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Abstract

Industrial metalworking facilities emit a varietyf @ir toxics including volatile organic
compounds, polycyclic aromatic hydrocarbons (PA&tg) heavy metals. In order to investigate
these emissions, a 1-month multi-instrument fielchpaign was undertaken at an industrial site
in Grande-Synthe, Dunkirk (France), in May and JA@&2. One of the main objectives of the
study was to provide new information on the chemamanposition of particulate matter with
aerodynamic diameters smaller than 2.5 um4BNhh the vicinity of metalworking facilities. An
aerosol time-of-flight mass spectrometer (ATOFMSswdeployed to provide size-resolved
chemical mixing state measurements of ambient&ipatticles at high temporal resolution. This
mixing state information was then used to apportitivi, 5 to local metalworking facilities
influencing the receptor site. Periods when thewis influenced by metalworking sources were
characterised by a pronounced increase in partcdesaining toxic metals (manganese, iron,
lead) and polycyclic aromatic hydrocarbons (PAH#hva variety of chemical mixing states.
The association of specific particle classes withearby ferromanganese alloy manufacturing
plant was confirmed through comparison with presi@nalysis of raw materials (ores) and
chimney filter particle samples collected at theilfy. Particles associated with emissions from
a nearby steelworks were also identified. The doution of local metalworking activities to
PM, s at the receptor site for the period when the ATGMas deployed ranged from 1-65%
with an average contribution of 17%, while the rerimeg mass was attributed to other local and
regional sources. These findings demonstrate tpachof metalworking facilities on air quality
downwind and provide useful single particle signasufor future source apportionment studies

in communities impacted by metalworking emissions.

Keywords:

Particulate matter; source apportionment; mass tspeetry; industrial emissions;
metalworking; air quality
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1 Introduction

Negative health outcomes, lower crop yields, bogdilamage and other impacts associated with
industrial air pollution and greenhouse gas emissiwere estimated to cost Europe over €300
billion between 2008 and 2012 (European Environmé&géncy, 2014). Almost a third of
emissions of particulate matter with aerodynamarditers smaller than 10 um (Rin France
(CITEPA, 2014) are attributed to industrial sourcése city of Dunkirk lies in the Hauts de
France region of Northern France and is home to 298 industrial facilities from many sectors
including refining and cement production. Dunkirksaa contains one of Europe’s largest
steelworks, which emits approximately 3,000 t of P&t year (Flament et al., 2008). Numerous
local industrial facilities generate plumes thatpauot air quality in the surrounding areas
depending on local meteorological conditions, amchl PM, concentrations regularly exceed
the European threshold value (24-hour average @fgh0i’) (Setyan et al., 2019).

The physico-chemical nature of industrial PM varamsiderably, particularly in terms of
composition, depending on the type of industrialgesses involved (Sanderson et al., 2014;
Taiwo et al., 2014; Riffault et al., 2015). Ambierncentrations of particulate phase metals tend
to be greater at locations directly influenced byustrial activities than at rural or urban
locations (Osornio-Vargas Alvaro et al., 2003; Schann et al., 2004; Lim et al.,, 2010;
Mohiuddin et al.,, 2014). Heavy metals and polyaydiromatic hydrocarbons (PAHs) are
important contributors to particle toxicity (Hawis and Yin, 2000). The generation of reactive
oxygen species (ROS) and the development of astimdacardiopulmonary disease have been
linked to exposure to metals (Schaumann et al.428jestic et al., 2007). PM collected
from the same industrial area of Dunkirk investghatin this work has been recently
demonstrated to damage DNA throughimwitro assessment of immortalized lung cells (Platel
et al., 2020). Thus, the impact of industrial emoiss on downwind air quality needs to be

assessed in order to better understand human exptostine associated air toxics.

