Angeliki Kritikakou

Stefanos Skalistis

Progress-aware Dynamic Slack Exploitation in Mixed-critical Systems: Work-in-Progress

Keywords: Run-time adaptation, Remaining Response Time, Mixed-critical systems

Mixed-critical systems consist of high criticality and low criticality applications. When a high criticality task exceeds its less pessimistic Worst Case Execution Time (WCET), the system switches mode and low criticality tasks are usually dropped. To postpone mode switch, existing approaches explore the slack, created dynamically due to an actual execution of a task that is faster than its WCET. However, the slack is visible only after the task has finished. To further enable dynamic slack exploitation, we propose a fine-grained approach that exposes the slack created due to the progress of tasks, during execution, and safely uses it to postpone mode switch.

I. INTRODUCTION AND MOTIVATION

Mixed-critical systems [START_REF] Vestal | Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance[END_REF] consist of high criticality and low criticality applications, with different properties and requirements. The Worst-Case Execution Time (WCET) of applications is typically used in order to provide timing guarantees. However, due to both application and hardware characteristics, pessimism is introduced during WCET estimations. As a result, safe, but over-approximated WCET estimations are obtained, that typically over-allocate resources to high criticality applications. To reduce this negative impact, mixed-critical systems use different WCET estimations for high criticality tasks: a safe, but pessimistic, upper bound (C H), typically based on static analysis, and a less pessimistic, but less trust-worthy, bound (C L), typically obtained by measurementbased approaches [START_REF] Papadopoulos | AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems[END_REF]. Low criticality tasks are bounded by a single, less pessimistic, WCET estimation. The system starts execution in low criticality mode (LO-mode). Usually, if a low criticality task exceeds its C L , it is dropped. However, as soon as a high criticality task exceeds its C L , the system switches from low to high criticality mode. Low criticality tasks are usually dropped to meet the timing constraints of the high criticality tasks [START_REF] Baruah | Response-time analysis for mixed criticality systems[END_REF], degrading system QoS.

To improve QoS, existing approaches work on two directions: i) explore other strategies than dropping low criticality tasks, and ii) explore static or dynamic ways to postpone the mode switch. This work focuses on the latter category for uniprocessor systems, which is orthogonal and can be combined with the former category. Static approaches determine task overrun values, which when added to the C L of high criticality tasks, the system remains schedulable. These values extend the mode switch further than C L . Such examples are methods inspired by sensitivity analysis [START_REF] Santy | Relaxing mixedcriticality scheduling strictness for task sets scheduled with fp[END_REF] and zero-slack [START_REF] De Niz | Partitioned scheduling of multi-modal mixedcriticality real-time systems on multiprocessor platforms[END_REF]. As static approaches are applied before execution, they explore only the existing slack due to system under-utilisation. On the contrast, dynamic approaches exploit the slack created during execution. When the actual execution time of a task is lower than its C L , slack is created that can be used by subsequent tasks. However, existing approaches are able to observe and use the slack, only after the task has terminated, e.g., single budget [START_REF] Hu | On-the-fly fast overrun budgeting for mixed-criticality systems[END_REF], bailout protocol [START_REF] Bate | A bailout protocol for mixed criticality systems[END_REF] and feedback control mechanisms [START_REF] Papadopoulos | AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems[END_REF].

This work extends the state-of-the-art by dynamically exploiting, not only the slack created due to the early termination of tasks, but also the slack created due to the actual progress of tasks, during execution. To achieve that, we propose a run-time controller that regularly, at instrumentation points, exposes the actual execution progress of high criticality tasks and recomputes their response times in LO-mode. The observed differences are used to compute the dynamically created slack, which is used in order to postpone, or even avoid, the system mode switch. As our run-time computation takes into account the actual progress execution, the online computed response time bounds are typically reduced, compared to the initial worst case estimations, computed offline.

II. SYSTEM MODEL

The system is defined as a finite set of tasks T executed on a single processor. For simplification reasons, and without loss of generality, a dual-criticality system is assumed, where each task has a level of criticality equal to either high (H) or low (L), with H > L. Each task, τ i , is defined by its period (minimum arrival interval) T i , deadline D i , criticality level CL i and the WCET C CL i for each criticality level, i.e., C H i and C L i . It is reasonable to assume that C CL i is monotonically non-decreasing with increasing CL i [START_REF] Baruah | Towards the design of certifiable mixed-criticality systems[END_REF]. Tasks give rise to a potentially unbounded sequence of jobs. Jobs can be either dependent, or independent, and can be periodically executed in a preemptive manner on the processor. We use the basic mixed criticality model, where the system has two modes of execution: i) LO-mode, where both high criticality tasks and low criticality tasks are executed on the processor, and ii) HImode, where only the high criticality tasks are executed on the processor.

