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Abstract—We focus on resilience towards covert attacks on

Cyber-Physical Systems (CPS). We define the new k-steerability

and �-monitorability control-theoretic concepts. k-steerability

reflects the ability to act on every individual plant state variable

with at least k different groups of functionally diverse input

signals. �-monitorability indicates the ability to monitor every

individual plant state variable with � different groups of func-

tionally diverse output signals. A CPS with k-steerability and

�-monitorability is said to be (k, �)-resilient. k and �, when both

greater than one, provide the capability to mitigate the impact of

covert attacks when some signals, but not all, are compromised.

We analyze the influence of k and � on the resilience of a system

and the ability to recover its state when attacks are perpetrated.

We argue that the values of k and � can be augmented by

combining redundancy and diversity in hardware and software

techniques that apply the moving target paradigm.

Index Terms—Cyber-Physical Systems, Control Theory, Cyber-

Resilience, Covert Attacks, Security Metrics, Attack Remedia-

tion, Recoverability.

I. INTRODUCTION

A Cyber-Physical System (CPS) is a plant controlled and

monitored by embedded and network computers [8]. For the

purposes of protection, CPS design aims at steerability and

monitorability. Sending input signals to actuators, steerability

refers to the ability to drive and maintain a CPS in a desired

operating point. Interpreting output signals produced by sen-

sors, monitorability indicates the capability to accurately de-

duce the internal state of a CPS. The control signals are chosen

such that a CPS is asymptotically stable. This means that small

variations in the input signals generate small variations in the

output signals. The output stays bounded for any bounded

input. There are no oscillations. Given the knowledge about

the behavior of a CPS, i.e., steerability and monitorability, the

goal is to increase the system recoverability (i.e., to adapt and

bounce back from stability disruptions, as quick as possible).

It has been acknowledged that CPS are vulnerable to integrity

and availability attacks [13], [3], [1]. In this paper, we focus on

covert attacks [18], [19], i.e., a family of cyber-physical attacks

pointing out to physical aggression against the operation of a

CPS, by manipulating output signals from sensors, and input

signals to actuators.

We introduce the notion of k-steerability. The parameter k

corresponds to the minimum number of input signals available

to act on each individual plant state variable. We also define

the concept of �-monitorability. The parameter � reflects the

minimum number of output signals that can be used to monitor

each individual plant state variable. We study values of k

and � with respect to system resilience and the ability to

recover a plant state. If due to covert attacks, h input signals

are compromised, steerability of each individual plant state is

not entirely lost as long as h is lower than k. This partial

steerability can be leveraged to run a covert attack mitigation

plan. If due to covert attacks, g output signals are hacked,

the ability to detect the condition is not entirely lost as

long as g is lower than �. We discuss how k and � can be

determined and augmented by adding redundant and diverse

hardware. k-steerability and �-monitorability combine together

into the (k, �)-resilient property. Building upon redundancy

and diversity in actuators and sensors, our approach increases

the level of difficulty for adversaries.

Our work assumes that both input and output signals can be

correlated into functionally diverse groups, as a complement to

the traditional use of redundancy in critical systems. The use

of redundancy assume the inclusion of alternative copies of,

e.g., sensors, actuators and controllers, in order to guarantee

system availability. If the system finds itself under a situation

of attack, and the values of a group of components are not

behaving as expected, then the validation of such values can

be contrasted with the values of redundant replicas, assuming

that there was an attack affecting the system. This technique

is complementary to fault tolerance techniques, also used

to address situations in which some system components are

victims of failures or faults. However, the use of redundancy

for security purposes may have some drawbacks. Since the
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replicas may be seen as identical, once an attacker has

managed to compromise one of them, then the rest of the

replicas can also be compromised very easily. Hence, we need

to impose the use of diversity. For instance, if the replicas

are geographically distributed, or the replicas compute their

values using different physical phenomena, the approach can

improve the way to handle those attacks exploiting the phys-

ical nature of vulnerable components. Hence, our approach

assumes the existence of different replicas behaving in an

independent manner and with non-overlapping patterns (e.g.,

physical patterns) to handle the attacks.

