s)) ds,

τx,α := inf {t ≥ 0 | γx,α(t) 6∈ Ω}.

We denote by A the set of measurable functions α : R+ → Bd(0, 1). Formally, the definition of A imposes
that for any x ∈ Ω, α ∈ A, and t ∈ R+,

|γ̇x,α(t)− b(γx,α(t))|A−1(γx,α(t)) ≤ 1.

The Randers distance distA,b : Ω× Ω→ R associated to A and b on Ω is defined by

distA,b(x, y) := inf {t ≥ 0 | ∃α ∈ A, τx,α ≥ t and γx,α(t) = y}. (4)

The function distA,b is not symmetric, but it is nevertheless a quasidistance on Ω: for any x, y, z ∈ Ω,

distA,b(x, y) = 0 ⇐⇒ x = y, distA,b(x, z) ≤ distA,b(x, y) + distA,b(y, z).

Symmetry is replaced by the following property:

Proposition 2.2. Let x, y ∈ Ω. Then distA,b(x, y) = distA,−b(y, x).

Proof. For any integrable function α̂ : R+ → Rd, let us define γ̂y,α̂ : R+ → Rd and τ̂y,α̂ by

γy,α̂(t) := y +

∫ t

0

A1/2(γ̂y,α̂(s))α̂(s)− b(γ̂y,α̂(s)) ds,

τ̂y,α̂ := inf {t ≥ 0 | γ̂y,α̂(t) 6∈ Ω}.

Let t ≥ 0 and α, α̂ ∈ A be such that α̂(s) = −α(t − s) for any s ∈ [0, t]. If γx,α(t) = y, then
γx,α(s) = γ̂y,α̂(t− s) for any s ∈ [0, t], and if moreover τx,α ≥ t, then τ̂y,α̂ ≥ t. Reciprocally, if γ̂y,α̂(t) = x,
then γ̂y,α̂(s) = γx,α(t− s) for any s ∈ [0, t], and if moreover τ̂y,α̂ ≥ t, then τx,α ≥ t. Therefore,

distA,b(x, y) = inf {t ≥ 0 | ∃α ∈ A, τx,α ≥ t and γx,α(t) = y}
= inf {t ≥ 0 | ∃α̂ ∈ A, τ̂y,α̂ ≥ t and γ̂y,α̂(t) = y}
= distA,−b(y, x).

The following proposition provides an upper bound on distA,b on convex subdomains of Ω.

Proposition 2.3. Let x, y ∈ Ω, and assume that (1− t)x+ ty ∈ Ω for any t ∈ [0, 1]. Then

distA,b(x, y) ≤ (1− δ)−1‖A−1‖1/2∞ |x− y|.

Proof. We define the measurable function α : R+ → Rd by

α(t) := A−1/2(γx,α(t))

(
(1− δ)(y − x)

‖A−1‖1/2∞ |x− y|
− b(γx,α(t))

)
.

For any t ∈ R+, using (1) for the last inequality,

|α(t)| =

∣∣∣∣∣ (1− δ)(y − x)

‖A−1‖1/2∞ |x− y|
− b(γx,α(t))

∣∣∣∣∣
A−1(γx,α(t))
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≤ (1− δ)
‖A−1‖1/2∞ |x− y|

|x− y|A−1(γx,α(t)) + |b(γx,α(t))|A−1(γx,α(t)) ≤ 1.

Thus α ∈ A. We conclude by noticing that for any t ∈ R+,

γx,α(t(1− δ)−1‖A−1‖1/2∞ |x− y|) = (1− t)x+ ty.

Let g ∈ C(∂Ω). In the following, it will be convenient to define

gmin := min
x∈∂Ω

g(x), gmax := max
x∈∂Ω

g(x).

We aim to compute a numerical approximation of the function v : Ω→ R defined by

v(x) := inf
y∈∂Ω

distA,b(x, y) + g(y). (5)

In some applications, we consider domains Ω whose boundary is the union of two disjoint close components
Γ1 and Γ2 and functions g such that g(x) = 0 on Γ1 and g(x) ≥ supy∈Γ1 distA,b(x, y) on Γ2. In this case,
v is the distance function to Γ1 on Ω according to the Randers metric.

Note that for any x ∈ Ω and y ∈ ∂Ω,

distA,b(x, y) = inf {τx,α | α ∈ A, γx,α(τx,α) = y}.

Thus the definition of v may be rewritten as the optimal control problem

v(x) = inf
α∈A

τx,α + g(γx,α(τx,α)). (6)

Using that, for any p ∈ Rd and x ∈ Ω,

sup
α∈Bd(0,1)

−〈A1/2(x)α+ b(x), p〉 = |p|A(x) − 〈b(x), p〉,

we deduce — see Theorem 2.7 below — that this optimal control problem is associated to the following
Hamilton-Jacobi equation: {

|Dv(x)|A(x) − 〈b(x), Dv(x)〉 − 1 = 0 in Ω,

v(x)− g(x) = 0 on ∂Ω.
(7)

2.2 Varadhan’s formula on Randers manifolds
We propose to use the following extension of Varadhan’s formula to Randers manifolds to approximate
the function v : Ω→ R defined by (5): for x ∈ Ω,

v(x) = − lim
ε→0

ε log

(
E

[
exp

(
−τ̃x,ε − g(X̃x,ε

τ̃x,ε)

ε

)])
, (8)

where for ε > 0, the stochastic process (X̃x,ε
t )t≥0 and exit time τ̃x,ε are defined by

dX̃x,ε
t = 2εb(X̃x,ε

t ) dt+
√

2εA
1/2
b (X̃x,ε

t ) dWt, X̃x,ε
0 = x,

τ̃x,ε := inf {t ≥ 0 | X̃x,ε
t 6∈ Ω},

and (Wt)t≥0 is a d-dimensional Wiener process. We prove formula (8) in Theorem 2.9 below.
For ε > 0, we define uε : Ω→ R− by

uε(x) = −E

[
exp

(
−τ̃x,ε − g(X̃x,ε

τ̃x,ε)

ε

)]
. (9)

According to the Feynman-Kac formula — see Theorem 2.8 below — the function uε is solution to the
linear equation {

uε(x)− 2ε〈b(x), Duε(x)〉 − ε2〈Ab(x), D2uε(x)〉 = 0 in Ω,

uε(x) + exp(−g(x)/ε) = 0 on ∂Ω.
(10)
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2.3 Viscosity solutions
To study equations (7) and (17), we need to recall the definition of viscosity solutions to first- and
second-order degenerate elliptic equations. An operator F : Ω × R × Rd × Sd → R is called degenerate
elliptic if it is nonincreasing with respect to its last variable for the Loewner order (meaning that
F (x, r, p,X1) ≤ F (x, r, p,X2) whenever X1 −X2 is positive semidefinite). The Dirichlet problem for a
degenerate elliptic equation writes as{

F (x, u(x), Du(x), D2u(x)) = 0 in Ω,

u(x)− ψ(x) = 0 on ∂Ω,
(11)

where ψ : ∂Ω→ R. For example when considering equation (7), one should choose

F (x, t, p,X) = |p|A(x) − 〈b(x), p〉 − 1, ψ(x) = g(x).

