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ABSTRACT

We present a general approach for obtaining stochastic regret bounds for non-convex loss functions
holding with high probability. Scale-free algorithms can solve Stochastic Online Convex Optimization
using "surrogate losses" regret analysis. Then, we provide optimal prediction and probabilistic
forecasting methods for non-stationary unbounded time series.

Keywords: Stochastic online learning, time series prediction, probabilistic forecasting

1 Introduction

We introduce a stochastic version of the Online Convex Optimization (OCO) analysis of Zinkevich (2003) in order to
measure the performance of online learning algorithms in statistical applications when the loss functions are random
and not convex. Let K be a convex body of Rd (a convex, compact set with non empty interior) and `t be the loss
function from K to R. In the OCO analysis, the regret measures the performance of the online learning algorithm that
predicts xt ∈ K:

regretT = sup
x∈K

T∑
t=1

`t(xt)−
T∑
t=1

`t(x).

The minimax rates of the regret are depending on conditions; the OGD algorithm satisfies an optimal regret bound of
order O(

√
T ) for convex functions, the ONS an optimal regret of order O(log T ) for exp-concave functions, see Hazan

(2019), and Squint and BOA achieve O(log log T ) for expert advice, Koolen and Van Erven (2015) and Wintenberger
(2017).

We introduce the Stochastic Online Convex Optimization (SOCO) analysis where the loss function `t is random. We
consider a filtration (Ft) of non-decreasing σ-algebras so that the online learning algorithm predictions xt and the past
losses (`s)s=1,...,t−1, are Ft−1-measurable, t ≥ 1. In the SOCO setting, the performance is measured by the stochastic
regret

RegretT = sup
x∈K

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x)

where Lt(xt) is the conditional risk Lt(xt) = E[`(xt) | Ft−1], t ≥ 1. Noticing that the stochastic regret is random we
focus on deviation rates such as, with probability 1− δ, it holds

RegretT ≤ O(
√
T ) or O(log T ) or O(log log T ) , T ≥ 1 .

Such stochastic regret bounds depend on the probability measures of random functions `t considered. We easily prove
that the OGD algorithm satisfies a slow deviation rate O(

√
T ) when the conditional risks Lt are convex functions. Then
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we prove that the ONS and BOA algorithms achieve fast deviation rate O(log T ) and O(log log T ), respectively when
the loss functions `t satisfy a stochastic exp-concavity condition (H2).

The results hold regardless of the dependence or the convex properties of the loss functions `t. We analyze online
learning algorithm performances in stochastic environments wider than previously considered using the SOCO approach.
We also maintain the generality of the OCO setting valid in any bounded environment. We apply the SOCO approach
successfully to forecast streaming data observed recursively in time, such as time series. Removing the boundedness
assumption, we can consider probabilistic forecasting, see Gneiting and Raftery (2007), where the prediction xt
parametrizes a probability measure Pxt . The conditional risk functions Lt are used to measure the approximation
of Pxt and Pt, the conditional distribution of a variable of interest yt given Ft−1. We focus on the KL divergence
corresponding to the logarithmic loss of density functions. These natural losses are usually not convex. Thus the OCO
analysis cannot be conducted. We use the SOCO approach to prove that some scale-free online learning algorithms are
adaptive and robust for probabilistic forecasting in stochastic environments.

Related works. Hazan (2019) and Mahdavi et al. (2015) proved that OGD and ONS satisfies a stochastic regret bound
of order O(

√
T ) and O(log T ), respectively. The fast rate "online to batch" conversion of the ONS is much more

evolved than the slow rate one and less general since it does not apply to any algorithm, see Audibert (2008) and Mehta
(2017). For expert advice Squint and BOA achieve a O(log log T ) regret analysis under so-called Bernstein condition,
see Koolen et al. (2016) and Wintenberger (2017), respectively. All these results are restricted to the bounded setting.

Online learning applied to time series is natural as recursive algorithms update their predictions when observing new
data over time. However, regret bounds with high probability are rare due to the data’s dependence that prevents
standard exponential inequalities. For stationary dependent time series (geometric β and φ mixing), Agarwal and Duchi
(2012) obtained fast rate regret bounds for strongly convex loss functions. Their risk function does not coincide with Lt
as it is the static and deterministic E[`t]. Anava et al. (2013) obtained fast rate regret bounds for the ONS algorithm
for ARMA models Their notion of stochastic regret coincides with ours. Kuznetsov and Mohri (2015) obtained slow
rate bounds on the risk of prediction LT+1(xT+1). It is difficult to compare the results since bounding LT+1(xT+1) is
more evolved than controlling the stochastic regret.

Our fast rate stochastic regret bounds hold for ONS and BOA, two online gradient algorithms sharing similarities with
Metagrad developed by van Erven and Koolen (2016). Metagrad enjoys a fast rate stochastic regret bound in some
stationary environments Koolen et al. (2016). KAO algorithm of Adjakossa et al. (2020) aggregates Kalman recursions
in an optimal way in non-stationary and well-specified (gaussian) settings. Finally, online aggregation algorithms for
probability forecasting have been recently developed by Thorey et al. (2017), V’yugin and Trunov (2019) and Werge
and Wintenberger (2021).

Our contributions. We aim to provide an extension of the OCO analysis consistent with unbounded non-stationary time
series environments. Our first contribution is to define the SOCO problem in full generality with the convex assumption
holding on Lt and not on `t. We can use SOCO analysis to prove slow rate stochastic regret bounds in the bounded
setting. See Section B for the OGD case. Then we define the stochastic exp-concavity condition on Lt that is crucial
to our approach: we obtain the control of the risk function with a "surrogate loss" using a self bounded martingale
arguments of Bercu and Touati (2008). This "surrogate loss" coincides with the linearized loss plus a quadratic variation
term. The ONS algorithm of Hazan and Kale (2011) controls this term and thus solves SOCO problems with fast rate
stochastic regret bounds in high probability.

Then we turn to the Stochastic Online Aggregation (SOA) problem. We remark that the stochastic exp-concavity
condition is consistent in SOA as it coincides with the weak exp-concavity of Gaillard and Wintenberger (2018) with
β = 1, linking Bernstein conditions of Koolen et al. (2016) and Wintenberger (2017) and exp-concavity. In our
unbounded conditionally subgaussian setting, a major problem is the dependence in the maximum of the losses, which
increases as O(

√
log T ). Thus, the existing regret bounds for scale-free aggregation strategies Mhammedi et al. (2019);

Orseau and Hutter (2021) would turn into O(log T ) for T large. To bypass this issue, we introduce a scale-free version
of the algorithm BOA of Wintenberger (2017) which achieves a O((log log T )2) in our setting. Then BOA and ONS
are combined for solving the SOCO problem of the gaussian probabilistic forecast of time series. We generalize
the ARMA-based method of Anava et al. (2013) to predict unbounded non-stationary misspecified subgaussian time
series. A crucial point is that we can use SOCO to predict volatilities (conditional variances), as the risk function
is stochastically exp-concave even though the corresponding logarithmic loss function is not convex. We combine
ARMA and volatility prediction methods to design weak gaussian forecasters and an ensemble probabilistic forecasting
algorithm mixing them. Up to our knowledge, it is the first time that a probabilistic forecast method achieves optimal
non-asymptotic theoretical guarantees.
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2 Preliminaries and assumptions

We consider a probability space (Ω,A,P) equipped with a filtration (Ft), t ≥ 0 (F0 = {∅,Ω}).
Definition 1. A Stochastic OCO (SOCO) problem consists in a bounded body K ⊂ Rd and a sequence of random loss
functions (`t) defined over K and adapted to the filtration (Ft) so that the random risk function Lt = E[`t | Ft−1] =
Et−1[`t] is convex. A SOCO algorithm predicts a point xt ∈ K that is Ft−1-measurable incurs Lt(xt) = Et−1[`t(xt)].