Particulate PAH and metal content studies have peeiormed in the Dunkirk area previosuly
due to the importance of metalworking sources dair tproximity to large residential areas
(Ledoux et al., 2006; Ledoux et al., 2009; Flametnal., 2008; Alleman et al., 2010; Marris et
al., 2012; Marris et al., 2013; Hleis et al., 200B)engue et al., 2014; Cazier et al., 2016; Crenn
et al., 2018). In terms of source apportionmerd,tthcers used have included elemental ratios,
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for examples Mn/Fe as a signature for a ferromaegmralloy metalworking facility, V/Ni for
petrochemical facilities and isotopes of Pb and$a signature for a local steelworks (Veron et
al., 1999; Ledoux et al., 2006; Flament et al.,&00:doux et al., 2009; Alleman et al., 2010;
Marris et al., 2012). Emissions from the steelwakes also the dominant source of air emissions
of Fe in Dunkirk, and the facility is estimatedamit 620 t of Fe annually (Flament et al., 2008).
Anthropogenic particulate Fe emissions are of &mltid concern because of their higher
solubility relative to Fe present in naturally oo@ong dust. Thus anthropogenic particulate Fe is
more bioavailable than natural Fe dust, and thendorcan modulate primary productivity in
high-nutrient, low chlorophyll (HNLC) ocean regior{to and Shi, 2016). Anthropogenic
sources are responsible for approximately 7% ofBtHeMt of Fe deposited to oceans annually,

and therefore have significant impacts upon carboxride fixation globally (Wang et al., 2015).

The density and diversity of sources and emissiosfiles in Dunkirk complicates source
apportionment efforts based on off-line analysgnificantly (Alleman et al.,, 2010). One
technique that is well suited to providing inforioaton the size-resolved chemical composition
and mixing state of particles emitted by industaelivities is single particle mass spectrometry.
A review of industrial studies utilising this teéfne can be found in Riffault et al. (2015). The
capability to provide mixing state information fomdividual particles is key to the role single
particle mass spectrometry plays in source appuortent. Ambient particles containing specific
internal mixtures of metals and other primary oigaand inorganic species have been
successfully assigned to their respective soursaggithis technique. For example, internally
mixed Pb/zZn/Cl particles have been assigned tosindl waste incineration (Moffet et al.,
2008b), Ga- and Se-containing particles particlagehbeen associated with coal-fired power
generation (Pekney et al., 2006; Snyder et al.9p@ad internally mixed V/Ni/sulfate particles
have been associated with ship exhaust (Ault e280D9; Healy et al., 2009). Fe, Zn and Pb-
containing particles have also been previously gagsl to steelwork facility operations
(Dall'Osto et al., 2008).

In this context, the NANO-INDUS field campaign wa®rformed in the multi-industry

influenced zone of Grande-Synthe in Dunkirk, Frardese to a ferromanganese alloy facility
and a steelworks (Setyan et al., 2019). An aers@-of-flight mass spectrometer (ATOFMS)
was deployed to provide size-resolved chemical amitipn and mixing state data for industrial

PM, s with high temporal resolution. The ATOFMS data vesed in combination with support
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instrumentation measurements to apportion, Ptd local and regional sources and to assess the
impact of local metalworking facilities on air qitglat the receptor site. Comparison of the
ambient ATOFMS data with previous analysis of raatenials (ores) and particles collected on
industrial filters from the ferromanganese allogiliy’s chimneys (Arndt et al., 2016), enabled

more effective source assignments for the partielsses observed during the field campaign.
2 Experimental
2.1  Sampling site and Instrumentation