For any bounded function u : Ω→ Rd, we denote respectively by u∗ : Ω→ R and u∗ : Ω→ R its upper
semicontinuous and lower semicontinuous enveloppes, defined by

u∗(x) := lim sup
y∈Ω, y→x

u(y), u∗(x) := lim inf
y∈Ω, y→x

u(y).

Definition 2.4. Let F : Ω×R×Rd×Sd → R be a continuous degenerate elliptic operator and ψ ∈ C(∂Ω).
A bounded function u : Ω→ R is a viscosity subsolution to (11) if for any ϕ ∈ C2(Ω) and local maximum
x ∈ Ω of u∗ − ϕ, {

F (x, u∗(x), Dϕ(x), D2ϕ(x)) ≤ 0 if x ∈ Ω,

(u∗(x)− ψ(x)) ∧ F (x, u∗(x), Dϕ(x), D2ϕ(x)) ≤ 0 if x ∈ ∂Ω.

It is a viscosity supersolution if for any ϕ ∈ C2(Ω) and local minimum x ∈ Ω of u∗ − ϕ,{
F (x, u∗(x), Dϕ(x), D2ϕ(x)) ≥ 0 if x ∈ Ω,

(u∗(x)− ψ(x)) ∨ F (x, u∗(x), Dϕ(x), D2ϕ(x)) ≥ 0 if x ∈ ∂Ω.

It is a viscosity solution if it is both a viscosity subsolution and supersolution.

A well-known property of viscosity solutions is their stability under monotone changes of variables.

Proposition 2.5. Let F : Ω×R×Rd ×Sd → R be a continuous degenerate elliptic operator, ψ ∈ C(∂Ω),
I, J ⊂ R be open intervals, η : I → J be a strictly increasing C2-diffeomorphism, and v : Ω→ I be bounded
away from ∂I. Define the continuous degenerate elliptic operator G : Ω× R× Rd × Sd → R by

G(x, t, p,X) := F (x, η(t), η′(t)p, η′′(t)p⊗ p+ η′(t)X).

Then u := η ◦ v is a viscosity subsolution (respectively supersolution) to (11) if and only if v is a viscosity
subsolution (respectively supersolution) to{

G(x, v(x), Dv(x), D2v(x)) = 0 in Ω,

v(x)− η−1(ψ(x)) = 0 on ∂Ω.
(12)

Proof. We only show the result for subsolutions, since the case of supersolutions is similar. We assume
that v is a subsolution to (12) and prove that u is a subsolution to (11). The proof of the converse is the
same, using that

F (x, t, p,X) = G(x, η−1(t), (η−1)′(t)p, (η−1)′′(t)p⊗ p+ (η−1)′(t)X).

Let ϕ ∈ C2(Ω) and x ∈ Ω be a local maximum of u∗ − ϕ. Without loss of generality, we may assume
that ϕ(Ω) ⊂ J . Let ϕ̃ := η−1 ◦ϕ. Using that η is strictly increasing, u∗ = (η ◦ v)∗ = η ◦ v∗, and ϕ = η ◦ ϕ̃,
we deduce that x is a local maximum of v∗ − ϕ̃. We conclude the proof by noticing that

F (x, u∗(x), Dϕ(x), D2ϕ(x)) = G(x, v∗(x), Dϕ̃(x), D2ϕ̃(x))

and, if x ∈ ∂Ω, that u∗(x)− ψ(x) and v∗(x)− η−1(ψ(x)) have the same sign.
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Problems (7) and (10) admit the following strong comparison principle, which in particular implies
that their viscosity solutions are uniquely determined on Ω — though not on ∂Ω.

Theorem 2.6. Let v, v : Ω → R be respectively either a subsolution and a supersolution of (7), or a
subsolution and a supersolution to (10), for ε > 0. Then

v∗ ≤ v∗ in Ω.

Proof. Note that since applications A and Ab are Lipschitz continuous and their lower eigenvalues are
bounded away from zero, A1/2 and A1/2

b are Lipschitz continuous too.
For problem (10), the result is a direct application of [3, Theorem 2.1], using that A1/2

b : Rd → S++
d

and b : Rd → Rd are Lipschitz continuous, ∂Ω is of class W 3,∞, and g ∈ C(∂Ω).
For problem (7), whose equation on Ω has no zeroth order term, we perform the Kruzhkov change of

variables. If v and v are respectively a viscosity subsolution and supersolution to (7), then by Proposition 2.5,
u := − exp(−v) and u := − exp(−v) are respectively a viscosity subsolution and supersolution to{

|Du(x)|A(x) − 〈b(x), Du(x)〉+ u(x) = 0 in Ω,

u(x) + exp(−g(x)) = 0 on ∂Ω.

Note that the equation in Ω may be rewritten as

sup
α∈Bd(0,1)

−〈A1/2(x)α+ b(x), Du(x)〉+ u(x) = 0 in Ω.

Since ∂Ω is of class W 3,∞, g ∈ C(∂Ω), the function

Rd ×Bd(0, 1)→ Rd, (x, α) 7→ A1/2(x)α+ b(x)

is continuous in α and Lipschitz continuous in x, uniformly over α, and for any x ∈ Rd and p ∈ Rd \ {0},
there are α1, α2 ∈ Bd(0, 1) such that

〈A1/2(x)α1 + b(x), p〉 < 0, 〈A1/2(x)α2 + b(x), p〉 > 0,

(choose {α1, α2} = {A−1/2(x)(±(1 − δ)p/|p|A−1(x) − b(x))}), then by [3, Theorem 2.1], u∗ ≤ u∗ in Ω.
Therefore v∗ ≤ v∗ in Ω.

Viscosity solutions to (7) and (10) may be explicitely defined by (5) and (9), as proven by the following
results:

Theorem 2.7. The function v : Ω→ R defined by (5) is a bounded viscosity solution to (7).

Proof. The boundedness follows from Proposition 2.3: for any x ∈ Ω,

v(x) ≤ (1− δ)−1‖A−1‖1/2∞ diam(Ω) + sup
y∈∂Ω

g(y).

Since g ∈ C(∂Ω) and the function

Rd ×Bd(0, 1)→ Rd, (x, α) 7→ A1/2(x)α+ b(x)

is continuous in α and Lipschitz continuous in x, uniformly over α, [1, Theorem V.4.13 and Remark V.4.14]
implies that v is a viscosity solution to (7).