The main difference with OCO is that the risk function Lt is never observed but only the gradients of the loss function
∇`t(xt) ∈ Ft at each step t. With that respect, the setting is close to the SG one of Bottou et al. (2018). The main
application we have in mind is probabilistic forecasting.

Remark 1. A probabilistic forecasting algorithm predicts at each step xt parametrizing a distribution Pxt
as the

candidate for the distribution of a variable of interest yt given past observations yt−1, . . . , y1 assumed to be Ft−1-
measurable. As in Gneiting and Raftery (2007) we consider a scoring rule S so that the reward at step t is S(Pxt , yt) =
`t(xt). Then the risk function is the expected score, also denoted S in Gneiting and Raftery (2007), which is now
seen as a discrepancy measure between probabilities Lt(xt) = Et−1[S(Pxt , yt)] =: S(Pxt , Pt) where Pt denotes the
distribution of yt given Ft−1. Considering the logarithmic score S(P, y) = log(p(y)) where p is the density of P we
get

Lt(xt) = S(Pxt
, Pt) = Et−1[log(pxt

(yt))] = KL(Pt, pxt
)− Et−1[log(pt(yt))]

where KL denotes the Kullback-Leibler divergence.

All along with the paper, we will assume

(H1) The diameter of K is D <∞ so that ‖x− y‖ ≤ D, x, y ∈ K, `t are continuously differentiable over K a.s. with
integrable gradients.

The SOCO setting extends the OCO setting. We consider an OCO problem in the stochastic adversarial environment
when `t is a convex random function whose distribution is arbitrary and may depend on xt, . . . , x1.

Proposition 1. Any OCO problem is a SOCO problem, and, under (H1), any OCO problem in the stochastic adversarial
environment turns into a SOCO problem.

Proof. One can consider that `t is random with a degenerate distribution δ{`t}, the Dirac mass at `t. It is a SOCO
problem equipped with the natural filtration is Ft−1 = {∅,Ω} and Lt = `t. Under (H1) the gradients are integrable so
that one can differentiate under the integral and∇Lt = Et−1[∇`t]. The expectation of a convex function Lt = Et−1[`t]
is a convex function regardless of the distribution of `t. It is a SOCO problem accompanied with the filtration
σ(`t, . . . , `1), t ≥ 1.

Applying Proposition 1, the optimal rates O(
√
T ) or O(log T ) in the OCO setting are also optimal in the SOCO

setting by extension. We will mainly focus on fast rate stochastic regret bounds assuming the following stochastic
exp-concavity condition:

(H2) The random loss functions `t, t ≥ 1, are stochastically exp-concave for some α ≥ 0:

Lt(y) ≤ Lt(x) +∇Lt(y)T (y − x)− α

2
Et−1[(∇`t(y)T (y − x))2] , x, y ∈ K , a.s.

Notice that (H2) with α = 0 coincides with the convexity of Lt but does not imply the convexity of `t, see Section B for
the SOCO analysis of the OGD with a O(

√
T ) rate. In the iid setting stochastic exp-concavity has been introduced in an

alternative way by Van Erven et al. (2015), making explicit a condition introduced in Juditsky et al. (2008). Condition
(H2) was also used by Gaillard and Wintenberger (2018) over the unit `1-ball under the name β = 1-weak exp-concavity.
It implies the Bernstein condition of van Erven and Koolen (2016) with β = 1 in the iid setting with convex losses.
Applying Lemma 4.3 of Hazan (2019), (H2) with α = 1/2(µ∧ 1/(4GD)) is implied by the µ-exp-concavity of the loss
function under (H1). Condition (H2) also holds with α = µ/G2 for µ-strongly convex risk functions (Lt). Stochastic
exp-concavity has strong links with classical statistical notions.

Proposition 2. If the loss function is twice continuously differentiable then Condition (H2) implies

αEt−1[∇`t(x)∇`t(x)T ] � ∇2Lt(x), x ∈ K . (1)

3
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In probabilistic forecasting, if Pt is in the exponential family so that its conditional density pt(y) is proportional to
eT (y)T x∗t−`t(x

∗
t ) with sufficient statistic T (y) and some x∗t ∈ K then for the logarithmic score

Et−1[∇`t(x∗t )∇`t(x∗t )T ] = Et−1[∇x∗t S(Px∗t , yt)
T∇x∗t S(Px∗t , yt)

T ] = ∇2
x∗t
S(Px∗t , Px∗t ) = ∇2Lt(x

∗
t ) ,

and necessarily α ≤ 1. We refer to this setting as the well-specified one.

Proof. Inequality (1) follows easily from a second-order expansion. The second assertion is the Fisher information
identity.

It is very likely that Condition (H2) holds in settings close to the well-specified one without any convexity assumption.
It is a major advantage of the SOCO approach to include usual bounded setting as well as well-specified setting as
developed in Example 1. In the iid setting under (1), the excess of the static and deterministic risk Lt = E[`t] of the
ERM is bounded by

T−1Tr(E[∇2`t(x
∗)]−1E[∇`t(x∗)∇`t(x∗)T ]) ≤ d

αT
(x∗ = arg min

x∈K
Lt(x),∀t ≥ 1) .

The left-hand side is also the optimal variance of any preconditioning online gradient algorithm, see Murata and Amari
(1999). As the equality is achievable in any well-specified iid setting with the logarithmic score, it confirms that the
optimal rate of the stochastic regret is O(log T ).

Regarding probabilistic forecasting, Condition (H2) is a condition on the scoring rule S, the parametrization x 7→ Px
and the distribution Pt of the variable of interest yt given Ft−1

S(Py, Pt) ≤ S(Px, Pt) +∇yS(Py, Pt)
T (y − x)− α

2
Et−1[(∇yS(Py, yt)

T (y − x))2] , x, y ∈ K , a.s.

We give some examples from probabilistic forecasting literature where Condition (H2) is satisfied. Notice that some
natural loss functions are not convex, in particular for the important problem of volatility calibration. See Patton (2011)
and Point 2. below.

Example 1. We consider the probabilistic forecasting setting with logarithmic scoring rule.

1. We consider Px = N (x, σ2) so that `t(x) = (x− yt)2/(2σ2) (plus constant). In the classical OCO problem,
`t is σ2/D2-exp-concave if yt ∈ K. This setting requires implicitly that the distributions Pt are K supported.
In the SOCO problem, cases yt /∈ K are tractable assuming that the conditional distribution Pt has mean
mt = Et−1[yt] and finite variance σ2

t = Var (yt | Ft−1). The loss is not exp-concave but the risk still satisfies
Condition (H2) with α = σ2/D2 assuming that mt ∈ K for all t ≥ 1. The well-specified unbounded case
Pt = N (x, σt) is included in our analysis when Et−1[yt] ∈ K so that Condition (H2) is satisfied, see also
Section 5.1.

2. If we consider Px = N (mt, x) then `t(x) = (log(x) + (yt −mt)
2/x)/2 (plus constant) is convex only if

0 < x ≤ 2(yt −mt)
2 which is a very unrealistic assumption. Using SOCO, if the conditional distribution Pt

has mean mt and volatility σ2
t ≤ σ2, σ2 > 0, then the risk Lt(x) = (log(x) + σ2

t /x)/2 is µ-strongly convex
if σ2

t ≥ σ2/2 + µσ6. Condition (H2) is satisfied with α = µ/G2. It holds for instance if K = [cσ2/2, σ2],
1 < c < 2, σ2

t ∈ K for all t ≥ 1 and then α = (c − 1)c2/(2(2 − c)2) since µ = (c − 1)/(2σ4) and
G = (2− c)/(cσ2).

3. If we consider Px = N (xyt−1, σ
2) then `t(x) = (yt − xyt−1)2/(2σ2) (plus constant). It corresponds to the

Auto-Regressive of order 1 (AR(1)) model, see Section 5.1 for more general ARMA model. In the well-specified
setting Pt = N (x∗yt−1, σ

2) we easily check the Fisher-information identity

Et−1[∇`t(x∗)∇`t(x∗)T ] = y2
t−1Et−1

[ (yt − x∗yt−1)2

σ4

]
=
y2
t−1

σ2
= ∇2Lt(x

∗) .