All measurements were made in the industrial afe@rande-Synthe, Dunkirk (51.028809 N,
2.269448 E, 10 m above sea level), approximatef r@0southwest of a ferromanganese alloy
manufacturing facility and 1 km southwest of a matelworks (Figure S1). The adjacency of
these two sources precludes separation of theirpaliutant contributions based on wind
direction alone (Setyan et al., 2019). Other neabyrces include a petrochemical storage
facility <500 m to the west of the site and urba&mteces located to the east of the site (Fort-
Mardyck and Dunkirk town centre, ~2 km and ~ 7 kmonf the site, respectively). The field
campaign was undertaken from 15 May 2012 to 12 20i2. An overview of the campaign,
local meteorology, the instrumentation deployed @&noad PM composition is described in
detail elsewhere (Setyan et al., 2019). Date and #re reported in Coordinated Universal Time
(UTC). PM,5 mass concentrations were determined every 2 hwitinsa MP101M Beta Gauge
monitor. 24 to 48-hour filter samples were alsolemed on 25mm polycarbonate membrane
filters (Whatman") using 13- and 3-stage cascade impactors, andgheeiwith a micro-
balance (UMT2, Mettler Toledo, Switzerland) (Mbeegaat al., 2014, 2017)

The ATOFMS (TSI model 3800) was operated continlyofxrem 18th May — 8th June 2012. A
detailed description of the ATOFMS can be foundewlsere (Gard et al., 1997). Briefly, it
consists of (i) an aerodynamic focusing lens (TELA00) (Su et al., 2004) used to optimize
particle transmission in the aerodynamic diamedgrrange 100-3000 nm, (ii) a particle sizing
region, and (iii) a bipolar reflectron time-of-fig mass spectrometer. Single particles are
desorbed/ionised using a pulsed Nd:YAG laser (266 nm, ~1 mJ puls§ and positive and
negative ion mass spectra of individual aerosotigles are simultaneously collected for
successfully ionised particles. ATOFMS particle misuare scaled to account for sizing and other

instrument biases as discussed below.
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2.2  ATOFMS Data Analysis

Mass spectral data for over 800,000 single pagialas collected using the ATOFMS during the
deployment period and was clustered using Kameans algorithm K=80), as described
elsewhere (Gross et al., 2010; Healy et al., 2613y et al., 2013). Clusters with similar mass
sepctral profiles, size distributions and temptyalvere combined. The final merged clusters
were then identified as particle “classes”; 33atal Approximately 15% of the particles ionised
did not produce positive ion mass spectra. The redesef positive ions is likely a result of
desorption/ionization matrix effects and precluties assigment of these particles to a specific

category due to the absence of useful marker ions.

The patrticle class nomenclature used here is rdgulsed in the literature (Dall'Osto and
Harrison, 2006; Spencer et al., 2006; Ault et 2010; Pratt and Prather, 2012) and typically
denotes the dominant species in the positive iossmspectra. For example, a particle class with
high intensities for sodium and elemental carboralselled Na-EC. In some cases this is
followed by secondary species detected in the negain mass spectra (e.g. EC-INNOg),

referring to elemental carbon internally mixed watinmonium and nitrate.

The ATOFMS does not measure particle number or ncasgentrations quantitatively, but
instead provides particle counts classified by @gmamic diameter. The size-dependent
transmission efficiency of the focusing lens, datguisition "busy time", and limited detection
of particles <150 nm complicate accurate countihgarticles over the ATOFMS size range
(100-3000 nmd,). The desorption/ionization laser used by the AMIFalso complicates
guantitative speciation efforts. Differences inelasutput power and variations in power density
across the laser beam between pulses (Steele @08b; Wenzel and Prather, 2004) alter the
mass of each particle that is effectively desorbepacting mass spectral signal intensities
(Gross et al., 2000a; Reinard and Johnston, 2008).

Thus the measured ATOFMS counts were scaled using quantitative particle counting
instruments operated concurrently; an optical plartcounter (OPC, TSI model 3300) and a
scanning mobility particle sizer (SMPS, TSI DMA neb®080 and CPC model 3010). Scaling
the ATOFMS number concentration data requires csime of d, (aerodynamic diameter) into

the corresponding volume equivalent diametigy) (using the following relationship:
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— Pp dve (1)