Theorem 2.8. For any ε > 0, the function uε : Ω→ R− defined by (9) is a viscosity solution to (10) and
is bounded away from zero and −∞.
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Proof. Since A1/2
b : Rd → S++

d and b : Rd → Rd are Lipschitz continuous, ∂Ω is of class W 3,∞, and
g ∈ C(∂Ω), [3, Theorem 3.1] implies that uε is a viscosity solution to (10).

We next prove the boundedness properties. For any p ∈ Rd,

1 + 2〈b(x), p〉 − |p|2Ab(x) (13)

= 1 + 2〈b(x), p〉+ 〈b(x), p〉2 − |p|2A(x)

≤ 1 + 2|b(x)|A−1(x)|p|A(x) + (|b(x)|2A−1(x) − 1)|p|2A(x)

≤ 1 + 2δ‖A‖1/2∞ |p|+ (δ2 − 1)‖A−1‖−1
∞ |p|2.

Choose |p| large enough so that the right hand side of the above is nonpositive. For any ε > 0, define uε,
uε : Ω→ R− by

uε(x) := − exp
(
−gmin

ε

)
, uε(x) := sup

y∈∂Ω
− exp

(
〈p, y − x〉 − g(y)

ε

)
.

Then uε is a subsolution to (10). The definition of uε may be rewritten as

uε(x) =

(
sup
y∈∂Ω

− exp

(
〈p, y〉 − g(y)

ε

))
exp

(
−〈p, x〉

ε

)
,

and uε is a supersolution to (10), since for any x ∈ Ω, using (13),

uε(x)− 2ε〈b(x), Duε(x)〉 − ε2〈Ab(x), D2uε(x)〉

= uε(x)
(

1 + 2〈b(x), p〉 − |p|2Ab(x)

)
≥ 0.

Thus by Theorem 2.6,

− exp
(
−gmin

ε

)
= uε ≤ (uε)∗ ≤ (uε)

∗ ≤ uε (14)

≤ − exp

(
−gmax + |p|diam(Ω)

ε

)
on Ω.

2.4 Asymptotic analysis
Formula (8) states that if the function uε : Ω→ R− is defined by (9) — and thus is a viscosity solution
to (10) — for small ε > 0, then vε := −ε log(−uε) approaches the function v : Ω → R defined by (5).
According to Proposition 2.5, uε is a viscosity subsolution (respectively supersolution) to (10), bounded
away from zero and −∞, if and only if vε is a bounded viscosity subsolution (respectively supersolution)
to {

|Dvε(x)|2Ab(x) − 2〈b(x), Dvε(x)〉 − ε〈Ab(x), D2vε(x)〉 − 1 = 0 in Ω,

vε(x)− g(x) = 0 on ∂Ω.
(15)

This suggests studying the limit equation{
|Dv(x)|2Ab(x) − 2〈b(x), Dv(x)〉 − 1 = 0 in Ω,

v(x)− g(x) = 0 on ∂Ω.
(16)

But, by Proposition 2.1, problems (16) and (7) are equivalent, in the sense that they admit the same
viscosity subsolutions and supersolutions. We are able to complete the proof of formula (8) by making
rigorous the passing to the limit between problems (15) and (16). Note that we follow a standard sketch
of proof, already used in [2, Proposition II.6] for example.

Theorem 2.9. As ε > 0 approaches zero, if uε : Ω → R− is defined by (9), then vε := −ε log(−uε)
converges uniformly on compact subsets of Ω to the viscosity solution v to (7) defined by (5).
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Proof. For any ε > 0, the function vε is a viscosity solution to (15). By (14), choosing p as in the proof of
Theorem 2.8,

gmin ≤ (vε)∗ ≤ (vε)
∗ ≤ gmax + |p|diam(Ω) on Ω.

Thus the functions v, v : Ω→ R defined by

v(x) := lim sup
ε→0, y→x

vε(y), v(x) := lim inf
ε→0, y→x

vε(y)

are bounded uniformly over x and ε. Thus we can apply [6, Lemma 6.1 and Remark 6.3] to functions
(vε)∗ and (vε)

∗, and deduce that v and v are respectively a viscosity subsolution and supersolution to
(16), or equivalently to (7). Hence by Theorem 2.6, v ≤ v∗ ≤ v∗ ≤ v on Ω. By definition, v ≥ v on Ω.
Therefore v = v = v on Ω. The locally uniform convergence of vε to v on Ω follows from the definitions of
v and v.

3 The numerical scheme
For ε > 0 and some discretization step h > 0, we propose to approximate the solution uε : Ω → R− to
(10) defined by (9) on the Cartesian grid Gh := Ω ∩ hZd. We define Gh := Gh ∪ ∂Ω and for any x ∈ Gh
and e ∈ Zd, we let

h̃ex,h := sup {t ≤ h | x+ t′e ∈ Ω, ∀t′ ∈ [0, t]},

so that x+ h̃ex,h ∈ Gh. Notice that for any x ∈ Gh and e ∈ Zd, there is h0 small enough so that h̃ex,h = h

whenever h ≤ h0. For any x ∈ Gh, e ∈ Zd, and function u : Gh → R, we define the difference

δex,hu := u(x+ h̃ex,he)− u(x).

We approximate uε by a solution uh : Gh → R to a numerical scheme of the form{
uh(x)−

∑
e∈Zd η

e
x,hδ

e
x,hu

h = 0 in Gh,
uh(x) + exp(−g(x)/ε) = 0 on ∂Ω,

(17)

where (ηex,h)x∈Ω, h>0, e∈Zd are nonnegative coefficients. Note that there is an implicit dependence on the
parameter ε > 0 in coefficients ηex,h and the solution uh to the scheme. We drop the notation for this
dependence since for now ε is fixed, and later we will choose ε as a function of h. We explain in the next
section how to choose coefficients ηex,h so that the scheme (17) is consistent with equation (10), but let us
first show that it is well-posed.

Theorem 3.1. For any h > 0 and ε > 0, there is a unique solution uh : Gh → R to (17), and uh takes
nonpositive values.

Proof. Let uh : Gh → R and define Uh ∈ RGh by Uhx := uh(x). Then uh is a solution to (17) if and only if
uh = − exp(−g/ε) on ∂Ω and

MhUh = Gh, (18)

where Mh ∈ RGh×Gh and Gh ∈ RGh are defined by

Mh
x,y :=


1 +

∑
e∈Zd η

e
x,h if y = x,

−ηex,h if x+ h̃ex,he = y for some e ∈ Zd \ {0},
0 else.

Ghx := −
∑
e∈Zd

x+h̃ex,he∈∂Ω

ηex,h exp(−g(x+ h̃ex,h)/εh).

