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Abstract—Following the tracking-by-detection paradigm, mul-
tiple object tracking deals with challenging scenarios, occlusions
or even missing detections; the priority is often given to quality
measures instead of speed, and a good trade-off between the two
is hard to achieve. Based on recent work, we propose a fast, light-
weight tracker able to predict targets position and reidentify them
at once, when it is usually done with two sequential steps. To do
so, we combine a bounding box regressor with a target-oriented
appearance learner in a newly designed and unified architecture.
This way, our tracker can infer the targets’ image pose but also
provide us with a confidence level about target identity.

Most of the time, it is also common to filter out the detector
outputs with a preprocessing step, throwing away precious
information about what has been seen in the image. We propose
a tracks management strategy able to balance efficiently between
detection and tracking outputs and their associated likelihoods.

Simply put, we spotlight a full siamese based single object
tracker able to predict both position and appearance features
at once with a light-weight and all-in-one architecture, within a
balanced overall multi-target management strategy. We demon-
strate the efficiency and speed of our system w.r.t the literature on
the well-known MOT17 challenge benchmark, and bring to the
fore qualitative evaluations as well as state-of-the-art quantitative
results.

I. INTRODUCTION

Visual and online multiple object tracking (MOT) finds ap-
plications in fields such as videosurveillance, human-machine
interaction and most recently self-driving cars. It consists in
visually targetting and maintaining the identities of different
objects in the video stream, as long as they remain in the
frame. It belongs to a very active computer vision community
and has historically been tackled through the tracking-by-
detection paradigm. It implies to (i) detect objects on a frame-
by-frame basis and (ii) link these detections between frames to
incrementally reconstruct targets’ tracklets. The detector resets
the tracker and prevents it from drifting, while the tracker
compensates for detection artifacts. The MOT challenge [1]
is a worldwide reference in the field. Based on the frame-
by-frame detections of three different and uneven off-the-
shelf detectors (DPM, Faster R-CNN and SDP), it consists
in tracking multiple people in complex scenes e.g., static,
moving, crowded, during nighttime, etc.

Siamese architectures are powerful similarity learners and
can provide information about the resemblance between two
inputs by feeding them to a twin-headed network sharing

all or part of its weights between branches [2], [3]. Thanks
to them, substantial progress has been made on the visual
object tracking (VOT) task which consists in tracking a single
object in a whole video, having as only input the bounding
box coordinates of the object at time t0. Siamese trackers
take as inputs a patch, cropped around the object to track
at time t, along with a larger search area at time t + n,
and predict the object displacement within the search area.
Such trackers like GOTURN [4], Siamese-RPN [5] and most
recently SiamFC++ [6] took a leap forward both in terms of
accuracy and speed on the VOT challenge [7]. While siamese
structures are rarely extended to MOT for position prediction,
they are commonly used to produce similarity scores between
targets during the data association phase. However, very recent
work using these techniques for position prediction showed
state-of-the-art performance on the MOT challenge [8], [9].

Although very competitive, these techniques still remain
slow due to their inner structure applying independant and
non compact networks for position prediction and similarity
learning. As our underlying ojectives relate to embedded
applications, we place CPU consumption as a priority and
propose to learn an all-in-one structure to perform tracking
and reidentification at the same time, using a recent and fast
EfficientNet [10] backbone network for feature extraction.

On another note, many recent approaches preprocess the
supplied detections by re-injecting them in a detector trained
on the MOT challenge dataset. Tracktor [11] uses a full Faster
R-CNN architecture and artificially replaces the RPN outputs
by the challenge detections before feeding them to the detector
head. MOTDT [12] applies R-FCN on the entire image to
refine each detection. This efficient strategy highlights
that having a robust detector in the beginning is essential.
However, it seems non intuitive within the challenge context
to apply a second detector on top of the existing one. Neither
does it provide for target-oriented features: it needs an extra
network to extract reidentification characteristics, and ends up
with a time consuming overall process. Given these insights,
we rely on good prior inputs and focus our evaluations on
the best detector of the benchmark to show state-of-the-art
results without any preprocessing of the detections, while
providing for both position and reidentification features in a
compact siamese based architecture.