@ po x

wherep, is the particle density, assumed for the purpasesimber-size distribution scaling to
be 1.7 g crii as per previous applications of the method (Mokawet al., 1999; Reinard et al.,
2007), dve is the volume equivalent diameter (operationalipiealent to electrical mobility
diameterd,, measured by the SMPS and optical diametemeasured by the OPC)y is
standard density (1 g ¢f) andy represents the dynamic shape factor (e.g. 1, septiag
spherical shape). This is a simplified version afticle property relationships that are covered in
detail elsewhere (DeCarlo et al.,, 2004). Mass aainaBons can then be calculated from the

scaled number concentrations as follows (Reinaed. e2007):
m = %ppdi?;e (2)

The accuracy of the conversion of number conceatrato mass concentrations is dependent on
the representativeness ppandp, for each type of particle. In the absence of molpdy datay

is assumed to be 1. The use of a single densityeyal, for conversion of ATOFMS scaled
particle number concentrations to mass concentrati@as previously resulted in good agreement
with other quantitative measurements (Qin et &06&2 Healy et al., 2013; Zhou et al., 2016).
However, this simplification is not entirely acctgabecause different particle types exhibit
different densities depending upon their chemiaaingosition (Spencer and Prather, 2006;
Reinard et al., 2007). A range of more represergatensities, estimated from the bulk densities
of the chemical components observed in the masstrapéBein et al., 2006; Reinard et al.,
2007), was therefore used to convert the scaledatssize distributions to mass concentrations
for each patrticle class, as listed in Table S1. AM3-derived mass concentrations for M
were averaged to hourly and 24 to 48-hour timelogisos for comparison with P measured
concurrently on-line using the beta gauge instrunsen off-line through gravimetric filter
analysis, respectively. Similar ATOFMS-based souapportionment techniques have been
performed previously to separate local and regionatributions to ambient PM in Paris, France
and the apportionment results were found to agrek with those modelled using a regional
chemical transport model (Healy et al., 2013; Sigdu et al., 2014).

3 Results and Discussion

3.1 ATOFMS Results Overview
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ATOFMS-derived mass concentrations of BjMvere in reasonable temporal agreement with
concurrently measured on-line beta gauge, PMass concentrations at 2-hour resolutioh ¥R

0.62) and in good temporal agreement with gravimélM, s mass concentrations at 24 to 48-
hour resolution (R= 0.91) as shown in Figure 1. This temporal agesgnis in line with

previous studies involving similar scaling procestufor single particle mass spectrometers (R
= 0.64-0.91) (Qin et al., 2006; Jeong et al., 2Héaly et al., 2013; Zhou et al., 2016) and
indicates that changes in ATOFMS-derived mass adr&#ons are representative of variations

in ambient PMs mass concentrations at the site during the fieeldys

The 33 distinct ATOFMS patrticle classes identifibdough clustering were grouped into ten
general “categories” for simplicity based on thandmant elements in their respective mass
spectra. Briefly, the categories identified areriéty, EC-rich (elemental carbon), Na-rich, Fe-
rich, Ca-rich, V-rich, Mn-rich, OC-rich (organic nt®n), Pb-rich/Li-rich and Others. The
relative contributions of each category in termsnaiss concentration is shown in Table S1. The
dominant categories are K-rich (24%), EC-rich (23%a-rich (10%) and Fe-rich (10%),
followed by OC-rich (4%), Ca-rich (4%), V-rich (4%dyIn-rich (3%) and Pb-rich/Li-rich (3%).
The “Others” category contains particle classeshwitinimal mass contributions (Sulfur and
Amines, <1%). Temporal trends for each categorysam@vn in Figure 2. It is clear from these
temporal trends that the Na-rich, K-rich and ECegaties exhibit prolonged, persistent mass
contributions, consistent with regional backgrowualrces. Briefly, the K-rich category is
dominated by a single particle class (K-N©ften associated with regional biomass combustion
(Silva et al., 1999), routinely observed in regidmackground air in ATOFMS datasets collected
across Europe (Dall'Osto et al., 2009; Healy et24115; Arndt et al., 2017). The ATOFMS is
highly sensitive to potassium (Gross et al., 200@a§l while the potassium ion is a dominant
feature of biomass burning particle mass spedtris, tiypically present as a trace component,
with EC, OC and secondary inorganics dominatingcm@position in terms of mass (Healy et
al., 2013). Particles in the EC-rich category assoaiated with various combustion sources,
including vehicle exhaust and biomass burning (8eeet al., 2006; Moffet et al., 2008a), and
are often observed to be internally mixed with @ aecondary inorganics (Cabhill et al., 2012;
Healy et al., 2012). The Na-rich category is premamtly comprised of supermicron sea salt
internally mixed with nitrate, which is expectea focoastal urban site (Gard et al., 1998). These