Despite Lt is not strongly convex when y2
t−1 is not lower bounded, Condition (H2) is satisfied with α = 1 in

any adversarial stochastic setting since `t is exp-concave. This latter fact is crucial in the analysis of the ONS
for ARMA models in Anava et al. (2013).

3 ONS achieves fast rate in SOCO problems

4
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3.1 Surrogate losses for SOCO problems

We base our approach on an observed "surrogate loss" that upper-bounds the stochastic regret using a self-bounded
exponential inequality for martingales from Bercu and Touati (2008), see the proof in Appendix A.1. Notice that there
is no boundedness assumption on the gradients∇`t.
Proposition 3. Under (H1) and (H2), with probability 1− δ for any 0 < δ ≤ 1, it holds for any λ > 0 and any T ≥ 1

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
T∑
t=1

∇`t(xt)T (xt − x) +
λ

2

T∑
t=1

(∇`t(xt)T (xt − x))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2] +
2

λ
log(δ−1) .

Following van Erven and Koolen (2016), we interpret ˜̀t(xt) = ∇`t(xt)T (xt − x) + λ
2 (∇`t(xt)T (xt − x))2, t ≥ 1,

as a "surrogate loss". This additional term seems necessary for upper-bounding the stochastic regret. Algorithms that
could solve SOCO problems would have to minimize the cumulative surrogate loss

∑T
t=1
˜̀
t rather than the cumulative

loss
∑T
t=1 `t as in the usual regret analysis. This trick is the main novelty of our approach compared with the usual

"online to batch" conversion, which derives stochastic regret bounds from any online procedures minimizing the usual
regret. Under Condition (H2) with α > 0, it is indeed painless to consider a self-controlling second-order term into
the "surrogate losses" since it is counterbalanced by its own compensator

∑T
t=1 Et−1[(· · · )2] that is negative when

λ < α. The martingale’s quadratic variation controls the additional second-order term using the Poissonnian inequality
of Proposition 5 in a second step.

3.2 ONS in the SOCO problem

The cumulative surrogate losses
∑T
t=1
˜̀
t is implicitly minimized in the regret analysis of the ONS in Hazan (2019).

Then ONS, described in Algorithm 2, Appendix D, achieves a fast stochastic regret bound. Using the Sherman-Morrison
formula, each step of ONS has a O(d2 + P )-cost where P is the cost of the projection, usually P = O(d3) as
emphasized by Koren (2013).

Proposition 3 holding for unbounded gradients it allows to consider sug-gaussian gradients. We introduce the Orlicz
function ψ2(x) = exp(x2) − 1 , x ∈ R and conditional sub-gaussian random variables are such as the Orlicz norm
‖Yt‖ψ2,t = inf{c > 0 ; Et−1[ψ2(Yt/c)] ≤ 1 a.s.} is finite. Our assumption is a conditional variant of the Bernstein
condition:

(H3) The gradients ∇`t, t ≥ 1 satisfy for Gψ2 , G2 <∞ and all k ≥ 1, t ≥ 1, x ∈ KEt−1[(∇`t(xt)T (xt − x))2k] ≤ k!(Gψ2
D)2(k−1)Et−1[(∇`t(xt)T (xt − x))2] a.s.,

Et−1[‖∇`t(xt)‖2k] ≤ k!G
2(k−1)
ψ2

Et−1[‖∇`t(xt)‖2] a.s.,

Et−1[‖∇`t(xt)‖2] ≤ G2
2 a.s. .

Condition (H3) is satisfied in the bounded case ‖∇`t(xt)‖2 ≤ G2, t ≥ 1, with Gψ2 ≤ G. In Section A.3, we check
Condition (H3) when∇`t(xt) is a gaussian random vector given Ft−1:
Proposition 4. Condition (H3) is satisfied for conditionally gaussien case with Et−1[‖∇`t(xt)‖2] ≤ G2

2, t ≥ 1, with
Gψ2

= 8.5G2 .

In order to control the second order terms in Proposition 3, we use a Poissonian exponential inequality for squares of
sub-gaussian random variables proved in Section A.4:
Proposition 5. Assume that the random variable Y is subgaussian. Then it satisfies Condition (H3): there exists
K > 0 such that E[Y 2k] ≤ k!K2(k−1)E[Y 2], for any k ≥ 1. Moreover we have E[exp(η(Y 2−E[Y 2]/(1− ηK2))] ≤
1 , ηK2 < 1 .

Combining in Appendix A.5 the self bounded inequalities for martingales with random second order and the Poissonian
inequality on the squares of the gradients, we obtain:
Theorem 6. Under (H1) and (H3), the ONS algorithm 2 for γ = α/3 satisfies with probability 1− 3δ the stochastic
regret bound
T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ 3

2α

(
1 + d log

(
1 +

2α2D2(TG2
2 +G2

ψ2
log(δ−1))

9

))
+
(4α(Gψ2

D)2

9
+

18

α

)
log(δ−1)

5
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valid for any T ≥ 1 and any x ∈ K.

Our result extends existing fast rate stochastic regret bounds far beyond the settings previously considered for the ONS.
In the iid setting, we sharpen the stochastic regret bound of Mahdavi et al. (2015). Indeed the term log(δ−1) is not
perturbed with powers of T compared with the bound in Mahdavi et al. (2015). De Vilmarest and Wintenberger (2020)
already obtained such sharp stochastic regret bounds for the ONS in the iid setting.

4 BOA achieves fast rate in Stochastic Online Aggregation

4.1 Stochastic Online Aggregation

We consider xt = [x
(1)
t , . . . , x

(K)
t ] a d × K matrix whose columns are K different online predictors x(i)

t that are
Ft−1-measurable. We denote x̂t = xtπt =

∑K
i=1 πix

(i)
t their aggregation, πt in the simplex ΛK = {π ∈ RK ; π >

0,
∑K
i=1 πi = 1}. We are seeking an aggregation strategy that combines the predictors in an optimal way for the

stochastic regret.

We have under (H2) the relation

Lt(x̂t)− Lt(xtπ) ≤ ∇Lt(xtπt)Txt(πt − π)− α

2
Et−1[(∇`t(xtπt)Txt(π − πt))2] .

Thus we are back to a SOCO problem with a loss π → Lt(xtπ) over K = ΛK that is stochastically exp-concave with
the same constant α than for the original SOCO problem. Since the stochastic exp-concavity condition also hold for
this problem, from Proposition 3 we have

T∑
t=1

Lt(x̂t)− Lt(xtπ) ≤
T∑
t=1

∇`t(xtπt)Txt(πt − π) +
λ

2

T∑
t=1

(∇`t(xtπt)Txt(πt − π))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xtπt)Txt(πt − π))2] +
2

λ
log(δ−1) . (2)

We use an aggregation strategy that minimizes the "surrogate losses" `t(π) = (πt − π)T `t − α((πt − π)T `t)
2 with the

gradient trick `t = xTt ∇`t(xtπt). Not observing the competitor π, we use the fact that the linear optimization over
K = ΛK reduces to compare the aggregation strategy x̂t to π ∈ {ei, 1 ≤ i ≤ K}, i.e., with the best predictor x(i)

t . We
call this problem the Stochastic Online Aggregation one. Exponential Weighted Aggregation (EWA) would be a natural
candidate for obtaining an aggregation. However, this procedure based on the loss `t and not on the "surrogate loss" ˜̀t
fails to provide a fast rate with high probability as shown by Audibert (2008).

4.2 Scale free BOA in the SOA problem

The Bernstein Online Aggregation (BOA) described in Algorithm 1, has been designed as an alternative of EWA that

Algorithm 1: Bernstein Online Aggregation, Wintenberger (2017) (scale free version)

Initialization: Initial weights π1 ∈ ΛK and η−2
0 = L̃0 = 0 (∈ RK).