In a nutshell, this paper aggregates the strengths of a fast
siamese bounding box regressor for SOT coupled with a
similarity head to perform one-shot identity propagation
in a multi-object tracking framework. Frame by frame,
our network takes image patches centered on tracklets as
inputs, and produces coordinates regression along with
reidentification score as outputs. In this way, our framework
can infer the targets’ image trajectories while handling their
IDs frame by frame.

This paper contributions are four-fold:
• We present an unprecedented all-in-one compact siamese

CNN architecture with a state-of-the-art and light-weight
EfficientNet backbone structure to address multi-object
tracking-by-detection by integrating both single object
tracking and identity propagation at once, in an online
MOT context.

• We propose a tracklet management strategy handling the
current targets’ tracklet pool and input detections with no
need for additional preprocessing.

• We evaluate our framework on the well-known MOT17
challenge and exhibit state-of-the-art MOT performance
while drastically reducing CPU cost.

II. RELATED WORK

Computer vision relies on an extremely active community
and multi-object tracking specifically is a very competitive
field. Based on frame-by-frame inferred detections, it consists
in reconstructing the image trajectories of multiple targets
moving in the scene. It deals with challenging situations
e.g., occlusions, detection artifacts, targets look-alike or scene
variability.

Tracklets construction can be performed online i.e., by
sequentially processing information up to the current frame,
or offline i.e., by dealing with both past and future infor-
mation. Lots of nowadays applications tend to be mobile or
automotive-oriented, they require fast and online processing:
we place ourselves in this context and compare our work to
the online submissions of the MOT17 challenge [1] (since its
first 2015 version, this benchmark has become a reference in
the field with ∼ 1000 citations).

A. Online MOT

The generic online tracking-by-detection process can be
summarized by Algorithm 1. While looping over all frames
of a video sequence, it consists in (i) detecting targets in each
frame i.e., their image coordinates x, y, w, h (center, width and
height), (ii) predicting the current position of already existing
trajectories, and (iii) associating them with the aforementioned
detections. New tracklets are created if all detections weren’t
assigned, and a tracklet state management strategy is usually
applied afterwards to end spurious tracklets.

If detections are given as inputs to the challenge, ap-
proaches adopt different variants for position prediction,
tracklet-detection association and tracklets state management.

Algorithm 1 Online multi-object tracking-by-detection

1: Input: {It}0≤t≤N−1 a set of N consecutive images

2: Output: {T j
t }

0≤j≤M−1
0≤t≤N−1 a set of M distinct tracklets for

each timestep t

3: T0 ← ∅
4: for t ∈ [0, N − 1] do
5: Dt ← detect(It) . Pool of detections for It
6: if Tt−1 6= ∅ then
7: Tt ← predict(Tt−1) . Infer new positions
8: Tt ← associate(Dt, Tt) . Based on multiple cues
9: Dt ← update(Dt) . Remove associated Dt

10: if Dt 6= ∅ then
11: Tt ← Tt ∪ Dt . Tracks birth
12: Tt ← update(Tt) . State update e.g., inactivity, death

B. Targets’ position prediction

From very simple approaches to more complex ones, a
lot of methods have been proposed: SORT [13] applies
a linear constant velocity model on each object to track,
EAMTT [14] exploits a PHD Particle Filter, DeepSORT [15]
and MOTDT [12] use a Kalman filter to estimate next tracklets
states. Tracktor [11] uses the ROIPooling layer of a detector
head to directly refine the bounding boxes. Most recently,
FAMNet [8] and LSST [9] take advantage of siamese single
object trackers to directly predict targets displacement based
on their image crops. From a broader perspective, even if deep
learning methods have become inescapable in computer vision
applications, less than 20% of the online MOT17 submissions
use such techniques for the position estimation part of the
process. Yet, LSST [9] stands among the best on MOT17 and
shows the interest of using visual CNN single object trackers
in this multi-target context.

C. Tracklet-detection association

During the association phase between upcoming detections
and existing tracklets, multiple cues can be considered to
calculate a cost matrix for each potential match. The major one
is related to the position of the objects to compare, but relying
on appearance information helps at clarifying ambiguities
between targets with close image positions. Whether it be
through shallow descriptors [16] or deeply learned representa-
tions [12], [15], [17], most of the time it is done independently
from the position prediction mechanism [9], [11], [12], [15],
[18]. Amongst leading configurations, Tracktor [11] adds
a heavy ResNet50 to extract target-specific reidentification
features on top of its Faster R-CNN prediction structure, thus
leading to a 1.5 FPS overall execution time; LSST [9] runs
at 1.8 FPS by using an AlexNet-based structure for targets’
position update, and a GoogLeNet Inception-v4 backbone for
reidentification feature extraction.