Since the matrix Mh has nonpositive extradiagonal elements and is strictly diagonally dominant, it is a
nonsingular M -matrix. Therefore there is a unique solution Uh ∈ RGh to (18) and, since MhUh = Gh ≤
0 = Mh0, where inequalities between vectors are taken elementwise, it follows that Uh ≤ 0.
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3.1 Choice of coefficients
We will see that an appropriate choice of coefficients ηex,h is given by the formula

ηex,h :=
4ε2aex

h̃ex,h(h̃ex,h + h̃−ex,h)
+

2εbex

h̃ex,h
, (19)

where (aex)x∈Ω, e∈Zd are nonnegative coefficients satisfying

aex = a−ex , Ab(x) =
∑
e∈Zd

aexe⊗ e, (20)

and (bex)x∈Ω, e∈Zd are real coefficients satisfying

b(x) =
∑
e∈Zd

bexe, (21)

choosen so that ηex,h remain nonnegative. In this case, the first equation in (17) rewrites as

uh(x)− 2ε
∑
e∈Zd

bex
δex,hu

h

h̃ex,h
− ε2

∑
e∈Zd

aex
2

h̃ex,h + h̃−ex,h

(
δex,hu

h

h̃ex,h
+
δ−ex,hu

h

h̃−ex,h

)
= 0 in Gh.

Replacing values of uh by fourth-order Taylor expansions of uε in the above scheme, we see that it is
first-order consistent with the first equation in (10), and that at points x ∈ Ω such that h̃ex,h = h̃−ex,h
whenever aex 6= 0 or bex 6= 0, second-order consistency is achieved if for any e ∈ Zd,

bex = −b−ex . (22)

For the scheme to be useable in practice, we need that at any point x ∈ Gh, only finitely many
coefficients aex and bex be nonzero, which may be written as

sup {|e| | e ∈ Zd, ae(x) > 0 or be(x) 6= 0} <∞. (23)

We gather all requested properties of coefficients of the scheme, excluding (22), in the following
assumption:

Assumption 3.2. Nonnegative coefficients (ηex,h)x∈Ω, h>0, e∈Zd are defined by (19), where coefficients aex
and bex satisfy (20), (21), and (23).

In dimensions two and three and for any x ∈ Gh, we compute the nonnegative coefficients aex satisfying
properties (20) and (23) using Selling’s algorithm, which we describe below.

Theorem 3.3. Assume that d ∈ {2, 3} and let A ∈ S++
d . Then there exist algorithmically computable

nonnegative coefficients (ae)e∈Zd satisfying

ae = a−e, A =
∑
e∈Zd

aee⊗ e, (24)

and
max {|e| | e ∈ Zd, ae > 0} ≤ Cd|A|1/2|A−1|1/2, (25)

where C2 := 2 and C3 := 2
√

3.

Proof. Let us recall the notion of superbase of Zd. A superbase of Zd, by definition, is a family v =
(v1, . . . , vd+1) ∈ (Zd)d+1 satisfying

v1 + · · ·+ vd+1 = 0, det(v1, . . . , vd) = ±1.

It is said to be A-obtuse if 〈vi, Avj〉 ≤ 0, for any 1 ≤ i < j ≤ d+ 1.
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For any superbase v of Zd, we define vectors (eij)1≤i<j≤d+1 by

eij := ±v⊥k if d = 2 and {i, j, k} = {1, 2, 3},
eij := ±vk ∧ vl if d = 3 and {i, j, k, l} = {1, 2, 3, 4},

choosing the signs arbitrarily. Then (eij ⊗ eij)1≤i<j≤d+1 is the dual basis in Sd to ((−vi ⊗ vj − vj ⊗
vi)/2)1≤i<j≤d+1, and Selling’s formula holds:

A = −
∑

1≤i<j≤d+1

〈vi, Avj〉eij ⊗ eij .

Therefore coefficients (ae)e∈Zd defined by

ae :=

{
− 1

2 〈vi, Avj〉 if e = ±eij , 1 ≤ i < j ≤ d+ 1,

0 else,

satisfy (24) and are nonnegative as soon as the superbase v is A-obtuse.
We define coefficients (ae)e∈Zd using the A-obtuse superbase v returned by Selling’s algorithm, which is

initialized with an arbitrary superbase v0 of Zd, and at each step k ∈ N of which the following operations
are performed:

• If there is a permutation σ ∈ Sd+1 such that 〈vkσ(1), Av
k
σ(2)〉 > 0, then choose

vk+1 := (−vkσ(1), v
k
σ(2), v

k
σ(1) − v

k
σ(2)) if d = 2,

vk+1 := (−vkσ(1), v
k
σ(2), v

k
σ(3) + vkσ(1), v

k
σ(4) + vkσ(1)) if d = 3,

and proceed with next step.

• Else, stop and return vk, which is A-obtuse.

We refer to [10] or [5] for a proof that Selling’s algorithm stops and to [9, Proposition 4.8] for a proof of
(25).

We study two versions of (10), corresponding to two ways of choosing coefficient bex satisfying (21)
and (23):

The upwind scheme. We denote by (e1, . . . , ed) the canonical basis of Rd. For any x ∈ Gh and e ∈ Zd,
we choose

bex :=

{
〈b(x), e〉+ if e = ±ei, 1 ≤ i ≤ d
0 else.

Then all coefficients bex are nonnegative, and so are ηex,h.
The centered scheme. We use that for any x ∈ Gh,

b(x) = b(x)A−1
b (x)Ab(x) =

∑
e∈Zd

aex〈b(x), A−1
b (x)e〉e

and choose bex := aex〈b(x), A−1
b (x)e〉. Since bex may be negative, we have to check whether coefficients ηex,h

remain nonnegative. By definition,

ηex,h =
4ε2aex

h̃ex,h(h̃ex,h + h̃−ex,h)
+

2εbex

h̃ex,h

=
2εaex

h̃ex,h

(
2ε

h̃ex,h + h̃−ex,h
+ 〈e,A−1

b (x)b(x)〉

)
.
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Let Cd be as in Theorem 3.3. Let us assume that |e| ≤ Cd‖Ab‖1/2∞ ‖A−1
b ‖

1/2
∞ , since otherwise aex = 0 and

thus ηex,h = 0. Then

2ε

h̃ex,h + h̃−ex,h
+ 〈e,A−1

b (x)b(x)〉 ≥ ε

h
− Cd‖Ab‖1/2∞ ‖A−1

b ‖
3/2
∞ ‖b‖∞.

Therefore ηex,h is nonnegative as soon as

ε ≥ Cd‖Ab‖1/2∞ ‖A−1
b ‖

3/2
∞ ‖b‖∞h.

We advocate to use the centered scheme, since coefficients bex choosen this way satisfy (22), yielding a
scheme (17) which is second-order consistent with (10) far from ∂Ω.