Paper Organization — Section II introduces CPS model-

ing, covert attacks and related work. The k-steerability, �-

monitorability and (k, �)-resilient concepts are developed in

Section III. Section IV concludes the paper.

II. BACKGROUND AND RELATED WORK

A CPS consists of a plant and a controller. They are

distributed and communicate through a network. Several math-

ematical models exist for representing them [5], [12]. In

the sequel, we introduce the necessary modeling background,

using a CPS with fluid dynamics as an example.

A. Differential Equation Representation

Let us consider as a plant an individual cylindrical tank,

with a single inflow and a single outflow of liquid. The

tank liquid level can be modeled by the following differential

equation [20]:

α
dh (t)

dt
= F (t)− a

√
h (t) (1)

Eq. (1) models the relationship between instantaneous

changes of liquid level and difference between the inflow rate

and outflow rate. As a function of time t (second), the level

of the liquid in the tank is h(t) (cm). Variable α represents a

cross-sectional area of the tank (cm2). The term F (t) repre-

sents the inflow rate (cm3/second). The parameter a denotes

the outlet valve coefficient. The outflow rate (cm3/second) is

proportional to the product a times square root of the pressure

represented by the term h (t). Note that because of the square

root term, the system in nonlinear.

The model represented by Eq. (1) is linearized assuming

a linear inflow rate and operation around a liquid level h0,

termed the operating point. It is assumed the level is main-

tained at point h0 +Δ, with |Δ| small. Linearization is based

on the observation that the expression (1+ε)β is approximately

equal to the expression 1+βε, when ε� 1. In the expression

a
√

h (t), substituting h(t) by the sum h0+Δ, we get a linear

model for the outflow rate:

a
√

h (t) = a
√

h0 + Δ = a
√

h0

√
1 + Δ/h0 ≈ a

√
h0

(
1 +

Δ

2h0

)

Inflow rate F (t) is modeled by the product γκv. The

parameters γ, κ and v respectively denote the valve coefficient,

pump coefficient (cm3/V second) and voltage applied to the

pump (V). The voltage v is the variable governed by the

controller. The resulting linear differential equation modeling

the liquid level is:

α
dh (t)

dt
= γκv − a

√
h0

(
1 +

Δ

2h0

)
(2)

Eq. (2) is an approximation that remains valid as long as Δ is

relatively small, that is, at the chosen operating point h0 there

are only small level fluctuations. To maintain that condition,

the inflow rate γκv must be equal to the outflow rate a
√
h0,

with small fluctuations −a√h0

(
Δ
2h0

)
= − aΔ

2
√
h0

of inflow rate

that translate to small fluctuations in liquid level − aΔ
α2

√
h0

.

B. State Space Representation

The state space representation of a linear CPS is as follows:

xi+1 = Axi +Bui + wi (3)

yi = Cxi +Dui + vi (4)

Eq. (3) models the evolution of the CPS. At time instant i,

given input ui, state xi is transformed into state xi+1, where

the index i is in Z
+, state column vectors xi and xi+1 are

in X ⊆ R
m, input column vector ui is in U ⊆ R

p, output

column vector yi is in Y ⊆ R
n and dimensions m, n and

p are in Z
+. The transition may also be affected by random

noise wi, in R
m. Eq. (4) represents the CPS input, state and

output relation. At time instant i and in state xi, the sensor

measurements are yi. The sensor measurements may be also

affected by random noise represented by vi, in R
n. Matrices

A, B, C and D are respectively called the state (m by m),

input (m by p), output (n by m), and direct transmission (n

by p) matrices.

For example, let us map Eq. (2) to a state-space represen-

tation. The input ui is the voltage, null at start. Let t be the

continuous time corresponding to the discrete time instant i.