Fig. 1. For each current frame, all targets go through a SOT to (i) predict
their displacement w.r.t their previous position, (ii) extract the target-specific
embedding from the EfficientNet output feature map based on the predicted
position offset, and (iii) compare it with the appearance embedding of the
candidate tracklet and produce a reidentification score.

D. Tracklets management strategy

Updating the state of a tracklet i.e., its position, appearance,
and managing its birth, death, inactivity is handled in various
ways in the literature. Usually, position and appearance are
replaced by the associated detections [12], [15], [19]. It is
then common to consider a track active when it is assigned an
incoming detection, and inactive when not associated in order
to kill targets lost for too long [9], [11], [15]. By considering
unfiltered detector inputs and setting up a balanced strategy, we
propose to either rely on detector or tracker and keep targets
active depending on the confidence of each element.

III. METHODOLOGY

Even if almost 60% of the MOT17 submissions use CNNs
for reidentification, only a few take advantage of CNN-based
techniques for predicting targets position. Above all, despite
the performance shown by SOT within MOT [9], no previous
work has been done to integrate a single light-weight CNN for
both predicting targets position and producing reidentification
features at once in this realtime multi-target context.

Furthermore, is it common to give full trust to the detector
when it comes to updating tracklets status after the tracklet-
detection association phase; we put forward a balanced strat-
egy allowing confident trajectories to keep living even when
faced with spurious detections. We integrate multiple cues in
our general framework, analyzed through an ablation study in
section V.

A. Position prediction

1) Single Object Track’n’Reid for MOT: We incorporate
SOT-dedicated trackers in a multi-object framework by en-
riching them with identity awareness. Figure 1 describes
how tracklets update their position and similarity scores at
every timestep t, all-at-once through a single CNN, before
being faced with incoming detections. This tracklet prediction
consists of three main parts:
• High-speed joint feature extraction. We take a patch

from both previous and current frames, centered on the
current target location at t− 1. We call them target and
search region patches. They are enlarged by a context

factor k as in [4], resized to [256 × 128] and fed to a
siamese EfficientNet-B0 backbone for feature extraction,
which shares its weights across both inputs.

• Motion prediction branch. On one side, we get two
output volumes from EfficientNet corresponding to target
and search patches inputs. We reduce the outcoming
channel dimensions from 1280 to 128, apply average
pooling and concatenate outputs to finally send them to
a 4-neuron 1× 1 output layer predicting a ∆(x, y, w, h)
shift vector, relatively to the search region width w and
height h. It is illustrated by the grey branch on figure 1.

• Similarity branch. On the other side, we compute the
cosine similarity between the current and predicted target
appearance features. The appearance feature map is sliced
from the feature extractor output volume of the search
area, based on the predicted coordinate shift. It is then
average pooled and transformed via 1 × 1 convolutions
to finally calculate the cosine similarity with the target
feature model. It is illustrated by the blue branch on
figure 1.

2) Multi-task learning: In order to perform joint task learn-
ing, the network is trained with a combined regression/reid
loss. As shown in figure 2, during training we feed the siamese
network with SOT-dedicated inputs i.e., target and search
patches at time t and t + 1, and batch multiple examples
together. In parallel, we use them to construct positive and
negative pairs later in the similarity branch. These pairs are
sliced from the feature map centers at time t, average pooled,
and used to calculate cosine similarity loss functions Lpos

and Lneg where positive (resp. negative) pairs scores must
be close to 1 (resp. −1). The reidentification loss Lreid is the
sum of cosine embedding losses for positive and negative pairs
(Lpos + Lneg).