3.2 Convergence
For ε > 0, let uε : Ω → R− be defined by (9). Since by Theorem 2.9, the function vε := −ε log(−uε)
approaches the function v : Ω→ R defined by (5) on Ω as ε approaches 0, we propose to approximate v
by vh := −ε log(−uh), where uh : Gh → R− is the solution to (17), for small values of the parameters h
and ε. We study properties of vh when h and ε simultaneously approach zero, so for any h > 0, we let
εh > 0 be the associated value of the ε. We consider the following choice of parameters εh:

Assumption 3.4. There are C > 0 and 0 < r < 1 such that for any h > 0, εh = Chr.

Let Assumption 3.2 hold and let h > 0, uh : Gh → R∗−, and vh := −εh log(−uh). Then by replacing uh
by − exp(−vh/εh) in (17) and multiplying the equation in Gh by exp(vh/εh), we see that uh is solution to
(17) with ε = εh if and only if vh is solution to

Sh(x, vh(x), vh) = 0 in Gh, (26)

where for h > 0, x ∈ Gh, t ∈ R, and v : Gh → R,

Sh(x, t, v) :=

{∑
e∈Zd η

e
x,h(exp((t− v(x+ h̃ex,he))/εh)− 1)− 1 if x ∈ Gh,

t− g(x) if x ∈ ∂Ω.

This equivalence is still true when replacing equalities by inequalities in (17) and (26). We see (26)
as a nonlinear numerical scheme solved by vh, and show that it is consistent with equation (16) when
Assumption 3.4 holds.

Theorem 3.5. Let Assumption 3.2 and Assumption 3.4 hold. Let ϕ ∈ C∞(Ω). Then for small h > 0,

Sh(x, ϕ(x), ϕ) = |Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1 +O(hr∧1−r)

uniformly over x ∈ Gh. If moreover (22) holds, then on any compact subset X of Ω,

Sh(x, ϕ(x), ϕ) = |Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1 +O(hr∧2−2r)

uniformly over x ∈ X ∩ Gh for h small enough.

Proof. For x ∈ Gh,

Sh(x, ϕ(x), ϕ)

=
∑
e∈Zd

ηex,h(exp(−δex,hϕ/εh)− 1)− 1

=
∑
e∈Zd

ηex,h

(
exp

(
−
h̃ex,h
εh
〈e,Dϕ(x)〉+O

(
(h̃ex,h)2

εh

))
− 1

)
− 1

=
∑
e∈Zd

ηex,h

( ∞∑
i=1

(−1)i
(h̃ex,h)i

i!εih
〈e,Dϕ(x)〉i +O

(
(h̃ex,h)2

εh

))
− 1
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=
∑
e∈Zd

aex

( ∞∑
i=1

(−1)i
4(h̃ex,h)i−1

i!εi−2
h (h̃ex,h + h̃−ex,h)

〈e,Dϕ(x)〉i +O(εh)

)

+ 2
∑
e∈Zd

bex

( ∞∑
i=1

(−1)i
(h̃ex,h)i−1

i!εi−1
h

〈e,Dϕ(x)〉i +O(h)

)
− 1

=
∑
e∈Zd

aex

(
〈e,Dϕ(x)〉2 +

h̃ex,h − h̃
−e
x,h

3εh
〈e,Dϕ(x)〉3 +O(hr∧2−2r)

)

− 2
∑
e∈Zd

bex

(
〈e,Dϕ(x)〉 −

h̃ex,h
2εh
〈e,Dϕ(x)〉2 +O(h1∧2−2r)

)
− 1.

If (22) holds, we choose h small enough such that for any x ∈ X, h̃ex,h = h̃−ex,h whenever aex 6= 0 or
bex 6= 0.

Note that max0<r<1 r ∧ 1− r = 1/2 and max0<r<1 r ∧ 2− 2r = 2/3, and those maxima are attained
respectively at r = 1/2 and r = 2/3.

Using consistency of the scheme (26) with (16), we are able to prove convergence of its solution to the
function v : Ω→ R defined by (5).

Theorem 3.6. Let Assumption 3.2 and Assumption 3.4 hold. Then for small h > 0, the unique solution
uh : Gh → R− to (17) for ε = εh takes negative values, and vh := −εh log(−uh) converges uniformly on
compact subsets of Ω as ε approaches zero to the viscosity solution v to (7) defined by (5).

Proof. We use the following properties of the numerical scheme (26):
Monotonicity. For any h > 0, x ∈ Gh, t ∈ R, and functions v, v : Gh → R such that v ≤ v on Gh, it

holds that
Sh(x, t, v) ≥ Sh(x, t, v).

Consistency. Let ϕ ∈ C∞(Ω). For any h > 0, x ∈ Ω, and ξ ∈ R,

Sh(x, ϕ(x) + ξ, ϕ+ ξ) = Sh(x, ϕ(x), ϕ).

Thus, by Theorem 3.5 and since the application

x 7→ |Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1

is uniformly continuous over x ∈ Ω, it holds that for any x ∈ Ω,

lim sup
h→0, ξ→0

y∈Gh, y→x

Sh(y, ϕ(y) + ξ, ϕ+ ξ)

≤

{
|Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1 if x ∈ Ω,

(ϕ(x)− g(x)) ∨ (|Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1) if x ∈ ∂Ω,

and

lim inf
h→0, ξ→0

y∈Gh, y→x

Sh(y, ϕ(y) + ξ, ϕ+ ξ)

≥

{
|Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1 if x ∈ Ω,

(ϕ(x)− g(x)) ∧ (|Dϕ(x)|2Ab(x) − 2〈b(x), Dϕ(x)〉 − 1) if x ∈ ∂Ω.

Stability. Let us prove that uh takes negative values — so that vh is well-defined — and that vh is
uniformly bounded over h and its argument x. By (13), we may choose p ∈ Rd with norm large enough so
that

|p|2Ab(x) − 2〈b(x), p〉 − 1 > 0 (27)
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uniformly over x ∈ Ω. Let us define w, w : Gh → R by

w(x) := gmin, w(x) := 〈p, x〉+ sup
y∈∂Ω

(g(y)− 〈p, y〉).