The state variable xi tracks the difference between the liquid

level h(t) and operating point h0, i.e., xi = h(t)− h0, which

is the symbol Δ in Eq. (2). The corresponding state, input,

output and direct transmission matrices are:

A =

(
− a

α2
√

h0

)
, B =

( γκ

α

)
, C =

(
1
)

and D =
(
0
)

(5)

The state vector has one element xi[1], which is the current

level difference Δ, w.r.t. the operating point h0. The state

matrix A contains one element, which is used to calculate

in a transition, from time i to time i + 1, the change in the

amount of liquid leaving the tank, i.e., a
α2

√
h0

· xi[1]. Note

that at the operating point, the total amount of liquid leaving

the tank is the subtrahend in Eq. (2), divided by α. The input
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vector has a single element ui[1]. The input matrix B contains

one element and calculates the amount of liquid coming into

the tank in one transition, i.e., the product γκ
α · ui[1]. Note

that this mapping has the linearity advantage, but fidelity if

limited to small fluctuations around an operating point. As we

move from the operating, the effect of gravity is distorted. This

degree of fidelity is although more than sufficient for the type

of analysis conducted in the sequel of this paper.

C. Adversary Model

We assume adversaries perpetrating covert attacks. Covert

attacks are a family of cyber-physical attacks in which the

adversary perturbs the state of a CPS while succeeding to

evade detection, i.e., the adversary attempts to remain invisi-

ble [21], [24]. It is powerful attack because it is assumed that

the adversary knows the plant dynamics (matrices A, B, C and

D) and that input and output signals can be spoofed. While

an attack is being carried out, the perpetrator manipulates the

measurements to conceal the effect of the spoofed inputs.

Hence, from the point of view of an observer, responsible

for detecting attacks, the measurements look normal. Using

Eqs. (3) and (4), attacks are represented as follows:

xi+1 = Axi +B(ui + ua
i ) + wi (6)

yi = Cxi +D(ui + ua
i ) + vi + sai (7)

The variable ua
i , in U , denotes the addition of the adversary

to the signals to the actuators. The term sai , in R
n, represents

the manipulation done by the adversary on the sensor mea-

surements.

D. Defense Methods

Methods have been devised to detect covert attacks. They all

require the analysis of inputs and outputs of the plant. Rubio-

Hernan et al. [14], [15], [16] have revisited challenge-response

detectors via authentication techniques, initially proposed by

Mo et al. [9], [10], [23]. Hoehn and Zhang [6] and Schellen-

berger and Zhang [17] developed the idea of external synthetic

states that evolve in parallel and are coupled to the physical

states of the CPS.

Adversaries can apply system identification [20] and ma-

chine learning [7], [20] to infer the dynamics of the plant.

All detection methods acknowledge that the adversary has the

ability to learn the dynamics of the CPS. However, they are all

based on the important assumption that the knowledge of the

adversary is not perfect. Due to this imperfect knowledge, the

adversary makes errors that may be caught by the detection

methods. Whether they are caught or not depends on the

degree of knowledge of the adversary and the level of difficulty

to avoid being detected. To make it challenging, detection

methods comprise the integration of time-varying elements

(inputs or states) concealed in the dynamics of the plant.

Assuming the parameters of these elements are changed fast

enough, the dynamics of the plant becomes a moving target

for the adversary. In other words, the adversary does not have

enough time to learn properly, makes errors and perpetrates

attacks that are not covert. Next, we discuss in more details

the concepts of challenge-response and auxiliary state.

1) Challenge-response Authentication: Challenge-response

detectors, defined in [14], [15], [16], revisit the authentication

signal in [9], [10] to extend error detectors into cyber-physical

attack detectors. The resulting scheme provides a real-time

protection of the linear time-invariant models of the plant.

Built upon Kalman filters and linear-quadratic regulators, the

scheme produces authentication signals to protect the integrity

of physical measurements communicated over the cyber and

physical control space of a networked control system. It is as-

sumed that, without the protection of the networked messages,

malicious actions can be conducted to mislead the system

towards unauthorized or improper actions, i.e., by disrupting

the plant services.

Assume u∗
i as the output of a controller and ui the control

input that is sent to the plant, cf. Eq. (3). The idea of challenge-

response authentication is to superpose to the control law u∗
i an

authentication signal Δui ∈ R
p that serves to detect integrity

attacks. Thus, the control input ui is given by:

ui = u∗
i +Δui (8)

The authentication signal is a Gaussian random signal with

zero mean that is independent both from the state noise

(wi) and measurement noise (vi). The authentication signal

is used by the detector to identify the malicious signals

originated by the adversary. Since the control law u∗
i carries

the authentication signal Δui, the detector (physically co-

located within the controller) triggers an alarm whenever a

malicious signal is observed, i.e., whenever the challenge sent

by the controller over the plant is not observed within the

measurements returned by the plant. Towards this end, [9],

[10] propose to employ a χ2 detector, i.e., a well-known

category of real-time anomaly detectors classically used for

fault detection in control systems [2], for the purpose of

signaling the anomalies identified in the behavior of the plant.