Regarding the position regression part of the network, both
t and t+1 feature extractor entire outputs are average pooled,
concatenated and convolved to predict an (x, y, w, h) offset
which is compared to the groundtruth via L1 loss and stored in
Lreg. In the end, the final loss can be written as in equation 1:

L = Lreg +
1

2
(Lpos + Lneg) (1)

B. Tracklet-detection association

As mentioned in section II-C, at every online timestep
each upcoming detection must either be associated to an
existing trajectory, lead to a track birth or potentially be
discarded. It is usually done by calculating an association
cost between each possible detection-tracklet matching. The
resulting cost matrix is then passed to a cost minimization
solver, classically a Hungarian algorithm [20]. Different cues
are usually considered to calculate the association cost, and the
impact of each one is here explored with an ablation study in
section V:

1) Intersection over Union: The overlap between bounding
boxes IoUD,T is a major discriminatory measure but it can
lead to identity switches when two targets are close to each
other.



Fig. 2. Joint all-in-one training process of the full siamese SOT for regression and reidentification. For each target, two inputs at t and t+ 1 are fed to an
EfficienNet backbone for feature extraction. Multiple identities are batched together; we combine them to contruct positive and negative pairs in the batch.
The feature extractor output volumes are used (i) in depth to extract sliced positive and negative pairs and calculate their cosine distance losses Lpos and
Lneg , and (ii) between t and t + 1 to calculate the image coordinates displacement, thus the regression loss Lreg . All losses are combined to produce a
unique final loss.

2) ReID: To overcome this issue, we also apply the similar-
ity branch of our network to the detections and compare their
embedding with the targets ones to get the cosine similarity
cosD,T .

3) Detection score: We use the detector confidence scores
Dcf lock, stock and barrel, arguing that based on good prior
detections like SDP’s, the use of raw inputs without filtering,
altering or discarding information can be precious knowledge.

4) Target confidence: At every timestep, each tracklet up-
dates an inner confidence score Tcf detailed in the next section
and inspired by LSST [9].

We bring the [−1, 1] cosine similarity distance for reiden-
tification back between 0 and 1 in order to finally multiply
together [0, 1] range elements and get a normalized overall
score. Combined together, we end up with a similarity score
SD,T between a detection D and a tracklet T , thus an
association cost CD,T defined by equation 2.

SD,T = Tcf × IoUD,T × cosD,T ×Dcf

CD,T = 1− SD,T
(2)

C. Tracklets management strategy

At each frame, every tracklet updates its appearance embed-
ding, confidence score and state depending on data association
and prediction uncertainty. The integration of these elements
in the overall multi-track algorithm is detailed at the end of
the section.

1) Historical appearance embedding: As shown in figure 1,
every tracklet compares the appearance sliced from the SOT-
predicted position with its current appearance embedding. In
order to avoid drifting, we only update these visual features
when a match is found with a detection. This way, the
tracklet reidentification confidence score states how much the
prediction looks like the last associated detection.

Numerous approaches [9], [11], [15] use a list of the last
matched appearance embeddings to overcome the issue of
storing altered features e.g., if a target happens to be occluded

or suddenly changes under varying lighting conditions, the
appearance embedding is not crushed by the alteration and
still has a stable representation in memory. The similarity
score between a detection and a track embedding is therefore
defined as a combination of the similarity scores among this
list of stored features. Despite the aforementioned interest of
this strategy, comparing tens of vectors in a combinatorial
way e.g., in [11], [15], is time-consuming. As formulated
in equation 3, we address this issue by storing only one
appearance embedding Tfeat for each track and updating it
with the associated detection embedding Dfeat weighted by a
temporal memory factor τm. This way, the comparison is fast
and we still keep trace of appearance history.

Tfeat = (1− τm)× Tfeat + τm ×Dfeat if match(D, T ) (3)

2) Tracklet confidence multi-score: In the vein of LSST [9],
the tracklet confidence score formulated by equation 4 alterna-
tively integrates information about track prediction or matched
detection depending on the association phase outcome:

Tcft =

{
(Tcft−1

+IoUD,T ×cosD,T ×Dcf )

2
if match(D, T )

Tcft−1 × decay × Treid
k, otherwise

(4)

• if a match is found between a detection D and a
tracklet T , the tracklet updates its previous confidence
score Tcft−1

with the product of the detection score, their
overlap and their similarity score. Dividing the result by
2 as in equation 4 brings the score back to a [0, 1] range;

• if no match is found, we update the confidence score
with a decay factor and the track reidentification score
between prediction and current appearance features. As
in [9], an exponent k is applied to negatively impact
uncertain tracks.