Then Sh(x,w(x), w) ≤ 0 on Gh and since h is assumed to be small, by Theorem 3.5 and (27), Sh(x,w(x), w) ≥
0 on Gh. Using notations of (18) and letting uh := − exp(−w/εh), uh := − exp(−w/εh), U

h
:=

(uh(x))x∈Gh , and Uh := (uh(x))x∈Gh , it follows that MhU
h ≤ Gh and MhUh ≥ Gh. Since Mh is a

nonsingular M -matrix, the unique solution Uh ∈ RGh to MhUh = Gh, defined by Uhx := uh(x), satisfies
U
h ≤ Uh ≤ Uh. Thus uh ≤ uh ≤ uh < 0 and w ≤ vh ≤ w.
Using the above properties of the scheme and following the proof of [4, Theorem 2.1], we deduce that

functions v, v : Ω→ R defined by

v(x) := lim sup
h→0

y∈Gh, y→x

vh(y), v(x) := lim inf
h→0

y∈Gh, y→x

vh(y),

are respectively a subsolution and supersolution to (16), or equivalently to (7). By Theorem 2.6,
v ≤ v∗ ≤ v∗ ≤ v on Ω, and by definition v ≥ v on Ω. Thus v = v = v on Ω and the locally uniform
convergence follows from the definitions of v and v.

3.3 Approximation of the Randers distance to a finite set
Let Y ⊂ Ω be a finite set, and assume that there is h > 0 such that Y ⊂ Gh. We are interested in
approximating the Randers distance to Y , defined by

distA,b(x, Y ) := min
y∈Y

distA,b(x, y) on Ω.

To this end, we use that
distA,b(x, Y ) = v(x) on Ω

if v : Ω→ R is defined by (5) with Ω replaced by Ω \ Y , g = 0 on Y , and

g(x) ≥ sup
y∈Y

distA,b(x, y) on ∂Ω.

Note that contrary to the assumption that ∂Ω is of class W 3,∞ in (5), we allow ∂(Ω \ Y ) to contain
isolated points.

Let uh : Gh → R and Uh ∈ RGh be defined by Uhx := uh(x). We define Mh ∈ RGh×Gh and Gh ∈ RGh
as in (18), and Mh,Y ∈ RGh×Gh and Gh,Y ∈ RGh by

Mh,Y := Mh +
∑
y∈Y

eye
>
y

(
I|Gh| −M

h
)
, Gh,Yx :=

{
−1 if x ∈ Y,
Ghx else,

where (ex)x∈Gh is the canonical basis of RGh . Then uh is solution to (17) with Ω replaced by Ω \ Y if and
only if Uh is solution to

Mh,Y Uh = Gh,Y .

Let EY ∈ RGh×Y be the matrix whose columns are (ey)y∈Y . Then

Mh,Y = Mh + EY E
>
Y (I|Gh| −M

h).

In order to efficiently compute several Randers distances on Ω to target sets Y of small cardinal, we may
use the Woodbury matrix identity, according to which

(Mh,Y )−1 = (Mh)−1 − (Mh)−1EY (E>Y (Mh)−1EY )−1E>Y ((Mh)−1 − I|Gh|), (28)

along with a prefactorization of the matrix Mh.
Although we assumed earlier that the function g is finite, in practice we may also solve the scheme

associated to g = +∞ on ∂Ω, in which case

Gh = 0, Gh,Y = −
∑
y∈Y

ey.
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3.4 Approximation of the gradient of the Randers distance
We have two motivations for approximating numerically the gradient of the function v : Ω→ R defined by
(5).

First, it is well-known that for any x ∈ Ω and 0 ≤ t < τx,α, if α : R+ → Bd(0, 1) is optimal in (6), then

α(t) = argmax
α′∈Bd(0,1)

−〈A1/2(γx,α(t))α′ + b(γx,α(t)), Dv(γx,α(t))〉 − 1

= −A
1/2(γx,α(t))Dv(γx,α(t))

|Dv(γx,α(t))|A(γx,α(t))

and thus

γ̇x,α(t) = A1/2(γx,α(t))α(t) + b(γx,α(t)) = b(γx,α(t))− A(γx,α(t))Dv(γx,α(t))

|Dv(γx,α(t))|A(γx,α(t))
.

Hence we may use the approximation of Dv to reconstruct the minimal path γx,α numerically.
Second, it was noticed in [7] that on Riemannian manifolds, the numerical error in approximations of

Dv often seems lesser than the one in the approximation of v by vh := −ε log(−uh), where uh solves a
discretisation of (10) — in our case, this would be (17). Thus the authors proposed instead to approximate
v by the solution to a discretisation of Poisson’s equation on the manifold, with a right-hand side equal to
a discretized divergence of an approximation of Dv.

Let Assumption 3.2 and Assumption 3.4 hold. For small h > 0 and ε = εh, let uε : Ω→ R ve defined
by (9) and vε := −ε log(−uε). Since vε converges to v on Ω, our strategy is to approximate Dv by Dvε,
which by definition of vε is a positive multiple of Duε. We in turn approximate Duε by Dhuh on Gh,
where uh : Gh → R solves (17) and Dh is one of the operators Dh

Id
and Dh

Ab
defined, for u : Gh → R and

x ∈ Gh, and (e1, . . . , ed) the canonical basis of Rd, by

Dh
Id
u(x) :=

d∑
i=1

δeix,hu− δ
−ei
x,h u

h̃eix,h + h̃−eix,h

ei, Dh
Ab
u(x) :=

∑
e∈Zd

aex
δex,hu− δ

−e
x,hu

h̃ex,h + h̃−ex,h
A−1
b (x)e.

To derive the second operator, we used that for u : Ω→ R,

Du(x) = A−1
b (x)Ab(x)Du(x) =

∑
e∈Zd

aex〈e,Du(x)〉A−1
b (x)e,

which has the benefit of yielding a discretisation using the same finite differences than the centered version
of scheme (17). If x ∈ Ω, 0 ≤ t < τx,α, α : R+ → Bd(0, 1) is optimal in (6), and y ∈ Gh is such that
γx,α(t) ≈ y, we approximate γ̇x,α(t) by

b(y)− A(y)Dhuh(y)

|Dhuh(y)|A(y)
. (29)

If x ∈ Gh, using the equation in Ω in (7) to normalise Dhuh(x), we approximate Dv(x) itself by

Xh(x) :=
Dhuh(x)

|Dhuh(x)|A(x) − 〈b(x), Dhuh(x)〉
.

In the setting of section 3.3, let v : Ω→ R be defined by (5) with Ω replaced by Ω \Y , g = 0 on Y , and
g = +∞ on ∂Ω. Following the idea of [7], we let the approximation Xh : Gh \ Y → Rd of Dv be defined as
above but with Ω replaced by Ω \ Y , and we approximate v on Gh by one of the solutions whId : Gh → R
and whAb : Gh → R to the minimization problems

inf
whId

: Gh→R
whId

=0 on Y

∑
x∈Gh\Y
1≤i≤d

σ∈{−1,1}
x+σh̃

σei
x,hei∈Gh

∣∣∣∣∣δ
σei
x,hw

h
Id

h
− σ〈ei, Xh(x)〉

∣∣∣∣∣
2

,
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inf
whAb

: Gh→R
whAb

=0 on Y

∑
x∈Gh\Y
e∈Zd

x+h̃ex,he∈Gh

aex

∣∣∣∣∣δex,hwhAbh
− 〈e,Xh(x)〉

∣∣∣∣∣
2

.