For each step t ≥ 1:

Recursion: Update η−2
t = η−2

t−1 + (`t − πTt `t I1)2/
√

log(π−1
1 ) ,

L̃t = L̃t−1 + (`t − πTt `t I1) + ηt−1(`t − πTt `t I1)2 ,

πt+1 =
ηt exp(−ηtL̃t)π1

πT1 (ηt exp(−ηtL̃t+1))
.

achieves fast rate stochastic regret bounds with high probability. We consider a scale-free version of BOA in full
generality with `t ∈ Rd being the vector of the losses of the experts. The notation I1 = (1, . . . , 1)T and the operations
implying vectors are thought componentwise. The coordinate-wise learning rate ηt,i is only well defined after the first
observation of mi := (`t,i − πTt `t) 6= 0, 1 ≤ i ≤ K. Before that time one uses the convention 0/0 = 0 in the updates
and then L̃t = L̃t−1 = L̃0 = 0. Contrary to the ONS, the algorithm BOA is parameter-free (it does not require the
knowledge of α), and each step has a O(K)-cost.

6
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Theorem 7. If π1,i ≤ 1/e, 1 ≤ i ≤ K, the algorithm BOA 1 achieves the regret bound

T∑
t=1

πTt `t −
T∑
t=1

πTt `t,i ≤

√√√√log(π−1
1,i )

T∑
t=1

(πTt `t − `t,i)2
(

3

+

∑K
i=1 log(1 + (MT,i/mi)

2) + log
(
πT1
(

exp(
√

log(π−1
1 )) + log

(
1 + (MT /m)2T

))√
log(π−1

1,i )

))
(3)

where MT = max2≤t≤T |`t − πTt `t I1| ∈ RK .

The proof is provided in Appendix A.6. Other scale free aggregation strategies have been studied recently by
Mhammedi et al. (2019); Orseau and Hutter (2021). These versions use the maximum of the instantaneous regret
‖`t − πTt `t I1‖∞ and the term

∑K
i=1 log(1 + (MT,i/mi)

2) in the regret bound (3) is replaced with ‖MT ‖∞. Their
bounds are optimal in the bounded setting. However, in any unbounded stochastic setting, our regret bound (3) is
better for T large, even more when the ranges of the marginal losses are different. For instance consider that one
expert is iid standard gaussian (let say the first one) and the other ones are bounded. Then MT,1 ∼

√
2 log T and thus∑K

i=1 log(1 + (MT,i/mi)
2) ∼ log log T whereas ‖MT ‖∞ ∼

√
2 log T for T large. Next we provide a regret bound in

the SOCO setting when `t = xTt ∇`t(xtπt).

Theorem 8. Under (H1) and (H3) on∇`t(xtπt) together with ‖x(i)
t ‖ ≤ D for all t ≥ 1, 1 ≤ i ≤ K, BOA algorithm

1 satisfies with probability 1− 3δ the stochastic regret bound
T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤ 24

α
log(π−1

1 ) +
(3K2 + 1)

α

(
log
(

1 +
2G2

ψ2
log T

m2

))2

+O((log log log T )2) +
(2α

3
(Gψ2D)2 +

6

α

)
log(δ−1) .

valid for any T ≥ 1, 1 ≤ i ≤ K and m > 0 such that P(min1≤i≤K mi ≥ m) ≤ 1− δ.

We extend the stochastic regret bound obtained by Wintenberger (2017) in the bounded iid setting. As SOA is an easier
problem than SOCO, the rate of the stochastic regret bound is O((log log T )2). See Appendix A.7 for the proof. In the
unbounded setting, the choice of the initial weights π1 is not crucial for the regret analysis when T is large. Mhammedi
et al. (2019); Orseau and Hutter (2021) have a leading term O(log T ) also independent of π1 in the unbounded setting.
A practical choice is uniform weights, which we do in the following sections.

5 BOA-ONS for online prediction and probabilistic forecast of time series

We provide examples of time series probabilistic forecasting following our approach. We consider an unbounded
non-stationary time series (yt) and the aim is to predict the distribution Pt+1 of the next observation yt+1 given Ft. We
focus on the logarithmic score associated with the KL-divergence risk function. The previous seminal work Giraud
et al. (2015) focusses on the prediction of yt, i.e. the estimation of mt = Et−1[yt]. Fast rate stochastic regret bounds in
expectation for the SOA problem were provided by Giraud et al. (2015) using EWA and thus cannot hold with high
probability. However, it is crucial to have high probability guarantees for probabilistic forecasting problems; see Section
C.1 for an illustration on prediction intervals. Up to our knowledge, we consider the first online algorithms involving
the volatility σ2

t = Var (yt | Ft−1) with optimal guarantees in a non-stationary time series setting. The volatility σ2
t is

necessary for designing gaussian probabilistic forecaster N (mt, σ
2
t ). It has been widely used in many applications

such as electricity load Guan et al. (2013) and in any heteroscedastic time series analysis since it quantifies the risk
of a decision such as prediction or investment, see McNeil et al. (2015) for more details. We cannot use the existing
OCO approaches for studying the estimation of the volatility as the natural loss functions are not convex as discussed in
Example 1.2.

5.1 Online ARMA prediction by BOA-ONS

AutoRegressive Moving Average (ARMA) modeling is standard in time series prediction. See Brockwell and Davis
(1991) for a reference textbook. Consider the gaussian forecast N (m̂

(p)
t (x), σ2) for arbitrary σ2 > 0 (notice that σ2

cancels in the ONS algorithm),

m̂
(p)
t (x) = xT ((yt−1 ∧D/2) ∨ (−D/2), . . . , (yt−p ∧D/2) ∨ (−D/2))

7
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and K = B1(1), the `1 unit-ball of dimension p. We assume that the mean mt of Pt satisfies 2|mt| ≤ D a.s. and finite
variance σ2

t . The KL-divergence is

KL(Pt,N (m̂
(p)
t (x), σ2)) =

1

2

(
log(2π) + log(σ2) +

(mt − m̂(p)
t (x))2 + σ2

t

σ2

)
+ Et[log(pt(yt))]

and satisfies condition (H2) as a function of x ∈ K with α = σ2/D2 as in Example 1.

Applying Theorem 6, the ONS achieves the stochastic regret

T∑
t=1

KL(Pt,N (m̂
(p)
t (xt), σ

2))−
T∑
t=1

KL(Pt,N (m
(p)
t (x), σ2)) ≤ O(D2(p log T + log(δ−1)))

with high probability. Following the approach of Anava et al. (2013), we consider increasing orders p since any
contracting ARMA model admits an AR(∞) representation. For the orders p ∈ {1, . . . , log T/(log log T )2}, the ONS
predictors m̂(p)

t (xt) are aggregated with BOA in m̂t. The obtained BOA-ONS algorithm achieves the cumulative
KL-divergence bound

T∑
t=1

KL(Pt,N (m̂t, σ
2)) ≤ min

1≤p≤log T/(log log T )2
min

x∈B∞(1)

{ T∑
t=1

KL(Pt,N (m
(p)
t (x), σ2)) +O(p log T )

}
+O(D2 log(δ−1))

improving the bound minx∈B∞(1)

∑T
t=1KL(Pt,N (m

(log T )
t (x), σ2)) +O(log2 T ) obtained by Anava et al. (2013).

Moreover our bound is valid in any sub-gaussian stochastic adversarial setting where 2|Et−1[yt]| ≤ D. In particular
(yt) does not satisfy any ARMA model on the contrary with the setting of Anava et al. (2013).

