N

N

Progress-aware Dynamic Slack Exploitation in
Mixed-critical Systems: Work-in-Progress
Angeliki Kritikakou, Stefanos Skalistis

» To cite this version:

Angeliki Kritikakou, Stefanos Skalistis. Progress-aware Dynamic Slack Exploitation in Mixed-critical
Systems: Work-in-Progress. EMSOFT 2020 - International Conference on Embedded Software, Sep
2020, Hamburg / Virtual, Germany. pp.1-3. hal-03125812

HAL Id: hal-03125812
https://hal.science/hal-03125812
Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03125812
https://hal.archives-ouvertes.fr

Progress-aware Dynamic Slack Exploitation in
Mixed-critical Systems: Work-in-Progress

Angeliki Kritikakou
Univ Rennes, Inria, CNRS, IRISA, France

Abstract—Mixed-critical systems consist of high criticality and
low criticality applications. When a high criticality task exceeds
its less pessimistic Worst Case Execution Time (WCET), the
system switches mode and low criticality tasks are usually
dropped. To postpone mode switch, existing approaches explore
the slack, created dynamically due to an actual execution of a
task that is faster than its WCET. However, the slack is visible
only after the task has finished. To further enable dynamic slack
exploitation, we propose a fine-grained approach that exposes the
slack created due to the progress of tasks, during execution, and
safely uses it to postpone mode switch.

Index Terms—Run-time adaptation,
Time, Mixed-critical systems,

Remaining Response

I. INTRODUCTION AND MOTIVATION

Mixed-critical systems [1] consist of high criticality and low
criticality applications, with different properties and require-
ments. The Worst-Case Execution Time (WCET) of applica-
tions is typically used in order to provide timing guarantees.
However, due to both application and hardware characteristics,
pessimism is introduced during WCET estimations. As a
result, safe, but over-approximated WCET estimations are ob-
tained, that typically over-allocate resources to high criticality
applications. To reduce this negative impact, mixed-critical
systems use different WCET estimations for high criticality
tasks: a safe, but pessimistic, upper bound (CH), typically
based on static analysis, and a less pessimistic, but less
trust-worthy, bound (CT), typically obtained by measurement-
based approaches [2]. Low criticality tasks are bounded by a
single, less pessimistic, WCET estimation. The system starts
execution in low criticality mode (LO-mode). Usually, if a low
criticality task exceeds its C'”, it is dropped. However, as soon
as a high criticality task exceeds its C'*, the system switches
from low to high criticality mode. Low criticality tasks are
usually dropped to meet the timing constraints of the high
criticality tasks [3], degrading system QoS.

To improve QoS, existing approaches work on two direc-
tions: i) explore other strategies than dropping low criticality
tasks, and ii) explore static or dynamic ways to postpone the
mode switch. This work focuses on the latter category for uni-
processor systems, which is orthogonal and can be combined
with the former category. Static approaches determine task
overrun values, which when added to the C'* of high criticality
tasks, the system remains schedulable. These values extend
the mode switch further than C'*. Such examples are methods
inspired by sensitivity analysis [4] and zero-slack [5]. As static
approaches are applied before execution, they explore only the

Stefanos Skalistis
Raytheon Technologies Research Center, Ireland

existing slack due to system under-utilisation. On the contrast,
dynamic approaches exploit the slack created during execution.
When the actual execution time of a task is lower than its C'Z,
slack is created that can be used by subsequent tasks. However,
existing approaches are able to observe and use the slack, only
after the task has terminated, e.g., single budget [6], bailout
protocol [7] and feedback control mechanisms [2].

This work extends the state-of-the-art by dynamically ex-
ploiting, not only the slack created due to the early termination
of tasks, but also the slack created due to the actual progress of
tasks, during execution. To achieve that, we propose a run-time
controller that regularly, at instrumentation points, exposes
the actual execution progress of high criticality tasks and
recomputes their response times in LO-mode. The observed
differences are used to compute the dynamically created slack,
which is used in order to postpone, or even avoid, the system
mode switch. As our run-time computation takes into account
the actual progress execution, the online computed response
time bounds are typically reduced, compared to the initial
worst case estimations, computed offline.

II. SYSTEM MODEL

The system is defined as a finite set of tasks 7' executed
on a single processor. For simplification reasons, and without
loss of generality, a dual-criticality system is assumed, where
each task has a level of criticality equal to either high (H) or
low (L), with H > L. Each task, 7;, is defined by its period
(minimum arrival interval) 7T;, deadline D;, criticality level
CL; and the WCET CEF for each criticality level, i.e., C/
and CF. Tt is reasonable to assume that CE'L is monotonically
non-decreasing with increasing C'L; [8]. Tasks give rise to a
potentially unbounded sequence of jobs. Jobs can be either
dependent, or independent, and can be periodically executed
in a preemptive manner on the processor. We use the basic
mixed criticality model, where the system has two modes of
execution: i) LO-mode, where both high criticality tasks and
low criticality tasks are executed on the processor, and ii) HI-
mode, where only the high criticality tasks are executed on
the processor.

III. PROPOSED METHODOLOGY

The proposed approach, during execution, regularly exposes
the progress of high criticality tasks and reflects that infor-
mation globally to the system. This allows a more accurate
re-computation of the remaining response time of each high

criticality task in LO-mode, as the execution progresses.
Having such information, it is now possible to compute in a
fine-grained way the dynamic slack created during execution.
To achieve that, each high criticality task is instrumented by set
of points. During execution, the proposed controller is enabled
at a point p of a high criticality task ¢, when the system is in
LO-mode. It applies the following steps:

1) Remaining WCET computation (RC’iL), i.e., the run-time
estimation of the WCET of the code that remains to be
executed, from point p, until the end of execution in LO-
mode (inspired by [9]).