three major particle categories are routinely ol=grin ATOFMS field studies. However,

8
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several of the less abundant particle classes foare to be associated with local metalworking

activities.

As outlined by Setyan et al. (2019), two distinateorological sea-breeze periods when winds
were predominantly from the northeast were idesdifiluring the NANO-INDUS field campaign
when the sampling site was downwind of the neadyyomanganese and steelworks facilities
(May 25-28 and June 02-03). During these eventgjcfg|a number concentrations increased
considerably, with concurrent increases in nonactbry chloride, organic aerosol and metals
including manganese and iron. As shown in Figureedhcentrations of several metal-rich
particle categories detected by the ATOFMS werearoéd during these periods (shaded in
grey). Particle classes associated with the ferrgamese alloy facility were identified through
comparison with previous scanning electron micrpgtaectron dispersive X-ray spectrometry
(SEM-EDX) and ATOFMS analysis of raw materials &@rand cooling, firing and smelting
chimney filter samples previously collected at taeility (Arndt et al., 2016). Particle classes
were assigned to the steelworks based on previffugn® elemental analysis of particles
collected downwind of this facility (Mbengue et,&017) and previous ATOFMS measurements
made in the vicinity of a large steelworks in th& (Dall'Osto et al., 2008; Dall'Osto et al.,
2012).

3.2 Metalworking Particle Source ldentification

Temporal trends for individual particle classes ibiting elevated concentrations during the
prolonged periods when the site was downwind of teeomanganese facility and the
steelworks (Setyan et al., 2019) are shown in Eig@urThese include metal-rich particles with a
variety of chemical mixing states and particles taoning OC and polycyclic aromatic

hydrocarbons (PAHS).

Mn-rich particles:

Three distinct Mn-containing particle classes wdantified. Mn-K particles were characterized
by the presence of Mn(mvz 55) and K (mvz 39) while Mn-Al-K particles exhibited a strong

additional signal for aluminium (Al m/z 27) and Mn-K-Fe particles exhibited a strong
additional signal for iron (Fem/z 56) Average mass spectra for the three Mn-comginiasses

are shown in Figure 3, and the positive ion magstsp are consistent with ATOFMS positive
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ion mass spectra for particles collected at thefeanganese facility (Arndt et al., 2016) (Figure
S2). Mn-K particles are consistent with sampleshef ores used at the facility as well as filter
samples from the cooling chimney. Mn-Al-K particlaéiso resemble both ore samples and the
filter samples from the chimneys. Finally, Mn-K-particle mass spectra are consistent with
mass spectra for ore samples exclusively. Ambientkyl Mn-Al-K and Mn-K-Fe are all
enriched in nitrate (N&NOs’, m/z -46/-62) and chloride (Clm/z -35) relative to the facility
samples (Arndt et al., 2016), likely due to secopdaccumulation of inorganic ions either
through mixing with either inorganic gases from thetalworking facilities themselves or with
ambient air after emission. All three Mn-rich pelei classes are therefore assigned to the
ferromanganese facility, which has been previoigdytified as the major local source of Mn in

a previous apportionment study based on off-literfanalysis (Alleman et al., 2010).
Fe-rich particles:

Mass spectra for particles containing internallykeni iron, potassium and calcium (Fe-K-Ca)
feature a dominant signal for Fenz 56) followed by K (m/z 39), Cd (m/z 40), Nd (m/z 23)
and Al' (m/'z 27) (Figure 4). Negative ion mass spectra comaiks corresponding to chloride
(CI', m/z -35) and nitrate (N@/NO3’, n/z -46/-62). Fe-K-Na particles are quite similar ®-Ik-

Ca particles, differing only in the intensitiessafdium and potassium relative to iron. The mass
spectral features of both particle classes arelaintdo internally mixed Fe/K/Ca particles
collected from the chimneys of the ferromanganesdity (Arndt et al., 2016) (Figure S3),
although the ambient particles shown in Figure Hilgk higher signals for nitrate (NG@NOs',

m/'z -46/-62), again indicating uptake of nitrate akenission. While similarities exist between
ambient and ferromanganese facility sample masdrspfr Fe-containing particles, the nearby
steelworks remains the largest source of partieulan in Dunkirk. A previous analysis of the
steelworks particulate emissions demonstrated rii@gt particles emitted were comprised of
either FgO;, CaCQ, KCI or were graphite flakes (Flament et al., 2008on-rich particles
similar to the ATOFMS Fe-K-Ca and Fe-K-Na classesenalso detected by ATOFMS near a
steelworks in Port Talbot (UK) (Dall'Osto et alQB), where they accounted for 3% of the
particles detected and were attributed to the hdtcld mills. In the absence of any unique ions
to differentiate between iron-containing particfesm the steelworks and those emitted by the
ferromanganese facility, and given that Fe/K/Cdigas only contributed a small fraction of the

particles identified in the ferromanganese faciggmples (Arndt et al., 2016), it is likely thaéth
10
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majority of iron-containing particles detected dgrithe field study originated from the
steelworks. Setyan et al (2019) found that Mn/Femeintal ratios in filter samples collected
during the periods when the receptor site was damchwef the metalworking facilities were
between the ratios expected for emissions fronfelr®@manganese facility and the steelworks,
suggesting that emissions from both facilities wierpacting the site. Contributions of Fe from
both facilities were also observed in the previeasarce apportionment study (Alleman et al.,
2010).

K-rich particles:

As shown in Figure 5, K-Cl particles are charaeti by peaks for K(m/z 39), Nd (m/z 23),

ClI' (m'z -35), and nitrate (N&@NOs, m/z -46/-62). The local steelworks emits potassium
chloride during the sintering process (Setyan et28119), and potassium chloride emissions are
estimated to represent ~40% of total sintering simns from the facility (Flament et al., 2008;
Hleis et al., 2013). K-ClI particles were not obsshn the chimney filter or ore samples from the
ferromanganese facility (Arndt et al., 2016). K-@articles have however, been detected
downwind of the Port Talbot steelworks (Dall'Ostoaé, 2008) and are thus assigned to the
steelworks here. K-Al-Si particles are charactetibg signals for K (m/z 39), Nd (m/z 23), Fé
(m/'z 56), AIO (m/z -43), AIO(OH)/SiO,/COs (m/z -60), SIQ™ (MV/z -76), AISIO;s (mVz -103),
nitrate (NQ/NOs, m/z -46/-62), phosphate (RDnvz -79), and chloride (Gl m/z -35/-37)
(Figure 5). No aluminium signal was observed in KSA positive mass spectra, likely due to
matrix-related ion suppression (Reinard and Joms2608). K-Cl and K-Al-Si particles were
not observed in the ferromanganese facility samghesare therefore assigned to the steelworks.
However, K-Al particles were positively identifiéa the ferromanganese facility firing chimney
samples (Figure S4). Ambient K-Al particles prodiistronger signals for nitrate (NONOs/,

m/z -46/-62) and sulfate (HSQ m/z -97) but both the ambient and the firing chimneyAK
particles exhibited similar signals for Emwz -19). Therefore fluoride represents a useful
discriminatory marker for identifying potassium-taining particles from the ferromanganese

facility.