5.2 Online volatility prediction by BOA-ONS

In mathematical finance the log ratios yt are usually considered as centered and modeled by Generalized AutoRegressive
Conditionally Heteroscedastic (GARCH). The inference uses the likelihood approach as if the conditional distributions
were gaussian, see Francq and Zakoian (2019). Thus Pt has conditional mean mt = 0 and volatility σ2

t . Motivated by
financial risk management McNeil et al. (2015), we provide an online estimator σ̂2

t of the volatility minimizing the
KL-divergence KL(Pt,N (0, σ̂2

t )) = (log(2πσ̂2
t ) + σ2

t /σ̂
2
t )/2, known as the QLik risk (see Patton (2011)).

We consider σ2
t , σ̂

2
t ∈ [cσ2/2, σ2] with 1 < c < 2 such that σ̂2

t → KL(Pt,N (0, σ̂2
t )) satisfies Condition (H2) with α

as in Example 1, 2. Notice that without any lower boundedness assumption on the volatility, Qlik based procedures are
inconsistent as shown by Francq and Zakoïan (2010). Using the ARCH(q) model we parametrize

σ̂
2,(q)
t (x) = cσ2/2 + x1(y2

t−1 ∧ σ2) + · · ·+ xq(y
2
t−q ∧ σ2) (4)

and Kc = {x ∈ Rq : xi ≥ 0 and ‖x‖1 ≤ 1− c/2} so that σ̂2,(q)
t ∈ [cσ2/2, σ2]. Then Condition (H2) also holds on

the function x→ KL(Pt,N (0, σ̂
2,(q)
t (x)) and, applying Theorem 6, the ONS achieves the stochastic regret with high

probability

T∑
t=1

KL(Pt,N (0, σ̂
2,(q)
t (xt)))−

T∑
t=1

KL(Pt,N (0, σ̂
2,(q)
t (x))) ≤ O(σ2(q log T + log(δ−1))).

Similar as the ARMA prediction approach of Anava et al. (2013), any contracting GARCH model admits an ARCH(∞)
representation and it is tempting to consider ARCH(q) models with increasing order q. We consider BOA-ONS σ̂2

t

aggregating σ̂2,(q)
t (xt), q = 1, . . . , log T/(log log T )2 so that with high probability

T∑
t=1

KL(Pt,N (0, σ̂2
t )) ≤ min

1≤q≤log T/(log log T )2
min
x∈K

{ T∑
t=1

KL(Pt,N (0, σ2,(q)(x)))

+O(q log T )
}

+ σ2 log(δ−1) .

As an illustration, we apply BOA-ONS for designing 90%-prediction intervals for the S&P500 index during 2020,
including the COVID crisis in March. We use the iid and ARCH(p) gaussian probabilistic forecasters for p = 1, . . . , 5.

8
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Different experiments with the square risk fail because it is not robust to extremes and we use the Qlik risk. The
forecasters are tuned online with the ONS (γ = 1 and projection on [c,∞]×K0 with c = 0 in the iid case and c = 10−16

in the ARCH cases) in Figure 5.2 on the left. On the right of Figure 5.2 the forecasters are aggregated with BOA. We
notice that the iid forecast prediction interval is constant after some training period. The ARCH forecasts are required to
predict intervals accurately during the crisis. BOA converges converges to weights (0.01, 0.17, 0.09, 0.37, 0.21, 0.15).

Figure 1: 90%-prediction intervals from 6 forecasters (left) and their BOA aggregation (right).

5.3 Online gaussian prediction using BOA-ONS

We combine the ARMA and volatility prediction methods. We consider the weak gaussian probabilistic forecaster
N (m̂

(p)
t (x), σ̂

2,(q)
t (x)) where x ∈ Rp+q ∈ K = {x ∈ Rp+q : ‖x1:p‖ ≤ 1, xp+1:q ≥ 0 and ‖xp+1:q‖1 ≤ 1 − c/2}.

Under the condition D2 < (c − 1)σ2/2 then Lt is strongly convex and thus Condition (H2) holds with α =
c2((c− 1)σ2/2−D2)

4D2(σ2 + 1/2)
. Aggregating such predictors for 1 ≤ p, q ≤ log T/(log log T )2 with BOA, we obtain a

gaussian probabilistic forecast N (m̂t, σ̂
2
t ) satisfying the cumulative KL-divergence bound

T∑
t=1

KL(Pt,N (m̂t, σ̂
2
t )) ≤ min

1≤q,p≤log T/(log log T )2
min
x∈K

{ T∑
t=1

KL(Pt,N (m
(p)
t (x), σ2,(q)(x))) +O((p+ q) log T )

}
+O(D2σ2 log(δ−1))

with high probability. This stochastic regret bound holds for any conditionally sub-gaussian non-stationary time series
(yt) such that the conditional distributions Pt localize 2|mt| ≤ D and σ2

t ∈ [cσ2/2, σ2], t ≥ 1.

Remark that the value of α provided above is a lousy lower bound. One should use another time BOA to aggregate
several ONS predictors trained with different exp-concavity constants α as in Section C.2.

5.4 Online ensemble probabilistic forecasting using BOA-ONS

Following the approach of Thorey et al. (2017), we combine weak probabilistic forecasters for obtaining an ensemble
probabilistic forecaster. Consider P̂t = (P̂

(i)
t )1≤i≤K ,K weak probabilistic forecasters with densities p̂t = (p̂

(i)
t )1≤i≤K

such as P̂ (i)
t = N (m̂

(j)
t , σ̂2,`

t ) with different localization, jD+D/
√

2 ≤ m̂(j)
t ≤ (j + 1)D+D/

√
2, for −K1 ≤ j ≤

K2 and σ̂2,`
t ∈ [(c/2)`+1σ2/2, (c/2)`σ2] for 0 ≤ ` ≤ K3. Consider the SOCO problem of finding the mixture xT P̂

with K = ΛK and `t(x) = − log(xT p̂t(yt)). We assume that m ≤ p̂(i)
t (yt) ≤M a.s. for 1 ≤ i ≤ K, t ≥ 1 so that the

gradients are bounded by G =
√
KM/m. The loss function is µ = 1 exp-concave and Condition (H2) is satisfied with

α = 1/2(1 ∧ 1/(8G)) by an application of Lemma 4.3 of Hazan (2019).

We use ONS to solve this SOCO problem and we get
T∑
t=1

KL(Pt, π
T
t p̂) ≤ min

π∈ΛK

T∑
t=1

KL(Pt, π
T p̂) +O(G(K log T + log(δ−1))) .

Similar fast rate regret bounds were obtained by Thorey et al. (2017) for the CRPS score instead of the KL-divergence.
They used the Recursive Least Square algorithm without projection that does not constrain πt to be in ΛK . On the
contrary to our procedure, it is not easy to interpret their ensemble probabilistic forecast because it does not satisfy the
axioms of a density function.

9
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6 Conclusion and future works

In this paper, we derive fast rate stochastic regret bounds for the ONS and BOA algorithms under stochastic exp-
concavity of the risk function (see Sections 3 and 4.2 respectively). We alleviate the convexity assumption on the loss
function. Thus we can study online probabilistic forecasting using the logarithmic score. We localize weak gaussian
forecasters and then we can mix them into an ensemble method. Our probabilistic forecasting approach is the first
to achieve an optimal stochastic regret bound in any stochastic adversarial setting. Thus it predicts adaptively and
efficiently any conditionally sub-gaussian non-stationary time series.

Our stochastic regret bounds are relative to any static prediction parametrized by x ∈ K. Forecasting non-stationary
time series, it is interesting to consider competitors that evolve through time. Key Propositions 3 and 5 extend readily to
this setting. Thus, one would like to develop SOCO tracking problems and algorithms in the spirit of Fixed Share of
Herbster and Warmuth (1998) and FLH of Hazan (2019) to establish stochastic adaptive regret bounds.
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A Appendix

A.1 Proof of Proposition 3

Denoting Yt = ∇`t(xt)T (xt − x), we observe that under (H2) it holds

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
T∑
t=1

Et−1[Yt]−
α

2
Et−1[Y 2

t ]. (5)
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Moreover, from Lemma B.1 of Bercu and Touati (2008) for any random variable Yt and any η ∈ R we have

Et−1

[
exp(η(Yt − Et−1[Yt])−

η2

2
(Et−1[Y 2

t ]− Et−1[Yt]
2 + (Yt − Et−1[Yt])

2))
]
≤ 1 .