Where LSST only integrates IoU, we benefit from richer
information like appearance similarity of match, prediction
and detection confidence measure.



3) Status update: The tracklet-detection association phase
is not enough: it does not handle non-detections, and occlu-
sions can still lead to inconsitency in tracklets. A mechanism is
put in place to deactivate ambiguous trajectories and maintain
alive non-associated tracks based on their SOT prediction
confidence, thus finding the right balance between detection
and tracking instead of only relying on the detector knowledge.
The last step after prediction and data association then consists
in updating the tracks as follows:

a) Active/Inactive flag:

• if a detection leads to track birth or is associated to an
existing trajectory, this tracklet is set to active mode;

• if a track was active at time t − 1 but is not assigned
a detection at time t, it shifts to inactive mode only if
the track confidence score Tcft drops below a certain
threshold τactive. This way, we also give trust to the
tracker knowledge instead of only relying on the detector
expertise as it is usually done;

• after data association, we perform Non-Maximum-
Suppression based on all targets confidence score with an
IoU threshold τnms to filter out occluded trajectories
and transit them towards inactive mode.

A tracklet position is updated during prediction phase only
if the track is active. This way, a drifting SOT will not stick
to occluders or wander around when the target has exited the
frame.

A two-step process is commonly applied during data associ-
ation [11], [15] and consists in matching detections with active
trajectories before looking at inactive ones. By using tracking
confidence in the tracklet-detection assignment, inactive tra-
jectories will implicitly lower the cost and be assigned after
active ones. We thus apply a single-pass matching process to
save processing time.

b) Birth/Death management:

• when a detection with a score Dcf is not assigned to any
existing tracklet, it leads to the creation of a trajectory,
only if Dcf is above a certain threshold τinit. Even if later
in the association part we do consider every detection
without any filtering, this threshold is important to avoid
creating spurious false positive tracklets in the beginning
and be confident about the appearance and position the
SOT will have as a starting point;

• at birth, every tracklet is considered as a tentative. It is
regarded as confirmed only after ninit associations in
a row. In this way, flickering detections e.g., two low
confidence detections interleaved with a non-detection
will not end up in the confirmation of a false track;

• if a track has not been associated to a detection ninit
consecutive times at birth, or if it has been inactive
over than nwait successive frames, it gets killed. To this
end, a counter Tcounter is incremented as long as the
tracklet remains inactive, and reset to 0 when a detection
is matched. These two strategies are already used in the
literature [15] and are efficient at reducing the number of
false positives and identity switches.

All put together, the elements of prediction, data association
and tracklets update can be summarized by Algorithm 2.

Algorithm 2 Overall tracking process

1: Inputs:
• {It}0≤t≤N−1 a set of N consecutive images
• {Dt}0≤t≤N−1 a set of N detection pools for each image t

2: Output: {T j
t }

0≤j≤M−1
0≤t≤N−1 a set of M distinct tracklets for each

timestep t

3: T0 ← ∅
4: for Dt, It ∈ zip(D, I) do

. Detections feature extraction
5: Ct ← crop(Dt, It)
6: Ft ← backbone(Ct)
7: Dtfeat ← reid_branch(Ft[Dt]) . Fig. 1

. Targets prediction
8: if Tt−1 6= ∅ then
9: C[t−1,t] ← crop(Tt−1, [It−1, It])

10: F[t−1,t] ← backbone(C[t−1,t])

11: X̂ ← SOT_branch(Ft−1, Ft) . Fig. 1
12: ˆfeat← reid_branch(Ft[X̂])
13: if Tt−1 is active then Tt ← X̂
14: else Tt ← Tt−1

15: Ttreid ← cos(Tfeat, ˆfeat)
. Tracklet-detection association

16: SD,T ← score(Dt, Tt) . Eq. 2
17: CD,T ← mask_to_inf((1− SD,T ), τIoU , τreid)
18: matches← hungarian(CD,T )

. Tracklets update
19: for (Dtp , Ttq ) ∈ matches do
20: Ttq ← Dtp , active . Update position & status
21: Ttqcounter