Further details about some more powerful challenge-

response detectors, capable of identifying adversaries which

are empowered by identification tools such as ARX (autore-

gressive with exogenous input) and ARMAX (autoregressive-

moving average with exogenous input) [11], i.e., using iden-

tification tools to evade detection, are available in [15], [16].

2) Auxiliary States: The CPS can also be augmented with

a synthetic auxiliary state, synthetic outputs and optionally

new inputs [6], [17]. The auxiliary state has a linear time-

varying dynamics that is evolved in parallel with the CPS.

The dynamics is concealed to the adversary. Because it is
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time-varying, it becomes a moving target that is challenging to

identify by an adversary, a precondition to the covert attack.

But, it is known to and used by the operator to detect the

covert attack. The operator is in synchrony with the linear

time-varying dynamics. It is therefore able to track it properly

and compare the actual evolution of the auxiliary dynamics

with the expected evolution. Significant discrepancies indicate

the presence of anomalies, which can be used to identify the

adversary.

The CPS model is extended with the auxiliary state x̃i and

additional actuators and sensors (ũi and ỹi) related to the

auxiliary state. The state xi and auxiliary state x̃i are corre-

lated. Together with the auxiliary state, the state transformation

model is:

(
x̃i+1

xi+1

)
= Ai

(
x̃i

xi

)
+ Bi

(
ũi

ui

)
+

(
w̃i

wi

)
(9)

Together with the additional elements, the sensor measure-

ments are:

(
ỹi

yi

)
= Ci

(
x̃i

xi

)
+Di

(
ũi

ui

)
+

(
ṽi

vi

)
(10)

with

Ai =

(
A1,i A2,i

0 A

)
,Bi =

(
Bi

B

)
, Ci =

(
Ci 0

0 C

)
and

Di =

(
Di 0

0 D

)
.

Hidden to the adversary, the state sub-matrices A1,i and

A2,i, the input matrix Bi, output matrix Ci and direct trans-

mission matrix Di are randomized variables. According to

the approach proposed by Schellenberger and Zhang [17],

the actual matrices are randomly switched from time-to-time.

The operator and CPS are synchronized on the switching

sequence, perhaps through a switching signal. This secret

is not shared with the adversary. Sensor measurement ỹi is

visible to the adversary, but changes over time in a random

way. The adversary is challenged with learning the random

auxiliary system state, input, output and direct transmission

matrices.

We have introduced the system and adversary models and

reviewed defense methods. In the next sections, we build upon

that material and introduce new ideas to address resilience and

state recovery.

III. THE (k, �)-RESILIENT PROPERTY

We define the k-steerability and �-monitorability properties,

which in conjunction define the (k, �)-resilient property.

A. Inter-variable Dependencies

Firstly, to identify a dependency between two variables, we

consider the use of the Pearson correlation coefficient.

Definition 1 (Pearson correlation coefficient): Given two

random variables, A and B, and n observations for each of

them, their correlation coefficient is defined by

ρ(A,B) =
1

n− 1

n∑
i=1

(
ai − μA

σA

)(
bi − μB

σB

)
(11)

where a1, . . . , an (b1, . . . , bn), μA (μB) and σA (σB) are the

observations, mean and standard deviation of random variable

A (B).

A correlation coefficient is a unitless value between minus

one and one. When ρ(A,B) is equal to one, we have perfect

positive correlation between A and B. When it is minus

one, we have perfect negative correlation. Intuitively, when

| ρ(A,B)| is between zero and 0.2, the linear correlation is

from null to weak. It is moderate between 0.2 and 0.6. Above

0.6, it is strong [22]. Note that null linear correlation does

not mean necessarily that variables A and B are independent.