Ca-rich particles:
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Ca particles are characterized by a strong sigmaC& (m/z 40) and smaller signals for Néawz

23) and CaQ(mvz 56), while Ca-K particles contain stronger sigrfals Na™ (m/z 23) and K
(m/z 39) as shown in Figure 6. Based on comparison thighferromanganese facility samples,
both Ca and Ca-K particles appear to originate ftenfiring chimney, although ambient Ca-K
particles exhibit higher signals for Na than tha@ratey samples (Figure S3). Negative ion mass
spectra for both ambient Ca and Ca-K particles aldubited higher signals for nitrate (WO
INO3’, m'z -46/-62) and sulfate (HSQ m/z -97) than their respective chimney sample pasdicle
again likely due to secondary accumulation afteission. A signal for fluoride is present in the
ambient Ca negative ion mass spectrar(fz -19), consistent with the firing chimney samples,
however this ion is absent in the ambient Ca-Kigarspectra, indicating that ambient Ca-K
particles may be associated with the steelworkeaus Flament et al. (2008) noted that calcium
salts, including calcite and lime, are used indimering process at the steelworks, however the
Ca-containing particles produced in that case ggregates of RL®; CaCQ and KCI. Ca-
containing particles constituted only 8% of thetijgles analyzed from the steelworks sintering
process by Flament et al. (2008), while Ca-richigiass accounted for approximately 80% of
the particles in the firing chimney filter sampleriidt et al., 2016). Ca-containing particles have
also been assigned to the blast furnace unit oPdreTalbot steelworks (Taiwo et al., 2014), but
those particles were also internally mixed with @@d no Ca particles were reported in the
previous Port Talbot steelworks studies by Dall®st al. (2008,2012). Thus, while there
remains a possibility that some of the Ca-rich iped$ could have originated from the

steelworks, the ferromanganese facility is likélg ilominant source.
OC-rich patrticles:

Three OC-containing particle classes were idewltifef which the OC class was the dominant
contributor in terms of mass. Average mass spectrahown in Figure 7. All three classes are
characterized by the presence of hydrocarbon fratgnén the positive mass spectra
(CoH¥IC3H* ICoH30"IC4H5 ICsHa+CeH, ICHs™, iz 27/37/43/51/63/74/87) together with* K
(m/z 39) and N& (mvz 23). Carbon fragment ions (C,/Cs...Cy, m/z -12/-24/-36....-13), CN
(m/z -26) and sulfate (HSQO m/z -97) are evident in the negative mass spectralewtiirate
(NO,/NO3, m/z -46/-62) is dominant in the OC and PAH classes Presence of internally
mixed sulfate is consistent with emissions from ¢b&e plant at the steelworks (Zhang et al.,

2021). Mass spectra similar to the three OC-comtginlasses reported here were also observed
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downwind of the Port Talbot steelworks (Dall'Ostobak, 2012), withnm/z 202 assigned to

pyrene/fluoranthene as per previous ATOFMS fieldlgs (Gross et al., 2000Db). In the case of
Dall'Osto et al. (2012) OC-PAH particles were &ititied to the hot and cold mills, while OC and
PAH patrticles were related to the steel/coke-malgegtor. Thus, all three organic carbon-

containing classes are attributed to the steelwioeks.

Pb-rich and Li-rich particles:

Average ATOFMS mass spectra for Pb-rich partickes shown in Figure 8, characterized by
internally mixed K (m/z 39), PB (m/z 208), Cl(m/z -35) and nitrate (N&/NOs', m/z -46/-62).

No equivalent particles were observed in the femoganese facility samples. Pb-containing
particles similar to th@b-rich class were also observed in the Port Taltaty, and represented

<1% of the particles ionized. In that case Pb-dairtg particles were assigned to the hot and
cold mills (Dall'Osto et al., 2008). The Port TallBb-containing particles were internally mixed
with KCI, which is also the case for Dunkirk as wimoin Figure 8. Thus Pb-rich particles are

attributed to the steelworks here.