← 0
22: Ttqreid ← cos(Ttqfeat

,Dtpfeat
)

23: Ttqfeat
← update(Dtpfeat

) . Eq. 3
24: Ttqcf ← update(Dtp) . Eq. 4
25: Dt ← Dt −Dtp

26: if Dt 6= ∅ and Dtcf ≥ τinit then . Tracks birth
27: Tt ← Tt ∪ Dt

28: for Tti /∈ matches do . Unmatched tracks
29: Tticf ← update() . Eq. 4
30: if Tti is active and Tticf ≥ τactive then
31: Tti ← active
32: else Tti ← inactive
33: if Tti is tentative then
34: Tt ← Tt − Tti . Delete ”baby” tracks
35: indices← NMS(Ttcf , τnms) . Deal w/occlusions
36: Tt[indices]← inactive
37: for all Tt do
38: if Tt is inactive then Ttqcounter

+ = 1

39: if Ttqcounter
≥ nwait then

40: Tt ← Tt − Ttq . Delete old inactive tracks

IV. IMPLEMENTATION AND LEARNING PHASE

All evaluations are performed on an Intel Xeon E5-
1620v4@3.50Ghz x 8 CPU with 16GB RAM and a NVIDIA
Titan X (Pascal) GPU, with Python and Torch.



A. Dataset

We evaluate ourselves on the MOT17 benchmark [1]. It
consists of 14 pedestrian static and moving video sequences
taken from different views, cut in half for training and testing.
Among the whole dataset, 1280 distinct trajectories have been
annotated following a strict protocol, and the output of three
different frame-by-frame detectors are given as raw inputs
to solve the multi-tracking task. As described in section I,
we evaluate ourselves on the SDP detector and compare our
results with the other MOT17 submissions for this detector.

B. Training data generation

1) SOT: As described in figure 2, we construct pairs of
image crops centered on targets at time t and cropped at the
same location at time t+ 1. In order to get variability within
the identities, we set to 3 the number of examples per track to
generate i.e., for the same identified target, we take 3 different
crops at different times and retrieve their corresponding t+ 1
crops. Within the same batch, we also retrieve 5 more identities
with their 3 examples.

Because the displacement of a target between two succes-
sive frames is very small – thus close to zero, we also perform
data augmentation by randomly shifting the crops taken from
t+1 [4]. We end up with multiple [t, t+1] pairs for each target,
the first one being the real example, the others corresponding
to the shifted augmented ones.

In the end, we have as input to the network a batch of 72
examples of t and t + 1 crops (6 identities, 3 examples per
identity, 1 real t+ 1 and 3 augmented ones).

2) Similarity learning: Positive and negative pairs are built
from the 72 crops at time t available in a training batch.
We construct 540 combinations of {anchor, positive, negative}
triplets allowing us to calculate the positive cosine embedding
loss for the {anchor, positive} pairs and negative cosine
embedding loss for the {anchor, negative} pairs, the two
categories being equally balanced.

C. Hyperparameters

All training parameters like context and scale factors or
solver are the same as in [4]. The thresholds and tuned
parameters of the overall process formulated in section III are
optimized with SMAC [21] on training sequences and floored
to the closest decimal value during inference. For clarity, we
gather these hyperparameters, their values and description in
Table I.

V. EVALUATIONS AND ASSOCIATED ANALYSIS

A. Metrics

As it is done in the benchmark, we evaluate our tracker
with the CLEARMOT metrics [22]: false positives FP, false
negatives FN, identity switches IDS and more importantly
the multi object tracking accuracy MOTA which combines
together these metrics and gives a relevant insight on the over-
all tracking performance. We also discuss time consumption
performance i.e., the number of frames per second FPS.

TABLE I
HYPERPARAMETERS USED IN THE OVERALL MOT ALGORITHM.

Param. Value Description
τinit 0.5 Detection threshold for track birth
τnms 0.5 IoU threshold for NMS
τIoU 0.25 IoU threshold for possible data association
τreid 0.35 Similarity threshold for possible data association
τm 0.8 Temporal memory weight factor for feature update

τactive 0.5 Tracklet confidence threshold to keep active
decay 0.98 Tracklet confidence decay if not matched

k 2 Confidence exponent used during update if not matched
ninit 3 Time before a track gets confirmed
nwait 20 Inactive patience before killing a track

TABLE II
ABLATION STUDY SHOWING THE IMPACT OF THE TRACKLETS

MANAGEMENT STRATEGY ELEMENTS FORMULATED IN SECTION III.