Developing the square, we obtain

Et−1

[
exp(η(Yt − Et−1[Yt])−

η2

2
(Et−1[Y 2

t ] + Y 2
t ) + η2Et−1[Yt]Yt

]
≤ 1 .

Using Young’s inequality together with Jensen’s one, we derive

Et−1[Yt]Yt ≥ −(Et−1[Yt]
2 + Y 2

t )/2 ≥ −(Et−1[Y 2
t ] + Y 2

t )/2

and the exponential inequality

Et−1[exp(η(Yt − Et−1[Yt])− η2(Et−1[Y 2
t ] + Y 2

t )] ≤ 1 .

We obtain the desired result applying a classical martingale argument due to Freedman (1975) and recalled in Appendix
A.2. Indeed, using the notation of Appendix A.2 with Zt = η(Yt − Et−1[Yt])− η2(Et−1[Y 2

t ] + Y 2
t ), we have

P(∃T ≥ 1 : MT > δ−1) ≤ δ , 0 < δ < 1 ,

where MT = exp(
∑T
t=1 Zt). Considering η = −λ/2 for any λ > 0, it holds with probability 1− δ for any T ≥ 1

T∑
t=1

(
− λ

2
(Yt − Et−1[Yt])−

λ2

4
(Et−1[Y 2

t ] + Y 2
t )
)
≤ log(δ−1)

⇔
T∑
t=1

Et−1[Yt] ≤
T∑
t=1

Yt +
λ

2
(Et−1[Y 2

t ] + Y 2
t ) +

2

λ
log(δ−1)

which, combines with (5), yields the desired result.

A.2 The stopping time argument of Freedman (1975)

We recall the argument of Freedman (1975) as we apply it several times in the proofs of the paper. Consider MT =

exp(
∑T
t=1 Zt) for any Zt adapted to a filtration Ft and satisfying the exponential inequality E[exp(Zt) | Ft−1] ≤ 1.

Then we have

P
(
∃T ≥ 1 :

T∑
t=1

Zt > log(δ−1)
)
≤ δ

for any 0 < δ < 1 by applying the following lemma.
Lemma 9. Let (Ft) be a filtration and (Mt) a super-martingale satisfying M0 = 1 a.s. If Mt is adapted to Ft and
E[Mt | Ft−1] ≤Mt−1 a.s., t ≥ 1, then, for any 0 < δ < 1, it holds

P(∃T ≥ 1 : MT > δ−1) ≤ δ .

Proof. We apply the optional stopping theorem with Markov’s inequality defining the stopping time τ = inf{t > 1 :
Mt > δ−1} so that

P(∃t ≥ 1 : Mt > δ−1) = P(Mτ > δ−1) ≤ E[Mτ ]δ ≤ E[M0]δ ≤ δ .

A.3 Proof of Proposition 4

We first show that ∥∥∥ ∇`t(xt)T (xt − x)√
Et−1[(∇`t(xt)T (xt − x))2]

∥∥∥
ψ2

≤
√

8/3 + (1/ log 2)2 = Kψ2
≈ 2.179 .

Then we derive

Et−1[(∇`t(xt)T (xt − x))2k]

Et−1[K2
ψ2

(∇`t(xt)T (xt − x))2]k
≤ k!Et−1

[
ψ2

( ∇`t(xt)T (xt − x)√
Et−1[K2

ψ2
(∇`t(xt)T (xt − x))2]

)]
≤ 2k! .
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Using Cauchy-Svhwarz inequality we derive that Et−1[(∇`t(xt)T (xt − x))2] ≤ Et−1[‖∇`t(xt)‖2]D2 ≤ G2
2D

2 and

Et−1[(∇`t(xt)T (xt − x))2k] ≤ k!2K2k
ψ2
Et−1[(∇`t(xt)T (xt − x))2]k

≤ k!2K2k
ψ2

(G2D)2(k−1)Et−1[(∇`t(xt)T (xt − x))2] .

Then we fix Gψ2 = 2K2
ψ2
G2 so that Condition (H3) follows. Let us denote µt and σt the mean and the variance of the

conditionally gaussian random variable. Then, N being standard gaussian distributed, we use the homogeneity and
triangular inequality on the norm ‖ · ‖ψ2

in order to derive∥∥∥ ∇`t(xt)T (xt − x)√
Et−1[(∇`t(xt)T (xt − x))2]

∥∥∥
ψ2

=
∥∥∥ σtN + µt√

Et−1[(σtN + µt)2]

∥∥∥
ψ2

≤ σt‖N‖ψ2 + ‖µt‖ψ2√
σ2
t + µ2

t

=
σt
√

8/3 + µt/ log 2√
σ2
t + µ2

t

and the desired results follows from Cauchy-Schwartz inequality.

A.4 Proof of Proposition 5

It is enough to show Condition (H3) for k > 1 when Y is not identically 0. Following Vershynin (2018), being
sub-gaussian is equivalent to ‖Y ‖ψ2

<∞ and thus

E[|Y |2k]

k!‖Y ‖2kψ2

≤ ψ2(Y/‖Y ‖ψ2
) ≤ 2 , k ≥ 4 .

One deduce easily the existence of K. Expanding the exponential and using Condition (H3) we get

E[exp(ηY 2)] =
∑
k=0

ηkE[Y 2k]

k!
≤ 1 + ηE[Y 2]

(
1 +

∑
k≥2

ηk−1K2(k−1)
)

= 1 +
ηE[Y 2]

1− ηK2
≤ exp(ηE[Y 2]/(1− ηK2))

for any ηK2 < 0 and the desired result follows.

A.5 Proof of Theorem 6

From the proof of the ONS regret bound in Hazan (2019), we get from the expression of the recursive steps (and not
using the convexity of the loss)

T∑
t=1

∇`t(xt)T (xt − x) ≤ γ

2

T∑
t=1

(∇`t(xt)T (xt − x))2 +
1

2γ
log(det(AT )/ det(A0)) +

1

2γ
.

Plugging this inequality into the previous bound we obtain

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤λ+ γ

2

T∑
t=1

(∇`t(xt)T (xt − x))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2]

+
1

2γ
log(det(AT )/det(A0)) +

1

2γ
+

2

λ
log(δ−1) .

Then we apply the Poissonian exponential inequality from Proposition 5 on the second order terms. More precisely,
denoting 0 ≤ Yt = (∇`t(xt)T (xt − x))2/(2(Gψ2

D)2), we obtain

Et−1[exp(Yt − 2Et−1[Yt])] ≤ 1 . (6)

13
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Combined with the argument due to Freedman (1975) recalled in Appendix A.2 we derive

P
(
∃T ≥ 1 :

T∑
t=1

Yt − 2

T∑
t=1

Et−1[Yt] > log(δ−1)
)
≤ δ , 0 < δ < 1. (7)

Thus an union bound provides
T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤3λ+ 2γ − α
2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2]

+
1

2γ
log(det(AT )/det(A0)) +

1

2γ
+ ((λ+ γ)(Gψ2

D)2 +
2

λ
) log(δ−1) .

Choosing 3λ = α− 2γ > 0 since γ < α/2 we conclude

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ 1

2γ
log(det(AT )/ det(A0)) +

1

2γ
+
(α+ γ

3
(Gψ2D)2 +

6

α− 2γ

)
log(δ−1) . (8)

From the initialization A0 =
1

(γD)2
Id, we obtain bound

log(det(AT )/ det(A0)) ≤ d log
(

1 + (γD)2
T∑
t=1

‖∇`t(xt)‖2
)
.