In such a case, there is no linear dependency revealed by

the observations, but a nonlinear dependency is possible. For

example, Eq. (1) generates nonlinear output correlated with the

input. Existence of correlation can be confirmed calculating

the correlation coefficient using a linearized version of the

output data. Furthermore, correlation is one way to establish

dependencies between variables.

B. Dependency Graph

Let u, x and y be respectively p-element, m-element and

n-element column vectors representing the input, state and

output variables of a CPS. We define correlation coefficient

matrices to capture in structures the relationships between state

variables and input or output variables.

Definition 2 (Input and output correlation coefficient matri-

ces): The m× p [m×n] input [output] correlation coefficient

matrix Q [R] is equal to (qi,j) [(ri,j)] where i = 1, . . . ,m,

j = 1, . . . , p [j = 1, . . . , n]. An entry qi,j [ri,j] is the correla-

tion coefficient ρ(xi, uj) [ρ(xi, yj)] between state variable xi

and input [output] variable uj [yj].

Definition 3 (Input and output dependency graphs): The

input [output] dependency graph is a bipartite graph GU =

(X,U,E) [GY = (X,Y,E)] where the two sets of vertices

are X = {x1, . . . , xm} and U = {u1, . . . , up} [Y =

{y1, . . . , yn}] the state and input [output] variables, respec-

tively. When Pearson correlation is used to determine depen-

dencies, there is an edge (xi, ui) [(xi, yi)] in E if-and-only-if

the absolute value of the correlation between xi and ui [yi],

i.e., |qi,j | [|ri,j |], is greater than or equal to a threshold T .

The value of T is normally chosen to be close to one.
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For the dependency graph GU [GY ] and a vertex x in X ,

let the expression deg(x) be its input [output] degree, i.e., the

number of adjacent vertices in U [Y ]. The �-monitorability

degree reflects the availability of at least � sensor output

signals for monitoring any state variable.

Definition 4 (�-monitorability degree1): Let GY be the

output dependency graph of a CPS. Let � be equal to

min
x∈X

deg(x).

Then, the CPS has �-monitorability.

We introduce the notion of k-steerability. It indicates that there

are at least k actuator input signals available for acting on

every single plant state variable.

Definition 5 (k-steerability degree2): Let GU be the input

dependency graph of a CPS. Let k be equal to

min
x∈X

deg(x).

Then, the CPS has k-steerability.

Definition 6 ((k, �)-resilient): A CPS with k-steerability and

�-monitorability (k ≤ �) is said to be (k, �)-resilient.

There is a desirable relationship between k and �. Increasing

the steerability of all state variables (k), i.e., augmenting the

number of actuators that can change each of them, offers

more possibilities to act on the CPS. These additional pos-

sibilities can be leveraged to mitigate covert attacks. They,

however, also increase the attack surface. In several instances,

this increase can be mitigated by an equivalent number of

observation points (�), i.e., number of sensor outputs. Let us

consider as an example the approach used for in-home delivery

of parcels. In the absence of the customer, the driver is granted

the ability to unlock the door and place a parcel inside the

house. Unlocking the door to a stranger in your absence is

risky. The attack surface is augmented. Nevertheless, for in-

home delivery the risk is mitigated by the activation of a cloud

camera filming all the delivery operation. In this case, the

camera constitutes an additional point of observation. Hence,

the relationship k ≤ � is desirable. That is to say, for any

state variable when there are k different points for acting on

it, there are also � different observation points for monitoring

the actions. In a design with k > �, there is higher steerability

than monitorability. This configuration should be viewed as

wrongly designed since the budget dedicated to the system

resilience is not appropriately used. For such a configuration,

the designer should redesign the system in order to increase

monitorability by adding more sensors. The aim is the design

of a CPS that has (k, �)-resilient, where � ≥ k > 1.

From the point of view of risk assessment, the (k, �)-

resilient property plays a role. Among other things, risk assess-

ment evaluates the importance of threats taking into account

1For simplicity, we refer to �-monitorability hereafter.
2k-steerability for short.

the technical difficulties that must be overcome to perpetrate

the attacks [4]. Risks are mitigated when the adversary has

to traverse more technological barriers. For a given CPS,

risk mitigation of covert attacks can be put into perspective

comparing the different options for k and �.