(A) (B) (C) (D) (E)
IoU ReID Classif. Keep Init FP ↓ FN ↓ IDS ↓ MOTA ↑
X 4259 34314 1309 64.49
X X -1014 +1004 -267 +0.24
X X X +1693 -1187 -220 -0.25
X X X -1152 +994 -307 +0.41
X X X X +191 -802 -263 +0.78
X X X X X -462 -325 -297 +0.96

B. Ablation study

The following ablative analysis has two important purposes:
• confirm the added value of each single component de-

scribed in section III during tracklet-detection association
(Eq. 2) and tracklet confidence score update (Eq. 4);

• find the optimal tracking performance configuration.
As described in section III, we use different information for

calculating both tracklet-detection association costs and track-
let confidence scores: intersection over union (A) IoU, rei-
dentification measure of the prediction/association (B) ReID,
detection confidence score (C) Classif. When we say that one
of them is not used, we mean both in the association cost
and tracklet confidence score. We also analyze the impact of
two tracklets management strategies: keeping a confident track
active even if it is not associated to any detection ((D) Keep)
and confirm a track only if associated to a detection ninit
times in a row after its creation ((E) Init).

In table II, IoU is used as a baseline to calculate the gain
of each element.

1) Wait at init: (A+E) Waiting for multiple associations
before confirming a tracklet shows a gain to the baseline of
+0.24 on the MOTA. Looking at table II, we note that it is
mainly due to the gain over identity switches which can be
explained by the false positives drop down leading to less
ambiguous situations.

2) Complementary ReID and keep active: An interesting
outcome lies in the use of reidentification and keep active
strategy separately and then in a complementary way.

(A+B+E) On the one hand, we note that reidentification
alone with IoU and initial patience simultaneously improves
false positives and identity switches, thus following the ex-
pected behavior when adding appearance information as extra



TABLE III
COMPARISON OF ONLINE CNN-BASED MOT17 SUBMISSIONS ON THE TEST SET FOR THE SDP DETECTOR.

Rank Year Conf. Method MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FPS ↑ Hardware
1 2020 arXiv UnsupTrack 61.99% 217 248 5986 64860 651 2 GTX 1080Ti
2 2019 arXiv LSSTO [9] 61.63% 194 241 7285 64091 792 1.8 GTX 1060
3 2020 IEEEAccess YOONKJ 61.11% 225 248 9468 62895 788 3.4 GTX 1080Ti
5 2018 AVSS HAM SADF 60.30% 212 251 7177 66729 759 5 Titan X
6 2019 arXiv DEEP TAMA 59.95% 215 246 8445 66103 779 1.5 Titan X
7 2019 ICCV FAMNet [8] 59.16% 198 233 4822 70900 1097 0.6 Titan X
9 2020 Ours 58.48% 198 234 8585 68168 1328 10.4 Titan X

10 2018 ICME MOTDT [12] 58.39% 177 241 6317 71005 941 18.3 GTX 1060
11 2020 IJCAI GSM Tracktor 58.34% 192 256 5772 72050 537 8.7 Titan X
15 2019 arXiv GMPHD Rd 57.15% 230 200 15661 63225 1686 20.4 GTX 1050
16 2020 AAAI DASOT [23] 57.13% 217 213 13205 65320 2102 9.1 Titan X
17 2019 TM MTDF 57.01% 190 223 10183 68898 1764 1.2 GTX 1060
18 2019 ICCV STRN 56.99% 188 228 9262 70725 908 13.8 GPU (?)
19 2018 IEEEAccess FPSN 56.52% 184 230 7682 71089 3005 10.1 Titan X
20 2019 arXiv HISP DAL 56.08% 174 239 7944 71012 3642 3.2 GTX 1050
21 2019 IEEEAccess OTCD [19] 55.81% 159 295 3715 78160 1228 5.5 Titan X
22 2020 arXiv TrctrD17 55.56% 171 271 5247 77615 715 4.9 Titan X
24 2019 ICCV Tracktor++ [11] 55.32% 169 269 5375 77868 789 1.5 Titan X