We apply the Poissonian exponential inequality from Propostion 5 on the second order terms 0 ≤ Yt =
‖∇`t(xt)‖2/(2G2

ψ2
) and, combined with the argument due to Freedman (1975) and Condition (H3) ensuring

Et−1[Yt] ≤ G2
2/(2G

2
ψ2

), we obtain

P
(
∃T ≥ 1 :

T∑
t=1

Yt − TG2
2/G

2
ψ2
> log(δ−1)

)
≤ δ , 0 < δ < 1.

We derive that, with probability 1− δ, it holds

log(det(AT )/ det(A0)) ≤ d log
(
1 + 2(γD)2(TG2

2 +Gψ2
log(δ−1))

)
, T ≥ 1 .

The desired result follows from the specific choice of γ and a union bound.

A.6 Proof of Theorem 7

We keep the same notation and convention as in Section 4.2. In particular, inequalities involving vectors are coordinate-
wise. With no loss of generality we assume that η1,i 6= 0 for all 1 ≤ i ≤ K. To prove the regret bound (3) we will
show that

πT1 exp(−ηT L̃T ) ≤ exp
( K∑
i=1

log(1 + (η1,iET,i)
2)
)
πT1

(
exp(

√
log(π−1

1 )) +
1

2
log
(

1 + (η1ET )2T
))

︸ ︷︷ ︸
=:AT

. (9)

From (9) we derive

−ηT L̃T = ηT

( T∑
t=1

(πTt `t I1− `t)−
T∑
t=1

ηt−1(πTt `t I1− `t)
2
)
≤ log(π−1

1 AT )

so that
T∑
t=1

πTt `t ≤ `t +

T∑
t=1

ηt−1(πTt `t I1− `t)
2 +

log(π−1
1 )

ηT
+

log(AT )

ηT
.

Since η−2
t = η−2

t−1 + (`t − πTt `t I1)2/ log(π−1
1 ) we get by Abel’s summation

T∑
t=1

ηt−1(πTt `t I1− `t)
2 = log(π−1

1 )

T∑
t=1

ηt−1(η−2
t − η−2

t−1) ≤ log(π−1
1 )

T∑
t=1

ηt−1 − ηt
η2
t

+
log(π−1

1 )

ηT
.

14
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We obtain from a comparison sum-integral
T∑
t=1

ηt−1(πTt `t − `t)
2 ≤ 2 log(π−1

1 )

ηT
.

The learning rate satisfying the relation

log(π−1
1 )

ηT,i
≤

√√√√log(π−1
1 )

T∑
t=1

(πTt `t − `t)2 ,

the regret bound (3) follows from the expression of log(AT ).

It remains to prove the exponential inequality (9). We use the identity

exp(−ηT L̃T ) = exp(ηT (πTT `T I1− `T )− ηT ηT−1(`T − πTT `T I1)2) exp(−ηT L̃T−1) .

In order to initiate the recursion, we use the basic inequality x ≤ xα + (α − 1)/α for x ≥ 0 and α ≥ 1 with
x = exp(−ηT L̃T−1) and α = ηT−1/ηT so that

exp(−ηT L̃T−1) ≤ exp(−ηT−1L̃T−1) +
ηT−1 − ηT

ηT
.

We obtain

exp(−ηT L̃T ) ≤ exp(ηT (πTT `T I1− `T )− ηT ηT−1(`T − πTT `T I1)2)
(

exp(−ηT−1L̃T−1) +
ηT−1 − ηT

ηT

)
, .

Then we use the expression

ηT =

√
log(π−1

1 )ηT−1√
log(π−1

1 ) + η2
T−1(`T − πTT `T I1)2

and the notation xT = ηT−1(`T − πTT `T I1)/
√

log(π−1
1 ) in order to derive

exp(−ηT L̃T ) ≤ exp
(
− xT + x2

T√
1 + x2

T

)(
exp(−ηT−1L̃T−1) +

ηT−1 − ηT
ηT

)
.

We use different bounds over the function ϕ : y ∈ R 7→ exp
(
− y + y2√

1 + y2

)
:

ϕ(y) ≤ exp(1/4) ≤ 1.3, ϕ(y) ≤ 1− y√
1 + y2

for any y ∈ R and ϕ(x) ≤ 1− y if y ≤ 0.4. Distinguishing whether

‖xT ‖∞ is larger or not than 0.4, we deduce

exp(−ηT L̃T ) ≤(1− ηT−1(`T − πTT `T I1)) exp(−ηT−1L̃T−1)1{‖xT ‖∞ ≤ 0.4}

+ (1− ηT (`T − πTT `T I1)) exp(−ηT−1L̃T−1)1{‖xT ‖∞ > 0.4}+ 1.3
ηT−1 − ηT

ηT

≤(1− ηT−1(`T − πTT `T I1)) exp(−ηT−1L̃T−1)1{‖xT ‖∞ ≤ 0.4}

+
(ηT−1

ηT
− ηT−1(`T − πTT `T I1)

)
exp(−ηT L̃T−1)1{‖xT ‖∞ > 0.4}+ 1.3

ηT−1 − ηT
ηT

≤
(ηT−1

ηT

)1{‖xT ‖∞>0.4}
exp(−ηT−1L̃T−1)

− ηT−1(`T − πTT `T I1) exp(−ηT−1L̃T−1) + 1.3
ηT−1 − ηT

ηT
.

The second inequality is obtained using the relations ηT−1/ηT ≥ I1 and 1− y√
1 + y2

> 0, y ∈ R. We have

πT1 exp(−ηT L̃T ) ≤
∥∥∥ηT−1

ηT

∥∥∥1{‖xT ‖∞>0.4}

∞
πT1 exp(−ηT−1L̃T−1)

−
(
π1ηT−1 exp(−ηT−1L̃T−1)

)T
(`T − πTT `T I1) + 1.3πT1

ηT−1 − ηT
ηT

.
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We recognize the weights

π1ηT−1 exp(−ηT−1L̃T−1) = πTπ
T
1 ηT−1 exp(−ηT−1L̃T−1)

and the second term in the upper bound is proportional to πtT (`T − πTT `T I1) = 0 and thus vanishes. We obtain

πT1 exp(−ηT L̃T ) ≤
∥∥∥ηT−1

ηT

∥∥∥1{‖xT ‖∞>0.4}

∞
πT1 exp(−ηT−1L̃T−1) + 1.3πT1

ηT−1 − ηT
ηT

and a recursive argument yields

πT1 exp(−ηT L̃T ) ≤ exp
( T∑
t=2

log
∥∥∥ηt−1

ηt

∥∥∥
∞

1{‖xt‖∞ > 0.4}
)(
πT1 exp

(
− η1L̃1

)
+ 1.3

T∑
t=2

ηT−1 − ηT
ηT

)
.

We bound the exponent term such as

T∑
t=2

log
∥∥∥ηt−1

ηt

∥∥∥
∞

1{‖xt‖∞ > 0.4} ≤
K∑
i=1

T∑
t=2

log
ηt−1,i

ηt,i
1{‖xt‖∞ > 0.4}

≤
K∑
i=1

(
log

η1,i

ηT−1,i
+ log

ηT−1,i

ηT,i

)
assuming with no loss of generality that ‖xT ‖∞ = ‖ηT−1`T /

√
log(π−1

1 )‖∞ > 0.4 in the last step such that ηT−1 ≤

0.4
√

log(π−1
1 )MT . Combined with

ηT−1,i

ηT,i
=
√

1 + η2
T−1,i(`T,i − πTT `T )2/ log(π−1

1,i ) ≤
√

1 + η2
1,iM

2
T,i/ log(π−1

1,i ) .

One achieves that
T∑
t=2

log
∥∥∥ηt−1

ηt

∥∥∥
∞

1{‖xt‖∞ > 0.4} ≤
K∑
i=1

log(1 + (η1,iMT,i)
2/ log(π−1

1,i )) .

Using exp(−η1L̃1) ≤ exp(
√

log(π−1
1 )) because and η1L̃1 ≤ 1 and the comparison sum-integral

T∑
t=2

ηt−1 − ηt
ηt−1

≤ log(η1/ηT ) =
1

2
log
(

1 + (η1MT )2T/ log(π−1
1,i )
)

we achieve (9).