Definition 7 (Comparability): Let c1 = (k1, �1) and c2 =

(k2, �2), then we have that c1 ≤ c2 if-and-only-if k1 ≤ k2 and

�1 ≤ �2. In such a case c1 and c2 are comparable.

Let us consider two CPS designs c1 and c2 that have the

very same dynamics, with c1 ≤ c2 while the c2 design has

everything that the c1 design has, plus additional actuators and

sensors. The design c2 is more steerable and monitorable than

the design c1. The (k, �)-resilient property can be used as a

measure to compare the risk associated with two given config-

urations. We have established the principles of our approach.

In the following section, we review a number of comparable

designs and explain how the (k, �)-resilient property translates

into possibilities of recovering the state of a CPS when attacks

are perpetrated.

IV. CONCLUSION

We have addressed covert attacks on CPS. We have defined

the new k-steerability and �-monitorability control-theoretic

concepts. The k-steerability concept reflects the ability in a

CPS to act on each of its individual plant state variables with

at least k functionally diverse groups of input signals. In other

words, it reflects the ability of the CPS to mitigate the impact

of covert attacks when less than k groups of input signals

are compromised, using static functional diversity. The �-

monitorability concept reflects the number of observations on

each state variable of a CPS that can be used to identify covert

attacks. Together, k-steerability and �-monitorability determine

the (k, �)-resilient property of a CPS. If we assume that

the detection process is conducted by combining strategies,

such as redundancy and diversity in hardware and software

techniques, the resulting (k, �)-resilient concept applies the

moving target paradigm, in which the CPS adapts itself to

invalidate the acquired knowledge of the adversaries.

Acknowledgments — We acknowledge the financial support

from the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the European Commission (H2020

SPARTA project, under grant agreement 830892).

REFERENCES

[1] C. Barreto, A. A. Cárdenas, and N. Quijano. Controllability of

dynamical systems: Threat models and reactive security. In International

Conference on Decision and Game Theory for Security, pages 45–64.

Springer, 2013.

[2] B. Brumback and M. Srinath. A chi-square test for fault-detection in

Kalman filters. IEEE Transactions on Automatic Control, 32(6):552–

554, Jun 1987.

1171

Authorized licensed use limited to: IRT SystemX. Downloaded on December 14,2023 at 08:01:09 UTC from IEEE Xplore.  Restrictions apply. 



[3] A. Chapman and M. Mesbahi. Security and infiltration of networks:

A structural controllability and observability perspective. In Control of

Cyber-Physical Systems, pages 143–160. Springer, 2013.

[4] ETSI. Telecommunications and internet protocol harmonization over

networks (TIPHON) release 4; protocol framework definition; methods

and protocols for security; part 1: Threat analysis. Technical Report

Technical Specification ETSI TS 102 165-1 V4.1.1, European Telecom-

munications Standards Institute (ETSI), Januray 2003.

[5] G. Franklin, J. Da Powell, and A. Emami-Naeini. Feedback Control of

Dynamic Systems. Pearson Education, 2014.

[6] A. Hoehn and P. Zhang. Detection of covert attacks and zero dynamics

attacks in cyber-physical systems. In 2016 American Control Conference

(ACC), pages 302–307, July 2016.

[7] G. Horvath. Neural networks in system identification. Nato Science

Series Sub Series III Computer And Systems Sciences, 185:43–78, 2003.

[8] E. Lee. Cyber-physical systems - are computing foundations adequate?

In NSF Workshop On Cyber-Physical Systems, 01 2006.

[9] Y. Mo, R. Chabukswar, and B. Sinopoli. Detecting integrity attacks on

SCADA systems. IEEE Transactions on Control Systems Technology,

22(4):1396–1407, July 2014.

[10] Y. Mo and B. Sinopoli. Secure control against replay attacks. In Com-

munication, Control, and Computing. 47th Annual Allerton Conference

on, pages 911–918. IEEE, Sept 2009.

[11] H. Natke. System identification: Torsten Söderström and Petre Stoica.
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