Li-Zn particles contain Li(m/z 7), N& (m/z 23),K™ (m/z 39), Zn (m/z 65/66/68), nitrate (N©
INO3', m/z -46/-62) and phosphate (FQOmnWz -79), as shown in Figure 8, and were not observed
in the ferromanganese facility samples. Particiteated by ATOFMS containing Li have been
assigned to coal combustion sources in previoudiegy(Guazzotti et al., 2003; Furutani et al.,
2011). Zn-containing particles were also associatgl the Port Talbot steelworks, but those
particles did not contain internally mixed Li (D@&lsto et al., 2008). Li-Zn particles have a
minimal mass contribution overall and it cannot dasily determined whether they originate

from the ferromanganese facility or the steelworks.

3.3 Source Apportionment

Summing the mass concentrations of the differenttigl@ classes associated with the
ferromanganese facility and the steelworks enable@stimation of the PM associated with
metalworking activities at the receptor site at twesolution. Elevated metalworking BM
concentrations are strongly dependent on northdéasiend directions, consistent with the

locations of the two metalworking facilities (indimg ore and coal stockpiles), as shown in
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Figure 9. Elevated non-metalworking (background),BNMass concentrations are observed
under northerly, easterly and southerly wind diced, consistent with more diffuse regional
background sources. The contribution of metalwagkactivities to PMs at the receptor site
ranged from 1-65% over the entire measuremembghewith an average contribution of 17%.
The average contribution for those periods whendwiras predominantly from the northeast
(shaded grey periods in Figure 2) is higher, at 28k overall average contribution of 17% is
somewhat lower than the 28% contribution these faedities were estimated to contribute to
PMyg at a site approximately 3 km to the southeastuiinoPMF analysis of filters collected in
2003-2005 (Alleman et al., 2010). Although the looaetalworking facilities are not the
dominant contributor to Pp mass at the receptor site, their dominant cortioha to toxic
metal and PAH-containing particle concentration®fixoncern from an exposure perspective
(Schroeder et al., 1987; Durant et al., 1996; Majext al., 2007; Zhang et al., 2008; Hu et al.,
2012). The metalworking facilities were also theniltant contributor to ultrafine particles at the
site (Setyan et al., 2019), a size fraction reogivncreased attention with respect to its poténtia
toxicological impacts (Ohlwein et al., 2019; Saédlal., 2019; Sotty et al., 2019).

4 Conclusions

The unique particle mixing states associated watall metalworking facilities identified at the
Dunkirk receptor site will be useful for future easchers aiming to apportion particulate matter
to metalworking sources in other locations glohalllge facilities investigated here use industrial
processes that are common in the pyrometallurglastry (sintering, smelting/reduction in an
electric/blast furnace, refining, rolling and crirgh of finished product) and therefore can be
considered representative of that sector. The nuofbdistinct chemical mixing states identified
highlights the complexity and diversity in primaiarticle composition associated with
emissions from metalworking. Particles containing B&hd Ca were associated predominantly
with the ferromanganese facility, while particlemtaining Fe, K, Pb and PAHs were associated
predominantly with the steelworks. Internally mixéidoride was also found to be a useful
discriminating marker for identifying ferromangaadsing chimney emissions specifically. The
two metalworking facilities combined are estimateaontribute 17% on average to PMnass
concentrations at the receptor site during the oreasent period, but are the dominant

contributors of particles containing transition aietand PAHSs; species associated with negative
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422  health outcomes. The single particle source appurient approach used here is also expected to
423 be useful in other regions where the relative dbuations of industrial emissions, including
424 metalworking emissions, to ambient PMconcentrations need to be assessed. Knowledge of

425 these contributions is particularly valuable fosidaing effective local air quality strategies.
426
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Highlights

Particles assigned to aferromanganese facility and a steelworks based on composition

Metalworking particle composition and mixing state is complex and diverse

Metalworking emissions contributed 17% to PM, 5 on average at the receptor site

Metalworking is the dominant source of metals and polycyclic aromatic hydrocarbons
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