Writing the optimality condition for these minimization problems, we see that whId and whAb solve the
numerical schemes

∑
1≤i≤d

σ∈{−1,1}
x+σh̃

σei
x,hei∈Gh

(
σ
h

〈
ei,

Xh(x)+Xh(x+σhei)
2

〉
−

δ
σei
x,hw

h
Id

h2

)
= 0 in Gh \ Y,

whId(x) = 0 on Y,

(30)


∑
e∈Zd

x+σh̃ex,he∈Gh

aex

(
1
h

〈
e, X

h(x)+Xh(x+he)
2

〉
−

δex,hw
h
Ab

h2

)
= 0 in Gh \ Y,

whAb(x) = 0 on Y.

(31)

4 Application to regularized optimal transport
Let µ, ν belong to the set P1(Ω) of probability measures on Ω with finite first order moments. The
1-Wasserstein distance W1(µ, ν) between µ and ν associated to A and b is defined by

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫
Ω×Ω

distA,b(x, y) dγ(x, y), (32)

where Π(µ, ν) is the set of probability measures on Ω × Ω whose first and second marginals coincide
respectively with µ and ν, called transport plans between µ and ν. Node that since distA,b is not symmetric,
neither is W1, which is only a quasidistance on P(Ω).

For h > 0, we define discretizations α, β ∈ RGh+ of measures µ and ν by

αx := µ(Ω ∩ x+ [−h/2, h/2]d), βy := ν(Ω ∩ y + [−h/2, h/2]d),

and study the discretized optimal transport problem

inf
P∈U(α,β)

〈P,C〉,

where U(α, β) and C ∈ RGh×Gh+ are defined by

U(α, β) := {P ∈ RGh×Gh+ | P1 = α, P>1 = β}, Cx,y := distA,b(x, y).

To solve this problem numerically, we use the entropic regularization method proposed in [8]: for any
P ∈ RGh×Gh+ , we define

Ent(P ) := −
∑

x, y∈Gh

Px,y log(Px,y),

and for ε > 0 — we will choose ε = εh as above — we consider the regularized optimal transport problem

inf
P∈U(α,β)

〈P,C〉 − εEnt(P ). (33)

Introducing dual variables f , g ∈ RGh , we write the Lagrangian associated to the regularized problem:

L(P, f, g) := 〈P,C〉 − εEnt(P )− 〈f, P1− α〉 − 〈g, P>1− β〉. (34)

We deduce the first-order optimality condition: if P is optimal in (33), then there are f , g ∈ RGh such
that for any x, y ∈ Gh,

Cx,y + ε log(Px,y) + ε− fx − gy = 0.
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By the change of variable t 7→ exp(t/ε), it follows that P satisfies

P = diag(û)K diag(v̂), (35)

where K ∈ RGh×Gh+ and û, v̂ ∈ RGh+ are defined by

Kx,y := exp

(
−Cx,y

ε

)
= exp

(
−distA,b(x, y)

ε

)
, (36)

and, up to multiplication of û and division of v̂ by the same positive factor,

ûx := exp

(
fx
ε
− 1

2

)
, v̂y := exp

(
gy
ε
− 1

2

)
.

The matrix K depends only on parameters of the problem, so the unknowns are û and v̂. Injecting (35)
in the definition of U(α, β), we see û and v̂ must satisfy

û� (Kv̂) = α, v̂ � (K>û) = β,

where � represents the elementwise product of vectors.
The standard way to estimate û and v̂ numerically is Sinkhorn’s algorithm: let v̂(0) ∈ (R∗+)Gh and, for

any n ∈ N, let

û(n) :=
α

Kv̂(n)
, v̂(n+1) :=

β

K>û(n)
,

where fractions between vectors represent elementwise division. Then sequences (û(n))n and (v̂(n))n
converge respectively to û and v̂, up to multiplication of û and division of v̂ by the same positive factor.

The more computationally intensive part of this algorithm is to compute the matrix-vector products
Kv̂ and K>û, for v̂, û ∈ RGh+ , since the matrix K is dense. An efficient way to approximate those products
using Varadhan’s formula was proposed in [11], in the case of Riemannian manifolds. Adapting it to our
setting yields the approximation K ≈ (Mh)−1, where Mh ∈ RGh×Gh is defined as in (18), with coefficients
ηex,h satisfying Assumption 3.2. We justify this approximation below, but first let us note that using
Proposition 2.2, we also have K> ≈ (M̂h)−1, where M̂h is defined as Mh with the exception that b is
replaced by −b. We replace products Kv̂ and K>û in Sinkhorn’s algorithm by their approximations
(Mh)−1û and (M̂h)−1v̂ and use prefactorizations of Mh and M̂h to solve those linear systems efficiently
at each iteration.

To justify the approximation of K by (Mh)−1, let y ∈ Gh and, in the setting of section 3.3 with Y = {y},
let v : Ω→ R and uh : Gh → R− be respectively defined by (5) and solution to (17) with Ω replaced by
Ω \ {y}, g(y) = 0, g = +∞ on ∂Ω. We define Uh ∈ RGh by Uhx := uh(x). Then Uh = −(Mh,{y})−1ey,
which together with (28) yields that

Uh = − (Mh)−1ey
((Mh)−1)y,y

.

Therefore, at least for x and y far from ∂Ω,

((Mh)−1)x,y = −Uhx ((Mh)−1)y,y = −uh(x)((Mh)−1)y,y ≈ exp(−v(x)/ε)((Mh)−1)y,y

= exp

(
−distA,b(x, y)− ε log(((Mh)−1)y,y)

ε

)
.

Using the previous equation and (36), we see that (Mh)−1 approximates a matrix K which would be
defined with a perturbation ε log(((Mh)−1)y,y) in the cost of the optimal transport problem. Let us show
that this perturbation is small when choosing ε according to Assumption 3.4.

Proposition 4.1. Let Assumption 3.2 and Assumption 3.4 hold. For any h > 0, let Mh ∈ RGh×Gh be
defined as in (18) with ε = εh. Let y ∈ Ω be such that y ∈ Gh0 for some h0 > 0. Then

lim
h→0, y∈Gh

εh log(((Mh)−1)y,y) = 0.
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Proof. Since Mh1 ≥ 1 ≥ ey and Mh is a nonsingular M -matrix, it holds that (Mh)−1ey ≤ 1, thus
((Mh)−1)y,y ≤ 1 and

εh log(((Mh)−1)y,y) ≤ 0.

The vector U
h ∈ RGh defined by

U
h

x :=


(

1 +
∑
e∈Zd η

e
y,h

)−1

if x = y,

0 else,

is such that MhU
h ≤ ey. Thus (Mh)−1ey ≥ U

h
and

εh log(((Mh)−1)y,y) ≥ −εh log

1 +
∑
e∈Zd

ηey,h

 .