III. PROPOSED METHODOLOGY

The proposed approach, during execution, regularly exposes the progress of high criticality tasks and reflects that information globally to the system. This allows a more accurate re-computation of the remaining response time of each high 1 criticality task in LO-mode, as the execution progresses. Having such information, it is now possible to compute in a fine-grained way the dynamic slack created during execution. To achieve that, each high criticality task is instrumented by set of points. During execution, the proposed controller is enabled at a point p of a high criticality task i, when the system is in LO-mode. It applies the following steps: 1) Remaining WCET computation (RC L i), i.e., the run-time estimation of the WCET of the code that remains to be executed, from point p, until the end of execution in LOmode (inspired by [START_REF] Kritikakou | Runtime control to increase task parallelism in mixed-critical systems[END_REF]).

2) Remaining Response Time computation (RR L i), i.e., runtime computation of the new response time of i in LOmode, taking into account the actual time and the remaining preemption delays of both low and high criticality, higher priority, tasks (RP L hp(i)). 3) Dynamic slack computation in LO-mode, obtained by the difference of the newly computed response time compared to the previously computed value. 4) Safety condition: if the slack is higher or equal to the additional time required to reach the next instrumentation point, in HI-mode, high and low criticality tasks continue execution. Otherwise, the slack is depleted and mode switch must occur. 5) Remaining preemption delay computation (RP L hclp(i)), i.e. update the preemption delay that task i may cause to other high criticality, but lower priority, tasks, according to its updated Remaining WCET.

IV. EVALUATION

In this preliminary experimental set-up, we consider the PULP RISC-V processor of GAP8 platform [START_REF] Flamand | Gap-8: A risc-v soc for ai at the edge of the iot[END_REF] as our platform model. Table I depicts the characteristics of the task set, consisting of two high criticality tasks (AES-CTR and CannyEdge) and two low criticality tasks (matmul and FFT). The C L of the benchmarks is obtained by the observed execution cycles, when the code is executed on a single PULP core [START_REF] Flamand | Gap-8: A risc-v soc for ai at the edge of the iot[END_REF]. To obtain the C H , we apply safe margins of 20%. Fig. 1 shows the schedule in the low criticality mode. We compare the proposed approach with typical existing approaches that decide to switch mode, when the actual progress reaches the C L , and the task has not finished execution (SoA), e.g. [START_REF] Baruah | Response-time analysis for mixed criticality systems[END_REF]. We explore their behavior with respect to the possible actual execution time of benchmarks by allowing any part of the benchmarks, defined by two consecutive points p, p , to executed faster or slower than C L p,p . In particular the actual execution time of each part is selected within the range [80%×C L p,p , 120%×C L p,p], while maintaining the total actual execution time of the benchmarks within the range [C L , 105% × C L], with a step of 0.5% × C L . Fig. 2(a) depicts the moment when each approach decides to switch modes. As long as the actual execution time is larger than C L , the SoA decides always to switch mode when the first high criticality task exceeds its C L , i.e., when AES-CTR actual progress reaches 15, 300 cycles, i.e., at 67, 300. On the contrary, the proposed approach exposes the dynamic slack created due to the actual progress of CannyEdge, before being preempted. As long as this slack is large enough, the mode switch is not required to be decided by AES-CTR, but later on, by CannyEdge. As Fig. 2(b) shows, the postponement of the mode switch had allowed the execution of all low criticality tasks, compared to SoA. Notice that, in this experimental set-up, dynamic approaches will behave as SoA, since CannyEdge has not finished execution, and thus, the potential slack is not yet observable.

TABLE I

 I Task set characteristics.

														SoA	Proposed
														Execution time (KCycles)	0 50 100 150 200
														+5% +4.5% +4% +3.5% +3% +2.5% +2% +1.5% +1% +0.5% 0%
														Actual execution time w.r.t. CL
														(a) Time when mode switch occurs (y-axis)
														Execution time (KCycles)	20 40 60 80	SoA	Proposed
														0
														+5% +4.5% +4% +3.5% +3% +2.5% +2% +1.5% +1% +0.5% 0%
														Actual Execution time w.r.t. CL
														(b) Low criticality progress (y-axis)
														Fig. 2. Comparison of proposed and SoA approaches
	Benchmark		CL	C L			C H		Priority Arrival
	CannyEdge		H	99,500 119,400	3		0
	matmul			L	41,900		-		1		50,000
	AES-CTR			H	15,300		18,360	0		52,000
	FFT				L	28,200		-		2		53,600
	CannyEdge	MatMul AES-CTR	MatMul	FFT	CannyEdge
														KCycles
	0	…	50	…	52	…	67.3	…	107.2	…	135.4	…	184.9
	Fig. 1. Execution in low criticality mode; arrows depict the arrival of each
	task.