2) Remaining Response Time computation (RRiL), i.e., run-
time computation of the new response time of 7 in LO-
mode, taking into account the actual time and the remaining
preemption delays of both low and high criticality, higher
priority, tasks (RPﬁp(i)).

3) Dynamic slack computation in LO-mode, obtained by the
difference of the newly computed response time compared
to the previously computed value.

4) Safety condition: if the slack is higher or equal to the
additional time required to reach the next instrumentation
point, in HI-mode, high and low criticality tasks continue
execution. Otherwise, the slack is depleted and mode
switch must occur.

5) Remaining preemption delay computation (RPﬁclp(i)), ie.
update the preemption delay that task ¢ may cause to other
high criticality, but lower priority, tasks, according to its
updated Remaining WCET.

IV. EVALUATION

In this preliminary experimental set-up, we consider the
PULP RISC-V processor of GAP8 platform [10] as our
platform model. Table I depicts the characteristics of the task
set, consisting of two high criticality tasks (AES—-CTR and
CannyEdge) and two low criticality tasks (matmul and
FFT). The C* of the benchmarks is obtained by the observed
execution cycles, when the code is executed on a single PULP
core [10]. To obtain the C*?, we apply safe margins of 20%.
Fig. 1 shows the schedule in the low criticality mode.

TABLE I
Task set characteristics.
Benchmark | CL | CT CcH Priority | Arrival
CannyEdge H 99,500 | 119,400 3 0
matmul L | 41,900 - 1 50,000
AES-CTR H | 15,300 | 18,360 0 52,000
FFT L | 28,200 - 2 53,600
{ { (2R
CannyEdge | MatMul | AES-CTR | MatMul | FFT | CannyEdge
KCycles
T T T T T T 1 1 T 1 1 i
0 - 50 ~ 52 .. 67.3 107.2 .. 135.4 184.9

Fig. 1. Execution in low criticality mode; arrows depict the arrival of each
task.

mSoA m Proposed

200
150

100

oIIIIIIIIII

+5% +4.5% +4% +3.5% +3% +2.5% +2% +1.5% +1% +0.5% 0%
Actual execution time w.r.t. CL

w
o

Execution time (KCycles)

(a) Time when mode switch occurs (y-axis)
W SoA m Proposed
80

60
40

20

Execution time (KCycles)

0 - - - - - - - - - -

+5% +4.5% +4% +3.5% +3% +2.5% +2% +1.5% +1% +0.5% 0%
Actual Execution time w.r.t. CL

(b) Low criticality progress (y-axis)

Fig. 2. Comparison of proposed and SoA approaches

We compare the proposed approach with typical existing ap-
proaches that decide to switch mode, when the actual progress
reaches the CL, and the task has not finished execution
(SoA), e.g. [3]. We explore their behavior with respect to the
possible actual execution time of benchmarks by allowing any
part of the benchmarks, defined by two consecutive points
p,p’, to executed faster or slower than CpL’p/. In particular
the actual execution time of each part is selected within the
range [80% x C,,120% x CL], while maintaining the total
actual execution time of the benchmarks within the range [C' L
105% x CF], with a step of 0.5% x C*. Fig. 2(a) depicts the
moment when each approach decides to switch modes. As long
as the actual execution time is larger than C' L the SoA decides
always to switch mode when the first high criticality task
exceeds its C'L, i.e., when AES—CTR actual progress reaches
15,300 cycles, i.e., at 67,300. On the contrary, the proposed
approach exposes the dynamic slack created due to the actual
progress of CannyEdge, before being preempted. As long as
this slack is large enough, the mode switch is not required to
be decided by AES-CTR, but later on, by CannyEdge. As
Fig. 2(b) shows, the postponement of the mode switch had
allowed the execution of all low criticality tasks, compared
to SoA. Notice that, in this experimental set-up, dynamic
approaches will behave as SoA, since CannyEdge has not
finished execution, and thus, the potential slack is not yet
observable.

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]
[9]

[10]

REFERENCES

S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007, pp. 239-
243.

A. Papadopoulos, L. Bini, S. Baruah, and A. Burns, “AdaptMC:
A Control-Theoretic Approach for Achieving Resilience in Mixed-
Criticality Systems,” in ECRTS, vol. 106, 2018, pp. 14:1-14:22.

S. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed
criticality systems,” in RTSS, 2011, pp. 34-43.

F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp,” in
ECRTS, 2012, pp. 155-165.

D. de Niz and L. Phan, “Partitioned scheduling of multi-modal mixed-
criticality real-time systems on multiprocessor platforms,” in RTAS,
2014, pp. 111-122.

B. Hu, K. Huang, P. Huang, L. Thiele, and A. Knoll, “On-the-fly fast
overrun budgeting for mixed-criticality systems,” in International Conf.
Embedded Software (EMSOFT), 10 2016, pp. 1-10.

I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed
criticality systems,” in ECRTS, 2015, pp. 259-268.

S. Baruah, L. Haohan, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in RTAS, 2010, pp. 13-22.

A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, and M. Roy, “Run-
time control to increase task parallelism in mixed-critical systems,” in
ECRTS, 2014.

E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in ASAP,
2018, pp. 1-4.