We may assume that h is small enough so that h̃ey,h = h whenever aex > 0 or bex 6= 0. Then, using (19)
and that εh = Chr,

lim
h→0, y∈Gh

εh log

1 +
∑
e∈Zd

ηey,h


= lim
h→0, y∈Gh

hr log

1 +
2C

h1−r

∑
e∈Zd

bey +
2C2

h2−2r

∑
e∈Zd

aey

 = 0,

which concludes the proof.

Note that the limit is not uniform near ∂Ω due to the assumption that h̃ey,h = h whenever aex > 0 or
bex 6= 0. This suggests applying the proposed numerical method to optimal transport problems where
measures µ and ν are supported on compact subsets of Ω.

Injecting (35) into (34), we deduce the dual optimization problem to (33):

sup
f∈RGh , g∈RGh

〈f, α〉+ 〈g, β〉 − ε
〈

exp

(
f

ε
− 1

2

)
,K exp

(
g

ε
− 1

2

)〉
,

where operations on vectors are elementwise. Thus if ûh, v̂h ∈ RG
h

+ are approximations of û and v̂ in (35),
we approximate the Wasserstein distance W1(µ, ν) by

Wh
1 (µ, ν) := ε(〈log ûh, α〉+ 〈log v̂h, β〉+ 1− 〈ûh, (Mh)−1v̂h〉). (37)

5 Numerical results
We apply the proposed numerical scheme to two two-dimensional problems expressed in the setting of
section 3.3. For both problems, we choose the domain Ω = B2(0, 1), and g(x) = +∞ on ∂Ω.

In the first problem, we consider a flat manifold described by constant matrix and vector fields A = A(1)

and b = b(1) defined by

A(1) :=

(
0.5 0.6
0.6 1.0

)
, b(1) :=

(
0.3
0.4

)
,

and the target set Y = Y(1) defined by

Y(1) :=

{(
−0.6
0.6

)
,

(
−0.6
−0.6

)
,

(
0.6
−0.6

)
,

(
0.6
0.6

)}
.
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Figure 1: Randers distance to the target set Y(1) on a manifold with parameters A(1) and b(1), computed
exactly (left) and approximated using the centered (middle, h = 0.00625, ε = 0.5h2/3) and upwind (right,
h = 0.00625, ε = 0.5h1/2) schemes.

Figure 2: Representation of the Randers metric and approximations of minimal paths and of the Randers
distance for parameters A(1), b(1), and Y(1) (top), and A(2), b(2), and Y(2) (right), with h = 0.00625 and
ε = 0.5h2/3.

In this case, and more generally when A and b are constant functions, the Randers distance function may
be computed exactly using the formula

distA,b(x, y) =
‖x− y‖2A−1

〈b, A−1(x− y)〉+
√
〈b, A−1(x− y)〉2 + (1− |b|2A−1)|x− y|2A−1

when x 6= y. This formula is obtained by choosing a constant function α ∈ A in (4). This allows us to
compare our numerical results with the exact solution.

In the second problem, we consider parameters A = A(2) and b = b(2) defined by

A(2)(x) :=

(
1 +

2x2
2

|x| + x2
2 − 2x1x2

|x| − x1x2

− 2x1x2

|x| − x1x2 1 +
2x2

1

|x| + x2
1

)
, b(2)(x) := x⊥ =

(
−x2

x1

)
,

where A(2)(0) is extended by continuity, and the target set Y = Y(2) := {(0.8, 0)}.
On Figure 1, we display the exact function v : x 7→ distA(1),b(1)(x, Y(1)) and the solutions vh : Gh → R

to (26) for the upwind and centered schemes.
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Figure 3: Error between the exact distance v and its approximations on the manifold with parameters
A(1), b(1), and Y(1), depending on h.

Figure 4: Error between the exact distance v and its approximations on the manifold with parameters
A(1), b(1), and Y(1), for h = 0.0015625 and εh = 0.5h2/3.

On Figure 2, we depict on the left the Randers metrics associated to our two sets of parameters: for
some points x ∈ B2(0, 1), marked by dots, we display the ellipses

{y ∈ R2 | |y − x|A−1
(1)

(x) − 〈b(1)(x), y − x〉 = 0.1},

{y ∈ R2 | |y − x|A−1
(2)

(x) − 〈b(2)(x), y − x〉 = 0.05}.

On the middle, we show approximations of minimal paths to the target sets Y(1) and Y(2), obtained using
(29) with Dh = Dh

Ab
. On the right, we display the solution whAb : Gh → R to (31), where Xh is computed

using Dh = Dh
Ab

.
On Figure 3, we study the convergence of some approximations of the exact distance function v. We

define respectively the l∞ and l1 errors between v and one of its approximations vh as

max
x∈Gh

|vh(x)− v(x)|, h2
∑
x∈Gh

|vh(x)− v(x)|.

The results seem consistent with the optimal choices for the exponent r in Theorem 3.5 for the upwind
and centered schemes, although the numerically observed rate of convergence does not attain the order of
consistency of the scheme far from ∂Ω. The curves on the right suggest prefering the scheme (31) and
Dh = Dh

Ab
to (30) and Dh = Dh

I2
.
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Figure 5: Numerical solution of the optimal transport problem (32) on manifolds with parameters A(1)

and b(1) (left: h = 0.00625, ε = h2/3; right: convergence, ε = h2/3) and A(2) and b(2) (middle, h = 0.00625,
ε = h2/3).

On Figure 4, we display the absolute value of the error between the exact distance function v and the
solutions vh, whI2 , and w

h
Ab

to (26), (30), and (31). We observe that approximating v by whAb instead of vh
helps avoiding large numerical errors far from the target set Y , and also near the boundary ∂Ω.

On Figure 5, we solve numerically the optimal transport problem (32), where µ and ν are uniform
probability measures on [−0.7,−0.1] × [−0.5, 0.1] and [0.1, 0.7] × [−0.1, 0.5] respectively. We compute
approximations ûh, v̂h ∈ RGh+ of û and v̂ in (35). The arrows on the figure represent the application

Gh ∩ supp(µ)→ Rd, x 7→
ûhx
∑
y∈Gh(M−1)x,y v̂

h
y y

αx
,

which is an approximation of x 7→
∑
y∈Gh yPx,y/αx, where P is optimal in (33). Note that this application

is not a translation even is the case of constant parameters A(1) and b(1). This is a property of the
1-Wasserstein distance, even in the continuous setting, and is not related to our choice of approximation
of the matrix K in (35). On the right, we display the error between W1(µ, ν) and its approximation
Wh(µ, ν) defined by (37), depending on the parameter h.
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