A.7 Proof of Theorem 8

From the regret bound (3), keeping the notation of (9) and applying Young’s inequality, we infer that for any η > 0

T∑
t=1

πTt `t −
T∑
t=1

`t,i ≤
η

2

T∑
t=1

(πTt `t − `t,i)
2 + 4.5

log(AT )2

η
.

Plugging this bound into (2) and identifying `t = xTt ∇`t(xtπt) and x̂t = xtπt we get

T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤λ+ η

2

T∑
t=1

∇`t(x̂t)T (x̂t − x(i)
t )2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(x̂t)T (x̂t − x(i)
t )2]

+ 9
log(π−1

1 )

η
+

log(AT )2

η
+

2

λ
log(δ−1) .
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Applying once again the Poissonian inequality (7), using that the diameter of the simplex satisfies is less than 1, we
derive that with probability 1− δ

T∑
t=1

(∇`t(xtπt)Txt(πt − ei))2 ≤ 2

T∑
t=1

Et−1[(∇`t(xtπt)Txt(πt − ei))2] + 2(Gψ2
D)2 log(δ−1) .

Then we obtain
T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤3λ+ 2η − α

2

T∑
t=1

Et−1[(∇`t(x̂t)T (x̂t − x(i)
t )2]

+ 9
log(π−1

1 )

η
+

log(AT )2

η
+
(

(λ+ η)(Gψ2
D)2 +

2

λ

)
log(δ−1) .

Thus choosing λ = η = α/3, introducing artificially ∇`t(x̂t) in the bound AT and using πT1
(

exp(
√

log(π−1
1 )) ≤ K,

we obtain
T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤ 24

α
log(π−1

1 ) +
(

log
3

α

(
K log

(
1 +

max1≤t≤T ‖∇`t(x̂t)‖2

m2

)
+ log(K)

+ log
(

1 + log
(

1 +
max1≤t≤T ‖∇`t(x̂t)‖2

m2
T
)))))2

+
(2α

3
(Gψ2

D)2 +
6

α

)
log(δ−1) .

From the proof Proposition 5 on the second order terms 0 ≤ Yt = ‖∇`t(x̂t)‖2/(2G2
ψ2

) we obtain

Et−1[exp(Yt)] ≤ 1 + 2Et−1[Y 2
t ] ≤ 1 + (G2/Gψ2

)2 .

Thus, for any x > 0 we have

P
(

max
1≤t≤T

Yt > x
)
≤ E[exp(maxYt)] exp(−x) ≤

T∑
t=1

E[exp(Yt)] exp(−x) ≤ T (1 + (G2/Gψ2)2) exp(−x)

and with probability 1− δ it holds

max
1≤t≤T

Yt ≤ log(T ) + log(1 + (G2/Gψ2
)2) + log(δ−1) .

Finally, we obtain the desired result using a union bound.

B OGD in the SOCO problem

In this section we work under (H1) and (H2) with α = 0. Proposition 3 holds, λ > 0 = α and the compensator term in
Proposition 3 is positive. In this section we assume that the gradients are bounded by G <∞. A slow rate stochastic
regret bound O(GD

√
T ) is expected and the surrogate loss in Proposition 3 is useless. The classical Online Gradient

Descent (OGD) of Zinkevich (2003)

xt+1 = arg min
x∈K

∥∥∥x− D

G
√
t
∇ `t(xt)

∥∥∥ starting from x0 ∈ K ,

satisfies the following linearized regret bound in any SOCO problem, see the proof in Hazan (2019) that does not use
any convex assumption,

T∑
t=1

∇`t(xt)T (xt − x) ≤ 3

2
DG
√
T .

Under (H1) we easily bound a.s. both extra quadratic terms in Proposition 3 with the same quantity λ/2G2D2T .
Choosing λ =

√
2 log(δ−1)/(GD

√
T ) we immediately obtain a new slow rate stochastic regret bound for the OGD

valid in any SOCO problem:
Theorem 10. Assume that (H1) holds and that supx∈K ‖∇`t(x)‖ ≤ G a.s., t ≥ 1. The OGD algorithm satisfies with
probability 1− δ the stochastic regret bound

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
(3

2
+ 2
√

2 log(δ−1)
)
DG
√
T

valid for any T ≥ 1 and any x ∈ K.
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This simple extension of the usual iid setting to any stochastic adversarial setting could be obtained by classical
arguments such as Azuma’s inequality used in Chapter 9 of Hazan (2019). It relies on the martingale

∑T
t=1(∇Lt(xt)−

∇`t(xt))T (xt − x∗) and the gradient trick on Lt in order to remove the assumption of convexity on the losses `t.

C Other applications of the SOCO approach

C.1 Illustration of an application of the SOCO approach to electricity load forecasting

Figure 2: 90%-prediction intervals of the electricity load based on EWA (left) and BOA (right) and the same 5
forecasters.

An illustration of the impact of this theoretical work on prediction intervals for weekly electricity load from Gaillard
and Goude (2021). The 3 forecasters (GAM, AR, GBM) provided in Opera package plus 2 constant forecasters (0 and
1.5 times the maximum of weekly loads), required for extrapolation, are aggregated to predict the upper and lower
quantile (of levels .5 and .95). We use the quantile (or pinball) in 2 different aggregation strategies, EWA and BOA, and
for the two levels .5 and .95. BOA aggregations provide accurate quantile predictions because it minimizes cumulative
risks in the associated SOCO problems. It confirms the theoretical guarantees obtained in the paper since it is likely that
the pinball risk is strongly convex as in Steinwart and Christmann (2011). The illustration also shows the advantage of
SOCO compared with the OCO approach since the theoretical quantile minimizes the quantile risk but not the quantile
loss. Thus the aggregations obtained using EWA fail to provide accurate quantile predictions because EWA minimizes
the cumulative losses in the associated OCO problems. Such visual validation of the predictions interval is enough to
show the benefit of BOA but does not constitute any evidence of its good calibration.

C.2 The SOCO approach to adapt to unknown stochastic exp-concavity constant α > 0

We study an example of BOA-ONS dealing with the adaptation to the unknown (or loosely lower-bounded as in
Example 1) exp-concavity constant α. It is crucial for improving the ONS performances in any stochastic environment
where, contrary to deterministic ones, there is no way to determine the optimal α as it depends on the distributions of `t.
Consider x̂t = xtπ =

∑K
i=1 πix

(i)
t the BOA aggregation of K ≥ 1 ONS predictions with different parameters γ(i)

with γ(i) = {2−1, . . . , 2−K}. The resulting BOA-ONS algorithm adapts to the optimal value of α that depends on the
unknown stochastic environment. The larger α the smaller the stochastic regret bounds.
Corollary 11. Under (H1) and (H3) with α ≥ 2−K−2, BOA-ONS algorithm satisfies with probability 1 − 4δ the
stochastic regret bound

T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x) ≤ 1

α
O(d log(T ) +K log log(T )) +O

(
α(Gψ2

D)2 +
1

α

)
log(δ−1) .

Proof. Applying an union bound, we combine the stochastic regret bound of Theorem 8 with the inequality (8) choosing
− log2(γ) + 1 ≤ i ≤ − log2(γ) + 2 so that α/4 ≤ γ ≤ α/2 for α ≤ 1.

D The ONS algorithm
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Algorithm 2: Online Newton Step, Hazan and Kale (2011)
Parameter: γ > 0.
Initialization: Initial prediction x1 ∈ K and A0 = 1

(γD)2 Id.
Predict: xt
Incur: `t(xt)
Observe: ∇`t(xt) ∈ Rd
Recursion: Update At = At−1 +∇`t(xt)∇`t(xt)T ,

yt+1 = xt − γ−1A−1
t ∇`t(xt) ,

xt+1 = arg min
x∈K
‖x− yt+1‖2At

.
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