Fig. 3. Qualitative examples of our framework. Thick colored: identified tracklets associated with a detection. Thin blue: non-associated tracks being kept
active because of their confidence score. Thin yellow: inactive tracks. In each box, the first number is the target identity, the second is the detection confidence
score and the third is the tracklet reidentification score with the associated detection or predicted position. The first row and left half of the second one
illustrate cases where keeping a confident track active pays off under scene occlusions. The right half of second row shows a type of identity switch our
framework still struggles with. For better viewing, a video is provided as supplementary material.

knowledge. However, because this strategy filters out more
tracklets, it still suffers from high false negatives.

(A+D+E) On the other hand, keeping confident tracklets
active even when no detection was assigned, and without
any reidentification insight, tends to inevitably increase false
positives – symmetrically decrease false negatives, and be less
efficient on identity switches than with (A+E) configuration.

(A+B+D+E) As highlighted in table II, using both reidenti-
fication and keep active in a complementary fashion allows
to both lower false negatives and identity switches while
maintaining false positives relatively low. In the end, when
(A+D+E) impacts MOTA negatively and (A+B+E) shows a

small gain of 0.41%, combining them leads to a 0.78% gain.

3) Benefiting from raw detector inputs: (A+B+C+D+E)
Adding detector confidence scores into the pipeline leads to a
global gain of 0.96% on the MOTA, and 0.18% relatively to
the previous configuration (A+B+D+E). In table II, we observe
a rebalance on each type of error but more specifically on
the false positive part, confirming the fact that tracker and
detector are complementary mechanisms and can both benefit
from each other.

Not illustrated in this paper, we also led experiments apply-
ing a threshold on upcoming detection scores to only consider
trusted ones, it decreases the MOTA and confirms our first



belief of tracker-detector complementarity.
4) Substantial gains: The gains presented in this ablation

study are substantial regarding the challenge: comparing our
method relatively to the other approaches in the literature
(table III), we note that improving our method by almost +1.0
in MOTA led to a 6 place jump forward in the overall ranking.

Figure 3 shows qualitative examples of our framework.
The first row as well as the first half of second row show
cases benefiting from our keep active strategy described in
section III-C3. Looking at tracklets 257 and 106, we observe
a balance between detector and tracker, where detection con-
fidence scores start to drop under occlusions with objects in
the scene but where tracks are still being kept active thanks to
a reidentification score (hence a confidence score) remaining
high. The tracker fulfils its catch-up role when the detector
fails.

However, when total occlusions occur between targets (pur-
ple and blue targets on the right half of second row), the
system deactivates the occluded track and struggles associ-
ating it correctly when it appears again. As illustrated in the
second thumbnail, this is mainly because before deactivating
the background track, a large portion of the targets gets
involved in the two appearance feature vectors, leading to
miss-reidentification.

C. MOT17 evaluations
In table III we compare our framework to the literature on

the MOT17 test set with SDP detections. For fair comparison
(especially on the execution time), we only show the CNN-
based approaches, whether they use deep networks for position
prediction or for reidentification. In any case, they generally
perform better than other methods, with only one or two
exceptions.

A few approaches integrating SOT for position prediction
are designed concurrently with our work [9], [23], but we
still present an original all-in-one architecture which obviously
outperforms recent state-of-the-art MOTA performance on the
benchmark [11], [17]. Beside tracking performance, we put
forward a ×2 to ×17 gain in speed w.r.t. the the MOTA top-
ranked CNN-based approaches, putting our method on the path
towards realtime constraints for embedded applications.

VI. CONCLUSION AND FUTURE WORKS

In this work, we put forward an original architecture inte-
grating a jointly trained all-in-one single light-weight siamese
CNN for both tracklet position prediction and reidentification
in a multi-object tracking context. We present a novel training
data generation and tracklet management strategy for this
purpose and show state-of-the-art results on the well-known
MOT17 benchmark, in terms of both tracking results and
speed.

Due to the success of recent single object tracking work
using intercorrelation inside their network [5], [24], [25], we
aim at improving our architecture with such techniques but
also find an in-between strategy within the appearance feature
management strategy to deal with identity switches induced
by full target-to-target occlusions.
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